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The integral representation ofthe electromagnetic two-form, defined on Minkowski space-time, 
is studied from a new point of view. The aim of the paper is to obtain an invariant criteria in order 
to define the radiative field. This criteria generalizes the well-known structureless charge case. We 
begin with the curvature two-form, because its field equations incorporate the motion of the 
sources. The gauge theory methods (connection one-forms) are not suited because their field 
equations do not incorporate the motion of the sources. We obtain an integral solution of the 
Maxwell equations in the case of a flow of charges in irrotational motion. This solution induces us 
to propose a new method of solving the problem of the nature of the retarded radiative field. This 
method is based on a projection tensor operator which, being local, is suited to being implemented 
on general relativity. We propose the field equations for the pair {electromagnetic field, 
projection tensor J. These field equations are an algebraic differential first-order system of one­
forms, which verifies automatically the integrability conditions. 

I. INTEGRAL REPRESENTATION OF THE 
ELECTROMAGNETIC FIELD 

It is well known that the vacuum Maxwell equations for 
the potential one-form A", are 

A""aa-Aa,a", = -4rrj"" (1.1) 

from which we can derive the wave equation for the electro­
magnetic two-form field F",v = Av,,,, - A""v, 

F",v,a a = - 4rr(iv,,,, - j""v)' (1.2) 

We shall make use of this equation because it incorporates 
the motion ofthe sources. We must point out that although 
the law of charge conservation has been lost in (1.2), all our 
results are consistent with it. 

Analyzing the motion of the sources by Fourier trans­
formation, the integral representation of F",v is obtained in 
momentum space as 

F (x) = _ 4rri Jd4ke-ikUXu 
",v (2rr)2 

X [k",jv(k') - kvj",(kU)]lkuku' (1.3) 

This approach is in the spirit of Huygens and Fresnel. Like 
them, we consider the field as generated by a distribution of 
localized sources. The calculus of this integral leads to re­
sults that can be found in any advanced textbook,l but trans­
forming backjv(k '} from momentum space to space-time, 
Eq. (1.3) becomes 

F (x) = _ 4rri Jd4sJd4ke-ikUIX-Slu 
",v (2rr)4 

X [k~v(s) - k,J",(5)]lk Uku' (1.4) 

which is the retarded field, when suited boundary conditions 
are imposed. It may seem at a glance that this hybrid expres­
sion is not mathematically attractive, but if we look at it from 
a physical point of view, it can be interpreted as follows: the 
field generation process at the event 5, and its propagation to 
the field event x, is analyzed in momentum space by means of 
the density 

d4s e -ikUIX-slu{[ k~v(s) - k,J",(s)]lkuku}. 

The integration over k U then gives the contribution to the 
total field generated at sa, and finally the integration over 
the domain of definition of the currentj", (5 a) yields to F",v (x). 
The possibility of such an interpretation is apparently close­
ly related to the linearity of the theory. This simple interpre­
tation encourages us to go with our purpose to study geome­
trically the retarded radiative field and to generalize the 
expression of the electromagnetic field created by a struc­
tureless point charge in a given arbitrary motion. 

Our starting point will be the integral on momentum 
space. With respect to a global inertial frame the volume 
element splits intod 4k = d 3k dk 0. Now, we can analytically 
continue k ° to the complex plane, and applying the residue 
theorem, by choosing the retarded prescription, it is ob­
tained: 

k U 

-i- Ix-slu 
X(k Aj(5))",v +e (k !\j(s))",v), (1.5) 

+ 

where we have defined the following. 
k U k(T 

(1) + =(Ikl,k), - ==( - Ikl,k) are the lightlike vectors. 

(2) (kAj(s))",v=k~v(s) - k,J",(s) is the exterior pro­
duct. 

(3) () (XO - S°) is the Heaviside or step function. It is un­
derstood that the Minkowski metric has signature + 2, i.e., 

kUku = 'TJapkakP = - (kOf + k 2
, 

Until now, this approach is equivalent to the propagator 
(Green's function) approach. 

