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For a dynamical system defined by a singular Lagrangian, canonical Noether sym-
metries are characterized in terms of their commutation relations with the evolution
operators of Lagrangian and Hamiltonian formalisms. Separate characterizations
are given in phase space, in velocity space, and through an evolution operator that
links both spaces. ©2000 American Institute of Physics.
@S0022-2488~00!01710-2#

I. INTRODUCTION

Most physical theories implement the dynamics as a result of the application of a varia
principle, that is, by means of a Lagrangian. Among the dynamical symmetries of these the
that is, transformations that map solutions of the equations of motion into solutions, we can
out the Noether symmetries, that is, the continuous transformations that leave the
invariant—except for boundary terms. In addition, if we aim to move the description of
dynamics from the tangent bundle~velocity space! TQ of its configuration spaceQ to the cotan-
gent bundle~phase space! T* Q, other distinctions can be raised as to whether the symm
transformation in velocity space is projectable to phase space and, in the affirmative case, w
the transformation in phase space is canonical. We will consider time-independent Lagrangi
it is the usual case in physical theories, but we will allow to deal with time-dependent functio
cover also gauge symmetries~symmetries depending upon arbitrary functions of time, or spa
time variables in field theory!; then we will useR3TQ andR3T* Q instead of TQ and T* Q.

The infinitesimal symmetries of an ordinary dynamical system are characterized by a pr
of commutativity: essentially, that the time evolution operator commutes with the operato
generates the symmetry. Let us state with more detail this result, which is standard for th
with no gauge freedom, using differential-geometric language. LetX be the vector field that
governs the dynamics~the time evolution! of some system on a given manifoldM ~M can be, for
instance,R3TQ or R3T* Q for some configuration manifoldQ; R parametrizes the independe
variable—the time!. For an open intervalI ,R, a pathg:I→M is a solution to the dynamics i
ġ5X+g. Let a vector fieldV be a candidate for a symmetry of the dynamics defined byX. Then
the flow of V ~a local one-parameter group of diffeomorphisms! transforms solutions into solu
tions if and only ifX is V-invariant, that is to say,

LVX5@V,X#50, ~1!

a!Electronic mail: xgracia@mat.upc.es
b!Electronic mail: pons@ecm.ub.es
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whereLV stands for the Lie derivative. This is an immediate consequence of the well-known
that @V,X#50 iff their flows commute.1–3

Our aim in this paper is to obtain some generalized versions of this result. More precisel
purpose is to study how the canonical Noether transformations implement this commut
requirement in the general case of gauge theories~those derived from singular Lagrangians!.
Instead of providing with new procedures to determine symmetries, we give alternative wa
characterize them, associated with a specific property of commutativity. Recall that the va
of the Lagrangian under a Noether symmetry is a total derivative; this statement is far
expressing any kind of commutativity. We will discover however that one can characteriz
nonical Noether symmetries through commutativity properties; in this way, we give a new
spective, with a geometrical flavor, to identify the Noether symmetries of a dynamical sy
This approach can be applied in particular to gauge theories, where it can be used as a dir
as to whether a given transformation is a Noether symmetry.

Since many dynamical systems—and, among them, those describing the funda
interactions—have room for gauge freedom, we will assume in our framework that the Lagra
may be singular. To be more concrete, we will consider theories described by time-indepe
first-order Lagrangians whose Hessian matrix with respect to the velocities may be singu
this case the conversion from tangent space language to phase space language has some
ties: there are constraints in the formalism, the dynamics has some degree of arbitrarine
This is nothing but the framework first studied by Dirac to deal with gauge theories or,
generally, constrained systems.4–9 The regular case is recovered when no Hamiltonian constra
occur.

Throughout the paper we will only consider continuous symmetries. Among them, how
we distinguish the Noether symmetries? The distinction comes in part from the following fa
Noether symmetry has an associated conserved quantity, and this conserved quantity con
the information to reconstruct the symmetry.1 This fact characterizes a Noether symmetry
regular Lagrangians~those with regular Hessian matrix!, but not in the general case of gaug
theories that we are also addressing: there are symmetries with conserved quantities that
Noether.

Let us distinguish clearly the singular case from the regular one. In the regular case we
that:

~i! there is a one-to-one correspondence between Noether symmetries and conserved
ties;

~ii ! when formulated in phase space, the conserved quantities become the generators,
the Poisson bracket, of the Noether symmetries, therefore, Noether symmetries are c
cal transformations.

Instead, in the case including gauge theories, we can list a very different set of assertions

~a! There can be conserved quantities in phase space that do not generate symmetrie
~b! There can be conserved quantities in phase space that generate symmetries that

Noether.
~c! There can be nontrivial Noether symmetries whose conserved quantity in velocity sp

identically vanishing.
~d! There can be Noether transformations in tangent space that are not projectable to

space~but the conserved quantity is always projectable!.
~e! It remains true that, regardless as to whether the Noether symmetry is projectable or

phase space, it can be always reconstructed through the Poisson bracket by using the co
quantity in phase space. In other words, the conserved quantity still encodes all the informa
reconstruct the symmetry.

~f! When the Noether symmetry is projectable to phase space, it is also true that such
metry is always a canonical transformation that is generated by a conserved quantity. We ca
a symmetry a canonical Noether transformation.
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Let us briefly comment on these assertions.
To prove~a! it suffices to realize that any second class constraint is a conserved quantit

does not generate a symmetry: it takes the motions out of the constraint surface.
Statement~b! is a consequence of the fact that the conserved quantitiesGH that generate

canonical Noether transformations satisfy stricter conditions@K•GH50, see Eq.~26! in Sec. III#
than the ones required to generate dynamical symmetry transformations in phase space~K•GH

5quadratic constraints, see Ref. 10!; this is illustrated at the end of the second example in S
IV.

