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The Rusk-Skinner formalisnwas developed in order to give a geometrical unified
formalism for describing mechanical systems. It incorporates all the characteristics
of Lagrangian and Hamiltonian descriptions of these syst@metuding dynamical
equations and solutions, constraints, Legendre map, evolution operators, equiva-
lence, etg. In this work we extend this unified framework to first-order classical
field theories, and show how this description comprises the main features of the
Lagrangian and Hamiltonian formalisms, both for the regular and singular cases.
This formulation is a first step toward further applications in optimal control theory
for partial differential equations. @004 American Institute of Physics.
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[. INTRODUCTION

In ordinary autonomous classical theories in mechanics there is a unified formulation of
Lagrangian and Hamiltonian formalismhsyhich is based on the use of thghitney sunof the
tangent and cotangent bundé=TQo& T* Q=TQXoT*Q (the velocity and momentum phase
spaceof the system In this space, velocities and momenta are independent coordinates. There is
a canonical presymplectic forif} (the pull-back of the canonical form if*Q), and a natural
coupling function locally expressed agjv', is defined by contraction between vectors and cov-
ectors. Given a Lagrangiah e C*(TQ), a Hamiltonian function, locally given byl =pv'
—L(q,v), is determined, and, using the usual constraint algorithm for the geometric equation
i(X)Q=dH associated to the Hamiltonian systelv,(),H), we obtain that

(1) The first constraint submanifold/; is isomorphic toTQ, and the momentalL/dv' = p; are
determined as constraints.

(2) The geometric equation contains the second order conditierdq'/dt.

(3) The identificationW;=TQ allows us to recover the Lagrangian formalism.

(4) The projection to the cotangent bundle generates the Hamiltonian formalism, including con-
straints. The Legendre map and the time evolution operator are straightforwardly obtained by
the previous identification and projectién.
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It is also worth noticing that this space is also appropriate for the formulation of different kinds of
problems in optimal control.’ Furthermore, in Refs. 8 and 9 this unified formalism has been
extended for nonautonomous mechanical systems.

Our aim in this paper is to reproduce the same construction for first-order field theories,
generating a unified description of Lagrangian and Hamiltonian formalisms and its correspon-
dence, starting from the multisymplectic description of such theo(fse, for instance, Refs.
10-18, for some general references on this formalism. See, also, Refs. 19-25, for other geometric
formulations of field theories.As is shown throughout the paper, characteristics analogous to
those pointed out for mechanical systems can be stated in this context. In Ref. 9, a first approach
to this subject has been made, focusing mainly on the constraint algorithm for the singular case.

The organization of the paper is as follows: Sec. Il is devoted to reviewing the main features
of the multisymplectic description of Lagrangian and Hamiltonian field theories. In Sec. Il we
develop the unified formalism for field theories: starting from éxtended jet-multimomentum
bundle(analogous to the Whitney sum in mechaiiege introduce the so-callesktended Hamil-
tonian systenand state the field equations for sectiomsyector fields, connections, and jet fields
in this framework. It is also shown how the standard Lagrangian and Hamiltonian descriptions are
recovered from this unified picture. As a typical example, thi@imal surface problenis de-
scribed in this formalism in Sec. IV. Finally, we include an Appendix where basic features about
connections, jet fields, ama-vector fields are displayed.

Throughout this papet:E— M will be a fiber bundle (dinM =m, dimE=N+m), whereM
is an oriented manifold with volume form e Q™(M). w1:J'E—E is the jet bundle of local
sections of, and = mew:J'E—M gives another fiber bundle structurex(y*,v%) will
denote natural local systems of coordinateg’ii, adapted to the bundE—M (a=1,..m; A
=1,...N), and such thatw=dx'0- - - Odx™=d™x. Manifolds are real, paracompact, connected,
andC”. Maps areC”. Sum over crossed repeated indices is understood.

IIl. GEOMETRIC FRAMEWORK FOR CLASSICAL FIELD THEORIES

A. Lagrangian formalism

(For details concerning the contents of this and the next section, see, for instance, Refs.
10-13, 17, 18, and 26-31. See, also, the Appendix

A classical field theoryis described by giving @onfiguration fiber bundler:E—M and a
Lagrangian densitywhich is a 7!-semibasicm-form on J'E usually written asC=L7" o,
whereL e C*(JE) is the Lagrangian functiordetermined byC and w. The Poincare-Cartan m
and (m+ 1)-formsassociated with the Lagrangian densityare defined using theertical endo-
morphism) of the bundleJ'E (see Ref. 3p

O =iV L+LeQMIE); Qp=—dO,c Q" IE).
A Lagrangian systeris a couple §'E,Q ). Itis regularif Q , is a multisymplectic g+ 1)-form

(a closedm-form, m>1, is called multisymplecticif it is one-nondegenerate; elsewhere it is
pre-multisymplectic In natural charts id*E we have

a
V=(dy*~vidx") @ — ®
]

Uy

ax”’

and
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(92L 2 2
Q,=— ———dv0dy*0d™ *x,,— dyBOdy”0d™ *x,,+ v/dv B0d™x
£ aanU’; yB&vﬁ &UE&UQ
&L aL &L
Ao — dyB0d™x

B

a

VA

ayBavh oy ax%ov
(where & *x,=i(d/9x*)d™x); the regularity condition is equivalent to déli(/av}av(y))#0, for
everyy e J'E.

The Lagrangian problemassociated with a Lagrangian systedt&,( ;) consists in finding
sections¢ e I'(M,E), the set of sections of, which are characterized by the condition

(1) *i(X)Q, =0, for every Xe X(J'E).

In natural coordinates, ifb(x)=(x% ¢*(x)), this condition is equivalent to demanding that
satisfy theEuler—Lagrange equations

a9 [ oL
ax*\ gv?

[e3

aL

— =0 (for A=1,..N). (N
ay

ite

ite

The problem of finding these sections can be formulated equivalently as follows: finding a
distribution D of T(J'E) such that it is integrable(that is, involutive, m-dimensional,
wri-transverse, and the integral manifolds@fare the image of sections solution of the above
equationgtherefore, lifting ofar-sections. This is equivalent to stating that the sections solution
to the Lagrangian problem are the integral sections of one of the following equivalent elements:

+ A class of holonomicm-vector fields{X.}C X™(J'E), such thati(X;)Q =0, for every
Xpe{X,}

» A holonomic connectiorV, in 7*:J*E—M such thati (V,)Q,=(m—1)Q.

