
Dirac and reduced quantization: A Lagrangian approach 
and application to coset spaces 

C. FL Ordc%ez 
Theory Group, Department of Physics, University of Texas, Austin, Texas 78;l.Z 
and Department of Physics and Astronomy, Box 1807 Station B, Vanderbilt University, 
Nashville, Tennessee 37235 

J. M. Pons 
Center for Relativity, Department of Physics, University of Texas, Austin, Texas 78712 

(Received 1 September 1994; accepted for publication 11 October 1994) 

A Lagrangian treatment of the quantization of first class Hamiltonian systems with 
constraints and Hamiltonian linear and quadratic in the momenta, respectively, is 
performed. The “first reduce and then quantize” and the “first quantize and then 
reduce” (Dirac’s) methods are compared. A source of ambiguities in this latter 
approach is pointed out and its relevance on issues concerning self-consistency and 
equivalence with the “first reduce” method is emphasized. One of the main results 
is the relation between the propagator obtained ti la Dirac and the propagator in the 
full space. As an application of the formalism developed, quantization on coset 
spaces of compact Lie groups is presented. In this case it is shown that a natural 
selection of a Dirac quantization allows for full self-consistency and equivalence. 
Finally, the specific case of the propagator on a two-dimensional sphere S2 viewed 
as the coset space SU(2)IU(l) is worked out. 0 1995 American Institute of Phps- 
its. 

I. INTRODUCTION 

The quantization of constrained systems is plagued with many ambiguities and difficulties 
which are added to those encountered when dealing with regular systems (ordering problems, 
Groenwald-van Hove obstruction,’ etc.). In particular, in the framework of Dirac quantization,’ 
the preservation of the first class nature of the Hamiltonian and the constraints at the operator level 
is a highly nontrivial issue. Another important aspect is that of the equivalence between the two 
standard procedures: (a) Dirac’s method of quantizing the “entire” system (i.e., including gauge 
variables) and obtaining physical states as those annihilated by the operator version of the con- 
straints, and (b) first reducing the classical variables by solving the constraints, and then quantiz- 
ing as a regular system. These procedures are usually referred to as “quantize first and then 
reduce” and “reduce first and then quantize,” respectively. There seems to be no a priori general 
principle which guarantees that they agree with each other, let alone one which selects one 
procedure over the other from the physical point of view.3 

Kuchi, in a beautiful series of articles,4 has discussed these problems in the case of quadratic 
Hamiltonians and linear constraints. (Kuchti and HajiEek have also studied the case of param- 
etrized theories with quadratic constraints.5) He finds that, in order to achieve equivalence, one is 
forced to give up, in the general case, the full Hilbert space structure of the entire system. 
Following Kucha?s work, McMullan et aL6 used the Becchi-Rouet-Stora-Tyutin (BRST) ap- 
proach of Batalin, Fradkin, and Vilkovisky7 to address the same problems. Concurrently, several 
other groups’ have also investigated a wide variety of aspects which arise in the study of the 
equivalence of these two methods. 

The treatment of these problems has been done mostly with canonical (operator) quantization. 
However, similar issues like the relation between reduced and covariant path integrals (e.g., 
Faddeev-Popov) also appear. We have investigated these issues in a series of publications’-” and 
have proven equivalence in this case (see also Ref. 12). 
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The work of the groups mentioned above has been mostly done within the Hamiltonian 
framework. We have chosen to start with a Lagrangian framework (Sec. II). Beyond its well- 
known advantages this formalism enables us to encode in a single function all the features of the 
constrained system. We then proceed with the Hamiltonian formulation (Sec. III), and immediately 
afterwards we present the two types of quantizations mentioned above (Sets. IV and V). This is 
followed (Sec. VI) by a discussion of the subtleties and ambiguities present in the “quantize first” 
approach. Here we also make some remarks on the relevance of the gauge group in this kind of 
question. In Sec. VII we apply our general setting to the case of quantization on coset spaces of 
compact Lie groups and then go on to the special case of S2-SU(2)/U(l) (Sec. VIII). Finally, we 
present conclusions and outlook in Sec. IX. 

II. THE LAGRANGIAN SE-WING 

We are interested in a model with only first class constraints (in phase space, T*/l, where (% 
is the configuration space manifold), all of which should appear as primary constraints in order for 
them to generate independent gauge transformations. This means that also the Hamiltonian has to 
be first class, i.e., its Poisson brackets with all the constraints have to vanish on the constraint 
surface. There is an easy way to cast this information in the Lagrangian formalism. In this article 
we will consider Lagrangians of the form 

L= +GAB(jA@- V, (2.1) 

where GAB and V are functions of configuration space variables QA, A = 1,. . . ,N. GA, is a singular 
metric tensor of rank n <N. Here we consider explicitly a quantum mechanical system. The 
extension to field theory is immediate once Dewitt’s condensed notation is adopted.13 This type of 
Lagrangian is obtained in Yang-Mills theories when one integrates out A,. 