The occurrence of~c! is studied in Ref. 11, and it happens when the number of indepen
primary Lagrangian constraints is less than the number of independent primary Hamiltonia
straints; the simplest example is given by the free relativistic particle, that does not have La
ian constraints.

An example of statement~d! is provided, in any time-independent gauge theory, by
Noether symmetry associated with time translations: the variationdq5q̇ is not projectable to
phase space, whereas its conserved quantity, the energy, projects to the Hamiltonian functi
projectability of the conserved quantity associated with any Noether transformation was noti
Ref. 12. On the other hand, special situations may often arise when studying the projectab
the gauge transformations, as for example the nonexistence of Hamiltonian gauge generat
certain model possessing Lagrangian gauge transformations,13 and the loss of covariance of th
Hamiltonian gauge transformations for a particle model admitting a Lorentz covariant H
tonian formulation.14

Statement~e! is explained in Refs. 13 and 15, where several examples can be found. Fi
assertion~f! is proven in Ref. 16.

From these considerations, we see that it is important to characterize the conserved qua
because they already encode the transformation. This is the usual procedure when one c
Noether symmetries. In this paper we propose a shift of emphasis: instead of focusing
conserved quantities, we will be interested in properties of the transformations themselve
will show the relevance of commutation properties in order to characterize Noether symmetr
this sense, from a theoretical viewpoint we will enlarge the list of properties above; fro
practical viewpoint we will provide with new instruments to check whether a given transform
is a Noether symmetry.

We organize the paper as follows. The basic notations and some preliminary results are
in Sec. II. Section III is mainly devoted to the study of Noether transformations that are pro
able to phase space; these transformations are given different characterizations in terms
mutation relations involving the evolution operators of the Hamiltonian and the Lagrangian
malisms. Section IV contains some examples illustrating these results, and Sec. V is dev
conclusions.

II. NOTATION AND PRELIMINARY RESULTS

We consider a configuration spaceQ, with velocity space the tangent bundle TQ, and a
~time-independent, first-order! Lagrangian functionL(q,q̇) defined on it. The fiber derivative ofL
defines the Legendre’s transformation, which is a map from velocity space to phase
FL:TQ→T* Q, locally defined by

FL~q,q̇!5~q,p̂!,

where we have introduced the momentap̂5 ]L/]q̇—we will suppress most indices.
Given a functionh(q,p) in phase space, its pull-back~through the Legendre’s transformatio

FL! is the functionFL* (h) in velocity space obtained by substituting the momenta by th
Lagrangian expression:FL* (h)(q,q̇)5h(q,p̂). A function f (q,q̇) in velocity space is called
FL-projectable—or, simply, projectable—if it is the pull-back of a certain functionh(q,p).
0 Jul 2010 to 161.116.168.227. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp
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We shall always assume that the Legendre’s transformationFL has constant rank; this
amounts to say that the fiber Hessian ofL, which is locally described by the Hessian matrix wi
respect to the velocities

W5
]2L

]q̇]q̇
,

has constant rank. Notice that gauge symmetries can only exist when this rank is not maxim
is the case we are interested in.

Let gm (m51,...,p0) be a basis of the null vectors ofW; then the necessary and sufficie
condition for a functionf (q,q̇) in TQ to be ~locally! projectable to T* Q is

Gm• f 50, ~2!

for eachm, where the vector fieldsGmªgm (]/]q̇) indeed span a basis of the kernel of the tang
map T(FL).

Under the same assumption about the constant rank, the imageP0 of the Legendre’s map can
be locally taken as the submanifold of phase space described by the vanishing ofp0 primary
Hamiltonian constraintsfm , linearly independent at each point ofP0 . So they satisfy
FL* (fm)50 by definition. Then the basisgm can be taken as6

gmªFL* S ]fm

]p D . ~3!

Though our Lagrangian is time-independent, we will need to consider time-dependent
tions. The adjunction of thet-variable where needed will not cause any problem. The tim
derivative operator acting on a functionf (t,q,q̇) is

d

dt
5

]

]t
1q̇

]

]q
1q̈

]

]q̇
,

with the accelerationq̈ as an independent variable~this involves the tangent bundle of secon
order, T2Q!. Then the Euler–Lagrange equations can be written

@L# (q,q̇,q̈)50,

where we have defined

@L#ª
]L

]q
2

dp̂

dt
5a2q̈W, ~4!

with a5 ]L/]q 2q̇(]2L/]q]q̇). The primary Lagrangian constraints arise from it,

xmªagm5@L#gm , ~5!

though they are not necessarily independent; their vanishing defines a subsetV1,TQ.
As a matter of notation, it is usual to writef '

M
0 to mean thatf (x)50 for all xPM ~Dirac’s

weak equality!; for instancefm'
P0

0 andxm'
V1

0.

In a gauge theory the dynamics either in Lagrangian or Hamiltonian formalisms has a c
degree of arbitrariness. One can introduce a useful differential operatorK connecting the Lagrang
ian and Hamiltonian formalisms, that has no ambiguity at all, and that still represent
dynamics.6 It can be defined as a vector field along the Legendre’s transformationFL,17 and, as
a differential operator, it gives the time evolution of a functionh in R3T* Q as a functionK•h
in R3TQ by
0 Jul 2010 to 161.116.168.227. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp
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K•hªFL* S ]h

]t D1FL* S ]h

]qD q̇1FL* S ]h

]pD ]L

]q
. ~6!

