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[. INTRODUCTION

Most physical theories implement the dynamics as a result of the application of a variational
principle, that is, by means of a Lagrangian. Among the dynamical symmetries of these theories,
that is, transformations that map solutions of the equations of motion into solutions, we can single
out the Noether symmetries, that is, the continuous transformations that leave the action
invariant—except for boundary terms. In addition, if we aim to move the description of the
dynamics from the tangent bundieelocity spacg TQ of its configuration spac® to the cotan-
gent bundle(phase spageT* Q, other distinctions can be raised as to whether the symmetry
transformation in velocity space is projectable to phase space and, in the affirmative case, whether
the transformation in phase space is canonical. We will consider time-independent Lagrangians, as
it is the usual case in physical theories, but we will allow to deal with time-dependent functions to
cover also gauge symmetri€symmetries depending upon arbitrary functions of time, or space—
time variables in field theody then we will useRXTQ andRXT*Q instead of Q and T Q.

The infinitesimal symmetries of an ordinary dynamical system are characterized by a property
of commutativity: essentially, that the time evolution operator commutes with the operator that
generates the symmetry. Let us state with more detail this result, which is standard for theories
with no gauge freedom, using differential-geometric language. X die the vector field that
governs the dynamidshe time evolutionof some system on a given manifold (M can be, for
instanceRX TQ or RX T*Q for some configuration manifol®; R parametrizes the independent
variable—the timg For an open intervalCR, a pathy:|— M is a solution to the dynamics if
vy=Xoy. Let a vector fieldV be a candidate for a symmetry of the dynamics define byhen
the flow of V (a local one-parameter group of diffeomorphigriransforms solutions into solu-
tions if and only ifX is V-invariant, that is to say,

LyX=[V,X]=0, D
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where Ly, stands for the Lie derivative. This is an immediate consequence of the well-known fact
that[V,X]=0 iff their flows commuté

Our aim in this paper is to obtain some generalized versions of this result. More precisely, our
purpose is to study how the canonical Noether transformations implement this commutativity
requirement in the general case of gauge theatlesse derived from singular Lagrangians
Instead of providing with new procedures to determine symmetries, we give alternative ways to
characterize them, associated with a specific property of commutativity. Recall that the variation
of the Lagrangian under a Noether symmetry is a total derivative; this statement is far from
expressing any kind of commutativity. We will discover however that one can characterize ca-
nonical Noether symmetries through commutativity properties; in this way, we give a new per-
spective, with a geometrical flavor, to identify the Noether symmetries of a dynamical system.
This approach can be applied in particular to gauge theories, where it can be used as a direct test
as to whether a given transformation is a Noether symmetry.

Since many dynamical systems—and, among them, those describing the fundamental
interactions—have room for gauge freedom, we will assume in our framework that the Lagrangian
may be singular. To be more concrete, we will consider theories described by time-independent
first-order Lagrangians whose Hessian matrix with respect to the velocities may be singular. In
this case the conversion from tangent space language to phase space language has some peculiari-
ties: there are constraints in the formalism, the dynamics has some degree of arbitrariness, etc.
This is nothing but the framework first studied by Dirac to deal with gauge theories or, more
generally, constrained systefs.The regular case is recovered when no Hamiltonian constraints
occur.

Throughout the paper we will only consider continuous symmetries. Among them, how can
we distinguish the Noether symmetries? The distinction comes in part from the following fact: a
Noether symmetry has an associated conserved quantity, and this conserved quantity contains all
the information to reconstruct the symmetrifhis fact characterizes a Noether symmetry for
regular Lagrangiangthose with regular Hessian matyjxut not in the general case of gauge
theories that we are also addressing: there are symmetries with conserved quantities that are not
Noether.

Let us distinguish clearly the singular case from the regular one. In the regular case we know
that:

(i) there is a one-to-one correspondence between Noether symmetries and conserved quanti-
ties;

(i) when formulated in phase space, the conserved quantities become the generators, through
the Poisson bracket, of the Noether symmetries, therefore, Noether symmetries are canoni-
cal transformations.

Instead, in the case including gauge theories, we can list a very different set of assertions:

(&) There can be conserved quantities in phase space that do not generate symmetries at all.

(b) There can be conserved quantities in phase space that generate symmetries that are not
Noether.

(c) There can be nontrivial Noether symmetries whose conserved quantity in velocity space is
identically vanishing.

(d) There can be Noether transformations in tangent space that are not projectable to phase
space(but the conserved quantity is always projectable

(e) It remains true that, regardless as to whether the Noether symmetry is projectable or not to
phase space, it can be always reconstructed through the Poisson bracket by using the conserved
quantity in phase space. In other words, the conserved quantity still encodes all the information to
reconstruct the symmetry.

(f) When the Noether symmetry is projectable to phase space, it is also true that such sym-
metry is always a canonical transformation that is generated by a conserved quantity. We call such
a symmetry a canonical Noether transformation.
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Let us briefly comment on these assertions.