Taking into account that dw = d 3k/lkl is the measure 
of the upper light cone on momentum space, Eq. (1.5) can be 
written geometrically 

F(x)=_I_Jd4s(}(xO-sO) f dWE(kO) 
(2rr)2 JkUku=O 

X/ku1X - slu k !\j(5), (1.6) 

where E(k 0) is the signum function. 
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It is clear in Eq. (1.6) that the integral over the momen­
tum light cone is the exterior differential of the invariant 
Jordan-Pauli distribution,2 therefore we can reduce the inte­
gral to the upper light cone k uku () (k 0) = 0, by virtue of 
() (XO - S°). In order to calculate it, we shall make use of the 
following orthonormal tetrad field: {ei J = {eO,el,e2,e3 J, 
which is defined at the generic source event 5 according to 
the following. 

(a) eo=v is the current four-vector velocity, i.e., if Po is 
the proper charge density, thenjl' = Povl',vl'vl' = - 1. 

(b) el is a unit spacelike vector efe1a = 1, orthogonal to 
eo and included in the plane determined by eo and the separa­
tion vector R a = (x - 5 )a. 

(c) e2 and e3 are two unit orthogonal spacelike vectors 
e2 e2a = e~ e3a = 1,e2 e3a = 0, the plane they determine be­
ing perpendicular to that defined by {eo,e l J. 

The dual basis {o/ J to {ei J is canonically defined by 

(o/,ej ) = ~;, 
where~; is the Kronecker delta. Care must be taken because 
the velocity v, considered as a one-form, is related to (J)0 with 
a minus sign: (J)~ = - Va' 

The separation vector R = (x - 5) between the field 
event x and the source one 5 is expressed with respect to the 
tetrad {e i J by 

(1.7) 

where r = - eo"R and r' = el"R are the Lorentz-invariant 
tetrad components of R. 

In order to compute the integral over the upper light 
cone 

1(5)=( dwe-ik"(X-sl"kl\j(s), (1.8) 
Jk"kufJ(kOl=O 

we make use of standard calculations. For example, by 

choosing spherical coordinates at the simultaneity 5 ° = cr., 
with polar axis el , it is easily obtained 

1(5) = 41ri 100 
d Ikl eilklr 

X (Ikl coslklr' _ Sin1k1r') ell\j(S). 
r' r' 

Now, according to the Laplace-Carlson transform,3 

p (00 dt e - p' sin at = ap 
Jo p2 + a2

' 

p 100 
dt e - p' t" - I cos at 

= r(v) p ( 1 + 1 ). 
2 (p - ia)" (p + ia)" 

Insertion of p = - ir, a = r', v = 2, r(2) = 1, t = Ikl into 
the above integrals yields 

1(5 ) 4' 1 ( r + r,2 1) 
= - 1Tl -;; (_ r + r,2f + _ r + r,2 

xe l (5)I\j(s). (1.9) 

Inserting the expression (1.9) into the electromagnetic field 
(1.6), we get the equation 
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II. LOCALLY PROPER TIME SYNCHRONIZABLE FLOW 
OF CHARGES 

At a glance it may seem that in order to derive conse­
quences of expression (1.10), it is necessary to know j(S ), but 
on second thought if we dare try some general properties of 
the flow of charges that constitute the current density, an 
interesting expression of the electromagnetic two-form can 
be derived. 

We first assume for a current density j = Pov, that its 
velocity one-form field V verifies Frobenius condition4 

vl\dv = o. (2.1) 

From a physical point of view it means that the observers 
associated to the v timelike flow make a locally synchroniza­
ble frame. This condition result is too general, therefore, we 
furthermore assume the more restrictive one 

~=~ ~~ 

which means that the flow is locally proper time synchroni­
zable, i.e., the observers reference frame can experimentally 
correlate by "radar" their proper times. In other words, 
there exists a family of three-spaces to which the streamlines 
are orthogonal. This motion is an irrotational one, i.e., in 
decomposing that portion of the covariant derivative va;/J 
which is perpendicular to the velocity, into its antisymmetric 
part, its symmetric trace-free part, and the trace itself5 

va;/J = - Va;yvYvp + (J)ap + O'aP + !{Jhafj' 

The rotation reduces to (J) = a 1\ v. Now, according to the 
global version of the Frobenius theorem, due to Chevalley 
and Ehresman, applied to the present case, it implies that 
Minkowski space-time is foliated by the integral manifolds 
(three-spaces above) ofthe vector distribution defined by the 
velocity field v:x---+Mx' This foliation can be labeled by the 
proper time r coordinate (v = dr) and three spacelike coordi­
nates r/ suited to the three-spaces. 