The operatorK is directly determined by the Lagrangian by just taking partial derivatives. Inst
the determination of the dynamics either in tangent space or in phase space requires more i
computations. In this sense,K is the simplest among the evolution operators, and this will turn
to be advantageous in order to characterize the Noether symmetry transformations by w
commutativity properties. The operatorK is especially valuable in the study of singul
Lagrangians. For instance, all the Lagrangian constraints are obtained by applying it to the H
tonian constraints,18 and the Lagrangian and Hamiltonian dynamics can be described geom
cally by using this operator.17 The operatorK will be instrumental in obtaining some of the resu
of the next section.

It will prove very convenient to present two other equivalent expressions for the operatK ,
to be used in the next section. The first one is

K•h5
d

dt
FL* ~h!1@L# FL* S ]h

]pD , ~7!

whose proof is direct by using the chain rule.13 A direct consequence of this equation and de
nition ~5! is another expression for the primary Lagrangian constraints:

xm5K•fm . ~8!

The second expression relatesK with the Hamiltonian evolution:6

K•h5FL* S ]h

]t D1FL* $h,H%1(
m

FL* $h,fm%vm. ~9!

HereH is any Hamiltonian function~its pull-back to TQ is the Lagrangian energy; it is defined u
to primary Hamiltonian constraints!. And thevm(q,q̇) are functions uniquely determined by th
equality when one takesh5qi ; these functions are not projectable, and indeed

Gn•vm5dn
m . ~10!

A consequence of~9! is a test of projectability for the functionK•h:

Gm•~K•h!5FL* $h,fm%, ~11!

so K•h is projectable iff h is a first-class function with respect to the primary Hamiltoni
constraint submanifoldP0 .

The Lagrangian time-evolution differential operator can be expressed6 as

XL5X0
L1hmGm , ~12!

where thehm are in principle arbitrary functions that express the gauge freedom of the t
evolution operator andX0

L is a vector field in velocity space

X0
L5

]

]t
1q̇i

]

]qi 1ai~q,q̇!
]

]q̇i . ~13!

The accelerationsai in X0
L may be determined by the formalism, with some arbitrariness owin

the gauge freedom, and we do not need here their explicit expression, which is given in6 The
nature of this operator has been recently discussed in Refs. 19, 20. In view of application w
need to know its relationship with the operatorK :18
0 Jul 2010 to 161.116.168.227. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp
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K•h5X0
L
•FL* ~h!1xm

]vm

]q̇
FL* S ]h

]pD . ~14!

III. CANONICAL NOETHER TRANSFORMATIONS FOR GAUGE THEORIES

Now we are ready to study the symmetries in Lagrangian and Hamiltonian formalism
commutation relations between these symmetries and the dynamics. The case of gauge
will lead to modified versions of Eq.~1! that account for the existence of constraints and
ambiguity of the dynamics due to gauge freedom.

Let us consider an infinitesimal Noether transformationdLq(t,q,q̇) in configuration space
that is to say, the variation ofL is a total time-derivative. Then a conserved quantityGL arises:

@L# id
Lqi1

dGL

dt
50. ~15!

As we have recalled in the introduction, the conserved quantity is always projectable12 to a
function GH(t,q,p) in phase space,GL5FL* (GH). This is proved by extracting the coefficien
of the accelerationq̈ from Eq. ~15! and then saturating the result with the null vectorsgm of the
Hessian matrixW, thus obtainingGm•GL50.

Notice that there is some arbitrariness inGH: nothing changes if we add to it a linea
combination of the primary Hamiltonian constraints becauseFL* (fm)50 identically.

In this paper we will consider the case where the transformation itself is projectable to
space, that is,

dLq5FL* ~dHq!, ~16!

for a certaindHq(t,q,p). Notice that there is also an arbitrariness in the determination ofdHq
because of the existence of Hamiltonian constraints.

Using GH anddH, the Noether condition may be written

@L# iFL* ~dHqi !1
dFL* GH

dt
50,

from which, by extracting the coefficient ofq̈, one obtainsWFL* (dHq2 ]GH/]p)50. From this
equation, and using the null vectors of the Hessian, it is easy to redefineGH and dHq
conveniently—using the primary Hamiltonian constraints—in order to obtain16

dHqi5
]GH

]pi
5$qi ,GH%. ~17!

In other words:a projectable Noether transformation is canonically generated in phase space. On
this basis we are ready to generalize Eq.~1! to the case of projectable Noether symmetr
associated with singular Lagrangian dynamics. First we will give a characterization in p
space, next we will give a characterization using the operatorK , and finally we will give a
characterization in velocity space.

A. Characterization in phase space

Now we wish to study the Noether transformations in phase space. The dynamics of
theories, as examples of constrained systems in the Dirac sense, exhibit a certain am
arbitrariness in order to account for the gauge—unphysical—degrees of freedom. A typica
lution operator in phase space will be

XH'
]

]t
1$2,H%1lm$2,fm%, ~18!
0 Jul 2010 to 161.116.168.227. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp
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where' ~Dirac’s weak equality! is here an equality up to primary Hamiltonian constraints, a
lm are a set of arbitrary Lagrange multipliers. As a matter of fact, these Lagrange multiplie
determined as functions in tangent space just by applying~18! to the configuration variables
yielding lm5vm(q,q̇)—see~9!.

