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Starting from the standard one-time dynamics of n nonrelativistic particles, the n-time 
equations of motion are inferred, and a variational principle is formulated. A suitable 
generalization of the classical Lie-Konig theorem is demonstrated, which allows the 
determination of all the associated presymplectic structures. The conditions under which the 
action of an in variance group is canonical are studied, and a corresponding Noether theorem is 
deduced. A formulation of the theory in terms of n first-class constraints is recovered by means 
of coisotropic imbeddings. The proposed approach also provides for a better understanding of 
the relativistic particle dynamics, since it shows that the different roles of the physical positions 
and the canonical variables is not peculiar to special relativity, but rather to any n-time 
approach: indeed a nonrelativistic no-interaction theorem is deduced. 

I. INTRODUCTION 

As it is well known, in the treatment of bound states in 
the framework of quantum field theory, both relativistic and 
nonrelativistic, the states of the bound system are described 
by a wave function for many particles, which will depend in a 
natural way on the times of each elementary field. In order to 
give a physical interpretation to this wave function, we must 
give a meaning to this many time description, or, what is the 
same, to have a consistent dynamical theory for systems of n 
particles, with n different times. 

At the relativistic level the bound states are described by 
the Bethe-Salpeter equation, I with the connected problems 
of the normalization and interpretation of its solutions. To 
get a better understanding of it, Todorov2 and then Komar3 

developed a manifestly covariant classical relativistic model 
for two particles, of an action-at-a-distance kind,4 which de­
scribes in a covariant way the instantaneous approximations 
of the Bethe-Salpeter equation, restricted to the two particle 
sector.5 In the Todorov-Komar model the dynamics is given 
in terms of two first-class constraints, and, therefore, the 
relative time problem is related to the existence of gauge 
transformations generated by the constraints.6 An equiva­
lent model was discovered by Droz-Vincent,7 which was 
based on a two-time formulation of the classical relativistic 
dynamics. Here we have the first example of the connection 
between the first-class constraints formulation and the 
many-time dynamics. 

The Todorov-Komar-Droz-Vincent model for two 
particles, in its first quantized version,2.8-1O generates a bilo­
cal wave function, which is a solution of two coupled integra­
ble integro-differential wave equations. In Ref. 11 a com­
plete analysis of these equations has been done, by giving the 
set of their solutions (where the relative time appears in a 
phase factor), the explicit expression of the Poincare invar­
iant scalar products (see also Ref. 9 and 10 and the last paper 
quoted in Ref. 8), and, by solving the initial data problem, a 

probabilistic interpretation of the wave function is proposed. 
The connection with the Bethe-Salpeter equation is studied 
in Ref. 5, and, for the nonrelativistic limit, in Ref. 12. At­
tempts toward a second quantization along these lines are 
given in Ref. 13. 

However, due to the complications introduced by spe­
cial relativity, a clear understanding of all the involved struc­
tures, and a clear physical interpretation of them, is still 
lacking. One of these complications is for instance the prob­
lem of the most suitable definition of the relativistic position 
coordinates, see Ref. 14. The Todorov-Komar-Droz-Vin­
cent model is the output of the many efforts to formulate the 
theory of the classical relativistic particle mechanics (see 
Refs. 4, 12, and 15 for reviews, and also Ref. 4. See Ref. 16 for 
reviews on the predictive mechanics, and see also Refs. 7 and 
17), overcoming the difficulties introduced by the no-inter­
action theorem,18 which prevents the physical coordinates 
from being simultaneously covariant and canonical in the 
interacting case, in any of the forms of the dynamics intro­
duced by Dirac. 19 From here it emerges the dualism between 
the physical covariant coordinates {if'} and the phase-space 
canonical coordinates {xl' }. The models which use the first­
class constraints approach are expressed in terms of the co­
ordinates {xl' }, in order to avoid the consequences of the no­
interaction theorem, while the model formulated in the 
predictive approach are expressed in terms of the coordi­
nates {if'}. The work of Droz-Vincent, in particular Ref. 
20, establishes a bridge between the two approaches, and 
provides a connection between the above mentioned dualism 
and the many times formulation. 

The present paper was originated by the wish to clarify 
these problems, avoiding the complications due to special 
relativity. We start from the classical nonrelativistic New­
ton's equations for n particles, as a preliminary laboratory, 
deferring the quantum aspects as well as the physical inter­
pretation, and the interpretation as a gauge theory to a future 
paper. The first step will be to get an n-time version of New-
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ton's equations of motion, which will be the nonrelativistic 
counterpart of the relativistic predictive equations, then we 
will put them in a first-order form. 

In order to gain a canonical formulation, suitable for the 
quantization, we will give a generalization to n-times (non­
autonomous case) ofthe classical Lie-Konig theorem21 for 
which the reader is also referred to Refs. 22 and 23. In this 
way we will find all the n-time local (symplectic) structures, 
or better, the Poisson structures, which can be associated to 
the given equations of motion, and we will immediately find 
the dualism between the physical position ql(t I) of the ith 
particle and its canonical coordinate Xl( 1 1,1 2, ... ,t "). While 
the former only depends on its own time, the latter depends 
on all the 1 i. Moreover we will get the n-time generalization 
of the inverse problem in the calculus of variations, in the 
first-order formalism24 (see Ref. 25 for a review), and, as a 
by-product, we will get a nonrelativistic no-interaction 
theorem, and it will be possible to demonstrate the nonexis­
tence of a predictive Lagrangian, independent on the acce­
lerations, in the interacting case; only a singular Lagrangian 
can be defined. 

The study of the invariance transformations of the n­
time Newton equations in the first-order form will provide 
for an n-time generalization of the Currie-Hill conditions, 26 
for the Galilei algebra, as well as of the first Noether 
theorem, and for the conditions on the invariance transfor­
mations for being canonically implementable, with the cho­
sen symplectic structure. 

The final step will be to define an enlarged phase space 
Ai, with the new canonical variables t i and EI , times and 
energies, respectively, with n first-class constraints. It will be 
shown that this is a coisotropic embedding27 in the phase 
space Ai of the original presymplectic manifold.28 (See, also 
Ref. 29 for a set of first-class constraints describing n nonrel­
ativistic free particles, and Refs. 12 and 30 for the case of two 
nonrelativistic interacting particles.) Finally, the Droz­
Vincent method20 will allow the recovery of the physical 
position coordinates from the canonical ones. 

It is our hope that, at the end of this paper, it will be clear 
that many features of the n-time approach are not peculiar of 
a relativistic theory, but, rather, they simply are more com­
plicated in the relativistic case, with the result of hiding their 
basic simplicity. To reveal this simplicity we need a reformu­
lation of Newton's equation of motion, which is probably 
useless for the applications, but it is inescapable for the pres­
ent kind of problems. 

As a matter offact, the present analysis is quite general, 
and it could in principle be applied to any dynamical system. 
It is only necessary to specify the kinematical group of the 
theory, that is, for instance, the Poincare group instead of the 
Galilei group. The only difference, which in practice be­
comes a real difficulty, is that in the present analysis the 
constraints are energy constraints, that is they are linear in 
the energies of the particles. This means that, in a relativistic 
theory, where the constraints are usually given in a covariant 
form, we should solve them in terms of the energies, and, in 
general, several local solutions will be possible. The present 
analysis must be separately applied to each of these solu­
tions. 
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In Sec. II we will discuss the n-time approach to the 
equations of motion. We will explicitly develop a very simple 
model for two particles, for which we will give the explicit 
expression of the two-time forces in Appendix A. 

In the same section we will discuss the canonical formu­
lation of the dynamics. 

In Sec. III the generalization to many independent vari­
ables of the classical Lie-Koning theorem will be outlined in 
order to establish, on general grounds, the existence of a 
canonical formulation. Some of the details are given in Ap­
pendix B. In Sec. IV we will discuss the invariances of the 
theory. 

Finally, in Sec. V, the problem of the position coordi­
nates and of their correlation with the canonical coordinates 
will be discussed. 

Some of the present material was already presented in 
Refs. 30 and 31. 

II. THE n-TIME FORMULATIOIN OF THE DYNAMICS 

Given the equations of motion of a system of particles in 
a nonrelativistic theory 

(2.1 ) 

where ql are the positions of the particles and t the time in a 
given inertial reference frame, it is always possible, in princi­
ple, to get an n-time formulation by eliminating the integra­
tion constants from their solutions and their first derivatives. 
Let us write the general solution of the system (2.1), 

(2.2) 

where C1,C2""C6n are integration constants. In solution (2.2) 
we may choose a different time for each particle, that is 

(2.3 ) 

If we eliminate the integration constants C1,C2,,,,,C6n from 
Eqs. (2.3) and their derivatives 

I( i) d i( i) . I( i ) Y t = -. q t = g t ,C1,C2""'C6n , 
dt' 

and substitute in 

I( i) d 2 i( i) .. I( I ) a t = -- q t = g t ,C1,CZ'''''C6n , 
dt l2 

we get the n-time equations of motion 

mlal(ti) =Yi(tj,qj,y j). 

(2.4 ) 

(2.5 ) 

(2.6) 

Since the ith lhs only depends on t i, we must have 

~jYI=(~j+yj. :cj+aj'~j)Yi 

(
a. a yj a) CT' 

= at j +yl. aqj+ mj . av j ./"=0, (2.7) 

for i=/=j. 
Equations (2.7) can be called predictivity conditions, 

and the n-times forces yi predictive forces. This in order to 
agree with the literature on predictive mechanics quoted in 
the Introduction (see Refs. 7, 16, and 17). Putting 
t 1= (2 = '" = t n = tin Eq. (2.6), we must have 

(2.8) 
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Let us now consider the system (2.6): It seems difficult 
to get it from an action principle, or, more simply, to get the 
forces yi from some potential, or even if possible, as is ap­
parent from the example of the Appendix A, it will be very 
complicated. As a matter offact, we will show in Sec. V that 
a second-order Lagrangian for the equations of motion (2.6) 
does not exist. So we will look for a possible canonical formu­
lation in terms of other variables. 

In Sec. III we will give a generalization to many vari­
ables t i (i = 1,2, ... ,n) of the classical Lie-Konig theorem, 
which asserts that, for any given set of first-order ordinary 
differential equations, it is always possible to find new vari­
ables, Xi and pi (in place of the positions and velocities), and 
a function of them, H, such that the set of equations is trans­
formed to canonical form. 