To prove(a) it suffices to realize that any second class constraint is a conserved quantity that
does not generate a symmetry: it takes the motions out of the constraint surface.

Statement(b) is a consequence of the fact that the conserved quanGiitshat generate
canonical Noether transformations satisfy stricter conditféhsGH=0, see Eq(26) in Sec. II[]
than the ones required to generate dynamical symmetry transformations in phas¢ksp@ate
=quadratic constraints, see Ref.)1fhis is illustrated at the end of the second example in Sec.

V.

The occurrence ofc) is studied in Ref. 11, and it happens when the number of independent
primary Lagrangian constraints is less than the number of independent primary Hamiltonian con-
straints; the simplest example is given by the free relativistic particle, that does not have Lagrang-
ian constraints.

An example of statemenfd) is provided, in any time-independent gauge theory, by the
Noether symmetry associated with time translations: the variaigpa  is not projectable to
phase space, whereas its conserved quantity, the energy, projects to the Hamiltonian function. The
projectability of the conserved quantity associated with any Noether transformation was noticed in
Ref. 12. On the other hand, special situations may often arise when studying the projectability of
the gauge transformations, as for example the nonexistence of Hamiltonian gauge generators of a
certain model possessing Lagrangian gauge transformai@rs] the loss of covariance of the
Hamiltonian gauge transformations for a particle model admitting a Lorentz covariant Hamil-
tonian formulation:*

Statemente) is explained in Refs. 13 and 15, where several examples can be found. Finally,
assertionf) is proven in Ref. 16.

From these considerations, we see that it is important to characterize the conserved quantities,
because they already encode the transformation. This is the usual procedure when one considers
Noether symmetries. In this paper we propose a shift of emphasis: instead of focusing on the
conserved quantities, we will be interested in properties of the transformations themselves. We
will show the relevance of commutation properties in order to characterize Noether symmetries. In
this sense, from a theoretical viewpoint we will enlarge the list of properties above; from a
practical viewpoint we will provide with new instruments to check whether a given transformation
is a Noether symmetry.

We organize the paper as follows. The basic notations and some preliminary results are set up
in Sec. Il. Section Il is mainly devoted to the study of Noether transformations that are project-
able to phase space; these transformations are given different characterizations in terms of com-
mutation relations involving the evolution operators of the Hamiltonian and the Lagrangian for-
malisms. Section IV contains some examples illustrating these results, and Sec. V is devoted to
conclusions.

II. NOTATION AND PRELIMINARY RESULTS

We consider a configuration spa€® with velocity space the tangent bundl®T and a
(time-independent, first-ordektagrangian functiorh.(q,q) defined on it. The fiber derivative af
defines the Legendre’s transformation, which is a map from velocity space to phase space,
FL:TQ—T*Q, locally defined by

FL(a,9)=(a,p),

where we have introduced the momepta JL/dg—we will suppress most indices.

Given a functiorh(q,p) in phase space, its pull-ba¢through the Legendre’s transformation
FL) is the functionF/L*(h) in velocity space obtained by substituting the momenta by their
Lagrangian expressionFL* (h)(q,q)=h(q,p). A function f(q,q) in velocity space is called
JFL-projectable—or, simply, projectable—if it is the pull-back of a certain functi¢q,p).
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We shall always assume that the Legendre’s transformafibnhas constant rank; this
amounts to say that the fiber HessianLgfwhich is locally described by the Hessian matrix with
respect to the velocities

We 9L
9909

has constant rank. Notice that gauge symmetries can only exist when this rank is not maximal; this
is the case we are interested in.

Let y, (v=1,...)po) be a basis of the null vectors &¥; then the necessary and sufficient
condition for a functionf(q,q) in TQ to be (locally) projectable to TQ is

r, f=0, )

for eachu, where the vector fieldE ,:=y, (9/4q) indeed span a basis of the kernel of the tangent
map T(FL).

Under the same assumption about the constant rank, the iRyagkthe Legendre’s map can
be locally taken as the submanifold of phase space described by the vanishiggpdfmary
Hamiltonian constraints¢,,, linearly independent at each point ¢f,. So they satisfy
FL*(¢,)=0 by definition. Then the basig, can be taken &s

1,

yﬂ::ﬂ* ap

: )

Though our Lagrangian is time-independent, we will need to consider time-dependent func-
tions. The adjunction of the-variable where needed will not cause any problem. The time-
derivative operator acting on a functidt,q,q) is

d o J

—=—+0—+G—=

da ot qaq q&q’
with the acceleratiori] as an independent variablthis involves the tangent bundle of second
order, Q). Then the Euler—Lagrange equations can be written

[Ll@a=0
where we have defined
. JL df)_ W 4
[]-—E @ aw (4)

with a= dL/dq —q(d°L/dqdq). The primary Lagrangian constraints arise from it,

Xp=ay,=[L]y,, 5

though they are not necessarily independent; their vanishing defines a $ybhsEQ.