The standard construction of the first generation of velocity space (To constraints is as 
follows. The equation of motion derived from Eq. (2.1) is 

GABoB= OYA, (2.2) 

where 

(2.3) 

If VA(Q) is a null vector of GAB, i.e., GAB UB=O identically, then the constraint surface 
corresponding to the first step of the stabilization algorithm is obtained by requiring 

UAffAd (2.4) 

for every null vector of the metric. We use the weak equality in (2.4) in the Dirac sense.2 
The work in Ref. 14 shows that in order for the Hamiltonian constraints to be primary first 

class only, one must require that Eq. (2.4) holds identically, i.e., its solution has to be the entire 
velocity space. This leads to 

lJcr CAB=O (2.5) 

and 

ucv,c=o, 

where 

r CAB= -GAB,c+GcB,A+GcA,B’ 

(2.6) 

(2.7) 
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Using G,,Un=O, Eq. (2.5) becomes 

UCGAB,C+GACU;+GCBU~=(c!Z?&G)AB=O, 

with 

fi= VA(Q) &. 

(2.8) 

(2.9) 

In Eq. (2.8) we have used the standard notation for the Lie derivative. 
Hence, the following requirements result: 

(4 every null vector (considered as a vector field in configuration space) of the degenerate 
metric tensor G, also has to be a Killing vector for it, and 

(b) every such null vector has to be tangent to the equipotential surfaces of the potential V. 

Notice that the set of null vectors is closed under the Lie bracket. Indeed, let fi and f be two 
such vectors, i.e., 

i;G=i+G=O, (2.10) 

where use was made of the standard notation for the contraction of a vector field with a form. 
As we saw, they also have to be Killing vectors. Hence, using Eq. (2.8) the following equali- 

ties hold: 

O=~~(i;G)=i(~~l;~G=i[;,jG. (2.11) 

Therefore, [ fi, f] is a null vector. 
If we consider a basis for the space of null vectors, { fiI,, cy= 1,. . .,k: = N- n}, this closure 

property is written 

[km fipl=C,yg(Q~fiy. (2.12) 

As we will see later this relation prefigures the first class character of the constraints that appear 
in the Hamiltonian formulation. 

III. HAMILTONIAN SElTlNG 

The usual definition of momenta gives 

‘B 
PA=GABQ 9 

which implies the following set of primary constraints: 

(3.1) 

qa= uA,P,d,, a= l,...,k. (3.2) 

Since the rank of the metric G is n, Eq. (3.2) is the full set of primary constraints. Equation (2.12) 
shows that they are first class under the Poisson bracket 

bar@l=-Cpcpy (3.3) 

As mentioned earlier, these constraints generate gauge transformations through Poisson brackets. 
Hence the vector fields U, generate symmetry transformations in configuration space. This means 
that configuration space Q is divided into orbits under the action of these vector fields, and that the 
physical configuration space .J& is the quotient of the original one by the orbits. 
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Let us now set up the dynamics on T*Q. In order for the Lagrangian energy function to be the 
pullback of the Hamiltonian, which obviously has to be quadratic in the momenta, 

H= +MAB(Q)PAPB+ V, (3.4) 

MAE has to satisfy (M being symmetric) 

MABGACGBD = GcD . (3.5) 

Equation (3.5) shows an ambiguity typical of treatments of constrained systems. Indeed, any 
transformation of the form 

MAB ~ MIAB= MAB+XA”UB+XBaUA a (I) (3.6) 

with arbitrary hAa will define another Hamiltonian which will have the same energy function in 
velocity space. Hence, a first class Hamiltonian system of the type we are considering does not 
endow configuration space with a unique nonsingular metric structure. This freedom in the choice 
of a metric structure in configuration space will play an important role in our quantization pro- 
gram. 

Finally, it can be shown that given a Hamiltonian of the form (3.4), and a set of first class 
constraints (3.2), there always exists a Lagrangian of the form (2.1) which gives rise to the 
Hamiltonian and the constraints. For details see Appendix. 

IV. REDUCE FIRST AND THEN QUANTIZE 

We may proceed from either the Hamiltonian or the Lagrangian formulation. As we will show, 
one obtains the same results. Let us then begin with the Hamiltonian version. There is a natural 
way of endowing ,&Y with a nonsingular metric structure. Consider the following contravariant 
tensor field associated to the kinetic term in the Hamiltonian: 

MAB 
a a 

%p@ dQB’ 

The projection 

Q-r:@-+ d&G (4.2) 

allows us to assign to Eq. (4.1) a contravariant vector field in J&G, as long as the following 
“projectability” condition is fulfilled: 

fi, MAB --$ -$$) =o, a= l,...,k 

for any functions f, g of configuration variables QA such that 

fiJ=&g=O, a= l,..., k. (4.4) 

This condition can be recast as 

which is a trivial consequence of Eq. (3.5). Hence we have to our avail this contravariant tensor 
field in . &. 
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In order to gain further insight into the structure of this tensor field, we now introduce 
coordinates @, a = 1,. . . , n, on A. Then the projection rr is described by the functions q’(Q) that 
satisfy U,@=O; a=1 ,..., k, a= I,..., n. 

In these coordinates the components of the new tensor field in AY are 

-ab- 
dqU dqb 

g -MAB 
aQAaQB’ 

(4.6) 

The projectability condition shows that gab only depends on the physical coordinates qa. 
Notice that gab so defined is invariant under changes of M of the type (3.6). Moreover, these 

are the only changes that leave gab invariant. This result has the direct physical consequence that, 
for our type of systems, the ambiguities present in the Hamiltonian framework play no role in the 
reduced $rst approach to quantization. Hence the physical phase space T*J& is naturally en- 
dowed with a Hamiltonian 

h = 4 gabp,pb+ v. (4.7) 

Now we will show that 2 is nonsingular. In order to prove this it is convenient to work with a 
coordinate system in e adapted to the orbit structure, we then add, to the physical coordinates qa, 
a=1 ,. ..,n, which label* the orbits, a new set of functions (which parametrize the orbits) qLI, 
(Y= l,...,k such that detlUa@PI # 0. The entire set will henceforth be termed “adapted coordinate 
system.” 