In our case the generalization of this theorem says that, 
given the set of first-order equations (now partial derivative 
equations) 

aqi =vi[)i, 
at j } 

(2.9) 
avi 

. 'kkk m· -. = {j'y'(t ,q ,v ) , , at} } 

it is always possible to find new variables Xi = Xi(t k,qk, vk
) 

and Pi = Pi (t k,qk,Vk), and besides n functions 
Hi = Hi (t k,Xk,Pk) satisfying the integrability conditions 

(2.10) 

where 

{A,B} =i (aA
i

• aB _ a~. aA), 
,= 1 ax api ax api 

(2.11) 

such that the system (2.9) can be written in canonical form: 

axi 
. -. = {x',H.}, 

at' ' 

api 
-.={p.,H}. 
at} '} 

(2.12) 

We leave to the next section the demonstration of this 
result. As a matter offact, this theorem asserts the existence 
of at least one canonical formulation, but says very little for 
actual construction of the Hamiltonians Hi' 

For the moment, we will assume the existence of n func­
tions Hi' satisfying the conditions (2.10), in order to formu­
late the action principle in canonical form. 

Let us consider the following line integral: 

S = (b (Pi. dxi _ Hi dt i) , (2.13) 
Ja(/) 

where a and b are two points in the (t l,t 2, ••. ,t n) space and I 
is a path connecting them. 

S is a functional of the Pi and Xi defined on the 
(t l,t 2, ..• ,t n) space, for which the usual symplectic structure 
is assumed 

(2.14 ) 

where m,n = 1,2,3 and iJ = 1,2, ... ,n, and the Hi (t \X\Pk) 

satisfy the conditions (2. 10). 
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If we require {jS = 0 for an arbitrary variation of 
Pi = Pi (t l,t 2, ... ,t n) and Xi = xi(t l,t 2, ... ,t b), which vanishes 
in a and b, and for any choice of the path I, we get the follow­
ing equations of motion: 

dXi = {x1,Hj } dt j , 

dpi = {PoHj } dt j 
(2.15) 

(a sum over repeated indices is assumed), which are integra­
ble in view of the conditions (2.10). 

Equations (2.15) can be obtained on any given path I, in 
which case dt j = t 'j( 7)d7, where 7 is any parameter for the 
path I, and the functions t 'j( 7) depend on the choice of I. 
Since Eqs. (2.15) are integrable, the canonical coordinates Xi 

and Pi exist as functions on the space (t l,t 2, ... ,t n) and not 
only on the path I. So they will coincide with the particular 
solution found on a given I, when the independent variables 
t i are restricted on I. 

When Xi and Pi are solutions ofthe equations of motion 
(2. 15), the canonical action S does not depend on I. Indeed 
the one-form 

f) = Pi • Xi - Hi dt i , (2.16 ) 

is closed, when Eqs. (2.15) hold 

1 (aHi aHj { }) i . df) = - --. - --. + Hi,Hj dt Adt} = O. 
2 at} at' 

For any dynamical variable t = t( t \Xk,Pk ), the equa­
tion of motion reads 

and 

dt = (::i + {t,Hi} ) dt i . 

Let us notice that in general we have that 

Xi = Xi(t l,t 2, ... ,t n) , 

Pi = Pi(t 1,t 2, ... ,t n
) , 

(2.17) 

whereas the positions qi are only functions of the corre­
sponding t i. The only case in which the Xi only depend on t i 
happens when the Hi> for i-/=j, do not depend on the Pi> for 
instance when the ith particle is free. 

This fact already shows that in general the canonical 
variables Xi cannot coincide with the positions qi. Only when 
the interaction between the particles vanishes, we can freely 
make the choice Xi = qi. 

The fact that the canonical variables Xi and the physical 
positions qi do not coincide, apart from the free case, is com­
mon in the relativistic theories, where this fact is essentially a 
consequence of the no-interaction theorem. But we now see 
that it is not peculiar of relativity, but rather of a multitime 
approach. 

We will discuss the relation between the positions qi and 
the canonical variables in Sec. V, where we will give the 
precise connection between the canonical formalism and the 
equations of motion (2.6). 

As previously mentioned, the next section is devoted to 
the proof of the existence of a canonical formulation, once 
Eqs. (2.6) are given, that is of a generalization of the Lie­
Konig theorem. 
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1110 A GENERALIZATION OF THE LIE-KONIG THEOREM 

The Lie-Konig theorem21 was discussed and applied in 
connection with the relativistic dynamics of systems of parti­
cles by Hill22 and Kemer.32 

Here we will essentially follow the treatment given in 
Refs. 22 in order to look for a generalization of this theorem 
to many independent variables {t '}, i = 1,2, ... ,n. 

The equations of motion (2.6) can be written as a first­
order system as in Eqs. (2.9): 

aqi =yi~i 
at i J' 

avi 
= _1_ ~iffi(t k qk yk) 

ati m
i 

J ", 

(2.9') 

where iJ = 1,2, ... ,n. 
The conditions (2.7) will now be written in the short­

hand notation 

Yiffj = 0, for i#J, 
where 

a ,a ffi a 
Y i =_, +y'o_+_o_" 

at' aq' m i av' 
Let us introduce a new notation, 

{ya} = {q'}, for a = 1,2, ... ,N = 3n , 

{yo} = {Y'}, for a = N + I,N + 2, ... ,2N. 

(3.1 ) 

(3.2) 

(3.3 ) 

With this notation the equations of motion (2.9) can be writ-
ten 

aya a 
-, =hi(y,t), 
at' 

where 

{h~} = {W;}, W; = {l;yi, for a = 1,2, ... ,N, 

{h n = {h7+ J}, h7+ J = {I; (1/m i )ffi 
, 

for a = N + 1, ... ,2N. 

The conditions (3.1) become 

Yihj=O, for i=/=j, 

where 

(3.4 ) 

(3.5) 

(3.6) 

Y.=~+ho~. (3.7) 
, at' ' aya 

The conditions (3.6) are a particular case of the integra­
bility conditions for the system (3.4), which is a Mayer sys­
tem33; the more general integrability conditions are 

Yihj=~h~. (3.8) 

From now on, if not otherwise specified, we will assume 
the more general conditions (3.8) in place of (3.6). 

Let us now look for a variational principle giving the set 
of equations of motion (3.4) in the form 

~S=O, 

where 

(3.9) 

s=i
b 

0, 0= Ua dya_ Vidt i , (3.10) 
a(/) 

and where 1 is a path in the space of the times T = {t '}, 
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i = 1,2, ... ,n, connecting a = {t ~a)} to b = {t ~b)}' 
The variational principle (3.9) will be required for all 

the variations of the functions 

ya(t l,t 2, ... ,t n ) , 

which vanish at the end points of the path I, a and b, and for 
all the variations of the path 1 with fixed endpoints. 

At the end points a and b the functions qt(t l,t 2, ... ,t") 

will be considered as given, and the functions yi(t l,t 2, ... ,t") 

fixed, but undetermined. It is worth recalling that, when the 
more restricted integrability conditions (3.6) will hold, the 
variables qi will only depend on their own time t i. 

A variation of ya(t I,t 2, ... ,t") and of 1 amounts in per­
forming independent variations of ya and t i. 

If we introduce another notation 

{ya} = {ya,t'}, a = 1,2, ... ,2N + n, 

and put 

Ua = Uo , 

Ua = - Vi' 

for a = 1,2, ... ,2N, 

for a=2N+i, i= 1,2, ... ,n, 

the one-form 0 can be written 

0= Ua dya. 

The variation of this form gives rise to 

~O = (a~; _ aU(3) dya ~yP + d( Ua ~ya) , 
ay aya 

(3.11 ) 

(3.12) 

(3.13 ) 

so the equations of motion corresponding to ~s = 0 will be 

raP dyu = 0, 

where we have defined 

aUa aup 
r up = ayP - aya 

Equations (3.14) must be identified with Eqs. 
Since Eqs. (3.14), when explicitly written, are 

r ab dyb + r ai dt i = 0 , 

ria dya + r ij dt J = 0 , 

this requires 

and 

or 

I r ab I =/=0 (a,b = 1,2, ... ,2N) , 

r ab h ~ + r ai = 0 , 

riahj+ rij =0, 

r ab h ~ = - r ai , 

rabh~hJ= rij' 

(3.14) 

(3.15 ) 

(3.4) . 

(3.16 ) 

(3.17 ) 

(3.18 ) 

(3.18') 

The first of these equations gives the "forces" h f in 
terms ofr, 

h~= - (r-I)Obrbi . (3.19) 

The condition (3.17) implies that the two-form 

UJ = dO = -! r a{3 dya 1\ dyP (3.20) 

has rank 2N, because UJ can also be written as 

(3.21 ) 
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where 

() a = dya _ h ~ dt i . (3.22) 

The system () a = 0, which is the set of equations of mo­
tion (3.4), is completely integrable due to the integrability 
conditions (3.8). This can also be verified with the Froben­
ius theorem, since 

d(}a = __ ' dt i 1\ (}b (
aha ) 
ayb ' 

(3.23) 

where Eq. (3.8) was used. 
Since 

iy,(}a=o, (3.24) 

where i y, is the contraction with respect the vector field Yi 

(see for instance Ref. 34) the dual form of the Eq. (3.23) is 
in terms of the characteristic vector fields Yi , that is 

(3.25) 

The fields Yi span the kernel distribution of CtJ since 

iy,CtJ = 0, (3.26) 

so the kernel distribution of CtJ is n-dimensional, the Yi being 
linearly independent. 

From Eq. (3.21), we have that, on the motion, 

CtJ = d(} = O. 

This has the important consequence that the action S, when 
evaluated on the motion, does not depend on the path I, but 
only on the end points a and b. Indeed, using Stokes' 
theorem, we have that for two paths I and I' with the same 
end points 

- () = () = d(} = 0 U
b 

lb) i i 
a(l') a(l) aD D ' 

(3.27) 

where D is the domain, in the space of times T= it'}, 
bounded by I' and I. 

In the notation (3.11), by setting 

h f = h ~, for a = a , 

h f = fI;, for a = 2N + j , 

we may write 

Y.=h':~ , , aya 

(3.28) 

(3.29) 

and the integrability conditions (3.8) can now be written 

Yih j = ~h f , (3.30) 

since, for a = 2N + 1, ... ,2N + n, they become identities. In 
the case of the restricted integrability conditions (3.1), the 
right-hand side ofEq. (3.30) is zero. Equations (3.4) can be 
written 

( 3.31) 

and the equations for r a{3 can be summarized as follows: 

1897 

raP = - r{3a , 

arap --+ cyclic = 0, 
JyY 

raphf=O, 
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(3.32) 

(3.33) 

(3.34) 

where the first and the second equations are a consequence 
ofEq. (3.15), and the last collects Eqs. (3.18). 