+ A holonomic jet field¥ . :J*E— J'J1E, such thai (¥ ;)Q =0 (the contraction of jet fields
with differential forms is defined in Ref. 11

Semi-holonomic locally decomposahtevector fields, jet fields, and connections which are so-
lution to these equations are callEdler—-Lagrange m-vector fields, jet fieldsndconnectiongor
(J*E,Q[). In a natural chart id'E, the local expressions of these elements are

a=1

mg d d
Xe=f 0| —+Fi—+Gh,—]|,
ax“ ay d

14

VL': dx*®

J J J
A+ G,
ox“ ay d

14

\Ifﬁz(xa'yAyvz,FQ'ng),
with FA=v"% (which is the local expression of the semi-holonomy condjti@nd where the
coefficientsGﬁV are related by the system of linear equations

A L L L,
Car= 5 s oAty (AB=L..N). 2
ye  ax'avl  ayhav

L

A, B
v, o,
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fe C*(J'E) is an arbitrary nonvanishing function. A representative of the cj¥s§ can be
selected by the condition(X,)(7** w) =1, which leads tadf=1 in the above local expression.
Therefore, ifitp=(x*,$",d¢" 9x") is an integral section ok, thenv = a¢"/9x*, and hence,
the coefficientsG2 must satisfy the equations

J A (92 A
¢ ): ¢ (A=1..N; nv=1..m).

A a 4 A
GV”(X ¢ TIx® ] axTox”
As a consequence, the systéP) is equivalent to the Euler—Lagrange Ed) for ¢.

If (J'E,Q,) is a regular Lagrangian system, the existence of classes of Euler—Lagrange

m-vector fields forL (or what is equivalent, Euler—Lagrange jet fields or connecli@nassured.
For singular Lagrangian systems, the existence of this kind of solutions is not assured except
perhaps on some submanifdd-J'E. Furthermore, solutions of the field equations can eist
general, on some submanifold &fE), but none of them are semi-holonontat any point of this
submanifold. In both cases, the integrability of these solutions is not assured, except perhaps on
a smaller submanifoldl such that the integral sections are contained in

B. Hamiltonian formalism

For the Hamiltonian formalism of field theories, we have ¢itended multimomentum bundle
M, which is the bundle om-forms onE vanishing by contraction with twer-vertical vector
fields[or equivalently, the set of affine maps fralE to 7* A™T*M (Refs. 10 and 34, and the
restricted multimomentum bundlé*E= Mx/7* A"T*M. We have the natural projections

HIYESE, =gt E—-M, wMar—IYE, a=tuiMar—M.

Given a system of coordinates adapted to the bumdE— M, we can construct natural coordi-
nates &%, y*,p%,p) (e=1,...m; A=1,...N) in M, corresponding to thercovectorp=pd™x
+ pady*0d™ x, e Mm, and k*,yA pa) in J**E, for the clasy p]=pady*00d™ x,+(d™x)
e J™*E.

Now, if (J1E,Q,) is a Lagrangian system, ttextended Legendre magssociated withC,
FL:J*E— M, is defined as

[FLOYNZ1, - Ze) =(O ) Z1, - Zo), 3)

where Zy,....Zne T apE, andz,...,zmeTleE are such thaﬂ'yrrlfazza. Then there-
stricted Legendre mapssociated withC is FL:=u°FL. Their local expressions are

Thrgamya  FRryALyA  Frepem 00 Fpeo | _ a0t
’ y y! pA (9A, *7: p L Ua& ’

FLEx*=x“ FL* A_ A FL* azi
X X 1 y y ’ pA (9 A"

a

Therefore, §1E,() ) is aregular Lagrangian system iF£ is a local diffeomorphisnithis defi-
nition is equivalent to that given abové&lsewhere J*E, () ) is asingularLagrangian system. As
a particular case,J¢E,(),) is a hyper-regularLagrangian system ifF£ is a global diffeomor-
phism. A singular Lagrangian systend'g,(),) is almost-regularif: P:=FL(J'E) is a closed
submanifold ofJ** E (we will denote the natural imbedding hyP— J**E), FL is a submersion
o?to its image, and for everye J'E, the fibresFL 1(FL(y)) are connected submanifolds of
JE.

In order to construct &amiltonian systenassociated withJ*E,(Q ), recall that the multi-
cotangent bundld"T* E is endowed with a natural canonical fohe Q™(A™T*E), which is
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the tautological form defined as follows: let-: T*E—E be the natural projection, and
AMre :AMT*E—E its natural extension; then, for evepe A™T*E (wherep=(y,3), with y
eE andBe A"TE), and for everyXy,... Xy X(A™T*E) we have

[O(Xy, - X Igr=L (A7) * B1(Xa s+ Xin) = BTEA (X1 ), - ToA ™ (X))

Thus we also have the multisymplectic fo=—d® e Q™" }(A™T*E). But M7=ATT*E is
a subbundle oA™T*E. Then, if \:AJT*E—A™T*E is the natural imbedding®:=\*® and
0:=—d®=\*Q are canonical forms iM 7, which are called thenultimomentum Liouville rand
(m+1) forms In particular, we have tha® (p)=(7,ou)*p, for everype M. Their local ex-
pressions are

0 =pady*0d™ x,+pd™x, Q=—dpaOdy*0d™ *x,—dpOd™x. (4)

Observe thatFL* © = 0,, and FL* Q= Qf.

Now, if (J'E,Q,) is a hyper-regular Lagrangian system, th@t?ﬁ(JlE) is a one-
codimensional andk-transverse imbedded submanifold &7 (we will denote the natural im-
bedding by] 77‘—>M7T) which is diffeomorphic to]l*E This diffeomorphism is. %, whenu is
restricted th _and also coincides with the mdmpz]-“ﬁo]-',c 1 when it is restricted onto its image
(which is justP) This maph is called aHamiltonian sectlonand can be used to construct the
Hamilton-Cartan mand (n+ 1) formsof J** E by making

0,=h*0ecQ™JI™E), Q,=h*QeQM™ 1JI™E).

The couple §**E,Q,) is said to be theHamiltonian systenassociated with the hyper-regular
Lagrangian systemJ¢E,Q) ). Locally, the Hamiltonian sectioh is specified by théocal Hamil-
tonian function H=p%(FL Y*vA—(FLY)*L, that is, h(x%yA ps)=(x*y*,ps,—H). Then
we have the local expressions

O,=pady 0d™ x,—Hd™, Qp=—dpaOdy*0d™ x,+dHOd™x.

Of courseFL*O,=0 ,, and FL* Q,=Q .
The Hamiltonian problemassociated with the Hamiltonian syste@{E,(),) consists in
finding sectionsye I'(M,J** E), which are characterized by the condition

JFi(X)Qp=0, for every Xe X(J**E).