Therefore, we refer Minkowski space-time to the iner­
tial coordinate system (5 O,Si) and to that induced by the folia­
tion (r,7,.-) 

{
50 = sO(r,7l), 

Si = si(r,r/), {
r = r(s 0,5 i), 
7]i = 7]i(S °,5 i) . 

(2.3) 

We can bring the Minkowski line element with respect to the 
coordinates (r,7]i) to the form 

d~ = - dr + gij(r,7]i)d7]i dr/ = - (ds 0)2 + (d S)2, 

(2.4) 

because va is not a null vector. The volume element will be 
expessed as 

d 45 = "lif dr d 37] = .[g dr d 37]. (2.5) 
With these premises, Eq. (1.10) can be split into 
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F(x) = :if d 31J f d1"/iO(xO-sO) 

X_l_ ((V.R )2 + (eeR )2 + _1_)e 1\ .. 
eeR (Ra R a)2 RaR a I ] 

(2.6) 

The integration over 1" will be done by applying the residue 
theorem. The Heaviside function selects the retarded pole, 
but the difference from the previous calculation (integral 

This method of calculus follows the Sommerfeld approach 
to the residue theorem.6 We now introduce the lightlike vec­
tor L = el + v, which verifies the following algebraic rela­
tions: 

DL = 0, Del = 1, Dv = - 1. 

Differentiating these relations along the flow worldline, i.e., 
with respect to 1", and making simple algebraic operations, 
we obtain 

aea 

-]==(VVel)a= -aa+(a.el)La. (2.9) 
a1" 

Taking into account the law of charge conservation 
ad"" = 0, we can easily derive 

~: = VvPo = -PoV·v, (2.10) 

and, finally, applying the equality 

1 ag 
--=V·v, (2.11) 
g a1" 

it allows us to express Eq. (2.8) as we desire 

F(x) = -fd 31J(/ipo ell\L 2) 
(-v.R) T, 

+..!.. f d 31J(/iV.Vpo ell\L ) 
2 (- v.R) T, 

+ f d 31J( /ipo a( -=- ~.~I:V 1\ L ) T,. (2.12) 

Until now we have not dealt with the question ofthe integral 
domain of the 1Ji coordinates. The calculus of the residue has 
implied that this domain is defined by the equations 

{
1"r = 7(xo - Ix - sl,si), {SO = XO - Ix - sl, 
1Ji = 1Ji(XO - Ix - SI,Si), ¢:> Si = Si. 

(2.13) 

Therefore it is clearly seen that the integration domain is the 
retarded light cone of the field event: Ir (x). 

Now, following Newman and Penrose,7 a complex null 
tetrad {zl = {/,n,m,ml is introduced for expressing Eq. 
(2.12), because of its adequacy and internal adaptability for 

2026 J. Math. Phys., Vol. 26, No.8, August 1985 

over k 0) consists in the fact that the denominator (R a Ra )2 
now vanishes to the second order (pole of order 2), so that we 
have to carry the expansion to the order (1" - 1"r)2 (where "r" 
stands for "retarded") 

RaR a = - (RaVa)T,(1" -1"r) - (1 + Raaa)T, 

X(1"-1"r)2+0[(1"-1"r)3]. (2.7) 

Inserting the development (2.7) into the expression (2.6), it 
reduces to 

(2.8) 

I 
studying the solution and the equations of massless fields 
possessing certain algebraic properties. 

The Newman-Penrose tetrad is defined by the standard 
prescription 

I = (l/~)(v + el)==L /~, v = (l/~)(I + n), 

n = (l/~)(v - el)' e) = (l/~)(/- n), (2.14) 

m = (l/~)(e2 + ie3), e2 = (l/i~)(m - m), 

m = (l/~)(e2 - ie3), e3 = (l/~)(m + m). 