Together with these equations we must remember the 
requirement 

!rab I #0, for a,b = 1,2, ... ,2N. (3.35) 

Equations (3.32) and (3.33) are merely identities: this 
follows from the definition of raP in Eq. (3.16). Neverthe­
less they can be assumed as defining equations for r a{3' Ob­
serve that from these equations and Eq. (3.34), and using 
the integrability conditions (3.8), the components rai and 
r ij can be eliminated, obtaining two equations for r ab solely 

yir be = (rabae - raeab)h ~, 

arab --+ cyclic =0. 
aye 

(3.36) 

(3.37) 

Equations (3.33), when written explicitly for the com­
ponents r ab' raj> and r ij' reveal the self-adjoint nature of 
Eqs. (3.14). Indeed these equations split in four sets ofequa­
tions, of which two are Eqs. (3.37) and 

arab aria ar bi 
--. +-+-=0, (3.38) 

at' ayb aya 

while the two other sets are identically satisfied, due to Eqs. 
(3.36) and (3.8). 

The reader is referred to Ref. 35 for the definition of self­
adjoint systems in the one-time case. 

Let us notice that, when the restricted form (3.6) ofthe 
integrability conditions holds, to each solution r ab of Eqs. 
(3.36) and (3.37), such that its restriction atequaltimes has 
the form 

-a) 
o ' (3.39) 

where a and /3 are N X N matrices, and a = aT, /3 = - /3 T, 
and where the zero sector refers to 

au,/,+ n aUJ+ n 
a,/j avmi (m,k = 1,2,3) , 

a solution of the inverse problem of the calculus of variations 
is associated, that is there exists a Lagrangian for Eqs. (2.1), 
and a and /3 can be expressed as 

J 2L 
a1mjk = aqlm aq jk ' 

a2L a2L /3. 'k=---,mJ aqim ai/k aqik aqim ' 

where qim = vim. 
As shown in Ref. 24 this condition is equivalent to the 

Helmholtz conditions in the Douglas form, as are expressed 
in the first-order formalism (see Ref. 36). The same results 
are also given in Ref. 37, and, in a more geometric way, in 
Ref. 38 by using a variant ofthe one-forms (3.22). As there 
are inequivalent classes of solutions for r ab (see in the fol­
lowing of this section), the system (2.1) will have no one, 
one or several inequivalent (or s-equivalent) Lagrangians, 
according to how many solutions r ab admit the form (3.39) 
(see Ref. 25). 

Coming back to the general discussion, with the integra­
bility conditions in the general form (3.30), and before in-
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troducing local canonical variables, let us discuss the struc­
ture ofthe system (3.18) or (3.34), for Ua and Vi' for given 
forces h f( y,t). 

First of all let us notice that Eq. (3.34) is invariant un­
der the transformation 

eM> 
Ua-+Ua +-, 

aya 
(3.40) 

where <I> is any function of the {ya}={yo,t i}. 
Under this transformation 0 transforms as 

(3.41 ) 

which does not modify the equations of motion. This trans­
formation will be called a canonical transformation. 

To be more general, we have to observe that even the 
transformation 

(3.42) 

does not modify the equations of motion, corresponding to 
the first of Eqs. (3.16), since there the Ui = - Vi appear 
differentiated with respect to the ya only, but it breaks the 
independence on the path I of the action, expressed by the 
second ofEqs. (3.16) since it is this equation that appears in 
80 as a coefficient of 8t i. So we will not consider any more 
such a transformation as a true invariance ofthe theory. 

Coming back to the transformation (3.40), we observe 
that a solution of Eqs. (3.34), recalling the definitiion 
(3.15), can be written 

U = U(O) + eM> , 
° a ayo 

Vi = - U2N + i = U~O)hf- eM> , (3.43) 
at' 

with U~O) a solution of the homogeneous equation 

ah b 

y.U(O) + U(O) --' = 0 (3.44) ,a b aya ' 

satisfying the condition 

l
aU(O)1 
_0_ #0. 

ayb 
(3.45 ) 

This is a consequence of the following facts, which are 
demonstrated in Appendix B: if we put 

Vi = - U2N + i = Uahf+Ai' 

it follows for Ai> 

YiAj == ljAi· 

This in tum implies that Ai must be of the form 

(3.46) 

(3.47) 

Ai = - Yi<l>, (3.48) 

with <I> any arbitrary function. Finally, it is shown in Appen­
dix B that 

U _ a<l> 
° ayo 

satisfies Eq. (3.44), from which we have 

U = U(O) + eM> , 
° a ayo 
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and thus 

V. = U(O)h a _ eM> 
, 0' at i • 

Equation (3.44) is discussed in Appendix B. 
With the solution (3.43), the one-form 0 can be written 

as 

o = 0 (0) + d<l> , 

where 

0(0) = U~O) dya _ Viol dt i = U~O)oa, 

because 

(3.49) 

(3.50) 

(3.51 ) 

The solution (3.43) shows that any independent solu­
tion U~O) ofEq. (3.44) determines a set of solutions connect­
ed by canonical transformations (3.40). 

Clearly Eqs. (3.43) define an equivalence relation, and 
inequivalent choices ofr (with l!rabll not singular) will cor­
respond to disjoint sets of solutions for Ua' each element of 
one of these disjoint sets being connected to another of the 
same set by a canonical transformation. 

The situation described here is completely analogous to 
that of the one-time case, analyzed in Ref. 22. 

Now we can demonstrate that each disjoint set has a 
different symplectic structure, giving to our equations of mo­
tion (3.4), or (2.9), the form of canonical equations ofmo­
tion, which is the main task of the present section. The cru­
cial result is that the two-form w = dO has rank 2N, as 
stressed after Eq. (3.20). On the other hand w is closed, so 
from the (generalized) Darboux theorem,34 we know that 
local coordinates exist such that 

w = Qpi Adii (i = 1,2, ... ,n) , 

from this we get 

d(O - Pi dii
) = 0, 

or 

where ¢ is a function of ii, Pi' and t i. 

(3.52) 

(3.53 ) 

Equation (3.53) shows that, for each inequivalent 
choice of r af3' we have a (different) symplectic structure. 
The coordinates Pi and ii are a choice of the Jacobi coordi­
nates (initial data), for which the Hamiltonians are vanish­
ing. Let us now go back to a general choice of canonical 
variables Xi and Pi' by performing a (backward) Jacobi 
transformation. 

If we take ¢ to be any function ofii and t i, and of a set of 
N new variables Xi, ¢ = ¢(xi,ii,t i), with the only require­
ment that 

we may put 

a¢ 
axi 

and 
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-Hi (x,i,t) , 

(3.56) 

Condition (3.54) allows to invert the last equation 
(3.56), to get ii as a function of Xi, Po and ti 

ii = gi(X,p,t) . (3.57) 

Inserting this expression in Hi we get n new functions of 
Xi, Pi' and t i 

Hi (X,p,t) = Hi(x,g(x,p,t),t) , (3.58) 

which will be our Hamiltonians. The first equation (3.56) 
can now be written 

a</J. + H;(X' a</J ,t) = O. 
at' ax 

(3.59) 

It is easily verified that the Hamiltonians so determined 
satisfy the following integrability conditions: 

aH. aH. 
-~ - -' + {H;,Hj } = 0, (3.60) 
at' at' 

where the Poisson bracket is defined with respect to the new 
canonical coordinates x and p: 

{A,B} =i (aA
i

• aB _ a~. aA). 
,~I ax api ax api 

Indeed, from Eqs. (3.59) we get 

Hi (x,i,t) 

at j 

_ aHi _ aHi .~ a</J 
at j apk at j axk 

(3.61 ) 

aHi aHi (aHj aHj a 2</J ) 
- at j + apk' axk + ap, . axk ax' ' 

from which 

~ _ a2</J. = _ aHi + aHj -{HoH.}=O. 
at' at ' at' at' at' at' , 

Let us stress that in this way we may generate sets of n 
functions Hi satisfying Eqs. (3.60), by simply choosing a 
function </J (x,i,t), satisfying the condition (3.54). 

The one-form () becomes 

() = Pi dii + d</J 

that is 

() = Pi dxi 
- Hi (x,p,t) dt i , (3.62) 

which is the local expression for () we were looking for. This 
is the generalization to n times of the Poincare-cartan one­
form. The one-time evolution vector field Y, which is the 
solution of the equations 

iyw=O, i y dt=1 (w=d(}) , 

is now replaced by the n vector fields Yo satisfying Eqs. 
(3.26), and 

iy; dt j = 8i; . 
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Clearly the inverse procedure, that is, given the func­
tions Ho satisfying the integrability conditions (3.60), to 
determine the function </J(x,p,t) , amounts in determining a 
complete integral of the n (integrable) Jacobi equations 
(3.59). 

In Appendix B the relation between the coordinates i 
and P and the integration constants of the original equations 
of motion (3.4) is discussed. 

If we compare the expression of d(} as given by Eq. 
(3.62) with that given by Eq. (3.10), we get the following 
equality: 

aUa aUb b 

rab = ayb - aya = [ya,y ] , (3.63) 

where [ , ] is the Lagrange bracket 

(3.64) 

where Xi and Pi are considered functions of the variables ya 
.and ti. 

The first equation (3.63) implies 

{ya,yb} = _ (r-I)ab, (3.65) 

where we remember the condition (3.17), that is the hypo­
thesis that I jr ab II be nonsingu1ar. Equation (3.65) follows 
from 

[ ya,yb ] {yc,yb} = Dac . 

The first of Eqs. (3.18) gives 

h ~ = - (r-I)abrbi' 

where we have taken into account that 

{ya,yb} aF = {ya,F} . 
ayb 

(3.66) 

(3.67) 

If we substitute the expression (3.67) into the expres­
sion of r ai of Eq. (3.63), we get the forces in canonical form 

h a aya {aH} 
i=-a'+ y, i' t I 

which can also be written 

(3.68 ) 

(3.69) 

from which we get the action of Yi on any function of 
{Xi,Pi,t '}: 

(3.70) 

This equation gives the canonical form of the vector 
fields, which span the kernel distribution of the two-form w. 

Equation (3.60) is recovered from r ii' using Eq. 
(3.18'). 

We see that r ab determines the symplectic structure of 
the theory, as already observed, and that r ab is a canonical 
invariant, which determines the canonical sector on which 
the original n-time theory is represented. 

The equations of motion can now be obtained as the 
equations of the integral curves of the vector fields Yi • In­
deed, by solving (see, for instance, Ref. 34) 

(3.71) 
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we find for X 

X = CiYi = Ci(~ + { . ,HJ) , 
at' 

for any choice of the functions ci
• 

(3.72) 

The integral curves of the vector fields Yi have the equa­
tions 

dxi = {xi,Hj } dt j 
, 

dpi = {Pi,Hj } dt j 
, 

(3.73 ) 

which are the n-time canonical equations of motion. For any 
canonical observable F( x,p,t) we get 

(3.74) 

Equations (3.60) now become the integrability condi­
tioins for Eqs. (3.73). 

Observe that the coordinates Xi and Pi are now, on the 
motion, functions of all the times t 1,t 2, ... ,t n, contrary to the 
original positions qi, which are functions of their own time t i 
only. 