In this system the Lagrangian metric GAB and the null vectors are written 

G= (4.8) 

and 

respectively. 
The condition that these vectors are null vectors for this metric immediately leads to 

(4.10) 

and the Killing condition for these vectors becomes 

fi,(&b)=o, ff= l,..., k. (4.11) 

This last result guarantees that gnb only depends on the physical coordinates q’, a = 1,. . .,n. 
Equations (4.8) and (4.10) display the nonsingularity of gab because the rank of G is n. 

Equation (3.5) now becomes 

(4.12) 

where gab= (g&,)-r, and the remaining components of M are arbitrary. 
Finally, the projection T to A% of the contravariant tensor (4.1) leads to the identification 

g -abzgabe This proves that the contravariant metric tensor defined in A% is nonsingular. The 
Hamiltonian formulation on T*A’ is now completed. 
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Let us next proceed with the Lagrangian version. Taking advantage of the form of G in the 
adapted coordinate system, it is immediate to see that there is a unique function / on T,& such 
that its pullback rr’*t’ under the derivative mapping 7~’ induced by the projection 71, i.e., 

d:TQ-+ T/i. (4.13) 

is just the original Lagrangian L 

/=; g,b+j’- v, d*f=L. 

Summarizing: we have found the Hamiltonian and the Lagrangian for the reduced system. They 
are obviously related by a Legendre transformation. In the construction of these functions it now 
becomes quite clear that the metric gab is the one to be used to define the measure on ,&‘. From 
this point on, we can proceed within the standard quantization scheme for regular systems. (See 
Refs. 4 and 15 for details.) Notice that in this geometrical framework no explicit gauge fixing was 
performed. 

The inner product that defines the Hilbert space %~=2?@(.,&,lgl “2) is defined as 

(4.15) 

where lgl is the determinant of gnb. The dynamical evolution (Schrodinger equation) will be 
given by the Hamiltonian operator 

i=-$A,+V, (4.16) 

where As is the Laplace-Beltrami operator 

In Kuchai’s words, Eq. (4.16) implements the “principle of minimal coupling”; curvature terms 
are not included. 

The configuration variables qa become multiplicative operators as in the usual case, whereas, 
in order to retain Hermiticity, the canonical momenta pa are quantized as follows: 

pa -+ -i 
i 

$+k lgl-1’2)gl~,/2 . 
1 

(4.18) 

In the next section we reverse the order of things and proceed to “quantize first and then reduce.” 

V. QUANTIZE FIRST AND THEN REDUCE, DIRAC’S METHOD 

As we discussed in Sec. III we always have the freedom to choose a nonsingular metric M 
with which we can immediately write down an inner product. 

(#,1@2)= I, dNQlM11’2$?(Q)h(Q)- 

This inner product defines the Hilbert space %'=~3'~(Q,lMl"~). [Here /MI =det MA,, 
MAB = (MAE) - ’ .] We will assume that the quantum operators associated with the classical con- 
straints and the Hamiltonian still form a first class system with respect to the commutator algebra. 
For a further discussion of this assumption we refer to the next section. 
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The operator assignment for the classical constraints is dictated by the requirement that the 
physical wave function only depend upon physical variables, i.e., variables describing L& 

II A a 
(Pa+(Pa:=Ua=U~ p. Q (5.2) 

Notice that Eq. (2.12) guarantees that the classical constraints qo, are realized as a set of first class 
quantum operators. The Hamiltonian in % is chosen as in Sec. IV, i.e., 

8=-iAh,+V, (5.3) 

where 

Au= IMj-“2 $ [MI *12~AB $ 

and it is assumed to satisfy the first class condition 

[fi,, ri]=Xf(Q&. (5.5) 

The physical Hilbert space Zp in this framework is then obtained as the subspace of B defined 
by those states which satisfy 

fi,lPhys)=O, cy= l,..., k. (5.6) 

In wave function language 

fi,(Qb+ficAQ>=O. (5.7) 

This is equivalent to 

+(Q> = &f-YQ)>~ (5.8) 

where $=f”(Q) defines explicitly the projection T, Eq. (4.2). Physical position kets /qa)ph are 
those states in X defined by 

PllWl (I/> = J/WL (5.9) 

with I$) satisfying Eq. (5.6). It is convenient to expand these states in terms of the position states 
IQ) in %‘. Consider the following identities, valid for arbitrary II/: 

~W)=&*l~~= j- dNQIMl 1’2&flQ>(Ql$>= j- dNQlM11’2ph(qalQ>~(fa(Q>), 
(5.10) 

which implies that 

&“lQ>= $ s”W-f”(Q)), 

where 

A@) = I @Q/Ml “2~W-f=tQ,>. 

(5.11) 

(5.12) 
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Notice that Eq. (5.11) requires that these volumes be finite at every point q*. This is equivalent 
to requiring that the physical wave functions 1c, be normalizable in .%, since they are constant 
along each orbit. Hence, in a rigorous sense, the “first quantize” approach is only applicable in the 
cases where this condition is satisfied. Of course, one can be more practical, and carry out the 
Dirac construction in a more formal fashion ignoring details of normalization in B’. In our article 
we are going to assume that ,u(q”) is finite at every q*. 