In natural coordinates, ifi(x)=(x*y (x),pa(x)), this condition leads to the so-called
Hamilton-De DonderWeyl equationgfor the sectiony).

The problem of finding these sections can be formulated equivalently as follows: finding a
distribution D of T(J™E) such thatD is integrable (that is, involutive, m-dimensional,
‘r-transverse, and its integral manifolds are the sections solution to the above equations. This is
equivalent to stating that the sections solution to the Hamiltonian problem are the integral sections

of one of the following equivalent elements:

* A class of integrable and!-transversem-vector fields{X,}CX™(J'*E) satisfying that
i(X4)Qp=0, for everyXHe{XH}

+ An integrable connectiol;, in 7+:J* E—M such thati (V;) Q,=(m—1)Q,,.

+ An integrable jet field¥,,:J** E— J*J* E, such that (¥,,)Q,=0.

‘r-transverse and locally decomposabievector fields, orientable jet fields, and orientable con-

nections, which are solutions of these equations, are chldilton-De DonderWeyl (HDW)
m-vector fields, jet fieldsand connectionsfor (J**E,Q,). Their local expressions in natural
coordinates are
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m Jd A d J
Xy=f O —+Fa—A+GZa— ,
a=1\ OX* ay IpL
\I’H=(Xa,yA,pX;F$,GXQ),

VH: an®

A S
axe “ayh Aopr)’

wheref e C*(J¥*E) is a nonvanishing function, and the coefficieﬁ@, G/, are related by the
system of linear equations

oA M, M
a (?pz' Av 0-'yA

Now, if #(x)=(x*y(x)= ¢ (X),pa(X) = #%(x)) is an integral section aX;, then

JH A oH & oy Ipa
Pl , X, 2ap AT oxa’

which are the Hamilton—De Donder—Weyl equations#oAs above, a representative of the class
{X,4} can be selected by the conditiofX,,) (7** w) =1, which leads td =1 in the above local
expression. The existence of classes of HDWector fields, jet fields, and connections is as-
sured.

In an analogous way, ifJ*E,Q) /) is an almost-regular Lagrangian system, the submanifold
J:P—J¥™E, is a fiber bundle oveE andM. In this case theu-transverse submanifold— M is
diffeomorphic to. This diffeomorphism is denoted ti‘y:’]ZHP, and it is just the restriction of
the projectionu to P. Then, taking the Hamiltonian sectidn=joz ", we define the Hamilton—
Cartan forms

e)=h*e; a)=h*Q,
which verify that]-‘LZ;@ﬂ:@[ andf£3®ﬂ=9£ (where FL, is the restriction map of-L onto

P). Then (P,Qﬁ) is theHamiltonian systemassociated with the almost-regular Lagrangian system
(J'E,Q,), and we have Diagram 1.

P N M
r J
2l 2
h
JIE P JI*E
fﬁo ¥
7 7l

M
)

Then, theHamiltonian problemassociated with the Hamiltonian system,()ﬂ), and the equa-
tions for the sections df (M, P) solution to the Hamiltonian problem are stated as in the regular
case. Now, the existence of the corresponding Hamilton—De Donder—wegktor fields, jet
fields, and connections forP(Qﬂ) is not assured, except perhaps on some submarifat P,
where the solution is not unique.

From now on we will consider only regular or almost-regular systems.
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[ll. UNIFIED FORMALISM

A. Extended Hamiltonian system

Given a fiber bundler:E—M over an oriented manifoldM, ), we define theextended
jet-multimomentum bundig/ and therestricted jet-multimomentum bundi&, as

Wi='EXeMm, W, :=J'EX I E

whose natural coordinates arm“(yA,vﬁ,p,‘i,p) and x,y” va,pA) respectively. We have the
natural projectiongsubmersions

pLW—IE, pryW—Mm, pe:W—E, py:W—M,
r 1 r 1 r r (6)
p1 W, —JE, p5:W,—JI*E, pgW,—E, pu:W,—M.
Note thatmlep;= rtouop,=pge. In addition, there is also the natural projection
M W—W,,

(y.p)=>(y,[PD)-
The bundlelV is endowed with the following canonical structures:

Definition 1:

(1) Thecouplingmform in W, denoted by, is an m-form along,, which is defined as follows:
for every ye JJE, with 7'(y) = m(y) =xE, andpe My, let w=(y,p) e W,, then
C(w):=(Ty)*p,
where ¢:M—E satisfies thatjg(x) =y.
Then, we denote bye Q™() the py-semibasic form associated with
(2) The canonical mform 0,,e Q™(W) is defined by®,,:=p50®, and it is therefore
pe-semibasic

The canonical (+1)-form is the pre-multisymplectic formQ,,:=—d®,,=p7Q

e Qm+1(W)_

Being C a py-semibasic form, there i€ e C* (1) such thaC=C(py,w). Note also thafl,,
is not one-nondegenerate, its kernel being ghevertical vectors; then, we cally,Q,,) a pre-
multisymplectic structure. This definition of the coupling form is in fact an alterndt&iously
equivalent presentation of the extended multimomentum bundle as the set of affine maps from the
jet bundleJ'E to m-basicm-forms.

The local expressions fd9,, and(},, are the same a4), and forC we have

C(w) = (p+piv?)d™x.

_ Given a Lagrangian densitg e QM(JLE), we denotec: =p7 L Q™(W), and we can write
L= L(pr) with L=p7L e C*(W). We define eHamiltonian submanifold

Wei={w e W|L(w)=C(w)}.

S0, W, is the submanifold o¥V defined by the constraint functid®— L =0. In local coordinates
this constraint function is

p+psvA—L(x*,yB v?)=0.
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We have the natural imbeddigg: Wy— W, as well as the projectionsubmersions
0. 1 0. 0. 0.
piWo—JE, poWo—Mm, peWo—E, pu:Wo—M,

which are the restrictions tbV, of the projectiong6), andf)gz,LLopgzwoaJl*E. So we have

Diagram 2.
JE
0 T
P1 1 15
Jo Hw
Wo w W,
P P2 o5
~0 M ar
P2 T P2
i
JUE

Local coordinates inV, are (x“,yA,vﬁ,p,”(), and we have that
PRx YA 0%, PR = (X" YA vg),
Jo(x*,yA 0% pa) = (x*yA v5 .pa L —v5pR),
Pe(x* YA v PR = (x* YA Pa, L —v5pR),
Pa(x*yAug.pa) = (X% YA pR).

Proposition 1:1/, is a one-codimensionak,,-transversal submanifold dfy, diffeomorphic
toWw,.