If we restrict the Xi and the Pi of the given symplectic 
structure { , } associated to a Ua , to 
t l =t 2 = ... =t n =t,Eq.(3.73)givetheusualone-time 
Hamilton's equations of motion, with 

n 

H=IHi' (3.75) 
;=1 

If we consider the case of the restricted integrability 
conditions (3.6), when, to the given canonical sector U ~O), a 
rab is associated, which at equal times satisfies Eq. (3.39), 
that is 

-a) 
o ' (3.76) 

we have a Lagrangian for Eq. (2.1), and its Hessian is given 
by the matrix a, so that det a#O. Then 

which implies 

{gmi,qkJ} = 0, at t I = t 2 = ... = t n = t . 

We can then make the identification 

qi=Xi, at t l =t 2 = ... =tn=t, (3.77) 

and, via the Legendre transformation, we may recover the 
standard one-time Hamiltonian formalism, with 

n 

H=IHi . 
;=1 

As qi = qi(t i), it follows that 

{qmi(t i),qki(t i)} 

does not depend upon the time tj, for j#i: therefore its van­
ishing at equal times implies 

{qmi(t i),qki(t i)} = 0, 

also in the n-time case. 
Vice versa 

{qmi,qkJ} = 0 at t I = t 2 = ... = t n = t , 
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implies, considering Eq. (3.64), 

_I ab (0 a) II (r ) = be=:} IWabl t ,=,,= ... /"=/ 

( 
b -I -I - ca 

- a-I 

for those symplectic structures for which det a # 0, det b # 0; 
but, from 

rab = - r ba 

we get 

a- I = -b- I , 

so we recover Eq. (3.39) with 

a = b -I and f3 = b -Icb - I. 

Instead, for a canonical sector U ~O), whose r ab does not 
satisfy Eq. (3.39), there is no Lagrangian for Eq. (2.1), giv­
ing rise to this symplectic structure, restricted to equal times, 
via the Legendre transformation. In general, we now have 

{qmi,qkJ} #0 

even at equal times, and it is always qi#Xi. The only way to 
define a Hamiltonian is by using Eq. (3.75). 

This is a constructive way to get the symplectic struc­
tures and the Hamiltonians for the original system of equa­
tions of motion, which do not admit a Lagrangian. 

Let us conclude this section by showing that the n-times 
formalism becomes the usual one in the free case, and for 
equal times, with a suitable choice of the solution of the equa­
tions for Ua and Vi' 

In the free case we have 

{h f}={h{}, h{ = ~Vi for a = 1,2, ... ,N, 

and 

{h f} = 0, for a = N + I,N + 2, ... ,2N . 

It is easily seen that a particular solution of Eqs. (3.17) 
and (3.18) for Ua and Vi is 

and 

{Ua } = {miv'}, for a = 1,2, ... ,N, 

{Ua}=O, for a=N+ I,N+2, ... ,2N, 

Vi = ~mi (Vi )2 . 

The one-form (j becomes 

(j = ± (mivi dqi - ~ m i(vi)2 dt i). 
i= I 2 

(3.78) 

(3.79) 

( 3.80) 

The choice (3.78) can also be used in the interacting 
case, when equal times are chosen t I = t 2 = ... = t n = t, 
if the interaction Hamiltonians only depend on the positions, 
and not on the velocities. In this case we must linearly com­
bine the equations of motion with equal coefficients, in order 
to restrict to the chosen path t i = t, in the space of the times. 
We get 

n 1 n . 2 . 
V= I Vi =- I mi(v') + W(q',t). 

i= I 2 i= I 

(3.81) 

The one-form (j becomes 
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n 

(J= L m;v;dq;- Vdt, (3.82) 
;=1 

which is the usual one. 

IV. INVARIANCE TRANSFORMATIONS 

In this section the infinitesimal transformations, which 
leave the equations of motion invariant, are considered. The 
invariance conditions for any infinitesimal transformation of 
the coordinates and the conditions for the existence of the 
corresponding canonical generators are established. These 
canonical generators are constant of the motion (Noether 
theorem), and they close a Poisson algebra, providing a ca­
nonical realization of the Lie algebra of the group of trans­
formation under consideration, under the condition of a van­
ishing two-cohomology group. 

All this is well known in the one-time case (see for in­
stance Refs. 34 and 39). 

The equations of motion (3.31) 

dya = h f dt; , ( 4.1 ) 

where a = 1,2, ... ,2N + nand N = 3n, as already observed, 
are the characteristic system for the set of equations in the 
unknown I( y) 

YJ( y) = O. (4.2) 

An infinitesimal transformation 

(4.3) 

will be an invariance transformation of the equations ofmo­
tion (4.1) if 

(4.4) 

where Lg is the vector field which performs the transforma­
tion (4.3) on the arguments of any function: 

L =g"~. 
g Jya 

(4.5) 

Now, the lhs of Eq. (4.4) is 

[Lg, Y;] = (Lgh f - Y;g")~ 
Jya 

= (Lgh ~ - Y;g" + (Y;gj)h j)~ - (Y;gj) lj , 
Jya 

and we get 

[Lg, Y;] + (Y;gj) lj 

= (Lgh ~ - Y;g" + (Y;gj)h j)~ 
Jya 

= (Lgh f - Y;g" + (Y;gj)h j)~ . 
JyQ 

Therefore, Eqs. (4.4) become 

[Lg,Y;] = - (Y;gj) lj , 

and it implies 

Lghf - Yjg" + hjYjgj= O. 

(4.6) 

(4.7) 

These conditions could be called the n-time Currie-Hill 
conditions, as they are the generalization of the Currie-Hill 
conditions for the invariance under the Lorentz group in the 
one-time case. 26 
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The same conditions (4.7) can be obtained by requiring 
that the Lie derivative, with respect to L g , of the one-forms 
(Ja, defined in Eqs. (3.22), be proportional to the (Ja them­
selves. 

If the transformations (4.3) form a Lie group G, the 
corresponding vector fields Lg will close a Lie algebra f§. If 
L 1,L2 , ••• , is a basis of f§, we will have 

[Lm,Ld = c~kLI , (4.8) 

where C~k are the structure constants of f§ . 

An infinitesimal transformation is a canonical transfor­
mation if it transforms the one-form (J of Eq. (3.13) as 

(J .... e'=e +EdO. (4.9) 

Therefore, the transformations generated by the vector 
fields Lg will be canonical if 

2'L.e=dOg , (4.10) 

where 2' L is the Lie derivative with respect to the vector • 
fieldsLg (2' L = iL d + diL ). From Eq. (4.10) we get 

•• • 
d(2'L e )=O, 

g 

or 

2' L w=d(iL w)=O, (4.11) 
g g 

where w = de (therefore Lg is a de symmetry40). 
This last equation is the condition to which r a{3 must 

satisfy, in order that the action of the group G be canonical. 
It is the condition for the existence of Og in Eq. (4.9), and, 
using the expression (3.20) for w, it gives 

d(r a{3gPdya) = 0, 

or, with the use of Eq. (3.33), we can write 

JgY agY 
Lgrap + ray t::P + - ryp = O. 

Jy ayQ 
(4.12) 

Between all possible inequivalent choices of canonical 
formulations of the dynamics provided by the Lie-Konig 
theorem of Sec. III, only those satisfying the condition 
( 4.12) will give rise to a canonical action of the group G. It 
may nevertheless appear that a subgroup of G could only be 
canonically represented; it will be called Gc •

41 

It may be seen that the condition (4.12) implies the 
condition (4.7), but not vice versa. Indeed, if we multiply 
Eq. (4.12) by hf, since hfra{3 =0 [see Eq. (3.34)], we 
have, after some rearrangement, 

b b b . rab(Lgh; - Y;g +hjY;gJ) =0, 

which implies Eq. (4.7), since detlJrab II #0. 
If the condition (4.12) is satisfied, and since by hypoth­

esis the manifold on which the original equations of motion 
are defined is simply connected since it is R 2N + n, with a 
glo.bal chart of coordinates {ya} = {ya,t ,}, from Eq. (4.11) 
we get 

iLgw = dhg , (4.13) 

that is the vector fields Lg are globally Hamiltonian,39 with 
hg = Og - g" Ua . Using Eq. (3.20) for w, this can be written 

ahg -.IJ 
ayQ = raPS, (4.14) 
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which shows that the hg are determined by r a{3' apart from a 
set of integration constants, a change of which does not 
modify the cohomology class, to which the hg belong (see in 
the following of this section). The difference with respect the 
one-time formulation lies in the fact that w is here n-fold 
degenerate, as it is expected by Eq. (3.26). It follows that the 
correspondence between Lg and hg given by Eq. (4.13) is 
not 1-1. Lg will be determined by hg, apart from elements of 
the kernel distribution of w, spanned by the vector fields Y i • 

If we evaluate Eq. (4.13) on the vector field Yi , we get 

(iLgW)(Yi ) = Yihg , 

and, with Eq. (3.26) 

Yihg = 0, (4.15) 

that is the Hamiltonians hg are constants of motion. This is 
the (n-time) Noether theorem in the present context. More­
over, by again operating with iL on Eq. (4.13), we get 

g 

Lghg =.!f Lghg = 0, 

i.e., hg is invariant under the action of Lg. 
In order to clarify the role of the vector fields Yi , let us 

consider those infinitesimal transformations (4.3), which 
leave invariant not only the equations of motion, but even 
the solutions themselves. They are of the form 

( 4.16) 

where the Fi( y) are n arbitrary functions of all the vari­
ables. Indeed, if we require that a particular solution of the 
equations of motion 

ya =fa(ti) , 

where the integration constants belong to the functional 
form of fa, be left invariant under a transformation (4.3), 
that is 

y'a = fau Ii) , 

we get for g" 

g" = h fgi, 

with gi arbitrary functions of ya. 
The transformations (4.16) are canonical transforma­

tions, since they satisfy the Eq. (4.13), with hg = 0, so they 
belong to the subgroup Gc ' and form a subgroup K of Gc ' 

The Lie algebra of K is clearly spanned by the vector fields 
Yi , since the corresponding generators Lg are given by 

L F iha a Fiy Fh= ;-= ,.0 
aya 

( 4.17) 

It easily seen that K is a normal subgroup, due to Eq. 
(4.4 ). 

The present situation is again parallel to that discussed 
in Ref. 22. 

Since K is normal, we may consider the factor group 
GJK, so getting a decomposition of Gc (or G) in cosets, 
each element of a given coset having the same effect on the 
solutions of the equations of motion of the others. As in Ref. 
22, in each coset of this decomposition we have only one 
transformation leaving the times t i fixed. Indeed, if gf is a 
given transformation of a coset, by performing a transforma­
tion of the same coset such that 
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Fi(y) = -g; (y), ( 4.18) 

we get, from Eq. (4.3), with a = i = 1,2, ... ,n, 

ti __ U,)i=ti+E(g; +Fi) =ti. 