With respect to this tetrad the acceleration a is expressed as 

a = ale] + a2e2 + a3e3 

= (l/~)(al/-aln +Am +Am), (2.15) 

where we have defined A = (a3 + ia2); A is the complex con­
jugate ofA. 

Therefore, Eq. (2.12) will reduce to 

F(x) = { d31J/ipon.~1 
JI,(X) r 

1 i 3 r::. nl\l + - d 1J "gpoV·v--
2 I,(x) r 

(2.16) 

+ { d 31J /ipo (Am +Am) 1\1. 
JI,(x) r 

At this stage we must point out that the Newman-Penrose 
(NP) tetrad is associated with the flow of charges, but in the 
one-point structureless charge case is directly associated to 
F. In fact, for this particular and well-studied problem, the 
integration is made trivially because it reduces to the inter­
section of the q charge worldline with the retarded light cone 
Ir(x), and taking into account that V·v = 0, Eq. (2.16) is in 
this case 

Fq(x) = q(n 1\1 /r)T, + q«(Am +Am) 1\1 /r)T,. (2.17) 

We remember here that every magnitude refers to the retard­
ed event ~(S~) = ~(XO - Ix - sl) of the x field event, ~(S 0) 
being the trajectory of the q-point charge. Now the New­
man-Penrose tetrad is associated with the light congruence 
of F, whose tangent null vector field is I. 
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The matrix representation of Eq. (2.17) with respect to 
the n.p. tetrad is 

(

0-1
1 

) q I 0 
F =- -1 0 () ,-2 • ____ J. __ 

o I 0 

~ 
I i -A A~ 

+ 
~ __ : __ '-_20_0_ 
r A 0 I . 

. -A 0 ~ 0 

(2.18) 

As was shown by Newman and Penrose, this approach is 
equivalent to the spinor formalism. The consequence for the 
one-point charge have been widely studied in the literature. 
For this reason, we now turn back to the much more general 
and not-studied case, represented by Eq. (2.16). We must 
remember that the integrals extend to the lower light cone of 
the field event, parametrized by a generic spacelike slice of 
the foliation induced by v. The splitting of the two-form 
F = F 0/ dt /\ dxi + F ij dxi 

/\ dxi, which lets us identify 
(F 0;) = E as the electric field and (Fij£,"ik) = B as the magnet­
ic field, only has meaning with respect to an inertial frame! 
Therefore, we must refer Eq. (2.16) to an inertial frame. 
Then, writing down the vector components by Greek letters, 
we obtain, returning back to source kinematical variables 

1 vaeJ3 - vpe all 
Fap(x) = dw Po I + - dw Po 

I,(x) r 2 I,.(x) 

- (e1a(a1vp + aa) - elP(alVa + a2 ))] , (2.19) 

where we have taken into accountthatdw = Ji(d 31J/ - v.R) 
is the measure or absolute Lorentz-invariant two-content of 
the retarded null cone of the field event. 

The meaning of the three-integral splitting of Eq. (2.19) 
is as follows: 

generalized coulomb field, 

C =1 d 0 vae1P - vpe1a . ap- wp , 
I,.(x) r 

intermediate-longitudinal field, 

laP== r dw J..- Po Vov(vae 1P - vpe1a ); 
J,(X) 2 

(2.20) 

radiation field, 

RafJ= r dwpo [(aavp - apva) - (e1a(a1vp + ap) 
J,(X) 

- e1P(a1va + aa))]' 

The justification of CafJ,lafJ,RafJ becomes apparent when 
one goes to the rest system of the integrand two-forms. In 
this system, it is verified at the fixed source event we work 
on: Va = ( - 1,0),e1 = (O,r/lrll; r being the three-vector 
which points from the retarded position of the flow of 
charges to the field point. The Coulomb and radiation fields 
are direct generalizations of the one-point structureless 
charge. 

The intermediate-longitudinal field is a new one, which 
has a structure, being longitudinal, similar to the Coulomb 
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field, but it depends on r, like a radiation field. Then the 
Lorentz-invariant separation between velocity and accelera­
tion-radiation fields is only possible for the one-point charge 
case. 