(Proof) For every (y,p)eW,, we haveL(y)=L(y,p)=C(y.p),
and
(uweJ0) (Y, P) = (Y, P) = (¥, () = (¥,[P]).
First, upeJo is injective: let /1,p1), (Y2.p2) € Wy, then we have
(112J0)(Y1.P1) = (112J0)(Y2.P2)= (V1. 14(P1)) = (Y2, (P2)) = V1= Y2, (P2) = (P2),
hence,
LD =L(¥2)=C(¥1.p)=C(y2,p>).
In a local chart, third equality gives
P(P)+PA(PL)U (Y1) = P(P2) + PA(P2)U(Y2).

but w(p;) = u(p2) implies that
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Pa(P1) =Pa([P1]) =Pa([P2]) =PA(P2),

therefore,p(p1) =p(p,), and heﬂcep1= ps. o
Seconduy,r]g is onto: Let §/,p) e W, , then there existsy(q) € Jo(W,) such thafq]=[p].
In fact, it suffices to takéq] in such a way that, in a local chart GtEX g M7=W

pa(a)=pa([p]), p(a)=pa([p]valy)—L(y).

Finally, observe thadV, is defined by the constraint function—C and, as keruyy,
={dlop} and dlop(L—C)=1, then W, is a l-codimensional submanifold ofV and
myp-transversal. . |

As a consequence of this property, the submaniidlglinduces a sectioh: )V, — W of the
projection u,y. Locally, h is specified by giving the locaHamiltonian function H=—L
+psv”; that is,h(x%,yA,v4,p%) = (x4, yA,v4,p%,—H). In this senseh is said to be eHamil-
tonian sectiorof wy,.

Remarkit is important to point out that, from every HamiltoniaQVsectionﬁ:WrﬁW in the
extended unified formalism, we can recover a Hamiltoniasectionh:P— M in the standard
Hamiltonian formalism. In fact, giverip]e J**E, the sectionh maps every point y(,[p])

e (py) ~Y([p]) into p; [pa(h(y.[p]))]. So, the crucial point is the projectability of the local
functionH by p,. But, beinga/&v’; a local basis for kep,, , H is p,-projectable if, and only if,
pa=dL/dv,, and this condition is fulfilled whefip] e P=Im ]—‘LCJ“LE, which implies that
po[h(p5) "1 ([p]))] € P=Im FLC M. Hence, the Hamiltonian sectidnis defined as follows:

h(pD)=(p22h)[(p%) *U([p1)], for every [p]eP.

So we have Diagram 8ee also Diagram)1l

P - Mr w
I J J P2 i
~1 Y ~
f u/ H
P JI*E W,
J P2

(For (hype regular systems this diagram is the same withAfh=J**E.)
Finally, we can define the forms

O0:=j50,,=pF* O c Q™W,), Qo=jtQy=p3*Qec Q™ 1N,
with local expressions
©o=(L—pava)d™x+pady”Od™ *x,,
R (7)
Qo=d(pavh—L)0d™x—dpaOdy*0d™ x,, ,

and we have obtained @re-multisymplecti¢ Hamiltonian system ¥V;,{0), or equivalently
(W, ,h* Q).

B. Field equations for sections

The Lagrange-Hamiltonian problerassociated with the systerif,,(),) consists in finding
sectionsyy e I'(M,W,) which are characterized by the condition

Ui(Yo)Qo=0, for every Yoe X(W,). (8)
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This equation gives different kinds of information, depending on the type of the vector Yiglds
involved. In particular, using vector field& which areﬁg-vertical, we have:

~0 ~ . . . .
Lemma 1: If e VP2 (N),) (i.e., Yo is p5-vertical), then {(Y) Qg is p$y-semibasic
(Proof) A simple calculation in coordinates leads to this result. In fact, takirigv’} as a
local basis for thé)g-vertical vector fields, and bearing in mirid) we obtain

N Q . oL g
il =% |Qo=| pa— —5 |d"x,
(902 0=\ Pa &vé

which are obviously,-semibasic forms. |

As an immediate consequence, Whée 3€V(’32)(Wo), condition(8) does not depend on the
derivatives ofi: is a pointwise(algebraig¢ condition. We can define the submanifold

Wi ={(y,p) e Woli(Vo)(Qo)zpy=0, for every Voe V(p)},

which is called thefirst constraint submanifolef the Hamiltonian pre-multisymplectic system
Ws,Q0), as every sectioiy, solution to(8) must take values i/, . We denote by, : W, —W,
the natural embedding.

Locally, W is defined inW, by the constraintq;)f{:aL/avA. Moreover:

Proposition 2:W; is the graph ofFZ; that is, Wi ={(y, }'[,(y)) e W|yeJ E}.

(Proof) Considery e J'E, let ¢:M—E be a representative of, andp ]—"L‘(y) For every
UeTramM, consideV=Tzi;¢(U) and its canonical I|ft|ng/ Tl 1p(U). From the defi-
nition of the extended Legendre m&®) we have that Tym)* (]—‘L(y)) (0,)y, then

{(VL(Tyrh)* (FLY))]=1(V)(O )y
Furthermore, ap=FL(y), we also have that

i(V)[(Tyr ) * (FLY) =1 (Tragi e (U)[(Tyrh*p)
=i(Tagl(Tagite(Wp=i(Tagié(U)p=i(V)p.

Therefore, we obtain

(U)(*p)=i(U)L(*$)* (O p)y],

and bearing in mind the definition of the coupling fotinthis condition becomes

H(U)(C(y,p)=i(U)[(*h)* O )y].

Since it holds for everyJ e T11;3M, we conclude tha€(y,p)=[(j1¢)*© cly, or equivalently,

C(y p)= L(y p), where we have made use of the fact tigt is the sum of the Lagrangian

density £ and a contact forni(V)£ (vanishing by pull-back of lifted sectionsThis is the con-

dition definingW,, and thus we have proved that, FL(Y)) € Wy, for everyye J'E; that is,

graphﬁc W . Furthermore, graptfL and)V; are defined as subsets Wdf, by the same local

conditions:ps—dL/dv=0. So we conclude that graﬁz Wi . [ |
Being W, the graph ofFL, it is diffeomorphic toJ'E. Every sectioryq:M— W, is of the

form o= (., hy), with zpﬁ:p(l)ozpo:MHJlE, and if ¢, takes values inV,; then ¢H=’]?£/

oy, In this way, every constraint, differential equation, etc., in the unified formalism can be

translated to the Lagrangian or the Hamiltonian formalisms by restriction to the first or the second

factors of the product bundle.
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However, as was pointed out before, the geometric cond{8bm V,, which can be solved
only for sectionsfy: M —W;CW,, is stronger than the Lagrangian conditighi (Z) .= 0, [for
everyZ e X(J'E)] in J'E, which can be translated 1, by the natural diffeomorphism between
them. The reason is tha’l;/\/l)/VO:TWleaVWl(p?), so the additional information comes therefore

from thepg-vertical vectors, and it is just the holonomic condition. In fact:

Theorem 1: Let ¢g:M—W), be a section fulfilling Eq. (8)¢0:(¢£,¢H)=(¢L,ﬁo¢£),
where ;= po . Then
(1) ¢, is the canonical lift of the projected sectio@:p‘éowo:MeE (that is ¢, is a
holonomic section)
(2) The sectiony,=jl¢ is a solution to the Lagrangian problem, and the sectjony,,

= o FLo,=FLeojl¢ is a solution to the Hamiltonian problem

Conversely, for every sectiap: M — E such that }¢ is solutions to the Lagrangian problem
(and henceFLe0jl¢ is solution to the Hamiltonian problem) we have that the sectign

—(j1¢, FLoje), is a solution to (8)see Diagram ¥

w
Jo P2
P1
o
Wy M
I
N o
. pi P2
J'E Wy JUE Mz
7l

Yo =3¢

(Proof)

(1) Taking{a/op%} as a local basis for thg2-vertical vector fields:
H J A A -1
i| — | Qo=v,d™x—dy*0d™ *x,,
IPA

so that for a sectiow,, we have

ayA

Ix*

0=43

- ( va(X) — )dmx,

il —]Q0
IPa

and thus the holonomy condition appears naturally within the unified formalism, and it is not
necessary to impose it by handig. Thus, we have thap(,:(x“,yA,ayA/ax“,aL/avﬁ), sincey,

takes values iVW;, and hence, it is of the formig=(j*¢,FLoj ), for ¢p=(x*y") = pLoys.
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(2) Since sectiongsg: M — W, solution to(8) take values inV;, we can identify them with
sectionsy, :M—W; . These sectiong, verify, in particular, that/;i(Y,)Q,=0 holds for every
Y, e X(W,). Obviously, ¢y=J,°¢,. Moreover, as/V; is the graph oﬁ, denoting bypi=p(1)
oJ1:W;—J'E the diffeomorphism which identifiesV; with J'E, if we defineQ,=j5Q,, we
have thatQ,=p*Q,. In fact; as pl) (y)=(y,FL(Y)), for everyyeJ'E, then (2,
o(ph 1) (y)=FL(y) e M, and hence,

Q=(pge1o(p1) " H* Q=[((p1) M *sTopg" 1Q=[((p1) H*°J11Q0=((p1) H* Q.
Now, let X e X(J'E). We have
(1)1 (X) Q= (Lo o)1 (X)Q = (pTo) 1o91) ¥ (X)Q
=(p1e)*1(X)Q =471 ((pD) X)(p1* Q) =41 (Y1) ©)
= gi(YDUTQ0)= (45D (Yo) Qo= y5i(Yo)Qo,

whereY,e X(W),) is such thatYy=J, Y. But asggi(Yo)Qe=0, for everyY,e X(W,), then
we conclude thatjt¢)*i(X)Q =0, for everyX e X(J'E).

Conversely, lej¢:M—J'E such that [1¢)*i(X)Q =0, for everyX e X(J'E), and define
Yo:M—Wy asiy:=(] 1¢,f]?£4°j 1) (observe thaty, takes its values ivV;). Taking into account
that, on the points ofV;, everyY,e X(W),) splits intoYo= Y5+ Y3, with Y5 X(W),) tangent to
Wi, andY3e 2VeD(ON,), we have that

U5i(Yo) Qo= y5i(Yg) Qo+ Y5i(Y5)Q0=0,
because foh(é, the same reasoning as (@) leads to
Ui (Y5) Qo= (j"$)*1(Xg) Q=0

[whereX3=(p1); *Ya] and for Y3, following also the same reasoning as(®), a local calculus
gives

A
U5i(Yo) Qo=(j'¢)* { ( fX(X)< v~ (9—) ) d™x

sincejl¢ is a holonomic section.
The result for the section&Lej1¢ is a direct consequence of tleguivalence theorerhe-
tween the Lagrangian and Hamiltonian formalis(ese, for instance, Refs. 12 and)31 |

Remark:The results in this section can also be recovered in coordinates taking an arbitrary
local vector fieldY o= fA(a/dy”) +gh(al dv™) + h&(dlaps) € X(W,), then

i(Yo)Qo=— fA(aL/ay”)d™x+ FAdpLOd™ *x,, + g4(ps— (LI v %)) d™x

+hgvAd™— hgdyA0d™ *x,,

and, for a sectiony, fulfilling (8),
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, apx  JL aL ay”
0=yi(Yo)Qo=| A| —— — | +¢°| pi— — vA— = | |d™x
Poi(Yo) o (6X”‘ &yA> ga( Pa P o« a

+ha

[e3

reproduces the Euler—Lagrange equations, the restricted Legendré&hagjs, the definition of
the momenty and the holonomy condition.

Summarizing, Eq(8) gives different kinds of information, depending on the type of vertical-
lity of the vector fieldsY, involved. In particular, we have obtained equations of three different
classes:

(1) Algebraic (not differentia) equations, determining a subsat; of WW,, where the sections
solution must take their values. These can be cagli@mary Hamiltonian constraintsand in
fact they generate, bfyg projection, the primary constraints of the Hamiltonian formalism for
singular Lagrangians, i.e., the image of the Legendre transformafi6()'E) C J*E.

(2) The holonomic differential equations, forcing the sections solutignto be lifting of
mr-sections. This property is similar to the one in the unified formalism of Classical Mechanics,
and it reflects the fact that the geometric condition in the unified formalism is stronger than the
usual one in the Lagrangian formalism.

(3) The classical Euler—Lagrange equations.

C. Field equations for m-vector fields, connections, and jet fields

The problem of finding sections solution (8) can be formulated equivalently as follows:
finding a distributionD of T(W,) such that it is integrablé&hat is,involutive), m-dimensional,
pOM-transverse, and the integral manifoldsixf are the sections solution to the above equations.
(Note that we do not ask them to be lifting @fsections; that is, the holonomic conditipiThis
is equivalent to stating that the sections solution to this problem are the integral sections of one of
the following equivalent elements:

» A class of integrable and‘,?,'-transversen-vector fields{ X} C X™(W,) satisfying that
i(Xg)Qo=0, for every Xye{Xg}- (10
* An integrable connectioNj in p?AZWOHM such that
1(V)Qo=(Mm=1)Qy. (1)
« An integrable jet field¥ ,: W,— J'W,, such that
i(Vg)Qp=0. (12

Locally decomposable and‘ﬁ,,—transversm}vector fields, orientable jet fields, and orientable
connections, which are solutions of these equations will be cdllegrange-Hamiltonian
m-vector fields, jet fieldsandconnectiondor (W,,().