Notice that the weak equality in~18! makes the definition ofXH consistent with any redefi
nition of the basis of primary constraints. However, this is not the final form of the dynamics
get the final dynamics we must perform a stabilization algorithm:5–7,21,22 consistency require-
ments, that is, the tangency ofXH to the surface of constraints, may lead to new constraints
also to the determination of some of the Lagrangian multipliers as functions in phase spac

Notice that for any values we can give to the Lagrangian multipliers, the last piece in~18! may
be written as$2,phc%, where phc stands for an arbitrary linear combination of the prima
Hamiltonian constraints,

XH'
]

]t
1$2,H%1$2,phc%. ~19!

Let us consider the infinitesimal transformation generated by a vector fieldVH in T* Q, that is
to say,dHh5VH

•h—an infinitesimal parameter may be understood here. The condition thaVH

be a symmetry of the dynamics is no longer characterized by the strong condition of com
tivity @VH,XH#50. We may venture that the appropriate characterization is that the infinites
variation ofXH produced byVH,

dXH5LVHXH5@VH,XH#,

is of the type$2,phc%, in order that the transformed vector field is again of the type~19!. So, the
characterization will read

@VH,XH#'$2,phc%. ~20!

Since Eq.~19! does not express the final form of the dynamics, we could produce more re
versions of~20!. But, in the case of a Noether transformation, the invariance of the actio
required not only on-shell but also off-shell, therefore the dynamics as given by~19! is the right
one to be used.

Now let us prove that, whenVH generates a canonical transformation, relation~20! is exactly
the characterization of a projectable Noether transformation. We can writeVH as

VH5$2,GH% ~21!

for some functionGH, so thatdHh5$h,GH%. To eliminate the weak equalities in~19!, XH can be
written as

XH5
]

]t
1$2,H%1$2,phc%1fmZm

for some arbitrary vector fieldsZm. Then, taking into account that

@XH,VH#'$2,XH~GH!1phc%2VH~fm!Zm,

the requirement~20! becomes

VH~fm!5phc, XH~GH!5phc1 f ~ t !,

where f (t) is an unknown function of time. Notice thatGH can be redefined byGH→GH

2* f (t)dt, since this does not change Eq.~21!, and hence we have
0 Jul 2010 to 161.116.168.227. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp
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VH~fm!5phc, XH~GH!5phc; ~22!

but since the functionslm in the definition ofXH ~18! are arbitrary, the second equation in~22!
splits into

]GH

]t
1$GH,H%5phc, ~23!

and

$GH,fm%5phc. ~24!

Notice that~24! is just the first equation in~22!.
It was proven in Ref. 16 that given a Noether transformation there exists a functionGH,

whose pullback to velocity space is the standard conserved quantityGL, satisfying these condi-
tions ~23! and~24!; and conversely, that these conditions ensure that the transformation gen
by GH through~17! and ~16! is a Noether symmetry. What we have then obtained is a refor
lation of ~23! and ~24! as commutativity conditions. To be more specific, we have proved
following result:

Theorem 1: An infinitesimal transformation in phase space is a canonical Noether trans
mation if and only if its vector fieldVH satisfies

@VH,XH#'$2,phc%, LVHV50, ~25!

whereXH is defined by~19! and V is the symplectic form in phase space.
~The contents of the second condition in~25! is thatVH generates canonical transformation!

B. Characterization using the evolution operator K

Now we will show an alternative characterization of Noether transformations in phase
that makes use of a special evolution operator that connects the phase space picture w
velocity space picture. Gauge systems derived from a variational principle exhibit evolution v
fields, either in the Lagrangian formulation or in the Hamiltonian one, that contain some arb
ness, because of the gauge freedom. But one can also consider a third evolution opera
unlike the previous ones, is fully deterministic.6 This is the operatorK of Sec. II.

Using the operatorK , the Noether conditions~23! and ~24! get the simpler form16

K•GH50. ~26!

Our scope is to present these Noether conditions in a new form, combining Hamiltonia
Lagrangian transformations and involving commutations with both the pull-back operation an
evolution operatorK . This method has the advantage of its simplicity because, as we said
operatorK has none of the arbitrariness that plague the evolution vector fields in velocity s
and phase space. In this sense, the commutation properties involvingK will be the easiest ones to
be used as a test of Noether symmetry. In order to do so, we will prepare some preliminary r

First let us consider two infinitesimal transformations~leaving time invariant!, dH in phase
space, anddL in velocity space. In principle, they are unrelated, and do not necessarily des
symmetries. For a functionh(t,q,p) the variation is computed in terms ofdHq anddHp as

dHh~ t,q,p!5
]h

]q
dHq1

]h

]p
dHp,

and similarly for a functionf (t,q,q̇):
0 Jul 2010 to 161.116.168.227. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp
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dL f ~ t,q,q̇!5
] f

]q
dLq1

] f

]q̇
dLq̇.

Using these relations, the definitions ofFL andK , and the chain rule, a straightforward comp
tation shows that

dLFL* ~h!2FL* ~dHh!5
]ĥ

]q
~dLq2dHq̂!1

]ĥ

]p
~dLp̂2dHp̂!, ~27!

dL~K•h!2K•dHh5S K•

]h

]qD ~dLq2dHq̂!1S K•

]h

]pD ~dLp̂2dHp̂!1
]ĥ

]q
~dLq̇2K•dHq!

1
]ĥ

]p
~dL~K•p!2K•dHp!, ~28!

where we have writtenĥ for FL* (h) to simplify the notation. As a consequence, we have:
Theorem 2: A necessary and sufficient condition in order that

dL~K•h!2K•dHh50

for each function h, is that the transformationsdL, dH be related by

dLq5dHq̂ ~29a!

dLq̇5K•dHq ~29b!

dLp̂5dHp̂ ~29c!

dL~K•p!5K•dHp. ~29d!