As a matter of notation, it is usual to wrife<0 to mean thaf(x) =0 for all xe M (Dirac’s
M

weak equality, for instances,~0 andy,~0.
Po 2

In a gauge theory the dynamics either in Lagrangian or Hamiltonian formalisms has a certain
degree of arbitrariness. One can introduce a useful differential opé&tatonnecting the Lagrang-
ian and Hamiltonian formalisms, that has no ambiguity at all, and that still represents the
dynamics® It can be defined as a vector field along the Legendre’s transformatioh and, as
a differential operator, it gives the time evolution of a functloim RXT*Q as a functiorK - h
in RXTQ by
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e ) ]
q o) 39" (6)

dh

a9

dh

. = *
K-h:=FL p

+FL*

The operatoK is directly determined by the Lagrangian by just taking partial derivatives. Instead,
the determination of the dynamics either in tangent space or in phase space requires more involved
computations. In this sensié, is the simplest among the evolution operators, and this will turn out
to be advantageous in order to characterize the Noether symmetry transformations by way of
commutativity properties. The operatd¢ is especially valuable in the study of singular
Lagrangians. For instance, all the Lagrangian constraints are obtained by applying it to the Hamil-
tonian constraint&® and the Lagrangian and Hamiltonian dynamics can be described geometri-
cally by using this operatdr. The operatoK will be instrumental in obtaining some of the results
of the next section.

It will prove very convenient to present two other equivalent expressions for the opKrator
to be used in the next section. The first one is

d
K-h=aﬂ*(h)—l—[L] FL*

ah)
o)’ (7)

whose proof is direct by using the chain rdfeA direct consequence of this equation and defi-
nition (5) is another expression for the primary Lagrangian constraints:

X#:K'¢M' (8

The second expression relatéswith the Hamiltonian evolutiofi:

K-h=7L* ﬁ
ot

+FL*{hH}+ X FL*{h, ¢, Ju". 9)
o

HereH is any Hamiltonian functiofits pull-back to T is the Lagrangian energy; it is defined up
to primary Hamiltonian constraintsAnd thev*(q,q) are functions uniquely determined by this
equality when one takds=q'; these functions are not projectable, and indeed

I,-vt=46". (10
A consequence af9) is a test of projectability for the functioK - h:
I,-(K-h)y=7FL*{h,é,}, (11

so K-h is projectable iffh is a first-class function with respect to the primary Hamiltonian
constraint submanifoldP,.
The Lagrangian time-evolution differential operator can be expréssed

Xt=Xg+ 7T, (12

where thex»* are in principle arbitrary functions that express the gauge freedom of the time-
evolution operator anaKB is a vector field in velocity space

XL—(9+'i&+i _)a (13

0= 5 A aq a'(q,q g

The accelerationa' in Xé may be determined by the formalism, with some arbitrariness owing to
the gauge freedom, and we do not need here their explicit expression, which is gf/@en.
nature of this operator has been recently discussed in Refs. 19, 20. In view of application we only
need to know its relationship with the operator®
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o

L . dv L[N

[lI. CANONICAL NOETHER TRANSFORMATIONS FOR GAUGE THEORIES

Now we are ready to study the symmetries in Lagrangian and Hamiltonian formalisms as
commutation relations between these symmetries and the dynamics. The case of gauge theories
will lead to modified versions of Eql) that account for the existence of constraints and the
ambiguity of the dynamics due to gauge freedom.

Let us consider an infinitesimal Noether transformatid(t,q,q) in configuration space,
that is to say, the variation df is a total time-derivative. Then a conserved quar@ty arises:

. dGt
[L]6"q'+ ——=0. (15
dt

As we have recalled in the introduction, the conserved quantity is always projéétabla
function G(t,q,p) in phase spacest=FL*(G"). This is proved by extracting the coefficient
of the acceleratior from Eq. (15) and then saturating the result with the null vectgysof the
Hessian matrixW, thus obtaining’, - G-=0.

Notice that there is some arbitrariness @i': nothing changes if we add to it a linear
combination of the primary Hamiltonian constraints becafiké (¢,) =0 identically.

In this paper we will consider the case where the transformation itself is projectable to phase
space, that is,

stq=7L*(8"q), (16)

for a certains™q(t,q,p). Notice that there is also an arbitrariness in the determinatiof’qf
because of the existence of Hamiltonian constraints.
Using G and 6", the Noether condition may be written

- dAL*GH

[LIFL* (") + —5— =0,

from which, by extracting the coefficient & one obtaindVFL* (8™q— 9G"/9p)=0. From this
equation, and using the null vectors of the Hessian, it is easy to red&fhend &q
conveniently—using the primary Hamiltonian constraints—in order to offtain

wa 9G"
oq :a_p:{q G} 17

In other wordsa projectable Noether transformation is canonically generated in phase sface

this basis we are ready to generalize Ef). to the case of projectable Noether symmetries
associated with singular Lagrangian dynamics. First we will give a characterization in phase
space, next we will give a characterization using the operidtoand finally we will give a
characterization in velocity space.