III. A NEW APPROACH: PROJECTION OPERATOR 

The electromagnetic radiation field appears in a number 
of different forms: acceleration-retarded fields (kinematical 
source criteria); free fields (dynamical criteria), e.g., F 
= F retarded - F advanced; null fields (algebraic criteria); 

asymptotic developments (Goldberg-Keer theorem, B.M.S. 
group); etc. None of these methods scarcely may be com­
pletely implemented in general relativity, and they are not 
always equivalent among themselves. Then we consider it 
quite reasonable to ask ourselves: What do we mean by "ra­
diative field"? Perhaps this question is a methodological one, 
but even in this case, we must remember what Ginzburg8 

said: "In Physics there are many 'perpetual problems' the 
discussion of which continues for decades .... On the other 
hand, however, neglect of such methodological types of 
problems sometimes incurs vengeance!" Our approach to 
dealing with the problem, i.e., to defining what the radiative 
field is for us, is a dynamical geometrical one, which takes 
into account that when the electromagnetic field produced 
by a given source is measured, one always finds the retarded 
field, and it shares the maximum number of common fea­
tures of all the above criteria. 

For the moment we shall not invoke "Occam's razor," 
and shall assume the existence of a projection tensor opera­
tor JPP y6' such that when applied to the total electromag­
netic field gives us the desired radiative part 

Rap=P afJy6Fy6' (3.1) 

It is easily found that P afJy6 is antisymmetric in each of the 
index pairs a/3 and r8, but is symmetric under interchange of 
the pairs. 

It is clear that the problem now has been shifted to find 
P afJy6' What are the advantages to introducing this new enti­
ty? First of all, if we can find a reasonable system of first­
order partial differential equations for it, we shall have a 
criteria based on dynamical-geometric equations that when 
applying the strong equivalence principle will be valid in 
general relativity. Second, it is therefore a local field criteria. 
Third, it implies a new concept of the electromagnetic field, 
which we view now as the pair {P,F J , the contraction (P,F) 
being the radiative part. 

The algebraic-partial differential system that we pro­
pose is as follows: 

*F[afJ,y I - 4'Tr*j[aPy I = 0, 

F[aP,y I = 0, 

Papl'v - P afJy6Py61'v = 0, 

PaPl'vFafJFI'V = 0, 

(3.2a) 

(3.2b) 

(3.2c) 

(3.2d) 

EafJy6paPl'vpY6TUFI'vFTU = 0, (3.2e) 

p[aP y6 Fy6,vl + p y6[afJ,vl Fy6 = 0, (3.2t) 

and boundary conditions in the Sommerfeld sense. We have 
to mention that, because there is some confusion in the liter­
ature. Sommerfeld said quite explicitly that his aim is to ex-
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clude incoming radiation. Retarded solutions for spatially 
bounded sources satisfy his conditions automatically in fu­
ture null directions. (f+ is the "future null infinity," the 
region t + Irl- + 00 at finite t - Irl.) 

In system (3.2), the first two equations are Maxwell 
equations. The third equation simply states that Pis a projec­
tion tensor. The fourth and fifth equations mean that the 
radiative field has to be degenerate or algebraically special 
(they are equivalent to Fa{JFa{J = O,*Fa{JFa{J = 0). The sixth 
equation states that the radiative field is closed. As far as the 
boundary conditions are concerned, we adopt the Sommer­
feld point of view, and explicitly we exclude the homogen­
eous-free solutions of the system. Then as Fock has re­
marked, care must be taken at past infinity, because as one 
recedes along null straight lines coming in from the past, the 
retarded field reflects source behavior at even earlier times; a 
condition on the time dependence of the sources in the past 
infinity is required in order that the retarded field satisfies 
Sommerfeld's condition at past null infinity.9 

We have studied the system (3.2) from the point of view 
of the differential ideal of Frobenius-Cartan theory, i.e., as 
an exterior differential system. After a lengthy but easy cal­
culation we have proved that the system verifies the required 
integrability conditions, and consequently has solutions in 
any given Riemannian spacetime, i.e., in the presence of gra­
vitational fields. (In the Appendix to the present article we 
sketch the proof.) 