Recall that, in a natural chart i, the local expressions of a connection form, its associated
jet field, and them-multivector fields of the corresponding associated class are

N ] a
Vo=dx“® | — +F,— +G,,—% +Hia ,

X« ay v, Ipa
\PO:(XavyAvvgng'lGéy]!HZA)v (13)
N a

Xo=f 0| —+F,—=+Ga—a+Haa ,
a=1\ X ay v’ Ipa
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wheref e C*(JXE) is an arbitrary nonvanishing function. A representative of the dssan be
selected by the conditioi(X) (Ef\’,,* w)=1, which leads td =1 in the above local expression.

Now, the equivalence of the unified formalism with the Lagrangian and Hamiltonian formal-
isms can be recovered as follows:

Theorem 2: Let{X,} be a class of integrable Lagrangelamiltonian m-vector fields iV,
whose elements )XW,— A™TW, are solutions to (10), and 168 : Wy— por T*M ®w, TW, be

its associated Lagrangeédamiltonian connection form [which is a solution to (11)], and
Vo Wo—JW, its associated LagrangdHamiltonian jet field [which is a solution to (12)]

(1) For every % e{Xo}, the m-vector field X:J'E—A™TJI'E defined by
XL°P(1):AmTP(1)°Xo,

is a holonomic EulerLagrange m-vector field for the Lagrangian syst¢dtE,Q ) (where
A™Tpd: AMTW,— A™TJ'E is the natural extension ofgk).

Conversely, every holonomic Ewldragrange m-vector field for the Lagrangian system
(J*E,Q ) can be recovered in this way from an integrable Lagrarigamiltonian m-vector field
Xoef%l(Wo).

(2) The Ehresmann connection fop:J'E— 7* T*M ® ;1 TJ'E defined by
V£°P(1): Kwo"Voa

is a holonomic EulerLagrange connection form for the Lagrangian systeE,(),) (where
Ky, is defined as the map making the following diagram commutatses) Diagram b

PUTHM @y, TWy — W | UM @5 TJIE
0
Wo S S J'E

Conversely, every holonomic Ewdragrange connection form for the Lagrangian system
(J'E,Q,) can be recovered in this way from an integrable Lagradgamiltonian connection
form V;.

(3) The jet fieldV ,:J'E— J1I'E defined by
W popi=j'pieWy,

is a holonomic EulerLagrange jet field for the Lagrangian systéh'E,() ;). Conversely, every
holonomic EulerLagrange jet field for the Lagrangian syst¢dtE,() ;) can be recovered in this
way from an integrable Lagrangéiamiltonian jet field¥ .

(Proof) Let X, be a pp-transversalm-vector field on, solution to (10). As sections
¥o:M—W, solution to the geometric equatiai8) must take value iV, then X, can be
identified with am-vector field X;:Wy— AW, (i.e., AmleoX1=Xo|Wl), and hence, there
existsX . :J'E— AMTJ'E such thatX;= A™T(p]) X, XM(W),). Therefore as a consequence
of item (1) in theorem 1, for every sectiapy, solution to(8), there existX% e X™(j14(M)) such
thatAmTj¢oX%=X£|j1¢(M), wherej , :j1¢—E is the natural imbedding. S¥, is 7-transversal
and holonomic. Then, bearing in mind thgtQ,=pi* Q ., we have

J31(X)Qo=1(X1) U3 Qo) =1(X1)(pT* Q) =p1*i(X)Qp,
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theni(Xg)Qo=0=i(X,)Q,=0.

Conversely, given an holonomic Euler—Lagramgeector fieldX,, fromi(X,)Q,.=0, and
taking into account the above chain of equalities, we obtaini{¥g) Qo e[ X(V;)1° [the anni-
hilator of X(W;)]. Moreover, beingX . holonomic,X, is holonomic, and then the extra condition
i(Yo)i (Xo)Qo=0 is also fulfilled for everyYye XV¥D(W,). Thus, remembering thaft,, Wo
=TW1aVyy, (p}), we conclude that(X)2o=0.

The proof for Ehresmann connections and jet fields is straightforward, taking into account that
they are equivalent alternative descriptions in the Lagrangian formalism. |

This statement also holds for nonintegrable classesrwéctor fields, connections, and jet
fields in W,, but now the corresponding classes of Euler—Lagrangector fields, connections
and jet fields inJ*E will not be holonomic(but only semi-holonomic To prove this assertion it
suffices to compute Eq10) in coordinates, using the local expressigisand(13), concluding
then that, in the expression§3), F§=v§, which is the local expression of the semi-holonomy
condition (see, also, Ref.)9

Finally, the Hamiltonian formalism is recovered in the usual way, by using the following:

Theorem 3: Let (J'*E,Q)},) be the Hamiltonian system associated with a (hyper) regular
Lagrangian systentJ'E,Q ).

(1) (Equivalence theorem for -wector field$ Let X,e XM(J'E) and X, e XM(J*E) be the
m-vector fields solution to the Lagrangian and the Hamiltonian problems respectively. Then

AmTFEOXL: fXHofﬁ,
for some fe C*(J'* E) (we say that the classdX,} and{X,} are FL-related)

(2) (Equivalence theorem for jet fields and connections))etnd ),, be the jet fields solution

of the Lagrangian and the Hamiltonian problems respectively. Then

JYFLo Y =Yy FL

(we say that the jet fieldy, and );, are FL-related). As a consequence, their associated

connection formsV, and V;, respectively, areFL-related, too

(For almost-regular systems the statement is the same, but chanyjifig far P).

(Proof) See Ref. 31(The proof for the almost-regular case follows in a straight-forward
way.) |

As a consequence of these latter theorems, similar comments to those made at the end of Secs.
IIA and 1IB about the existence, integrability, and nonuniqueness of Euler—Lagrange and
Hamilton—de Donder—Weyin-vector fields, connections, and jet fields, can be applied to their
associated elements in the unified formalism. In particular, for singular systems, the existence of
these solutions is not assured, except perhaps on some submaiifold;, and the number of
arbitrary functions which appear depends on the dimensio§ ahd the rank of the Hessian
matrix of L (an algorithm for finding this submanifold is outlined in Rej. The integrability of
these solutions is not assur@/en in the regular cageexcept perhaps on a smaller submanifold
7—S such that the integral sections are contained.in

IV. EXAMPLE: MINIMAL SURFACES (in R3)

[In Ref. 9 we find another interesting example, Busonic stringwhich is a singular modg|
described in this unified formalisin.