The transformation (4.18) is uniquely determined, so 
we have in each coset one and only one transformation, 
which leave all the times fixed. With this choice of the repre­
sentative of each coset, we have a faithful representation of 
the group GJK (or G /K). 

Observe that Eq. (4.12) is satisfied for any L Fh • 

Coming back to Eq. (4.13), let us see what it implies for 
L g , in terms of the canonical variables. As already stressed, 
the correspondence between Lg and hg is not 1-1, due to the 
degeneracy of the two-form w. Equation (4.14) determines 
hg, once the r a{3 is given. Vice versa, from Eq. (4.14), with 
a = a, and saturated with 

{yc,ya} = _ (r-1)ca, 

[see Eq. (3.65)], and with Eq. (3.67), we get 

{hg,yC}=gC_gih~. (4.19) 

Therefore we have the following expression for L g : 

L = rP ~ = ( ,.,a _ gih ~)~ + giy' , 
g l5 aya l5 'aya ' 

that is 

Lg = {hg,·} +giYi , (4.20) 

where the g" are such that iL.W = dhg, for a given hg. Let us 
stress that gi + ( g') i is still solution of this equation, there­
fore: for given hg, the gi remain arbitrary. In Eq. (4.20) the 
{, } is defined as in Eq. (3.61). 

We see from this equation that Lg is determined by hg, 
apart from elements of the algebra of the normal subgroup 
K,as 

. . a 
g'y. = ( g'h a)_ . , , aya 

As a by-product of Eq. (4.13) we also get 

iy(iL w) = iy dhg = Yihg , 
'g , 

- iL (iyw) = Yihg , . , 

that is, by using Eq. (3.26) 

Yihg = 0, 

which is another way to get the n-time Noether theorem. 
We see from Eq. (4.20) that Lg is a true canonical gen­

erator for those transformations which leave the time fixed, 
that is when gi = O. These transformations are the ones 
which belong to the faithful representation mentioned be­
fore. 

From Eq. (4.20) we get an important result. If we con­
sider the commutator 

[Lm -g;"Yi,Ln -gjnlj] , 

where Lm ,Ln are the elements of a basis of the Lie algebra of 
Gc ' with structure constants c~n' as in Eq. (4.8), if we put 

a 
Lm =~aya' 

we find 
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[Lm -imY;.Ln -gjn~] =C~n(Lk -ikYi) ' (4.22) 

where we have used Eq. (4.6). 
The result (4.22) implies for hg : 

{hm,hn} = C~nhk + dmn , (4.23) 

where the quantities d mn are constants. They are constant in 
t i even, as the h m are constants of motion, and their Poisson 
bracket too. They must also satisfy the following relations: 

dmn = - dnm , (4.24) 

(4.25 ) 

that is the dmn are the components of a two-cocycle defined 
on the Lie algebra f1 c of Gc • 

Let us once again stress that the explicit expressions for 
the h g are determined by the choice of the raP' as shown by 
Eq. (4.14), apart from the choice of some integration con­
stants (in all the variables ya and t i). Different choices of 
these integration constants will give different Hamiltonians 
hg, belonging to the same two-cocycle class of the two-coho­
mology group H 2 ( f1) of G.42 Only if H 2 ( f1) = 0, will in 
general be possible to make a choice that eliminates the 
quantities d mn , that is when the dmn are of the form C~nCk.43 

Another point which is worth mentioning, connected 
with the previous discussion, is the existence of transforma­
tions which leave the action invariant,44 that is such that 

Lg 
o - 0' = 0 , dOg = 0 . (4.26) 

Again following Ref. 22 we will look for a canonical 
transformation 

0-0'=0 +dA, (4.27) 

such that, combined with the transformation (4.9) genera­
ted by G, it will give a transformation leaving 0 invariant, 
that is such that 

!£ LgO' =!£ L.(O+ dA) = dIng + Lg(A») = O. 

If we can choose 

Lg(A) = - Og, 

we will have 0 invariant. 
The condition for the existence of a function A such that 

!£ L (0 + dA) = 0 
g 

can be obtained as follows. From Eq. (4.28) we get 

d(hg + iL 0 + !£ L A) = 0 , • • 
where we used Eq. (4.13), that is 

!£ L A = - (hg + iL 0) , 
• g 

(4.28) 

(4.29) 

apart from a constant, which can be reabsorbed in hg • 

If {L m } is a basis of the Lie algebra f1, as in Eq. (4.8), 
we have from Eq. (4.29) 

[ !£Lm'!£Ln]A 

= -!£ L (hn + iL 0) + !£ L (hm + iL 0) , 
In " " m 

or, since 

[!£ Lm'!£ Ln] =!£ [Lm,Lnl = c~n!£ Lk ' 
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C~n( -hk -iLkO) 

= -!£ L (hn + iL 0) + !£ L (hm + iL 0). (4.30) 
m If II m 

Now we have 

C~nhk - !£ Lmhn + !£ Ln hm 

=C~nhk -Lm(hn) +Ln(hm ) 

= C~nhk - {hm,h n} + {hn,h m} 

= C~nhk - 2{hm,hn}, 

since, from Eqs. (4.20) and (4.15), we have 

Lm (h n) = {hm,hn} . 

On the other hand, since 

i[x,y) = !£ Xiy - i y!£ x' 

we have 

(!£ L)Ln - !£ LJL,) 0 

= i[Lm,Ln 10 - iL)LnW 

= C~niLkO - {hm,hn} ' 

(4.31 ) 

where we used the fact that for anyone-form 0 it holds 

!£ xiyO = ix !£ yO - iXiy dO, 

and that 

iL)L"W = iLm dh n = Lm (h n) = {hm,hn}. 

(4.32) 

Collecting these results we get that the condition (4.30) 
for the existence of A becomes 

C~nhk - {hm,hn} = O. (4.33) 

A will exist when this relation holds for the h m , or for the 
h m with some constant Cm added, since in Eq. (4.29) we 
disposed of an additive constant for each hm • This means 
that the h m must belong to a two-cohomology class equiva­
lent to zero, or that it must be H 2 ( f1) = O. 

When the condition (4.33) holds, the group G is canoni­
cally realized and the hm are comoments34; we know that 
this is always possible for the inhomogeneous Lorentz 
group, but not for the Galilei group. 

In the n-time canonical formalism the dynamics is de­
scribed in terms of variables which are functions of n inde­
pendent times, that is the {x'} and the {Pi}; at equal times we 
should recover the usual canonical formalism. This implies 
that we should require that the canonical coordinates {x'} 
and the position coordinates {q'} be coinciding at equal 
times [see Eq. (3.75) ]. It is just the condition which defines 
the position coordinates in a unique way, when we follow the 
reverse procedure. This definition of the position coordi­
nates is due to Droz-Vincent,20 who gave it in a relativistic 
context. The reverse procedure was used by him in order to 
build explicit models for two relativistic bodies. 

In Sec. II and III we started from a set of equations of 
motion, written in a form best suited for the nonrelativistic 
dynamics. However, all that we have said is quite general, 
and not restricted to the nonrelativistic case. 

In the next section we will develop the before mentioned 
reverse procedure, and we will discuss the position coordi­
nates problem. 

Longhi, Lusanna, and Pons 1903 

Downloaded 20 Jul 2010 to 161.116.168.227. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp



v. EXTENDED PHASE SPACE AND CONSTRAINED 
DYNAMICS 

In order to develop an a priori canonical theory, from 
which to recover the position coordinates and their equa­
tions of motion, and besides to make contact with the con­
straint's theory,6 it is useful to introduce an extended phase 
space, by defining a set of n new coordinates conjugated to 
the n times t i, which will be called the energies E;. with 

{Ei,t'} = ~. 

The new Poisson brackets will be 

{A,B}' = {A,B} + aA aB _ aB aA . 
aEi at' aEi at' 

(5.1) 

The space of the variables {xi,P;.t'} ofthe previous sec­
tions is recovered by requiring the constraints 

I/!i =0, (5.2) 

with 

I/!i = Ei - Hi (x,p,t) . (5.3) 

Since the Hi satisfy the integrability conditions (3.60), 
we have that the functions I/!i are first class constraints6 

(5.4) 

The manifold M, defined by Eq. (5.2), which is the 
original space of the previous section, now becomes a sub­
manifold of the new phase space M = R 2(N+ n) (N = 3n), 
since the rank of the matrix lIal/!;la(x,p,t,E) II is clearly n 
over all M, and this guarantees that M is a 2N + n submani­
fold of M.45 

The manifold M can be defined as a symplectic manifold 
(M,m), with a two-form m defined by 

m=d8, 
(5.5) 

which is clearly a closed nondegenerate two-form. 
The submanifold M with the two-form (() = dO, defined 

in Eq. (3.62), which is closed but degenerate [see Eq. 
(3.26) ], is a presymplectic manifold, in which a preferred 
Poisson structure has been introduced with Eq. (3.61).28 
The definition of M as a submanifold of M is an example of a 
theorem demonstrated by Gotay,27 which asserts that every 
presymplectic manifold may be coisotropically embedded in 
a symplectic manifold. This means that M is a coisotropic 
submanifold of M, which, in the language of the constraint's 
theory, means that it is defined by a set of first class con­
straints, exactly as we have seen with Eq. (5.4). 

The conditions that must be satisfied for a coisotropic 
embedding are expressed in the following way. Let us define 
the mapping 

j:M-+M, 

as specified by the conditions (5.2). The conditions are now 

(i) (() = j*m , 

(ii) TMl ~ Ij(TM) , 

where TM (TM) is the set of tangent vectors on M(M), 
Ij (TM) is the set of tangent vectors on M, which are tangent 
to the submanifold M, and TM 1 is defined as the set 
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TMl = {XETM, m(X,Y) = 0, VYEIj(TM)} , (5.6) 

called the m-orthogonal complement of M.34 

We now verify thatthe conditions (i) and (ii) are satis­
fied, and, in doing that, we will get the precise connection 
between the extended phase space M and the original space 
M. 

It is immediately seen from the definition of m in Eq. 
(5.5) and of (() in Eqs. (3.62) and (3.20), thatthe condition 
(i) is satisfied. Indeed we have that the mapping j is defined 
by the transformation 

j: (X,i,p';.t 'i) __ (xi,P;.t i,Ei ) , 

with 

Ei = Hi (Xi,Pi,t i) , 

so we have 

j*m = j* (dpi 1\ dxi - dEi 1\ dt i) 

= dpi 1\ dxi - dHi (x,p,t) 1\ dt i = (() . 