Moreover, then one also hasdLFL* (h)2FL* (dHh)50.
To prove the first assertion, one only has to take appropriate values forh: taking h5qi or

h5pi leads to the vanishing of the last two terms in~28!; takingh5(qi)2/2 leads to the vanishing
of the first term; finally, takingh5qipi ~not summed! does the rest.

In view of this, the last assertion is a direct consequence of~27!.
From now on we suppose that the infinitesimal transformation in phase space is canonic

let GH(t,q,p) a generating function for it~determined up to a function of time!:

dHq5$q,GH%5
]GH

]p
, dHp5$p,GH%52

]GH

]q
. ~30!

We will need to know the partial derivatives ofK•h. A direct calculation from the definition
~6! yields

]~K•h!

]q
5K•

]h

]q
1

]2L

]q]q

]ĥ

]p
1

]2L

]q]q̇ S K•

]h

]pD , ~31!

]~K•h!

]q̇
5

]ĥ

]q
1

]2L

]q̇]q

]ĥ

]p
1

]2L

]q̇]q̇ S K•

]h

]pD . ~32!

These relations applied toh5GH yield
0 Jul 2010 to 161.116.168.227. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp
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]~K•GH!

]q
52K•dHp1

]2L

]q]q
dHq̂1

]2L

]q]q̇
~K•dHq!, ~33!

]~K•GH!

]q̇
52dHp̂1

]2L

]q̇]q
dHq̂1

]2L

]q̇]q̇
~K•dHq!. ~34!

Now let us writedL f for f 5K•p5 ]L/]q and for f 5 p̂5 ]L/]q̇. We obtain the identities

05dL~K•p!2
]2L

]q]q
dLq2

]2L

]q]q̇
dLq̇,

05dLp̂2
]2L

]q̇]q
dLq2

]2L

]q̇]q̇
dLq̇.

Using these relations, Eqs.~33! and ~34! become

]~K•GH!

]q
5dL~K•p!2K•dHp1

]2L

]q]q
~dHq̂2dLq!1

]2L

]q]q̇
~K•dHq2dLq̇!, ~35!

]~K•GH!

]q̇
5dLp̂2dHp̂1

]2L

]q̇]q
~dHq̂2dLq!1

]2L

]q̇]q̇
~K•dHq2dLq̇!. ~36!

So far we have not made any assumption on the relationship betweendH anddL, but from the
preceding equations the following result is clear:

Theorem 3: Let GH(t,q,p) be the generator of an infinitesimal transformationdH in phase
space (30). If we define an infinitesimal transformationdL in velocity space by

dLqªFL* ~dHq!, dLq̇ªK•dHq, ~37!

then we have

]~K•GH!

]q
5dLK•p2K•dHp, ~38!

]~K•GH!

]q̇
5dLFL* ~p!2FL* ~dHp!. ~39!

Under the assumptions of the theorem, we can rewrite the commutation relations~27!, ~28! as

dLFL* ~h!2FL* ~dHh!5
]ĥ

]p

]

]q̇
~K•GH!, ~40!

dL~K•h!2K•dHh5S K•

]h

]pD ]

]q̇
~K•GH!1

]ĥ

]p

]

]q
~K•GH!. ~41!

The final step is to relate these relations with the condition~26!, K•GH50, that characterizes
the generators of projectable Noether transformations:

Theorem 4: Let dH be a canonical transformation in phase space, and letdL be defined as in
(37). Then the following statements are equivalent:

(1) The commutation relationdL(K•h)2K•dHh50 holds for each function h(t,q,p);
(2) dH is a Noether transformation in phase space.
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To prove that the first condition implies the second one, notice that, using Theorems 2
if GH is a generator ofdH, K•GH is a function of time,f (t). Redefinition ofGH to GH2* f (t)
makesK•GH50, therefore, according to~26!, dH is a Noether transformation in phase space. T
converse is a direct consequence of~26! and Theorem 3.

Let us finally remark that we could have defined, instead of~37!,

d̄LqªFL* ~dHq!, d̄Lq̇ª
d

dt
d̄Lq. ~42!

Here the Lagrangian transformation ofq is the pull-back of the Hamiltonian one, whereas t
transformation of the velocity is the natural prolongation of the transformation of the pos
This is the usual way to define the transformations of the velocities out of the transformatio
the positions. Notice that, using Eq.~7!,

d̄Lq̇i5dLq̇i2@L# j FL* S ]dHqi

]pj
D ,

so both transformations coincide when applied to solutions of the Euler–Lagrange equation~they
coincide ‘‘on-shell’’!. With d̄L instead ofdL Eqs. ~38! and ~39! acquire an additional term tha
vanishes on-shell. ThereforedL as defined in Theorem 3 is more appropriate in order to give a
characterization of a Noether transformation through commutation relations. Nevertheless,d̄L

that, when applied to the Lagrangian, gives a total derivative. Indeed, from~15!, one has

d̄LL5
d

dt
FL* ~pdHq2GH!.

C. Characterization in velocity space

To obtain a characterization in velocity space we first need to formulate the dynamics
vector field inR3TQ. The time evolution in a gauge theory is not unique until the gauge free
has been removed—by way of some gauge fixing, for example. This is reflected in the ambi
that are present in the Lagrangian time-evolution differential operator, which we recall from
II:

XL5X01hmGm , X05
]

]t
1q̇i

]

]qi 1ai~q,q̇!
]

]q̇i .