It will prove convenient to rewrite ,u(qa) without the delta function. For this purpose, let us 
use the adapted coordinate system (qa,qa). Consider the following identity: 

l= I dkq @W-.fYQ)). (5.13) 

where the functions f” give the explicit realization of the coordinate change. Inserting Eq. (5.13) 
into Eq. (5.12) we obtain 

/-4q*)= dkq s s dNQlM11’2Sn(qa-fa(Q))~(qcr-fn(Q)) 

= dNQIMI”“s”(q-ftQ)) 

= d”‘QlMl 1’2 laq;aQI @(Q-Q(q)) 

= dkqlM1”2 &= dkqlml”2, (5.14) 

where jrnj is the determinant of the metric in the adapted coordinate system. 
In Ref. 9 we proved the following important factorization property of m, in adapted coordi- 

nates: 

(5.15) 

where gab(@) is the “physical” metric of Sec. IV. This implies that Eq. (5.14) can also be written 
as 

/-dqU) = 1 dkqlg11’21m,g11’2=Ig~1’2~ dkq~m,~~1’2=:~g~1’2~(qa). (5.16) 

Y(q”) is naturally identified as the volume of the orbit labeled by qa (recall the q”‘s are “gauge” 
variables). Notice that since by hypothesis p(q*) is finite, so is F(q”) [or, as this formula shows, 
one can demand finiteness of F(q”) instead from the outset]. 

We can identify ,x(4*) as the measure on .A%’ as follows: compute the inner product of two 
physical states I$), 1,~) in :XP 
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(@lx)=/ dNQ~~l”z~*(Q,x(Q,=~ dNQIMI”2~(fa(Q))x(fa(Q)) 

= 1 dnq d%($l WI 1’2Pww?a) 

= j- d”q[ 1 d%lml~+%f)11~“) 

= 
I c?/-&%*h?“)x(q”). 

In particular, one can show that 

PhMl&h= &J adi-$3. 

(5.17) 

(5.18) 

The physical position states lqa)ph can be written in terms of the position states IQ) in 3%. Indeed, 
using Eq. (5.11) we obtain 

W)Ph’&ij j- dNQlMl”2S”(qa-fn(Q))IQ). 

In adapted coordinates, using the factorization property, Eq. (5.15), we obtain 

1 
14ahh= gqqa) I ~qkl~~$‘214adY. 

(5.19) 

This formula displays the nature of /qa)p,, as a kind of average over the gauge degrees of freedom 
of jqa,qa), and this connection will be useful when we compute the propagator in 33”. The 
projection onto BP can readily be written as 

p= I d”q ,44%fh &fl- 
This operator can also be expressed in terms of the states IQ) 

(5.21) 

P= dNQ dNQ’IM11’21M’11’2 pv;Q)) fV=(QHYQ’>>lQ><Q’l. (5.22) 

As expected, 3’ projects states IQ) into 1 qa& 

flQ>=bf%tv (5.23) 

where q”=f”( Q). Finally, we are now in the position of being able to relate the propagator in ..% 
with the propagator in %P. Since we have a well-defined Hamiltonian 2 in 3% which, due to the 
first class nature-even at the quantum level-of our system, evolves physical states into physical 
states, then we can immediately write down the extension of formula (5.20) to the Heisenberg 
representation 

lP%%=& J dqklmnS11’21(qa,qa,t). (5.24) 
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Ph(d-kf2id yfl)Ph= 
1 

‘~cq;)P-cqy) I 
4; 4:lm&d~1’2~ m,~(41)11’2(9~~q~rt21q(;,q;l~tl). 

(5.25) 

Equation (5.25) is one of the main results of this article. 

VI. QUANTUM FIRST CLASS CONDITION AND THE GAUGE GROUP 

In this section we want to explore the possibilities afforded by virtue of the freedom in the 
choice of a nonsingular MAE satisfying Eq. (3.5). Its selection should be constrained by at least the 
requirement that the first class nature of the system be preserved at the quantum level. This is 
essential for the implementation of the Dirac program. Once this has been achieved, we can then 
address the issue of coincidence of Dirac’s method with the “first reduce” quantization scheme. 

Quantum first class condition. The expression for MAB in the adapted coordinate system, Eq. 
(4~2)~ 

allows us to write the Laplace-Beltrami operator (acting on scalars) as 

(6.1) 

or, on physical wave functions 

A~Iph=gabdadb-mA’Brr~,B,da. (6.2) 

The first class condition at the quantum level, Eq. (5.5), is equivalent to preserving the physical 
nature of the states under Hamiltonian evolution, which in our case, in virtue of the gauge 
invariance of the potential, Eq. (2.6), reads 

&AM(Phys)=O, cr= 1 ,...I k, (6.3) 

which leads, considering the form of Eq. (6.2), to the following sufficient and necessary condition: 

fi,(m A’B’I’;,B,)=O, a= l,..., k, a= l,..., n. 