On the other hand, given any vector field on M 

. a a· a 
X=a'·-. +b··-+c'-., ax' , api at' 

we have on M 

- i (a aHj a) X= T(X) =a· -. +-. -, ax' ax' aE. , 

( 
a a~ a) +bi • -+----

api api aEj 

+c' -+----.( a aHj a) 
at i at i aEj , 

(5.7) 

(5.8) 

(5.9) 

(5.10) 

where the functions ai, bi
, and ci are restricted on M; this is 

the form of a vector field on M tangent to M. A vector field X 
of M belonging to TM 1 is such that 

m = (X,y) = 0 , for any YEIj (TM) , 

and if X is given in components as 

- . a a·a a X=a'·-. +{J .. -+y'-. +8.-, ax' , api at' , aEi 

this means 

. aHj . 
a'=--r', 

ap; 
a~ ; 

(J;= --r axi 
' 

8. = - aHj r j • 
, at; 

Substituting in Eq. (5.11) we get 

X= r}yj, 
where 

(5.11 ) 

(5.12) 

(5.13) 

(5.14 ) 

These n vector fields are precisely the images under j of 
the fields Y;. annihilating the two-form (() 

i y,(() = 0, 

that is 
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due to the integrability conditions for the Hi' 
So we have that TM 1 is spanned by these vector fields 

Yo which span the kernel distribution of (i), as found in Sec. 
III. 

The coincidence of the kernel distribution of (i) and TM 1 

is characteristic of the coisotropic case; in particular, the 
vector fields Yi generate the functions 'I/Ii' which define the 
submanifold M 

iylii = d'l/li ' (5.16) 

which corresponds to Eq. (5.13). 
It is now easily verified that even the condition (ii) is 

satisfied. Indeed any YE1j(TM) has the form (5.10), and, 
with the choice 

. aHj a'=--api ' 
(5.17) 

for any given j, and making again use of the integrability 
conditions for the Hi' we get that Eq. (5.10) becomes Eq. 
(5.14), which shows that TM 1 c;.1j(TM). 

In conclusion we have that the two conditions for a coi­
sotropic embedding are satisfied. The relation between M 
and the submanifold M is given by Eqs. (5.8) and (5.10). 
The equations of motion, which were given by Eq. (3.71), 
are now given by Eq. (5.16), with the vector fields Yi given 
by Eqs. (5.14), to which we have to add the algebraic equa­
tions 'I/Ii = O. It is clear from Eq. (5.4) that the 'I/Ii are con­
stants of motion. 

From Eq. (5.16) we get explicitly the equations ofmo­
tion, as the equations for the integral curves of the vector 
fields Yi 

dxi = {xi,'I/I)' drj , 

dpi = {Pi,'I/Ij}' drj , 

dt i = {t ','1/1)' drj , 

dEi = {Ei'l/l)' dr j , 

where j = 1,2, ... ,n. 

(5.18) 

Due to the particular form of the functions 'I/Ij' the equa­
tions for the times are simply 

( 5.19) 

which determine the parameters r j in terms of physical co­
ordinates. In this way, and using the constraints (5.2), we 
recover the equations of motion (3.73). 

Since the manifold (M,w) is symplectic, that is the 
closed two-form iii is now not degenerate, the correspon­
dence between the functions 'I/Ij and the vector fields 1'; given 
by Eqs. (5.14) or (5.16) does not have the ambiguity of the 
analogous corespondence in the space M, manifested by the 
appearance of the undetermined components g' in Eq. 
( 4.19). 

This is also true for the Hamiltonian vector fields gener­
ating the transformations of the invariance group G of Sec. 
IV. We have indeed, using Eq. (5.10), that the vector fields 
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on M corresponding to the vector fields Lg of Sec. IV in Eq. 
(4.12), are 

Lg = 1j(Lg) = {hg,.}' + g'{'I/Ii'·}' . (5.20) 

In getting this result we have to use the fact that the hg 
are constants of motion [see Eq. (4.15)], which can now be 
written 

(5.21) 

and the first class character of the '1/1,. 
Ifwe choose a basis {hm} for the Hamiltonians hg, such 

that 

Lm = {hm,'}' , (5.22) 

where Lm = 1j (Lm ), and where the Lm satisfy the commu­
tation relations (4.8), we see, from Eq. (5.20), that any Lg 
can be written as 

n 

Lg = LamLm + L if" 
m ;=1 

which agrees with 

iI • {jj = dhg , 

or 

Lg = {hg , • }' , 

where 
n 

dhg = L am dh m + L g'd'l/li . 
m ;=1 

Equation (5.24) is easily verified 

n 

= Lam dhm + L g'd'l/li =dhg • 
m ;=1 

From Eq. (5.24) we also get 
n 

Lg = {hg ,. }' = Lam {hm,'}' + L gi{'I/IO·}' . 
m ;=1 

(5.23) 

(5.24) 

(5.25 ) 

(5.26) 

(5.27) 

The vector fields Lm and Y" tangent to the submanifold 
M, leave invariant the constraints hypersurface 'I/Ii = 0, in­
deed 

Lm'l/li = {hm,'I/IY = 0, 

1';'1/1, = {'I/Ij''I/IY = 0 , (5.28) 

where the first of these equations comes from the constancy 
of the Hamiltonians hm [see Eq. (5.21)], and the second 
corresponds to Eq. (5.4). 

In other words, Eqs. (5.28) show that under the action 
of the algebra ~ of the invariance group G, of which the 
vector fields Y i are an Abelian subalgebra, the new energy 
canonical coordinates E, are defined in such a way to trans­
form like the Hamiltonians Hi 

{hm,E,}' = {hm,HY , 
(5.29) 

{'I/Ij,E,}' = {'I/Ij,H,}' . 

The meaning of the subalgebra spanned by the vector 
fields Y, is that it generates the transformations of reparame­
trization T'-+-r'i = t,6' (r) ofthe equations of motion (5.18), 
and are invariances of the dynamics. 
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Observe however that the canonical coordinates 
{xi,Pot i,E) are not observables, in the usual meaning in 
which this word is used in the constraints theory46; the ob­
servables, that is the canonical quantities with zero Poisson 
brackets with the constraints rpi are more precisely the con­
stants of motion (that is the independent initial data of the 
dynamical problem). This is a slight departure from the usu­
al gauge theories. 

The systems under consideration have vanishing ca­
nonical Hamiltonian, He = 0, and are described by n first­
class constraints rpi = 0, which are in strong involution [see 
Eq. (5.4)], and which are generators of the gauge transfor­
mations in M. 

In the standard approach6 one introduces the Dirac 
Hamiltonian 

n 

HD = I A i(1')rpi' (5.30) 
i=1 

and one writes the following Hamiltonian equations: 

dA(1') = {A(1'),HD)'::::IA i(1'){A(1'),rp)' , (5.31) 
d1' i 

where A is any of the canonical variables of the extended 
phase space, function of a scalar parameter 1'. These equa­
tions describe the most general gauge transformations in M, 
due to the arbitrariness of the Lagrange multipliers A i ( 1'). 

Equations (5.18) are recovered by introducing n indepen­
dent parameters ..f in the following way: 

(5.32) 

and by a redefinition of the quantity A as function ofthe n..f. 
We now have all the ingredients for a discussion of the 

formalism in the extended phase space. 
Here we are most interested in discussing the problem of 

the physical positions qi, when we start with an a priori ca­
nonical dynamics. Following Ref. 20, the position coordi­
nates can be defined as the solutions of the following partial 
differential equations of the first order: 

~qi= _{qi,rp)'=O, for i#j, (5.33) 

where iJ = 1,2, ... ,n, and with 

qi = Xi, at t i = t , (5.34 ) 

as Cauchy surface for the definition of the initial conditions. 
Observe that the hypersurface t i = t in the phase space 

is not in variant under the action of the vector fields Yi • This 
is the required condition for the Lemma (V9) of Ref. 20 to 
hold. The qi determined by Eqs. (5.33) and (5.34) are 
unique. They are a function of the ..f, but, in view of Eq. 
( 5.19), they can be thought of as a function of the times t i. 

From Eq. (5.33) it follows 

Vi = - {qi,rpJ' = yiqi , 

ai = {{qi,rpJ',rpJ' = YiVi , 

and 

(5.35) 

(5.36 ) 

~Vi = - {vi,rp)' = 0, for i#j, (5.37) 

~ai = - {ai,rpj}' = 0, for i#j. (5.38) 

Observe that Eqs. (5.21) ensure the invariance of the 
solutions of Eq. (5.33) under the invariance group G. 
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In the spirit of the present approach, we have to look for 
position coordinates qi not depending on the energies Eo 
since the qi must live in the original phase space. So we can 
reinforce the requirement (5.33) with 

{qi;tl}' = 0 , for any j. 

From these equations it follows: 

{Vi,tl}' = 0 , 

{ai,tl}' = 0 . 

(5.39) 

(5.40) 

(5.41 ) 

FromEqs. (5.33), (5.39), (5.40), and (5.41) it follows: 

Vi = yiqi = Yiqi, 

a i = YiVi = YiVi , 
( 5.42) 

where Y i are the vector fields on M defined in Eq. (3.70). 
In the case in which the restricted integrability condi­

tions (3.1) hold, theqi and thevi coincide with the originalya 
ofEq. (3.3). Actually, we have recovered Eqs. (2.9), start­
ing from a phase-space approach. As a by-product, the vari­
ables qi so obtained have the same covariance properties of 
the original n-time physical coordinates, and, like them, are 
not canonical variables. Of course, they become canonical 
variables when at least one Lagrangian does exist for the 
Newtonian system [seeEq. (3.76)]. 

Also in the n-time formulation of the nonrelativistic the­
ory one of the forms of the no-interaction theorem of the 
relativistic dynamics 18 has been obtained: the identification 
qi = Xi, i.e., both covariant and canonical, is allowed in the 
free case only, because only then it is Xi(t l,t 2

, ... ,tn ) 

= xi(t i) = qi(t i) (see Ref. 47 for a nonrelativistic no-inter­
action theorem). 

We now give a formal demonstration of the nonrelativis­
tic n-time no-interaction theorem (which can however be 
also applied to a relativistic system described by a set of first­
class constraints). In this demonstration no use is done of 
the canonical kinematical Galilei (Poincare) algebra (see 
the review paper quoted in Ref. 18 for a comparison). 

Our hypotheses are that the system is described by the 
first-class constraints (5.2) in M; the physical coordinates qi 
are obtained from Eqs. (5.33) and (5.34), with the Vi and ai 

given by Eqs. (5.35) and (5.36), and moreover Eq. (5.34) 
still holds when the times are different, so that 

{qi,m,qi,k}' = {xi,m,xj,k}, = 0 

[this is the crucial hypothesis, since it implies Xi = xi(t i)], 
A final hypothesis, which is also needed in the standard 

relativistic formulation, is that 

det(JVi,m) # 0 . 
Jpi,k 

(5.43 ) 

From Eq. (5.33) and from {qi.m,qi,k}' = 0 we get 

{qi,m,zI,k}' = 0 , for i # j , (5.44) 

which implies 

JzI,k 
--=0, for i#j. 
JPi,m 

Then we get 
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det( J';.k ) = II det( JV
i
.
k )#0, 

JPi.m , JPi.m 
due to Eq. (5.43). 