For the one-point structureless charge problem, we 
have found the solution. The projection tensor referring to 
the dual bases of the orthonormal tetrad defined in Sec. I is 

P = - (CUo t\c(2)(CUO t\c(2) + (CUI t\C(2)(CU I t\c(2), (3.3) 

being expressed with respect to the global inertial frame as 
follows: 

(3.4) 

where 15~;r = 15~' ~' -15't/ ~', and the orthonormal basis 
has been chosen so that a = aIel + a2e2. Functionally P 
must be considered as depending on the field event x through 
the retarded prescription, i.e., PIx) = P {Tr (x)). 

The physical and mathematical structure of the projec­
tion tensor which corresponds to the electromagnetic field 
derived in Sec. II of this article can be easily determined if we 
is taken into account its similarity with the one-point charge 
solution; in fact, the Coulomb and intermediate two-form 
integrands are always bivector orthogonal to the radiation 
two-form integrand. 

According to the existence theorem for the system (3.2), 
it shall be possible to find a tetrad field of one-forms [ W (x) J 
to refer to the cotangent bundle associated to Minkowski 
space-time. With respect to this tetrad field, Eq. (2.19) may 
be expressed as 

F(x) = (C/)(x)[ WO(x)t\ WI(x)J 

(3.5) 
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where 

(CI)(x)WO t\ W I == - f dcu po[~ + ~v.v]cuo t\CUI, 
J,IX) r 2 

(3.6) 

R (x)(WO - WI)t\ W 2= f dcupo(cuO - CU I)t\CU2. 
J,IX) 

Therefore the projection tensor operator will be 

PIx) = - (WO t\ W2)(WO t\ W2) + (WI t\ W2)(WI t\ W2). 
(3.7) 

It is interesting to remark that the radiative solution implied 
by Eqs. (3.6) and (3.7) obeys at least the same properties of 
usual null fields. In fact, with respect to a global inertial 
frame [xa J, where it is defined WO(x) - WI(x)=la dxa, the 
radiative field will be expressed as 

Ra{J = R (x)/a t\ W~ (x). (3.8) 
Evidently, here la is a null one-form: la1a = 0, which be­
longs to the congruence associated to Ra{J(x). Its impulse­
energy tensor reduces to 

T~~} = (l/41THRjM R ~ -! 1JpvRa{JR afl) 

R2(X) 
= 4;-lp (x)/v (x), (3.9) 

which in view of the lightlike nature of la' satisfies the 
known relations for null fields 

Iv TVP = 0, TP P = 0, TpvTpv = 0. (3.10) 
An inertial observer characterized by its four-velocity ua 

will measure a flux of energy or density of four-momentum 
given by 

Na(x) = Ta{Ju{J = [R 2(x)l41T]/{Ju{Jla. (3.11) 

As N" is proportional to la, it is also a null vector, whose 
zero component N" Ua gives the energy density as measured 
by this inertial observer. 

APPENDIX: EXISTENCE OF SOLUTIONS 

The algebraic-partial differential system (3.2) is ana­
lyzed from the point of view of the differential ideal of Fro­
benius-Cartan.4 Consequently, it will be considered as an 
exterior differential system, in which (JI'vcrr is a representa­
tion of the metric in the exterior algebra 

° cu==F[a{Jy6 J = 0, 

° a=*F[a{JYJ - 41T*j[a{JYJ' 

° {J -Ga{Jy6GPvpaJ"..,op P F F - ° = to A,1Ta{J 70pv y6 pu - , 

(AI) 

I 
CUA,1T70==dPA,,,..,o - PA,,,..,ov dx\ 
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plus the closure, i.e., the exterior differential of the system 
(AI), that we symbolically write down 

d(AI). (A2) 

Equations (AI) and (A2) are defined on a 139-dimensional 
manifold N = N(IC'" ,F,w ,P a&rr ,Fally ,P yt;pVT)' because the elec­
tromagnetic field source and the geometry of the base space 
(space-time) are considered to be given. 

After a lengthy but easy calculation it is proven that we 
recover system (3.2) when the complete exterior system (AI) 
and (A2) is restricted to the original manifold, and its inte­
grability conditions are automatically satisfied! 

Therefore, the equations we propose to define the radia­
tive electromagnetic field as the contraction P afJyt;Pyt; have 
solutions. It remains to prove mathematically its unique­
ness. 
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