In other words, WZ*‘~‘I’~,~, has to be a gauge invariant object. 
One criterion for the determination of mA’B’ 

generators f,, cy= 1 
in order to fulfill Eq. (6.4) is to demand that the 

,...,k of the gauge transformations be Killing vectors for the metric (this 
condition is taken as the starting point in the usual treatments). This guarantees that the Hamil- 
tonian H of Eq. (5.3) commutes with these Killing vectors. For this to be achieved, these genera- 
tors have to form a Lie algebra. Hitherto we have not had to mention the freedom to choose a basis 
of the space of null vectors of the Lagrangian metric GAB. This corresponds to the invariance of 
the constraint surface defined by Eq. (3.2) under resealing of the primary Hamiltonian constraints 
(this invariance plays a central role in Kucha?s work4). By selecting the generators fi,, a= l,...,k 
to form a Lie algebra (i.e., constant structure coefficients), we would be spoiling this resealing 
invariance. Moreover, different ways of selecting the generators may lead to different Lie algebra 
structures, and hence different Killing metrics. This will likely lead to different quantizations. 
These reflections prompt us to discuss the nature of the gauge group at more length. 
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The gauge group. At a fixed time, instead of considering the gauge group acting on the space 
of trajectories, we can consider its action on Q’. Here the gauge group is defined as the group of 
transformations (diffeomorphisms) that leave the orbits invariant. In adapted local coordinates 

qa,qa --t Ga,p, with qn=qn, +n=+n(qa,qn). (6.5) 

The null vector fields of the Lagrangian metric, described by the basis fi,, LY= l,...,k, are tangent 
to the orbits and generate uniparametric subgroups of the gauge group. There is a great deal of 
freedom to choose these generators. In particular it may be possible to choose k independent 
generators spanning a Lie algebra structure which will be associated with a k-dimensional Lie 
subgroup. Locally, one can always obtain these Lie subgroups of the gauge group, but global 
obstructions may rule out some of them. One simple example of such a local construction is 
furnished by the holonomic basis al@“, CY= 1 ,...,k, which provides us with an Abelian subgroup. 
These considerations serve to illustrate the following important point: any of these subgroups can 
be used to reconstruct the orbits, and hence, the fill gauge group. So, in this geometrical picture, 
there is no loss of information if we “cut down” the gauge group to one of these subgroups.” 

If we assume the Killing condition one can try to make contact with the “reduce first” method 
as follows. First of all, as we saw in Sec. V, we have to check for consistency of the dynamical 
evolution in both approaches, i.e., 

AM~PI,= A, 7 (6.6) 

where As is defined by Eq. (4.17). In the adapted coordinate system, Eq. (6.6) implies 

(6.7) 

In Eq. (6.7) fzb is computed with the reduced metric. This would be readily guaranteed if the 
metric M in adapted coordinates reads as follows: 

mA!B’= gabw> 0 
( 0 i tP(q”) . 

(6.8) 

Consistency of this form of the metric and the Killing condition demands that 

l&=0, (6.9) 

which, considering the freedom in the choice of fiI, to form a Lie algebra does not seem to be, at 
least locally, too restrictive. 

The other issue to study in order to check for matching between the two approaches is the 
relation between the measures in both cases. At this point the factorization property, Eq. (5.15), is 
very useful. Notice that in general the volume of the orbit F(q”) is a function of q’. In the case 
where the metric takes the form (6.8) a qa dependence would arise if the range of integration in 
Eq. (5.16) were to depend on the orbit which is a global problem that one should not discard a 
priori. Equation (5.16) shows that in the general case, when F(qn) is not a constant, there is a 
good chance for the two procedures not to agree, since the measures are not equal. One could 
attempt to remedy this deficiency by absorbing 3’“(qa) in a redefinition of the wave functions. 
Nevertheless, this will generally spoil the equivalence between the dynamics which had been 
previously established. In the situation where Y/is a constant, one would be tempted to conclude 
that equivalence has been achieved. But there might be some issues concerning the domain of the 
operators when the self-adjointness condition is implemented, which we have taken for granted. 
This clearly deserves further study on a case by case basis. 

Despite the many possibilities shown here for quantization ci la Dirac, there is a wide class of 
theories where equivalence is rigorously obtained, with a natural selection of the Lie subgroup of 
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the gauge group and the metric. This is the case of quantization on coset spaces of compact Lie 
groups, which is the subject of the next section. Before that it is worth to mention that Kuchti17 
has shown in a simple model the nonequivalence between Dirac and reduced quantization. His 
model has a field theoretical application in scalar electrodynamics but, as is pointed out by 
Kuchai, renormalization problems obscure in this case the issue of the equivalence of both ap- 
proaches. 

VII. APPLICATION: QUANTIZATION ON COSET SPACES 

We will first establish notation and then explain how to set up the constrained system of 
interest for us on coset spaces. 

Our configuration manifold will be a compact Lie g;oup G of dimension N. Its Lie algebra 
will be realized by means of left-invariant vector fields UA, A = 1 ,...,N 

[ fi, I fi,] = c;)#jc, (7.1) 

where the structure constants satisfy, besides the obvious ones, the following antisymmetry prop- 
erty: 

cc =-CB 
AB AC, (7.2) 

which can always be achieved for any compact Lie algebra.” 
On coordinates QA, A = 1 , . . . ,N our left-invariant vector fields can be written as 

fr,=U,8(Q)a/aQB, and its dual left-invariant forms as flA=s2~(Q)dQB, i.l:=(U$-‘. G is 
endowed with a nonsingular left-invariant metric MA, 
fields irA, A = 1 

which is a Killing metric for the vector 
,...,N. It has the form 

(7.3) 