From Eqs. (5.4), (5.33), and (5.44) we obtain 

{v i
•
m

,,,,)' = 0, for i#j, 

{ai,m,,,,)' = 0, for i#j, 

{vi.m,,;,k}' = 0, for i#j, 

{qi,m,ai,k}' = 0, for i#j. 

(5.45 ) 

(5.46) 

From the last of these equations, and with the use ofEq. 
(5.44), we get 

Jai,k = ~ ~o J(p =~o Jai,k =0 
J ~ J :l...1 J :l...i ' for i # j . 
'Pi,m I 'Pi,m UY 'Pi,m UY 

Equation (5.43) then implies 

Jai· k 
--=0 for i#j. 
Jvi•m ' 

(5.47) 

Finally, Eqs. (5.37), (5.44) and the third ofEq. (5.46) 
imply 

and, from Eq. (5.43) 

Jai· k 
-- = 0 for i # j. 
Jqi,m ' 

Equations (5.47) and (5.49) give the result 

ai = ai(qi,yi,t i) . 

Space-time invariance then implies 

a i = ai(yi) , 

and this equation describes a free motion only. 

(5.49) 

In the case of the restricted integrability conditions 
(3.1), and by looking at the one-form 0 [see Eqs. (3.10) and 
(3.62) ] 

S= (b 0= (b (Viodqi+Vi+nodyi-Vidti) 
JaU) Ja(/) 

(5.50) 

we see that the requirement qi = Xi at different times, leading 
to the no-interaction theorem, implies 

Vi=Pi, 

(5.51 ) 

Vi=Hi · 

Therefore, V i + nO dyi = d</J(yl,y2, ... ,yn), and this sur­
face term can be eliminated from the action (3.10). More­
over, the form of Vi + n implies 

(5.52) 
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at different times. Vice versa Eq. (5.52) implies the second 
ofEqs. (5.51), and Eq. (5.50) gives 

Vi 0 dqi - V; dt i + d</J = Pi 0 dxi - Hi dt i . 

This last equation can be rewritten 

Ui 0 dqi - Vi dt i = Pi 0 dxi - Hi dt i - d</J 

= P'i 0 dX'i - H'i dti, (5.53 ) 

where X'i, p/j> H'i are defined by the canonical transforma­
tion associated to </J. Therefore Eq. (5.42) imply 

at different times. 
This is a new formulation of the no-interaction theorem: 

if rab satisfies Eq. (5.52) at different times, a free motion 
only is allowed. 

Let us return to the line action (3.10) for the first-order 
system (2.9). A necessary and sufficient condition48 to get 
from Eq. (3.10) an action for a second-order system, inde­
pendent of the accelerations, is 

V. = J</J(yl,y2, ... ,yn) 
l+n avi ' 

where 

. dqi 
y'=-. 

dt 
But, as we have just seen, this condition implies the no-inter­
action theorem. Therefore we get the result that an accelera­
tion independent action for the n-time second-order equa­
tion (2.6) (which could be called a predictive action) does 
not exist, except in the free case. As shown in Ref. 49 a pre­
dictive action, giving rise to a canonical realization of the 
kinematical algebra at the Galilei or Poincare groups, can be 
only obtained with a Fokker-like action, depending on the 
accelerations of every order. Instead, if we restrict the line 
action (3.10) to the path t 1 = t 2 = ... = tn, the previous 
condition on U i + n implies Eq. (5.52) at equal times only, 
and this is Eq. (3.76), which was shown to be the condition 
for the existence of a Lagrangian associated to the canonical 
structure r ab' Let us remark that, if the canonical structure 
r ab does not admit a Lagrangian, the corresponding Vi + n is 
not the gradient ofa function </J(yl,y2, ... yn). 

Let us now consider a set of Newton equations (2.1) 
admitting a Lagrangian L( qi,qi,t) (or many s-equivalent La­
grangians Lp ). Its action S L can be put in a form invariant 
under a reparametrization, by enlarging the configuration 
space from {q'} to {qi( r),t( r)} 

f · ( i qi(r) ) SL= drt(r)L q(r),-.-,t(r) . 
t( r) 

(5.54 ) 

In the n-time approach, a canonical structure r ab, satis­
fying Eq. (3.76), corresponds to L, and, therefore, there is a 
set of first-class constraints (5.2) in the enlarged phase 
space M. The associated Dirac Hamiltonian H D [see Eq. 
(5.30)], gives a set of Hamilton equations, where xi(r) 
= Xi(t l( r),t 2

( r), ... ,t"( r»). The first half of these equations, 
implemented with the constraints (5.2), is 
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ti(r) = -Ai(r), 

Xi( r) = I A j
( r){xi( r),th}' , (5.55) 

j 

tPi = €i - Hi (x,p,t) = 0 . 

When these equations can be inverted to get €i> Pi> A i in 
terms of Xi, Xi, t i, ii, the following inverse Legendre transfor­
mation generates a singular Lagrangian L 1, depending on Xi 
and not on qi 

(5.56) 

Its Hessian has n null eigenvectors, implying the exis­
tence of the n first-class constraints (5.2), and of n gauge 
invariances of L 1, of which one is the r-reparametrization 
invariance, which guarantees He = O. 

The LI corresponding to the case of a harmonic oscilla­
tor has been calculated in Ref. 12, and it is given in Appendix 
A. It turns out that 

SI = f dr L1i= f(fi. dXi +gi dt i) 

(that is, it is associated to a generalization of Finsler geome­
try50), showing once again that a predictive action does not 
exist. However, as shown in Ref. 12, SJ restricted at equal 
times reproduces Eq. (5.54), since at equal times it is qi = Xi. 
(See Ref. 51 for other forms of the no-interaction theorem in 
the relativistic case, based on singular Lagrangians. ) 

Let us remark that the systems we are considering have 
constraints tPi linear in the €i' Therefore, the first two ofEqs. 
(5.55) do not depend on €i' and the A i are always equal to 
the - i i. This fact prevents the use of the so-called Dirac 
Lagrangian L D , often used for the path integral of the rela­
tivistic systems, whose tPi are at least quadratics in the 
€i =p? 

L (Xi,,, Xi,,, 1 i) =p. Xi,,, - H 
D 'v'" 1,P. D' 

where the h" are obtained from the first half ofthe Hamil­
ton equations [they are analogous to the first two of Eq. 
(5.55)], but the equations tPi = o are not required. InLD the 
A i are Lagrange multipliers, which are considered as ein­
beins52 to recover the constraints tPi = 0 (they appear as sec­
ondary constraints from the primary ones 

JLD 
11"i =-.-. =0). 

JA' 
For instance, for the free relativistic particle in the massless 
limit, the corresponding equations (5.55) cannot be solved 
for the A i, and only L D is available. 

When the Newton equations (2.1) do not admit a La­
grangian L, there are still the first-class constraints for each 
allowed canonical structure r ab' not necessarily satisfying 
Eqs. (3.76). In this case, either L J does not exist [Eqs. 
(5.55) are not invertible in the Pi], or LI does not admit an 
equal time limit. 

VI. CONCLUSIONS 

To conclude let us summarize the results obtained. 
Starting from the Newton equations (2.1), the n-time sec­
ond-order equations (2.6) were obtained, and then they 
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were transformed in the first-order system (2.9). To each 
solution U~ of Eqs. (3.44) [modulo a canonical transfor­
mation of the kind of Eq. (3.40) 1 a symplectic structure 
(r- I )abis associated. To each of these symplectic structures 
there is an associated set of first-class constraints (5.2) in the 
enlarged phase space M. We have also seen how to recover 
the original equations (2.9) from each canonical structure, 
by means of the Droz-Vincent equations (5.30) and (5.31). 

Let us remark that what we have constructed are only 
local canonical structure (r - I) ab: whether some or all of 
them can be globalized will depend on the given system; it is 
also possible that no global canonical structure will exist. 

The open problem is which canonical structure is more 
relevant from the physical point of view; different Hamilto­
nians will generate different classical and quantum theories. 
(See Ref. 25 for a review of these ambiguities, and for a rich 
bibliography on the argument. ) 

When the Newton equations (2.1) admit one Lagran­
gian [modulo the trivial transformation L-.L + dF(q,t)! 
dt], there is only one canonical structure with a r, which 
satisfies Eq. (3.76), thus allowing to recover the Lagrangian 
L. This is the preferred canonical structure, and at equal 
times we recover the standard Hamiltonian formalism, with 
qi = Xi and 

When the Newton equations (2.1) admit K (with possi­
bly K = (0) s-equivalent LagrangiansLp ' withp = 1,2,oo.,K, 
there are K canonical structures with r~c) satisfying Eqs. 
(3.76). Some of them will be excluded because of the lack of 
a canonical realization of the kinematical algebra (of the 
Galilei group, in this case) (see Ref. 53 for a noncanonical 
realization of the Lorentz algebra). Thus only say L p' and 
r~t'), withp' = 1,2,oo.,h..;;K, are left, and, as shown in Ref. 
41, each of them canonically realizes a different subgroup of 
the dynamical symmetries of the equations (2.1). When the 
system has no bound states, one selects the unique r~t'), 
which satisfies the separability condition. 54 The other re­
strictions which can be imposed are that: (1) H = 'LiHi 
must be interpretable as the energy of the system; (2) if we 
add a perturbation, the perturbed Newton equations must 
still allow the existence of at least one Lagrangian55

: this is a 
very stringent condition, which usually singles out a unique 
L, and a unique canonical structure; (3) the equal time ac­
tion S( p') = fdt L( p') becomes the phase of the wave func­
tion at the quantum level: therefore, at least in principle, an 
interference experiment could discriminate among the var­
iousS( p') .56 When the Newton equations (2.1) do not allow 
any Lagrangian, a canonical structure with r ab satisfying 
Eq. (3.76) does not exist. In general, even at equal times, we 
have {qi,m,q,kh6 0, and, since we do not have a good defini­
tion of the energy, we cannot give any particular significance 
to H = 'LiHi' The other two restrictions are the requirement 
of a canonical realization of the kinematical group, and the 
requirement (3) above. Only if the dynamics is separable, a 
unique canonical structure is singled out. 