A. Characterization in phase space

Now we wish to study the Noether transformations in phase space. The dynamics of gauge
theories, as examples of constrained systems in the Dirac sense, exhibit a certain amount of
arbitrariness in order to account for the gauge—unphysical—degrees of freedom. A typical evo-
lution operator in phase space will be

XHe (= HY A= 6,0 (18
gt U Pl
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where~ (Dirac’s weak equalityis here an equality up to primary Hamiltonian constraints, and
\* are a set of arbitrary Lagrange multipliers. As a matter of fact, these Lagrange multipliers are
determined as functions in tangent space just by applyl®y to the configuration variables,
yielding A\*=v#(q,q)—see(9).

Notice that the weak equality if18) makes the definition oK™ consistent with any redefi-
nition of the basis of primary constraints. However, this is not the final form of the dynamics. To
get the final dynamics we must perform a stabilization algorithfrf'?2 consistency require-
ments, that is, the tangency ¥f' to the surface of constraints, may lead to new constraints and
also to the determination of some of the Lagrangian multipliers as functions in phase space.

Notice that for any values we can give to the Lagrangian multipliers, the last pi¢t8)imay
be written as{—,phc}, wherephc stands for an arbitrary linear combination of the primary
Hamiltonian constraints,

xH~i+{— H}+{—,phc} (19
at ’ S

Let us consider the infinitesimal transformation generated by a vectoMitld T* Q, that is
to say,s"h=V".h—an infinitesimal parameter may be understood here. The conditiovthat
be a symmetry of the dynamics is no longer characterized by the strong condition of commuta-
tivity [V, X"]=0. We may venture that the appropriate characterization is that the infinitesimal
variation of X" produced byv",

SXH=£ynxXH=[VH x"],

is of the type{—,phc}, in order that the transformed vector field is again of the 8. So, the
characterization will read

[VH,XH]~{-,phc}. (20)

Since Eq(19) does not express the final form of the dynamics, we could produce more refined
versions of(20). But, in the case of a Noether transformation, the invariance of the action is
required not only on-shell but also off-shell, therefore the dynamics as givéh9pys the right
one to be used.

Now let us prove that, whew" generates a canonical transformation, relat®®) is exactly
the characterization of a projectable Noether transformation. We can Wtites

vH={-,G"} (21

for some functiorG", so thats™h={h,G"}. To eliminate the weak equalities {@9), X" can be
written as

XH=%+{—,H}+{—,phc}+ b, 2"
for some arbitrary vector fieldd#. Then, taking into account that
[X" VA ]=~{— X"(G")+phc}-V"(s,)Zz*,
the requiremen(20) becomes
VH(¢,)=phc, XH(GH)=phc+f(1),

where f(t) is an unknown function of time. Notice th&@" can be redefined bgH—GH
— [f(t)dt, since this does not change E&1), and hence we have
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VH(¢,)=phc, XH(G")=phc; (22)
but since the functions# in the definition ofX™ (18) are arbitrary, the second equation(22)
splits into

aGH
7+{GH,H}=phC, (23)
and
{G",¢,}=phc. (24)

Notice that(24) is just the first equation i22).

It was proven in Ref. 16 that given a Noether transformation there exists a fur@tipn
whose pullback to velocity space is the standard conserved qu@ttjtgatisfying these condi-
tions (23) and(24); and conversely, that these conditions ensure that the transformation generated
by GM through(17) and (16) is a Noether symmetry. What we have then obtained is a reformu-
lation of (23) and (24) as commutativity conditions. To be more specific, we have proved the
following result:

Theorem 1: An infinitesimal transformation in phase space is a canonical Noether transfor-
mation if and only if its vector fielty" satisfies

[VH, XH]={- phc}, LyQ=0, (25)

whereX" is defined by19) and € is the symplectic form in phase space
(The contents of the second condition(9) is thatV" generates canonical transformations.

B. Characterization using the evolution operator K

Now we will show an alternative characterization of Noether transformations in phase space
that makes use of a special evolution operator that connects the phase space picture with the
velocity space picture. Gauge systems derived from a variational principle exhibit evolution vector
fields, either in the Lagrangian formulation or in the Hamiltonian one, that contain some arbitrari-
ness, because of the gauge freedom. But one can also consider a third evolution operator that,
unlike the previous ones, is fully deterministidhis is the operatoK of Sec. II.