In order to introduce a constrained system in a natural fashion, we will extract from Eq. (7.3) a 
singular metric which will define the kinetic term in the Lagrangian for such a system. One way 
to achieve thi: is simply to restrict the range of the summation index in Eq. (7.3) to a = 1,. ..,n 
<N. Indeed, U, , where (Y runs over the complementary set of indices, form a basis of null vectors 
for this new metric GAn=fiifis. At this point, we start making contact with our Lagrangian 
setting of Sec. II. In this case, condition (2.8) implies that the structure constants have to satisfy 

c”n,= 0 (7.4) 

and 

cg,= - ci,. (7.5) 

Equation (7.4) is the statement that the fi,, (Y= 1 ,...,k = N - n form a subalgebra of the original Lie 
algebra 

[fi,, fi,]=C&&. (7.6) 

Equation (7.5) does not give new information, since this is already guaranteed by Eq. (7.2). 
This subalgebra generates a Lie subgroup K of G. The quotient manifold .,.& of Sec. IV is 

then the coset space G/K. To fix ideas, it is convenient to write our singular Lagrangian 

L= iGA&*QB-- V, (7.7) 
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where GAB was just defined above, and V is a potential function satisfying, according to Eq. (2.6), 
UA,V,, =O, a= l,..., k. 

Now we present the Hamiltonian formalism. According to Eq. (3.2) the constraints are 

p,=UA,(Q)PA-0, a= l,..., k. (7.8) 

Due to the particular structure of our metric GAB it is straightforward to verify that the nonsingular 
contravariant metric MAE = UC A UE c (which is the inverse of the covariant nonsingular metric MAB 
that we started with) is a solution of Eq. (3.5). This metric structure provides us with the invariant 
measure on G, and it is such a natural structure on it that we will henceforth always work with it. 
Therefore, Eq. (3.4) becomes 

H= $MABPAPB f V, (7.9) 

with MAE= UtU:. Now we have all the ingredients to quantize according to the two schemes 
presented in Sets. IV and V. The “first reduce and then quantize” procedure is readily imple- 
mented since all we have to do is use the metric tensor M to obtain g” for G/K [Eq. (4.6)]. This 
assignment defines the Hilbert space structure and the quantum dynamics according to Eqs. 
(4.15)-(4.18). This completes the “first reduce...” program. 

In order to implement the “first quantize and then reduce” scheme, we first have to check the 
first class character of the quantum Hamiltonian, i.e., Eq. (5.5). The first class nature of the 
constraints is already assured by Eq. (7.6). In our case the Laplacian operator is 

AM= lM]-“* -$ 1~1 112~AB -$. 

Now, since the fiA , A = 1 , . . . , N are Killing vectors for M, they are divergenceless 

[MI-“2 -& IM[“2U;=0, C= l,..., N, 

(7.10) 

which allows us to write AM as 
,. n 

AM= UcUc. (7.12) 

Using Eq. (7.12) and the antisymmetry property C,$= - Cic is a matter of straightforward 
algebra to verify that 

[AM, ir,]=o, A=1 ,..., N, (7.13) 

which was already guaranteed by the Killing vector condition. Hence, fi passes the test. This 
guarantees a consistent quantization in XP, in the sense defined in Sec. V. Furthermore, since the 
gauge orbits (generated by K) are compact, all the formulas derived in that section apply in a 
rigorous sense. To show equivalence we now proceed in two steps: first, we will show that the 
measure on the physical space RP coincides, up to an irrelevant constant factor, with the measure 
obtained from the “reduced first” procedure-this shows that, in fact, the two Hilbert spaces are 
the same. Then, we will see that the dynamics in both cases are identical. 

The measures. In the “first reduce” procedure, the metric in G is defined as 

dqa dqb 

g 
ab=MAB - 

~QA @? = 'A,':: 

J. Math. Phys., Vol. 36, No. 3, March 1995 

Downloaded 20 Jul 2010 to 161.116.168.227. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp



C. Fi. Ord6hez and J. M. Pons: Dirac and reduced quantization 1159 

where we used Ga(qa) =O. The measure is then 

pi?= Id 1/2=IgabI-1/2=Iuj:l-1. (7.15) 

Now consider the “first quantize” approach. In the adapted coordinate system, QA’ = (qa,qa), we 
showed factorization in general, Eq. (5.15). The only possible obstruction to equivalence is the 
dependence of Y(q”) on qa. Let us now compute F(q”) in this case. From Eq. (7.3) we get 

Therefore, the volume of the orbit is 

V(qU) = 
I dkc$N (7.17) 

We now prove that Eq. (7.17) is indeed a constant. To see this, it is convenient to rewrite V in 
intrinsic notation. Consider the injection 

i,a:fi(q”) --f G. (7.18) 

Then we have 

vcqa) = I,,., i;cA (7.19) 

where 2=f11r\s2*r\***r\nk and the indices 1,2,...,k are the a-type indices. izaC is the pullback of 
c under Eq. (7.18). We should remind ourselves that 2 is by construction left-invariant. Now 
consider an element g E G, but g $ K. It maps orbit into other orbits 

g:@qa) -+ (“(Cp). (7.20) 

Then the following chain of equalities holds: 

pl$yG I /‘m 
ip = I 614’1) 

g*(i$z)= I /qq”) i;a(g*z)= I i$C-V(q’). (7.21) 
MP) 

The first equality comes from a passive interpretation of the action of g as a change of variables 
in the same orbit. The second one is just a consequence of the fact that i;, 0 g = g 0 i,, . To 
obtain the last one we used the left-invariance of C. This proves that all orbits have the same 
volume. Therefore the measures are equal up to a normalization constant. 