Notice that projectable quantities have, according to~2!, a well-defined unambiguous time
derivative under this dynamics. The requirement of tangency ofXL to the primary Lagrangian
constraint submanifold, defined byxm'0 ~5!, may lead to new constraints and to the determi
tion of some of the functionshm. At this point, new tangency requirements may occur. This is
Dirac’s method in the Lagrangian formalism.6

Our aim is to give a tangent space characterization of a Noether transformationdLq(t;q,q̇)
that satisfies the property of being projectable to phase space, that is,dLq is the pullback of a
canonical Noether transformationdHq, dLq5FL* (dHq). Notice at this point that we have tw
natural ways to define the dynamical time derivativedLq̇ in R3TQ. Either bydLq̇ªK•dHq as in
the preceding subsection, or bydLq̇ªXL

•dLq5X0•dLq. According to ~14!, both definitions
coincide only on the primary Lagrangian constraints submanifold. Consistency with the prec
subsection invites us to choose the definitiondLq̇ªK•dHq, and this is what we will do. So we
take

VL5FL* $q,GH%
]

]q
1K•$q,GH%

]

]q̇
. ~43!
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We will use the results of the preceding subsection for Noether transformations, in part

K•dHh5dL~K•h! ~44!

and its consequence

FL* ~dHh!5dLFL* ~h!, ~45!

for any functionh on R3T* Q.
Notice from these relations that

VL
•FL* ~h!5FL* $h,GH%:

the action ofVL on a projectable function is a projectable function, that is,VL is a projectable
vector field—indeed it projects toVH5$2,GH%.

Equation~44!, and the fact that the primary Lagrangian constraints~plc! can be obtained as
xm5K•fm , allow to compute

VL
•xm5dLxm5dL~K•fm!5K•~dHfm!5K•$fm ,GH%,

but, according to~24!,

$fm ,GH%5Dm
n fn , ~46!

for some functionsDm
n . Therefore

VL
•xm5dLxm5FL* ~Dm

n !xn ,

that is,VL is tangent to the primary Lagrangian constraints surfaceV1 , VL(plc)5plc.
Now let us use~14! and ~44! to write

VL~X0•FL* ~h!!1VLS xm

]vm

]q̇
FL* S ]h

]pD D5X0•FL* ~dHh!1xm

]vm

]q̇
FL* S ]dHh

]p D .

The second piece in the right side is just a combination ofplc, and so it is the second piece in th
left side because of the tangency ofVL to theplc surface. Therefore

VL~X0•FL* ~h!!2X0•FL* ~dHh!5plc,

or, using~45!,

@VL,X0#~FL* h!5plc. ~47!

This result means that the commutator@VL,X0# is, on theplc surface, a combination of the
vector fields in the kernel of T(FL), that is,

@VL,X0#5plc1amGm , ~48!

for some functionsam.
We need a second piece of information: the commutator@VL,Gm#. Let us apply it to a

configuration variableq. SinceGm•q50 and Gm•dLq5Gm•FL* (dHq)50, we get@VL,Gm#•q
50. When applied toq̇,

@VL,Gm#•q̇5VLgm2GmVL~ q̇!5VLgm2Gm•~K•dHq!,

where in the last step we have used the definitionVL
•q̇5K•dHq. Taking into account the defi

nition ~3! and the property~11!, we get
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@VL,Gm#•q̇5VL~FL* $q,fm%!2FL* $dHq,fm% ~49!

5FL* ~dH$q,fm%2$dHq,fm%!5FL* $q,dHfm%. ~50!

We can use again~46!, dHfm5$fm ,GH%5Dm
n fn . Then,

@VL,Gm#•q̇5FL* $q,Dm
n fm%5~FL* Dm

n !gn ,

and therefore

@VL,Gm#5~FL* Dm
n !Gn , ~51!

which agrees with the fact thatVL is projectable.
Putting together~48! and ~51!, we obtain that the vector fieldVL satisfies

@VL,XL#5plc1bmGm , ~52!

for some functionsbm(t;q,q̇).
So we have proved the following result:
Theorem 5: Suppose that GH(t,q,p) generates a canonical Noether transformation, and

VL be the vector field defined by it according to (43). ThenVL is a projectable vector field tha
projects to $2,GH%, it is tangent to the primary Lagrangian constraint submanifold, and
commutation with the dynamics satisfies (52).

This result is analogous to that of Sec. III A. Here and there the commutator of the gen
of the transformation with the evolution vector field gives as a result a term which is proport
to the arbitrary piece in the dynamics. Have we reached a necessary and sufficient condit
VL to be a generator of a projectable Noether transformation? The answer in general is
negative. Let us be more specific and consider a vector fieldVL, defined in~43!, such that~a! it
projects to$2,GH%, ~b! is tangent to the primary lagrangian constraint submanifold, and~c!
satisfies~52!. Then, using Eqs.~40! and ~41! one arrives at

]

]q̇
~K•GH!50,

]

]q
~K•GH!5plc, ~53!

whereas the right conditions for$2,GH% to generate a Noether transformation in phase spac
which implies thatVL generates a Noether transformation in tangent space—are, according
discussion in the preceding section,

]

]q̇
~K•GH!50,

]

]q
~K•GH!50, ~54!

which is more restrictive than~53!. However, in most cases of interest, theplc do not restrict the
configuration variables alone, and then~53! and ~54! are equivalent. This is the case indeed
many physical applications of gauge systems, as in string theory, Yang–Mills theory, or g
relativity. In such cases we have arrived at a characterization of the vector fieldVL for it to
generate a Noether transformation.

The case where theplc do restrict the configuration variables is rather unusual, and it migh
considered as an unfortunate choice of the configuration space—some comments on this is
be found in Ref. 8. The second example in the following section, though formal and wit
physical interest, exhibits this feature; in this case, conditions~53! are not sufficient forVL to
generate a Noether transformation.