Using the operatoK, the Noether condition&3) and (24) get the simpler forrf

K-GH=o0. (26)

Our scope is to present these Noether conditions in a new form, combining Hamiltonian and
Lagrangian transformations and involving commutations with both the pull-back operation and the
evolution operatoK. This method has the advantage of its simplicity because, as we said, the
operatorK has none of the arbitrariness that plague the evolution vector fields in velocity space
and phase space. In this sense, the commutation properties invilwivill be the easiest ones to
be used as a test of Noether symmetry. In order to do so, we will prepare some preliminary results.
First let us consider two infinitesimal transformatioftsaving time invariant 6™ in phase
space, ands" in velocity space. In principle, they are unrelated, and do not necessarily describe
symmetries. For a functioh(t,q,p) the variation is computed in terms éf'q and 6"'p as

ah oh
H — ___qH ___gH

and similarly for a functiorf(t,q,q):
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SHF(t,0,¢ —afaL +&f5L'
(,q.q)—ﬁ q 7 o}

Using these relations, the definitions 8L andK, and the chain rule, a straightforward compu-
tation shows that

) oh —— oh
5fL*(h)—fL*(é“h)=%(6Lq—6”q)+%(5Lp—5“p). (27

—

dh —~ dh
R Ly oH _ (sty_wk. sH
K &p)(ap op)+ 5 (94K 5q)

oh —
5'-(K~h)—K~5Hh=(K~ E)(qu_éHqH

dh
+%(5L(K~p)—K-5”p), (28)
where we have writtef for FL* (h) to simplify the notation. As a consequence, we have:
Theorem 2: A necessary and sufficient condition in order that
SY(K-h)—K-8"h=0

for each function his that the transformationg", 8" be related by

—

stq=4"q (293
s-q=K- 8"q (29b)
s-p=2o"p (299
S-(K-p)=K-é"p. (290)

Moreover, then one also ha® FL* (h) — FL*(8"h)=0.
To prove the first assertion, one only has to take appropriate valuds fiakingh=q' or
h=p; leads to the vanishing of the last two termg28); takingh= (q')?/2 leads to the vanishing
of the first term; finally, takindh=gq'p; (not summeyidoes the rest.
In view of this, the last assertion is a direct consequend@ Bt
From now on we suppose that the infinitesimal transformation in phase space is canonical, and
let GH(t,q,p) a generating function for itdetermined up to a function of tinte

&GH H

Hey Hy _ Hy Hy_— _

6"q={q,G"} o o'p={p.,G"} aq (30)
We will need to know the partial derivatives Kf-h. A direct calculation from the definition
(6) yields

a(K-h)_K ah+ L Eﬁ+ L < dh a1
od " 49 dqdq dp  aqag\ ap)’ Y
a(K.h)_gﬁ 2L sh AL K oh 2
79 aq ogoqap  aaq | ap)” (32

These relations applied to=G" yield
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WG _ s TE g T 33
g < p 3999 q aqaq( -67q), (33
&(K-GH) = 9L = 9L "

g~ O g O A G (K-S, (34)

Now let us writes*f for f=K.p= dL/dq and forf=p= gL/3¢. We obtain the identities

0=6"(K L st L Sh¢
J9°L °L
N~ - L~ L~
0=o"p aqaqéq &qaqéq.

Using these relations, Eq&33) and (34) become

I(K-GH . " L T &L o L:
7—5(K'p)—K'5 P+M(5 q—o Q)+aq§q(K'5 q—9-9), (39
I(K-GH — L — 9L
(—.)=5L;‘)—5Hp+ (o"g—6tq)+ (K-8"q—1549). (36)

e 9099 el
So far we have not made any assumption on the relationship beteand 5%, but from the
preceding equations the following result is clear:
Theorem 3: Let G"(t,q,p) be the generator of an infinitesimal transformatiéfl in phase

space (30). If we define an infinitesimal transformati®nin velocity space by

stq=7L*(8"q), & q:=K-s"q, (37
then we have
JK-GH) y
g~ OK-p-K-&p, (38)
k-G | y
T=5 FL*(p)—FL*(6"p). (39

Under the assumptions of the theorem, we can rewrite the commutation rel@®n®8) as

—

5LfL*(h)—fL*(8Hh)=@i(K-GH) (40)

ap d9 '
5LKh—K5Hh—K6hﬁKGH+5ﬁaKGH 41
(K-h)—K- _‘apaq(')apaq(')' (41

The final step is to relate these relations with the condif@8), K - GH=0, that characterizes
the generators of projectable Noether transformations:

Theorem 4: Let 8" be a canonical transformation in phase space, andstebe defined as in
(37). Then the following statements are equivalent:

(1) The commutation relatioa“(K - h) —K - 8"h=0 holds for each function h(t,q,p);
(2) 8" is a Noether transformation in phase space.
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To prove that the first condition implies the second one, notice that, using Theorems 2 and 3,
if GM is a generator 0", K-G" is a function of timef(t). Redefinition ofG" to GH— [f(t)
makesK - GH'=0, therefore, according t@6), 5" is a Noether transformation in phase space. The
converse is a direct consequence(2%) and Theorem 3.