A. Statement of the problem: Geometric elements

The problem consists in looking for mappingsU C R2— such that their graphs have mini-
mal area as sets df°, and satisfy certain boundary conditions.
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For this model, we have thl =R?, E=R?XR, and
NE=m*T*R2@R=m*T*M=7*T*R?,
Mma=7m*(TMX yE) (affine maps fromJE to #* A°T*M),
J¥E=7*TM=7n*TR? (classes of affine maps from'E to 7* A2T*M).

The coordinates i*E, J**E and M are denoted x},x?,y,v1,05), (x5x?y,ptp?), and
(x1,x2,y,pt,p%,p), respectively. Ifw=dx'0dx?, the Lagrangian density is

L=[1+ (v1)?+ (v,)?]Y2dx Odx?= Ldx*Odx?,

2 2
_E _2 1 2
1 (L) (L))dXDdx,

and the PoincareCartan forms are

1% 1%
@Lzrlddexz— TzddeXl‘f‘ L

2] U U1 2 U2 2
Q,=—d T OdyOdx2+d T OdyOdx*—d|L| 1— ) —\T Odx*Odx?.
The Legendre maps are
]—'L(xl,xz,y,vl,vz)=(Xl,xz,y,E,E),
L'L
2 2

Trixl 2 _[y1,2,, Y1 V2 _(Ul)_(Uz)

fﬁ(x !X 7y|U1,U2)_(X 1X yya L I L I L L )
and thenZ is hyperregular. The Hamiltonian function is

H=—-[1-(pH*=(p»*" (14

So the Hamilton—Cartan forms are
0,= ptdyOdx?— p?dyOdx*— HdxOdx?,
Q= —dp*OdyOdx?+ dp?Ody Odx* + dH Odx* Cdx?.
B. Unified formalism
For the unified formalism we have

W=m*T*MXgm* (TMXyE), W,=m*T*MXgm* TM=7*(T*M X yTM).

W:(Xlaxzyy!v]_leypl!pzyp) EWY
the coupling form is
C=(ptv,+ p2v,+ p)dx 0dx?,

therefore,
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Wo={(x!,x2,y,01,v5,p",p%,p) e W[ 1+ (v1)?+ (v2)?]Y2= pv,— p?v,— p=0},
and we have the forms
Qo= ([1+ (v1) %+ (v2)2]¥2— plv, — p?v,) dx* Odx?— p2dy Odx, + pidyCdx,,
Qo=—d([1+ (v1)%+ (v2)?]Y?— pv,— p?v,) Ddx*Odx?+ dp?Ody Cldx, — dp* Ody Cdx, .

Taking firstbg—vertical vector fieldsy/dv , we obtain

o=il -2 = pe— 22| dxi0ax?
_'ava o= | P T axTLAx

which determines the submanifoldﬁ:graph% (diffeomorphic toJ'E), and reproduces the
expression of the Legendre map. Now, takimf;vertical vector fieldsd/dp®, the contraction
i(dlap*)Qq gives, fora=1,2, respectively,

v Oxt0dx2—dyOdx?,  v,dx*Odx?+ dyOddx?,
so that, for a section
lpO: (Xlaxziy(xllxz)!v 1(X1!X2) !UZ(XllXZ) ’ pl(xl'XZ) y pZ(Xl’XZ)),

taking values inV;, we have that the condition

| 9
l/’(’)‘{'( )Qo =0
ap“
leads to
J J
(vl——yl dx'Odx?=0, (vz— _y2> dx'Odx2=0,
X X

which is the holonomy condition. Finally, taking the vector figidy we have
| d
i ( @) Qo= —dp?0dx!+ dptddx?,

and, for a sectiony, fulfilling the former conditions, the equation

)
o=l 1o
leads to

ap?  opt
o= 2+ P ) axtpae

ax%  oxt
_| 9 (v v2 1y 2
- axl( L)+ax2( L) cbx”Llax

ay\?\ Ay _ay ay Py
ax2) | axtoxt  axt ax? oxtox?

1+ dx*Odx?,
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which gives the Euler—Lagrange equation of the problem.

Now, bearing in mind14), and the expression of the Legendre map, from the Euler—Lagrange
equations we get

aay

gpt  9p?

axt ax?’

pt day  p*
oxt H’ H'

X

N

which are the Hamilton—De Donder—Weyl equations of the problem.

The mrvector fields, connections and jet fields which are the solutions to the problem in the
unified formalism are

XO:f

d dvy 9 vy, 9 Ipt a  ap? 4
E"'Ulw T T A N )

_|._
axt dvy  gxt dva  oxt gpt  oxt gp?

. d . g vy 9 dv, 9 Ipt 9 +ap2 d
— T Uy — — s . T T T S T
27720y gk vy gx2 vz gx2 apt ox? ap?

vy dvy v, duy dpt apt ap? ap?
’\Ij = Xlaxzyy!plypz;v R N e T et e ek
0 ( V2 ax T ax  axt ax2 " axt ax T oxt ox?

g dvy 9 dv, 9 Ipt 9 Ip? 9
Vo=adx'®| —+vj—F — —F — — + — — + —— —
° oxt Y axt dur gxt dva oxtapt oxt ap?
9 dvy 9 dv, 9 Ipt 9 Ip? 9
+02®| —Hv,—t——t+— —+— —+ — —
ax2 20y gx2 vy gx2 dva gx2 apt ax? op?