Let us finally recall that the action of the vector fieldVL, associated to a projectable Noeth
transformation, on the LagrangianL does not give in general a total derivative. The transforma
that indeed gives a total derivative isd̄L—see the end of Sec. III B.
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D. The algebra of projectable Noether symmetries

Consider a canonical Noether symmetry generated byGH. The projectability of~43!,

VL5FL* $q,GH%
]

]q
1K•$q,GH%

]

]q̇
,

to the canonical generator of Noether symmetries,

VH5$2,GH%,

allows to obtain some results concerning the algebra of the vector fields associated to proj
Noether symmetries. IfV1

L and V2
L are two such vector fields associated with the canon

generating functionsG1
H andG2

H , then it is straightforward to show that the commutator@V1
L ,V2

L#
projects to$2,$G2

H ,G1
H%%, that is,

@V1
L ,V2

L#•FL* ~h!5$h,$G2
H ,G1

H%%.

In the particular case that the set of independent canonical generatorsGi span a Lie algebra

$Gi
H ,Gj

H%5Ci j
k Gk

H , ~55!

with Ci j
k constants, then their associated vector fieldsV i

L in tangent space satisfy the same L
algebra structure,

@V i
L ,V j

L#5Ci j
k Vk

L .

In the case that the quantities in~55! are not constants but functions of the variables~this is the
case of a ‘‘soft’’ algebra generating a ‘‘quasigroup’’!,23 this last equality does not hold, but w
still have the opportunity to get—up to pieces linear in the primary constraints—the stru
functions in phase space by Lagrangian methods. This goes as follows. Consider~55! for some
functionsCi j

k . Consider also the pull-back to tangent space of the canonical generating func
Gi

L5FL* (Gi
H). Then

V j
L
•Gi

L5V j
L
•FL* ~Gi

H!5FL* ~d j
HGi

H!5FL* $Gi
H ,Gj

H%5FL* ~Ci j
k Gk

H!5FL* ~Ci j
k !Gk

L .
~56!

That is, we can retrieve—up to primary constraints—the structure functions of the canonical
generators by simply computing the variations under the vector fieldsVL of the Noether conserved
quantities in tangent space. This method has been implicitly used in a series of papers24–26 that
analyze the relationship between the Lagrangian and Hamiltonian descriptions of the gauge
structure for generally covariant theories.

IV. SOME EXAMPLES

Example 1: Let us consider the Lagrangian

L5
1

2
e2vẋ21

1

2
evm2,

which describes a free particle in Minkowski’s space–time. A standard analysis yields the
menta (p,p) of the variables (x,v), a Hamiltonian function, and a primary Hamiltonian co
straint:

p̂5e2vẋ, p̂50, H5
1

2
ev~p22m2!, f05p.
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The stabilization algorithm yields a secondary Hamiltonian constraint

f15$f0,H%52H.

The evolution operatorK is given by

K•h5FL*
]h

]t
1 ẋFL*

]h

]x
1v̇ FL*

]h

]v
1x FL*

]h

]p
,

where we have denoted byx the primary Lagrangian constraint

xªK•f05
1

2
~evm22e2vẋ2!.

It is clear that the projectable functions are those not depending onv̇, and indeed the kernel o
T(FL) is spanned by

G5
]

]v̇
.

Notice therefore thatx is a projectable constraint, and so

x5FL* ~f1!,

whereas

K•f15v̇x,

which is not a new constraint. Finally, we give the Euler–Lagrange equations

@L#x5e2v~v̇ ẋ2 ẍ!, @L#v5x.

At the first stage of the stabilization algorithm the Hamiltonian evolution operator is

XH5
]

]t
1evp

]

]x
2

1

2
ev~p22m2!

]

]p
1l

]

]v
1pZ,

where the functionl and the vector fieldZ are arbitrary.
Now let us study the gauge transformations. From the general theory, a gauge genera

the form GH5 «̇G01«G1 , where« is an arbitrary function of time and the functionsGi are
determined such thatK•GH50.10 G0 is a first-class primary Hamiltonian constraint, which in th
example turns out to bee2vp. The result is

GH5e2v~ «̇f02«f1!.

Its associated infinitesimal transformation is given by the vector field

VH5«p
]

]x
1 «̇e2v

]

]v
1 «̇e2vp

]

]p
.

Let us check the quasiinvariance ofXH:

@VH,XH#5~e2v~2 «̈1l«̇!1VH
•l!

]

]v
1pS e2v~2 «̈1l«̇!

]

]p
1@VH,Z#1e2v«̇ZD ,

which is weakly$2,phc%.
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The vector fieldVL of ~43! is

VL5e2vS «x
]

]x
1 «̇

]

]v
1 «̇ ẋ

]

] ẋ
1~ «̇v̇2 «̈e2v!

]

]v̇ D .

A direct computation then shows that, as differential operators,

VL+K2K +VH50.

Finally let us consider the Lagrangian dynamical vector field,

XL5
]

]t
1 ẋ

]

]x
1v̇

]

]v
1v̇ ẋ

]

] ẋ
1h

]

]v̇
,

whereh is an arbitrary function. Then we obtain

@VL,XL#5e2v~2 «̂12«̈v̇2 «̇v̇21 «̇e2vh1VL
•h!

]

]v̇
,

which is proportional toG.
Moreover, bearing in mind the remarks at the end of Sec. III B, we can define the Lagra

transformation of the velocities as the time-derivatives of the transformation of the positions
obtaining a slightly different vector fieldV̄L; indeed,

V̄L5VL2«@L#x

]

] ẋ
.