The dynamics. Now we proceed to show that the Laplacian operator (7.10), AM, when re- 
stricted to .XP coincides with the Laplacian operator (4.17) A, of the “reduce first” approach. 
First we observe that Eq. (7.12) allows us to write the restriction of AM on .SYP as 

AMl.%p= &Al 7 (7.22) 

where we have used fi,qa=O. Explicitly, in the adapted coordinate system 

d 
AMI.;Y~= u: -T u: d+(lff d UC d 

dq w adqn udqc* 
P 

(7.23) 

On the other hand 
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8,=lgl-1’2dblg11’2gbc -$=@ $ u: ~+181-1’2(lgj1’2u~),b~~ $. (7.24) 

Hence 

AM~~~-A,=W:~:,, -lgI-“2(lg11’2Ut),bU~) +=:B’,,. 

We are going to show that BC =O. Using the fact that lgl,,=O, we can write 

Isl-1’2(ls11’2~~),b=lgl-1’2(lgl”2u~’),A~-~,q,, 

where A ’ runs over the entire set of indices a and (Y. Then 

(7.25) 

(7.26) 

The divergenceless of the vector field fi, can be reexpressed as 

=~~~-11~l,A,~~‘+Igl-1’2(lg11’2~~’),~,, 
(7.28) 

which allows us to rewrite Eq. (7.27) as 

BC=(U~U~),,+l~l-‘~l,(lnl)u~. (7.29) 

Now, recall that fi,= lJtdp, da=@l?p. Also 

Inl-‘~,(lnl)=Inl-‘lnl(-n~ci,(u~))=-~~O,(U~). (7.30) 

Using these results, Eq. (7.29) can be rewritten as 

B~=~~(~~(U,aU~)-ir,(u~)U~)=n~(((ir,(u~)-ir,(U;;))Uf,+U,n~~(Uf;)). (7.31) 

Recalling that C& = - C&,= 0 (compactness and subgroup conditions) we have 

c&3, O,l=C$,&, (7.32) 

which implies (using Ub,=O) that 
A n 
Up( u,“, - U,( u;, = c$lJ,a (7.33) 

and 
n 

Up( u;> = c;, us. 

Hence 

(7.34) 

(7.35) 

which is zero in virtue of the antisymmetry of the structure constants. Therefore 
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&Ajw,= As. (7.36) 

We would like to emphasize the importance of the compactness of G in the derivation of Eq. 
(7.36). 

VIII. EXAMPLE: THE FREE PROPAGATOR ON S* FROM THE FREE PROPAGATOR ON 
SW) 

As a concrete application of the formalism developed in Sets. V and VII we will now consider 
the motion of a free particle on a sphere S2, viewed as the coset space SU(2)AJ(l). This problem 
has been studied by D01an’~ within the BRST approach. Here we show full equivalence without 
introducing ghosts. 

Making use of the isomorphism SU(2)-S3 we may parametrize the group manifold SU(2) 
using polar coordinates on S3 

QA=(@,$), O~t%rr, 0~+<2n, 0==9<41r. (8-l) 

The left-invariant vector fields are 

( 

cos (/I cos * 
ti,= sin @la,- sin d++ - 

tan 19 
a* =U,Bag, 

i 

i 

sin * 
fi,= cos i+bagl- - 

sin e a,- 
sin + 
tan a$ 

1 
= U2B&3 9 

U3=d*dJ3?&, 

where dB=8/dQB. They satisfy the SU(2) algebra 

[ fiA , fi,] = $,B& * 

The fi, , A = 1,2,3, are Killing vectors for the metric 

GAB = uA uB #D CD 9 

(8.2) 

(8.3) 

(8.4) 

which in this coordinate system takes the form 

GAB, (8.5) 

We will choose the uniparametric subgroup U(1) generated by fig as the gauge group K. The 
simplest choice of the adapted system is then 

4a=uw4, 4a=w). (8.6) 

In this system, the measure, Eq. (5.14), becomes 

p(e,+)=4r sin 8 (8.7) 

and the propagator, Eq. (5.25), now reads 
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Ph(eI,~r.TfIe,~,f)ph=~ I,‘” dlCr2 I,‘” d~,(e’,~‘,~*,t’le,~,~, 4. (8.8) 

All we have to do now is to substitute for (@‘,$‘,&,t’lt??,d& ,t) its explicit form, which can be 
readily found in the literature. Following Schulman*’ 

(e’,~‘,~2,t’ls,~,~l,t)=~~ C (2j+1)(sin(2j+1)r)e-(“21)~(j+1)(r’-r), 
j=O,+,l,... 

(8.9) 

where r is the geodesic distance between two points on S3 

cos($+-+:)-t-sin (8.10) 

with JI, = (fi+ $))/2, and $’ = g2, += $t . I denotes the “moment of inertia” as used in Eq. (4.17) 
of Ref. 20. We use here notation of Ref. 19. Notice we are taking advantage of the isomorphism 
between SU(2) and S3. Performing the integrations in Eq. (8.8) we then obtain 

m 
C (2j+ l)pj(cos y)e-(i/*').j(i+l)("-'), (8.11) 
j=O 

where y is the geodesic distance between q’=(B’,+‘) and q =(a+) on S*. This is in agreement 
with Ref. 21, after taking into account the normalizations for our states, given by Eqs. (5.19) and 
(8.7). 