Let us finally remark that we could have defined, instead3aj,

— _ d—

dra=FLr (M), G=g ota. (42)
Here the Lagrangian transformation gfis the pull-back of the Hamiltonian one, whereas the
transformation of the velocity is the natural prolongation of the transformation of the position.
This is the usual way to define the transformations of the velocities out of the transformations of
the positions. Notice that, using E(),

Ll ol i . *
g =sq-[L]; AL ( 7, )

so both transformations coincide when applied to solutions of the Euler—Lagrange edtiaion
coincide “on-shell”). With St instead ofs* Egs. (38) and (39) acquire an additional term that
vanishes on-shell. Therefoi® as defined in Theorem 3 is more appropriate in order to give a neat
characterization of a Noether transformation through commutation relations. Nevertheless, it is
that, when applied to the Lagrangian, gives a total derivative. Indeed, (t6mone has

— d
5LL=afL*(p5Hq—GH).

C. Characterization in velocity space

To obtain a characterization in velocity space we first need to formulate the dynamics as a
vector field iINnRX TQ. The time evolution in a gauge theory is not unique until the gauge freedom
has been removed—by way of some gauge fixing, for example. This is reflected in the ambiguities
that are present in the Lagrangian time-evolution differential operator, which we recall from Sec.
Il

XE=Xot 7T, Xom—t §—tal ')i

ot L, 0= q&q' (a9 o
Notice that projectable quantities have, according(2y a well-defined unambiguous time-
derivative under this dynamics. The requirement of tangenc¥'ofo the primary Lagrangian
constraint submanifold, defined ty,~0 (5), may lead to new constraints and to the determina-
tion of some of the functiong*. At this point, new tangency requirements may occur. This is the
Dirac’s method in the Lagrangian formaligh.

Our aim is to give a tangent space characterization of a Noether transfornsationq,q)

that satisfies the property of being projectable to phase space, th#iss the pullback of a
canonical Noether transformatiaii'q, s-q=7L*(6"q). Notice at this point that we have two
natural ways to define the dynamical time derivaibtg in RX TQ. Either bys-¢:=K - 6"q as in
the preceding subsection, or byrq:=X"- stq=X,- 6-q. According to (14), both definitions
coincide only on the primary Lagrangian constraints submanifold. Consistency with the preceding
subsection invites us to choose the definitid:=K - 6™q, and this is what we will do. So we
take

L * H J H J
VE=F1*{q,G }%JFK'{q,G }%- (43
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We will use the results of the preceding subsection for Noether transformations, in particular
K- o"h=6"(K-h) (44)
and its consequence
FL*(8Mh)=8"FL*(h), (45)

for any functionh on RXT* Q.
Notice from these relations that

Vi AL* (h)=FL*{h,G"}:

the action ofV' on a projectable function is a projectable function, thats,is a projectable
vector field—indeed it projects tg"={—,G"1.

Equation(44), and the fact that the primary Lagrangian constraipts) can be obtained as
X.=K-¢,, allow to compute

VL'X,U.: 5LX,LL: 5L(K ¢#):K'(5H¢#):K'{¢y=GH}1
but, according td24),
{¢..G"}=D,o,, (46)
for some functionsD;. Therefore
VE X=X, =FL*(D})x,

that is, V" is tangent to the primary Lagrangian constraints surfaceV*(plc)=plc.
Now let us usg14) and(44) to write

ot . dh _x *(sHh Ju* .
Xﬂﬁﬂ- o) |~ 0" FL*( )+Xﬂﬁﬂ-

VE(Xo- FL*(h))+VE

a6th
ap |’

The second piece in the right side is just a combinatioplofand so it is the second piece in the
left side because of the tangency\8f to theplc surface. Therefore

VE(Xq- FL*(h)) — Xq- FL* (8™h)=plc,
or, using(45),
[VL, Xo](FL*h)=plc. (47)

This result means that the commutafd*,X,] is, on theplc surface, a combination of the
vector fields in the kernel of TfL), that is,

[V' Xo]l=plc+akT,, (48)

for some functionsx*.

We need a second piece of information: the commutéﬁd’r,l“#]. Let us apply it to a
configuration variabley. SinceI',-q=0 andTI',-8-q=T,-7L*(8"q)=0, we get[V",T',]-q
=0. When applied ta,

[VL,FM] : q:VL)/M—F#VL(q):VL’yM—F#- (K . 5Hq),

where in the last step we have used the definiibng=K - 6'q. Taking into account the defi-
nition (3) and the property11), we get
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[VHI,]-a=VHFALHa,¢,0) — FL*{8"a,¢,} (49)
=FL*(6Ma, ¢, —{8"a, 4,1 =FL*{q,8"8,}. (50)
We can use agait46), 5"¢,={¢,,G"}=D,¢,. Then,
[VH.I,]-4=71*{q,D},¢,}=(FL*D})7,,
and therefore
[V-.I,]=(A*D,)T,, (51)

which agrees with the fact that is projectable.
Putting together48) and(51), we obtain that the vector fieN' satisfies

[V- X ]=plc+ BT, (52

for some functiong3#(t;q,q).

So we have proved the following result:

Theorem 5: Suppose that &(t,q,p) generates a canonical Noether transformation, and let
V! be the vector field defined by it according to (43). TMenis a projectable vector field that
projects to{—,G"}, it is tangent to the primary Lagrangian constraint submanifold, and its
commutation with the dynamics satisfies (52).