Then the Noether condition can be checked for this transformation:

V̄L
•L5

d

dt
~«e2vL !.

Example 2: Here we show that, in general, the conditions stated by Theorem 5 are
sufficient forVL to define a Noether transformation. Let us consider

L5
1

2
ẋ22

1

2
y2.

The momenta (px ,py) of the variables (x,y), a Hamiltonian function and a primary Hamiltonia
constraint are

p̂x5 ẋ, p̂y50, H5
1

2
px

21
1

2
y2, f05py .

The stabilization algorithm yields a secondary Hamiltonian constraint

f15$f0,H%52y.

The evolution operatorK is given by

K•h5FL*
]h

]t
1 ẋ FL*

]h

]x
1 ẏ FL*

]h

]y
2y FL*

]h

]py
.

Notice that there are a primary Lagrangian constraint and a secondary one,
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x152y, x252 ẏ.

The projectable functions are those not depending onẏ, and the kernel of T(FL) is spanned
by

G5
]

] ẏ
.

The Euler–Lagrange equations are

@L#x52 ẍ, @L#y52y,

and so the Lagrangian evolution operator may be taken as

X0
L5 ẋ

]

]x
1 ẏ

]

]y
.

Let us consider the function

GH5pyy,

whose associated infinitesimal transformation is the vector field in phase space

VH5y
]

]y
2py

]

]py
,

and defines the vector field in tangent space

VL5y
]

]y
1 ẏ

]

] ẏ
.

It is easily checked thatVL projects toVH. It is clear thatVL
•x15x1, and so it is tangent to the

primary Lagrangian constraint submanifold. And also we have@VL,X0
L#50.

In spite of satisfying these three conditions of Theorem 5,VL is not a projectable Noethe
transformation. We can see this in several ways. On the one hand,K•GH52y2, which is not zero
~notice, however, that since this is a primary Lagrangian constraint thenGH corresponds to a
nonprojectable Noether transformation, see Refs. 13 and 15!. On the other hand, we can compu

~VL+K2K +VH!•h522y
]ĥ

]py
,

which is not zero. Finally, using the transformationV̄L as before, we have

V̄L
•L52y2,

which is not a total derivative.
Finally, we use this example to illustrate item~b! in the list of properties of gauge theorie

given in the introduction. Take the conserved quantityGH5px1pyy in phase space. It generate
through Poisson bracket, an infinitesimal symmetry transformationdH whose pull-back to velocity
space isdLx51, dLy5y; this givesdLL52y2, which is not a total derivative and thusdL is not
a Noether symmetry.
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V. CONCLUSIONS

In this paper we have introduced some characterizations of Noether symmetries base
some specific properties of commutativity with the dynamics. This presentation entails a s
focus with respect to the standard introductions to Noether symmetries.

To our knowledge, the only characterization of Noether symmetries in gauge theorie
relying on properties of the conserved quantity, is the invariance of the action under these
formations. Our contribution is a new characterization of such symmetries which is set up
realm of dynamics, either Lagrangian or Hamiltonian. This study concerns those Noether sy
tries that are projectable to phase space~what we call canonical Noether transformations!.

For canonical Noether symmetries we obtain a characterization in phase space that
generalizes the results that hold for regular~not gauge! theories. We also provide an alternativ
characterization by using the unambiguous evolution operator that connects the formulati
phase space and in tangent space; this new characterization is very appropriate becaus
simplicity, since it is set up with the only use of the Lagrangian function and its partial derivat
Finally, we give a characterization in velocity space applicable to most dynamical theories
physical contents.

In summary, we give an answer to the question of extending the property of commutat
the Noether symmetry with the dynamics, as expressed by Eq.~1!, to singular Lagrangians. Thi
answer is presented as three characterizations that may serve as a useful test of Noether s
for gauge theories with reference neither to the action nor to the conserved quantity.

ACKNOWLEDGMENTS

X.G. acknowledges financial support by CICYT Project TAP 97-0969-C03. J.M.P. ackn
edges financial support by CICYT, AEN98-0431, and CIRIT, GC 1998SGR.

1P. J. Olver,Applications of Lie Groups to Differential Equations, 2nd ed.~Springer, New York, 1993!.
2R. Abraham and J. E. Marsden,Foundations of Mechanics, 2nd ed.~Addison-Wesley, Reading, 1978!.
3V. I. Arnol’d, Mathematical Methods of Classical Mechanics, 2nd ed.~Springer-Verlag, New York, 1989!.
4P. A. M. Dirac, ‘‘Generalized Hamiltonian dynamics,’’ Can. J. Math.2, 129–148~1950!.
5P. A. M. Dirac,Lectures on Quantum Mechanics~Yeshiva University Press, New York, 1964!.
6C. Batlle, J. Gomis, J. M. Pons, and N. Roma´n, ‘‘Equivalence between the Lagrangian and Hamiltonian formalisms
constrained systems,’’ J. Math. Phys.27, 2953–2962~1986!.
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14X. Gràcia and J. Roca, ‘‘Covariant and noncovariant gauge transformations for the conformal particle,’’ Mod. Phys
A 8, 1747–1761~1993!.

15J. A. Garcı´a and J. M. Pons, ‘‘Rigid and gauge Noether symmetries for constrained systems,’’ Int. J. Mod. Phys~to
be published!, hep-th/9908151.

16C. Batlle, J. Gomis, X. Gra`cia, and J. M. Pons, ‘‘Noether’s theorem and gauge transformations: application t
bosonic string andCP2

n21 model,’’ J. Math. Phys.30, 1345–1350~1989!.
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