IX. CONCLUSIONS AND OUTLOOK 

In this work we have studied the conditions upon which the first quantize (and then reduce) 
and the first reduce (and then quantize) approaches are equivalent. There are several lessons that 
can be drawn from this work, both at a conceptual as well as at a more technical level, keeping in 
mind that we are considering only systems with Hamiltonian and constraints quadratic and linear 
in the momenta, respectively. On the one hand, our Lagrangian setting for first class systems 
reveals quite clearly the ambiguities present in the framework of Dirac’s quantization. Within our 
scheme the one-to-one correspondence between the original Lagrangian and the reduced Hamil- 
tonian quantization is neatly seen. Hence the reduced quantization possesses a certain uniqueness 
that is lacking in the Dirac approach. This point of view is reinforced when one considers our 
work with path integrals’ where again reduced quantization plays a central role. The discussion in 
Sec. VI shows that the ambiguities mentioned above make plausible the selection of a specific 
Dirac quantization which coincides with the reduced first method. Several features of the gauge 
group relevant to this problem are also mentioned there. 

On a more practical level we show rigorously that in the case of coset spaces of compact Lie 
groups there is a natural selection of Dirac quantization that fully coincides with the reduced 
quantization. This fact allows us to use results of the quantum theory on the group G to obtain the 
quantum theory on the coset space G/K, with K a subgroup. To make contact with the work of 
other people we compute the propagator on a two-dimensional sphere S*=SU(2)/U(l) by this 
means. 

It would be interesting to extend our approach to the case of constraints quadratic in the 
momenta-relevant in the study of reparametrization invariant systems like gravity. A close com- 
parison with our work on path integrals should be illuminating. Work on these topics is currently 
in progress. 

J. Math. Phys., Vol. 36, No. 3, March 1995 

Downloaded 20 Jul 2010 to 161.116.168.227. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp



C. R. Ordbiez and J. M. Pons: Dirac and reduced quantization 1163 

ACKNOWLEDGMENTS 

We are grateful to L. C. Shepley for useful conversations on the geometrical aspects of this 
article. This work was partly inspired by questions posed to us by J. Polchinski. 

C.R.O. would like to express his gratitude to the World Laboratory for its generous support, 
and to the Guggenheim Foundation for support during the initial stages of this work. J.M.P. would 
like to thank the Center for Relativity of The University of Texas for its warm hospitality. This 
research was supported in part by the Robert A. Welch Foundation and NSF Grant No. PHY 
9009850 (UT Austin) and NSF Grant No. PHY 8806567 (UT Austin), by the Department of 
Education Grant No. DE-FG05-87ER40367 (Vanderbilt), by the CICYT of Spain (Project No. 
AEN-0695): and by a Human Capital and Mobility Grant (ERB4050PL930544). 

APPENDIX: THE INVERSE LEGENDRE TRANSFORMATION FOR CONSTRAINED 
SYSTEMS 

We want to show that from the Hamiltonian (3.4) 

H= iMAB(Q)PAP,+ V (‘41) 

and the primary constraints (3.2) 

we can recover the Lagrangian (2.1) which we started with. For this purpose we will perform the 
inverse Legendre transformation on the Dirac Hamiltonian 

HD= &MABPAPBf XaULPA+ V. (A3) 

This means we want to find (PA ,ha) in terms of (Q”,Q”), as the solution of the following 
algebraic system of equations: 

(A4) 

Once this is achieved we will just substitute the momenta as functions of velocity space variables 
in the expression for the Lagrangian 

L= PAQ*- H. (A5) 

Notice that Eq. (A4) involves only half of the Hamilton equations. This is so because this is the 
one that contains the information about the Legendre map. In virtue of Eq. (A4) 

(iAU@A=ka@+ 646) 

where 

O,p= UtUpA= UA,MABU”p (A7) 

is just the scalar product of the vector fields fia, 
fields fi,, cz= 1 

fi, with respect to the metric M. Since the vector 
,...,k are independent, and the metric M is nonsingular, the matrix O,, is invert- 

ible. Hence 

and using again Eq. (A4) we obtain 
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from which we get for PB 

PB=MBA9'$ACgC, (AlO) 

where 

,$P “c= cq- O”QJ,,UA, 

is the projector in the direction transverse to the orbits. Finally, the Lagrangian becomes 

where 

(All) 

ML ,F*M 
CD 

yB 
C AB D* 6413) 

It only remains to show that MI,D=GcD, where Gco is the metric in the original Lagrangian 
(2.1). To show this it is convenient to work in the adapted coordinate system, in which the obvious 
fact that the vectors fiI,, LY= l,...,k are null vectors of M& reveals that it has the form 

ML= MA 0 
i i 0 0’ (Al4) 

In view of Eq. (4.12), in order to check that Mib=gab we only need to verify MnA'Mirb 
= G. From the definition of ML we obtain 

M~,B,=MA'B'-MA'pU~OaaU;;MaB'r 6415) 

where Uc=O, Eq. (4.9), was used. Finally, recalling that $=O we have 

MaA'MM;f;,b= G-Ga,Up,@%J;M,,,=~, (‘4W 

which proves our assertion. 
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