This result is analogous to that of Sec. Il A. Here and there the commutator of the generator
of the transformation with the evolution vector field gives as a result a term which is proportional
to the arbitrary piece in the dynamics. Have we reached a necessary and sufficient condition for
V! to be a generator of a projectable Noether transformation? The answer in general is in the
negative. Let us be more specific and consider a vector ¥ié|ddefined in(43), such thata) it
projects to{—,G"}, (b) is tangent to the primary lagrangian constraint submanifold, (@nd
satisfies(52). Then, using Eqsi40) and (41) one arrives at

aKGH—O aKGH—I 53
whereas the right conditions f¢r-,G"} to generate a Noether transformation in phase space—

which implies thatv" generates a Noether transformation in tangent space—are, according to the
discussion in the preceding section,

iKGH—O iKGH—O 54

which is more restrictive thatb3). However, in most cases of interest, fhle do not restrict the
configuration variables alone, and thé8) and (54) are equivalent. This is the case indeed in
many physical applications of gauge systems, as in string theory, Yang—Mills theory, or general
relativity. In such cases we have arrived at a characterization of the vectoiefdr it to
generate a Noether transformation.

The case where thglc do restrict the configuration variables is rather unusual, and it might be
considered as an unfortunate choice of the configuration space—some comments on this issue can
be found in Ref. 8. The second example in the following section, though formal and with no
physical interest, exhibits this feature; in this case, conditi&® are not sufficient fov" to
generate a Noether transformation.

Let us finally recall that the action of the vector fial4, associated to a projectable Noether
transformation, on the Lagrangiandoes not give in general a total derivative. The transformation

that indeed gives a total derivative &—see the end of Sec. Il B.
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D. The algebra of projectable Noether symmetries

Consider a canonical Noether symmetry generate@By The projectability of(43),
VL= FLHq,6M 4K+ (0,6}
1 aq 1 (9'q 1

to the canonical generator of Noether symmetries,
vi={-,G"},

allows to obtain some results concerning the algebra of the vector fields associated to projectable
Noether symmetries. I¥/% and V5 are two such vector fields associated with the canonical
generating function§! andG} , then it is straightforward to show that the commutdiet V5]

projects to{ —,{GY,G/"}}, that is,

[VI.V3]-FL*(h)={h,{G} G}
In the particular case that the set of independent canonical geneGtspan a Lie algebra,
{GI'.G' =CiiGY, (55)

with Cikj constants, then their associated vector fie}’(ﬂsin tangent space satisfy the same Lie
algebra structure,

[V Vi]=CfVy.

In the case that the quantities(®5) are not constants but functions of the varialgtbss is the
case of a “soft” algebra generating a “quasigrou® this last equality does not hold, but we
still have the opportunity to get—up to pieces linear in the primary constraints—the structure
functions in phase space by Lagrangian methods. This goes as follows. Caa&)déar some
functionsC!‘j . Consider also the pull-back to tangent space of the canonical generating functions,
Gi=FL*(G}'). Then

Vi-Gr=Vi-AL*(G)=A* (]Gl = AL*{G]' ,G]'} = FL* (CKG}) = FL* (Cf) Gy, . |
(56

That is, we can retrieve—up to primary constraints—the structure functions of the canonical gauge
generators by simply computing the variations under the vector fiéldsf the Noether conserved
quantities in tangent space. This method has been implicitly used in a series ofpapenat
analyze the relationship between the Lagrangian and Hamiltonian descriptions of the gauge group
structure for generally covariant theories.

IV. SOME EXAMPLES

Example 1: Let us consider the Lagrangian

1
— — w2 w2
- +_
L 2e X 26 m=,

which describes a free particle in Minkowski's space—time. A standard analysis yields the mo-
menta @,7) of the variables X,w), a Hamiltonian function, and a primary Hamiltonian con-
straint:

1
p=e % #=0, H=ze’(p’-m?), ¢°=m.
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The stabilization algorithm yields a secondary Hamiltonian constraint
¢t={¢° H}=—H.
The evolution operatoK is given by

Kh—ﬂ*ah+'ﬂ*ah+'ﬂ*ah+ ﬂ*ah
e gt e X T e X g

where we have denoted hythe primary Lagrangian constraint
1 .
x:=K- ¢°=§(e“’m2—e“"x2).

It is clear that the projectable functions are those not depending,aand indeed the kernel of
T(FL) is spanned by

Notice therefore thay is a projectable constraint, and so
X=TFL*(¢h),
whereas
K-¢r=wy,
which is not a new constraint. Finally, we give the Euler—Lagrange equations
[LIx=e “(oX=%), [L],=x-

At the first stage of the stabilization algorithm the Hamiltonian evolution operator is

=2 4 aopl L eo(p? 2a+)\a+z
=at TE P T P M) AT L,

where the functiorh and the vector fiel& are arbitrary.