Once a canonical structure has been chosen, we obtain a 
well defined set of first-class constraints associated to the 
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original Newton equations, even when they are coupled to 
external fields. In general the coupling to external fields will 
be not minimal; in the constraint's approach this implies 
that, when there is a well defined one-time theory underlying 
the first class constraints, like in this case, not every coupling 
with external fields will be allowed, but only those which 
preserve the first-class character of the constraints. See for a 
comparison the restrictions on the external supersymmetric 
fields, when coupled to matter supermultiplets in Ref. 57. 

Let us remark that the chosen canonical structure in the 
presymplectic manifold M has to be identified with the class 
of Dirac brackets, which can be defined starting from the 
constraint's theory in the enlarged phase space M, with the 
gauge fixings t I - t2 = const. Indeed, in our construction, 
there is the underlying hypothesis that the time variables are 
globally defined on M. 

As already noticed the present approach can be applied 
to relativistic particle systems described by a set of first-class 
constraints. One has to solve the mass-shell constraints in 
the energies and to apply the present analysis to each deter­
mination of the energy spectrum. In this way the manifest 
covariance is lost and, at the quantum level, this would cor­
respond to the not manifestly covariant Hamiltonian ap­
proach of Feshback-Villars58 after the Foldy-Wouthuysen 
transformation has been performed. 59 

APPENDIX A: AN EXAMPLE 

In order to give an explicit example of the procedure 
sketched in Sec. II, let us consider the very simple case of a 
two particles system, with a harmonic mutual force. The 
one-time equations of motion of this system are 

mlql = _ k(ql _ q2) , 

m2q2 = + k(ql _ q2) , 
(AI) 

where k is the elastic constant. In this simple case it is possi­
ble to get the following explicit expression of the two-time 
forces: 

yl = + (m lw
2/Ll){ - w(l + a cos(W'T»)(ql _ q2) 

+ a(w'T cos(W'T) - sin (W'T) )v l 

+ (W'T + a sin (W'T) )v2} , 

y2= - a (m2w2/ Ll ){ - w(a + cos(W'T»)(ql _ q2) 

+ (aw'T + sin ( W'T) )v I 

+ (W'T cos (W'T) - sin(w'T) )v2} , 

where 

a=m l /m 2 , w=,jk//-t, 

/-t=m l m 2/m, m=m l +m2 , 

and 

(A2) 

(A3) 

(A4) 
Ll = w [1 + a 2 + 2a cos (W'T) + aw'T sin (W'T)] . 
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It is easily verified that, when 'T = 0, we get the forces 
(AI). Moreover, we may verify that the integrability condi­
tions 

dyl 
--=0 

dt 2 ' 

are satisfied. 

(AS) 

In Eqs. (A2) the qi and the Vi (i = 1,2) must be under­
stood as functions of their own time t i: 

ql = ql(t I), q2 = q2(t2) , 

and so forth. 
The general solution of the two-time equations of mo­

tion 

miai(t i) = yi( 'T,ql _ q2,Vi) , 

can be written 

(A6) 

ql(t I) = a + bt 1+ c cos(wt I) + d sin(wt I), 

q2(t 2) = a + bt 2 - a[c cos(wt 2) + d sin(wt 2
)] , 

where a, b, c, and dare 12 constraints of integration. 
Observe that yl + y2 is in general different from zero, 

except when 'T = o. That is, the action-reaction law is satis­
fied at 'T = 0 only. 

Also observe that, since the original set of equations 
(A 1 ) is autonomous, the forces (A2) depend on 'T = t I - t 2 
only. 

We give here without demonstrations an example of two 
first class constraints, describing the dynamics of two parti­
cles of masses m l and m 2, respectively, 

t/!i =Ei -Hi'ZO (i= 1,2), 

with 

Hi = (l/2mi ) [p/ + V( p2)] , 

where 

p=r- ('T/m)p, 

and 

p = PI + P2' r = Xl - X2 . 

(A7) 

(AS) 

Here Xi are the canonical variables for the two particles. 
When we consider the equal time dynamics, we have to add 
the two constraints and to put t I = t 2. In this case we have 
Xi = qi, and the sum of the two constraints becomes the usual 
conservation of the total energy, with a potential given by 

(l/2/-t) V(r2) , 

/-t being the reduced mass. 
In the case of a harmonic oscillator we have to choose 

V(p2) = /-t2W2p2 . 

In this last case it is possible to give the explicit expres­
sion of the singular Lagrangian, mentioned in Sec. V, and 
given in Ref. 12. Its expression is the following: 
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where 

K = f.i2UJ2-(2lm 2 • 

and 

APPENDIX B: DISCUSSION OF EQ. (3.44) 

In this appendix we want to show that the equations for 
Ua and Vi 

rabhr= r ai • 
(3.18') 

rabh~hJ= rij 
(where we recall that a.b = 1,2 •...• 2N; and i,j = 1.2, ... ,n) 
imply for the Ai defined by the equation 

Vi = Uah ~ + Ai • 

the condition 

ljAi = YiAj , 

which has for general solution 

(3.46) 

(3.47) 

Ai = - Y,<I>. (3.48) 

with <I> an arbitrary function of {ya} and {t'}. 
If we perform the substitution (3.46) in the expression 

for the r ai • and use Eqs. (3.18'). we get 

aUa a b 
ra,' =-. +-(Ubh. +X) 

at' aya ' , 

aUa b b aUa = -- - r bh . + h . --ati a, , ayb 

ah b ax 
= YiUa + Ub --' +-' + r ai • 

aya aya 

from which we get the following equation for the {U a}. once 
the Ai are given 

ah b 

YiUa = - Ub --' 
aya aya 

The second of Eqs. (3.18') can be written 

= _ Ua(ah~ _ ahi) _ (aA; _ aA~). 
at) at' at) at' 

which. using Eq. (BI). gives 

ljA; - Y;Aj + Ua (ljh ~ - Yih i) = 0 . 

(BI) 

But the h ~ satisfy the integrability conditions (3.8). so 
we get 

ljA; = YiAj' 

The general solution of these equations in Ai is given by 
Eq. (3.48). since they are the integrability conditions in or­
der that Eq. (3.48) could be integrated in <1>. for given A;. 

With Eq. (3.48) the functions V; can be written 

Vi = Uah ~ - Y;<I>, 
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so that Eq. (BI) for the Ua becomes 

ah b ~.:M.. ah b 
y U + U __ ' = y. _u'V_ + _u'V _ __ ' 

, a b aya 'aya ayb aya' 

since 

(B2) 

or 

Y;(Ua _ a<t» + ah r (Ub _ a<t» = o. 
aya aya ayb 

(B3) 

which is Eq. (3.44). So we finally have 

Ua = U~ + a<l> , 
aya 

and 

v. = U O h a _ a<l> 
, a' at; , 

with U~ satisfying Eq. (3.44), which is the wanted result. 
It is now easily verified that Eq. (3.44) for the U~ are 

integrable. Indeed the integrability conditions of a system 
like 

Y;Ua =Aa;( y.t,U) • (B4) 

are 

ljAa; = YjAaj • (BS) 

as it is easily verified using Eq. (3.2S). 
For the Eq. (3.44) the condition (BS) becomes 

( ° ah r) . . lj U b -- = (l+-+j), 
aya 

that is 

° ah r ° ah j ah r . . 
Ublj -- - U c ----= (l+-+j). 

aya ayb aya 

or. using Eq. (B2) 

° a b o( ah j ah r ah J ah ~ ) . . 
U b -ljh; - U c ----+---- = (l+-+j). 

aya ayb ayQ ayQ ayb 

and finally 

U O
b ~(Yhb_ Y.h b

) =0. 
aya)' ') 

(B6) 

which is satisfied. So the equation for U~ are integrable. 
Another way to get the result (3.48) and the last result. 

or better to see how to integrate the equations for U~. once 
the general solution of the original equations of motion is 
known. is the following. 

Let us introduce the new variables 

z" = Z"( y.t) • (B7) 

defined as the solutions of the system 

YZ" = (~ + h a~) Z" = 0 . 
, at' , aya 

(B8) 

This system is completely integrable, since the vector 
fields Y; are commuting. It follows that it has 2N indepen­
dent solutions. which we call Z"( y,I). For a general function 
I( y,t) let us put 
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I( y,t) = f(z,t) . (B9) 

From Eq. (B8) we have 

YJ( y,t) = -.!-:-!(z,t) , 
at' 

(BlO) 

and this means that Eqs. (3.47) can be written 

a - a -
-. Ai (z,t) = -. Aj (z,t) , 
at l at' 

(BIl) 

which has the general solution 

- a -Ai (z,t) = - -. ~(z,t) = - Yi~(y,t)· 
at' 

(BI2) 

Transforming the equation for the U~ to the new vari­
ables, that is Eq. (3.44), we get 

a - 0 - 0 azc a (ayb ) -. Ua(z,t) = - U b(Z,t)-- -. , 
at' aya ar at' 

whereYCz,t) are the old variables in terms of the new ones. 
Since 

OZO ayb = {ja 
ayb ar cO 

for the required independence of the ZO, we get 

or 

a-a alJo 
~ a ---= 

ar at i 

(Bl3) 

(BI4) 

These equations have the general solution for lJ~ 

(BI5) 

where the functions Ka are 2N arbitrary functions. 
Clearly, the variables zO are nothing more than the com­

plete set of the constants of motion of the original system of 
equations of motion. Their knowledge determines the U~, 
with the arbitrariness expressed by Eq. (B 14), and in turn 
they determine the whole class of solutions for the Ua and 

Vi' 
The one-form eo ofEq. (3.50) can now be written 

but, from the definition of the variables za = ZO( y,t), and 
from their assumed invertibility, we get 

which, beside Eq. (B8), tells us that 

ayb - b 
-=h. 

1911 

at i ' • 

So we get 

eo = K aya dzb. 
a azb 

Clearly, we may choose 
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(BI6) 

(BI7) 

(BI8) 

for b = I,2, ... ,N, 

(BI9) 
K aya =0 ~ b N IN 2 2N a azb ' lor = +, + , ... , , 

which is a solution which satisfies the condition (3.17). In­
deed, we may write r ab in the following way: 

with 

r - azc W oz<1 
ab - aya cd ayb ' 

W - a (a
ya 

lJO) a (ayo lJO) 
cd - az<1 ar a - aZc az<1 a , 

(B20) 

(B2I) 

and it is only necessary to verify that Wcd is nonsingular. But 
with the choice (B 19 ), we see that Wed is the symplectic 
metric: 

Wcd = {jc+ N,d - {jd+ N,e , (B22) 

which has determinant equal to + 1. 
With the choice (BI9) we have 

N 

e o= L Zb+Ndzb, (B23) 
b~l 

which is in symplectic form, and shows the connection of the 
variables Pi and Xi (i = 1 ,2, ... ,N), with the constants of mo­
tionzO (a= I,2, ... ,2N) [seeEq. (3.53) and (3.49)]. 
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