Now let us study the gauge transformations. From the general theory, a gauge generator has
the form GH=:G,+eG,, wheree is an arbitrary function of time and the functio® are
determined such th&t - G"=0.1°G, is a first-class primary Hamiltonian constraint, which in this
example turns out to be™ “#. The result is

GM=e “(£¢%—&g").
Its associated infinitesimal transformation is given by the vector field

vH i +ee @ i +ee @ i
=egp—+ee ®—+ee —.
Sp&x € Jw © W(?’ﬂ

Let us check the quasiinvariance Xt
) Jd .9 )
[VH,XH]=(e_‘"(—é+)\s)+VH-)\)ﬁ—w-i—w e_“’(—é+)\s)%+[VH,Z]+e_“’sZ ,

which is weakly{ —,phc}.
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The vector fieldv' of (43) is

Vi=e @ exi-l-éi-l—'s)'(—a.-l—(é&)—ée*‘”) —
oX Jw oX Jw

A direct computation then shows that, as differential operators,
VoK —KeVH=0.
Finally let us consider the Lagrangian dynamical vector field,

XL—§+'0+' O okl
ot o Yo T %k T T 9k

where 7 is an arbitrary function. Then we obtain
L yL —w o N I L J
[VE XS ]=e “(—é+2ew—ew +ee “p+V .,7)£,

which is proportional td".

Moreover, bearing in mind the remarks at the end of Sec. Il B, we can define the Lagrangian
transformation of the velocities as the time-derivatives of the transformation of the positions, thus
obtaining a slightly different vector fieldf":; indeed,

— d
L: L— _—
VE=VE—g[Lli—c.
Then the Noether condition can be checked for this transformation:
Vh.L= d —oL
=% (ee ).

Example 2: Here we show that, in general, the conditions stated by Theorem 5 are not
sufficient forV* to define a Noether transformation. Let us consider

The momentaf,,p,) of the variablesX,y), a Hamiltonian function and a primary Hamiltonian
constraint are

The stabilization algorithm yields a secondary Hamiltonian constraint

¢t={¢°H}=—y.
The evolution operatoK is given by
K h—fL*ah+' fL*&h+' ;EL*ah FL* on
NEAT G PR ILT Y Gy TY I

Notice that there are a primary Lagrangian constraint and a secondary one,
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by

The Euler—Lagrange equations are

[Llx=—X, [L]y:_Ya
and so the Lagrangian evolution operator may be taken as

Jd J

Xo=X—+y—.
0 %ox Yoy

Let us consider the function

GM=pyy,
whose associated infinitesimal transformation is the vector field in phase space

VH= Jd Jd
—VW pya_py’

and defines the vector field in tangent space

Vizy Lyl

It is easily checked tha¥" projects toV. It is clear thatv'- y1= y!, and so it is tangent to the
primary Lagrangian constraint submanifold. And also we r[a#exg]:o.

In spite of satisfying these three conditions of Theorenv5,is not a projectable Noether
transformation. We can see this in several ways. On the one Ka@f! = —y?, which is not zero
(notice, however, that since this is a primary Lagrangian constraint &émorresponds to a
nonprojectable Noether transformation, see Refs. 13 ahddibthe other hand, we can compute

P

(VoK —KoVH).h=-2 oh
y(?py’

which is not zero. Finally, using the transformatigh as before, we have
Vi L=—y2,

which is not a total derivative.

Finally, we use this example to illustrate itefim) in the list of properties of gauge theories
given in the introduction. Take the conserved quar@ty=p,+ pyy in phase space. It generates,
through Poisson bracket, an infinitesimal symmetry transformaiiowhose pull-back to velocity
space iss'x=1, s-y=y; this givess'L = —y?, which is not a total derivative and thu is not
a Noether symmetry.
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V. CONCLUSIONS

In this paper we have introduced some characterizations of Noether symmetries based upon
some specific properties of commutativity with the dynamics. This presentation entails a shift of
focus with respect to the standard introductions to Noether symmetries.

To our knowledge, the only characterization of Noether symmetries in gauge theories, not
relying on properties of the conserved quantity, is the invariance of the action under these trans-
formations. Our contribution is a new characterization of such symmetries which is set up in the
realm of dynamics, either Lagrangian or Hamiltonian. This study concerns those Noether symme-
tries that are projectable to phase spagbat we call canonical Noether transformatipns

For canonical Noether symmetries we obtain a characterization in phase space that clearly
generalizes the results that hold for regulaot gauge theories. We also provide an alternative
characterization by using the unambiguous evolution operator that connects the formulations in
phase space and in tangent space; this new characterization is very appropriate because of its
simplicity, since it is set up with the only use of the Lagrangian function and its partial derivatives.
Finally, we give a characterization in velocity space applicable to most dynamical theories with
physical contents.

In summary, we give an answer to the question of extending the property of commutation of
the Noether symmetry with the dynamics, as expressed bylEago singular Lagrangians. This
answer is presented as three characterizations that may serve as a useful test of Noether symmetry
for gauge theories with reference neither to the action nor to the conserved quantity.
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