(f being a nonvanishing functiorwhere the coefficientsu ,/9x*= 9%yl Ix”9x* are related by the

Euler—Lagrange equations, and the coefficienqt¥ ox” are related by the Hamilton—De Donder—
Weyl equationdthe third one. Hence, the associated Euler—Lagrangeector fields, connections
and jet fields which are the solutions to the Lagrangian problem are

Y B e S S P B R A S A S
,C: - vl_ o o -, vZ_ 5 o 5 o |
axt dy gxt vy gxt dva NG Iy  gx2 vy gx2 dvy
(901 071)1 (902 (9U2
\I,[,: Xlaxzyyipllpz;v]JUZ!_1_1_!_ )
( axt ox? oxt ax?
O I A N T AN T B L0 d g
=d'®| —+v—t — —F— — |+ —tvt— —+ — — ],
£ axt U1y axt vy gxt dvy NG Y25y ax2 vy gx2 dua

and the corresponding Hamilton—De Donder—Wayl/ector fields, connections, and jet fields
which are the solutions to the Hamiltonian problem are

XH:f

NG

_— —_— J’_ R
axt ay  gxtopt  oxt op? y  gx% gpt  ox? op?

g pta oapt o ap? 9 g p>a oapt o ap? 9
T gt +—— “H 3 — ,

B P
H ] 1 Y ] ] Ha Haﬁxlyaxzyaxlyaxz I
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Jd p
= 1 —_——
Vy=dx ® ~d H

V. CONCLUSIONS AND OUTLOOK

We have generalized tirRusk-Skinner unified formalisrto first-order classical field theories.
Corresponding to the Whitney sumQXoT*Q in autonomous mechanics, here we take&

X eMr as standpoint, but the field equations are stated in a submabiigtdJ'EX ¢ M 7. As a
particular case of this situation, the unified formalism for nonautonomous mechanics is recovered,
the Whitney sum being no@*E X ¢ T* E, where7:E—R is the configuration bundfé® Once the
suitable (pre) multisymplectic structures are introduced, the field equations can be written in
several equivalent ways: using sections and vector fi@ds ,, m-vector fields(10), connec-

tions (11), or jet fields(12).

Starting from Eq(8), we have seen how, when different kinds of vertical vector fieldg/in
are considered, this equation gives a different type of information. In particular, ﬁ%mgrtical
vector fields, we can define a submanifdld;—W,, which turns out to be the graph of the
(extendedl Legendre transformatiofand hence diffeomorphic td'E). Furthermore, the field
equations are only compatible iV;. As sections solution to the field equations take values in
Wi, they split in a natural way into two componentg= (. ,%;), (with ¢,:M—J'E, and
sz:%ozpﬁ). Then, takingpS-vertical vector fields in(8), we have proved that the sections
solution to the field equations in the unified formalism are automatically holonomic, even in the
singular case. They are so in the following sense: for every segtjorolution in the unified
formalism, the corresponding sectign is holonomic.(As a special case, nonintegralotevector
fields, connections and jet fields which are solutions to the field equations are semi-holdnomic.
These solutions only exist in general in a submanifold/gf. Finally, considering(8) for a
generic vector field, the Euler—Lagrange equationsfpr and the Hamilton—De Donder—Weyl
equations forue iy =FLoys, arise in a natural way. Conversely, starting from sectigns
=jl¢ and FLoy, solutions to the corresponding field equations, we can recover seakpns
solution to (8). Thus, we have shown the equivalence between the standard Lagrangian and
Hamiltonian formalisms and the unified one. This equivalence has been also proveddator
fields, connections and jet fields.

Although the subject is not considered in this wotkpperatordi.e., the analogous operators
in field theories to the so-calleevolution operatorin mechanicy in their different alternative
definitions>3 can easily be recovered from the unified formalism, similarly to the case of classical
mechanics.

In a forthcoming paper, this formalism will be applied to give a geometric framework for
optimal control with partial differential equations. Although this subject has been dealt with in the
context of functional analysis, to our knowledge there has been no geometric treatment of it to
date.
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APPENDIX: m-VECTOR FIELDS, JET FIELDS, AND CONNECTIONS IN JET BUNDLES

(See Refs. 17 and 27 for the proofs and other details of the following assertions.

Let E be an-dimensional differentiable manifold. Fon<n, sections ofA™(TE) are called
m-vector fieldsn E (they are contravariant skew-symmetric tensors of ordén E). We denote
by X™(E) the set ofmvector fields inE. Y e X™(E) is said to belocally decomposablé, for
every peE, there exists an open neighborhotf,CE and Y,,...,Y,e X(U,) such that

Y=Y,O---0Y,,. Contraction ofm-vector fields and tensor fields Bis the usual one.
Up
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We can define the following equivalence relationYifY’ e X™(E) are nonvanishing+vector
fields, thenY~Y’ if there exists a nonvanishing functidre C*(E) such thatY’'=fY (perhaps
only in a connected open s&tCE). Equivalence classes will be denoted Pg. There is a
one-to-one correspondence between the setdimensional orientable distributiom®in TE and
the set of the equivalence clasg¥$ of nonvanishing, locally decomposabtevector fields inE.
Then, there is a bijective correspondence between the set of classes of locally decomposable and
m-transversam-vector fields{Y}C 2™(E), and the set of orientable jet fields:E— J'E; that is,
the set of orientable Ehresmann connection fokria 7:E— M. This correspondence is charac-
terized by the fact that the horizontal subbundle associatedWithnd V) coincides withD(Y).

If Ye X™(E) is nonvanishing and locally decomposable, the distribution associated with the
class{Y} is denotedD(Y). A nonvanishing, locally decomposahbtevector fieldY e X™(E) is
said to beintegrable (respectively,involutive if its associated distributioy(Y) is integrable
(respectively, involutive Of course, ifY e X™(E) is integrable(respectively, involutivg then so
is every mvector field in its equivalence clady}, and all of them have the same integral
manifolds. Moreovert-robenius’ theorenallows us to say that a nonvanishing and locally decom-
posablem-vector field is integrable if, and only if, it is involutive. Of course, the orientable jet
field ¥, and the connection forii associated witHY} are integrable if, and only if, so ¥, for
everyY e{Y}.

Let us consider the following situation: if:E— M is a fiber bundle, we are concerned with
the case where the integral manifolds of integrabtgector fields inE are sections ofr. Thus,

Ye X™(E) is said to bewn-transverseif, at every pointy e E, (i(Y)(#*B)),#0, for everyg
e QM(M) such thatB(w(y))#0. Then, ifY e X™(E) is integrable, it ist-transverse if its integral
manifolds are local sections af. In this case, ifp:UCM—E is a local section with(x) =y and
¢(U) is the integral manifold off throughy, thenT,(Im ¢) is Dy(Y). Integral sectiongp of the
class{Y} can be characterized by the conditiéA'T p=fYo ooy, , Wwhereoy :A"TM— M is the
natural projection, and e C*(E) is a nonvanishing function.

As a particular case, l1dX}:J'E—D™TI*EC{A™TJE} be a class of nonvanishing, locally
decomposable and*-transversan-vector fields inJ'E, ¥:J'E— JJ'E its associated jet field,
andV:J'E—7* TM® ;1 TJ'E its associated connection form. Then, these elements are said to
be holonomicif they are integrable and their integral sectiand — J'E are holonomic. Further-
more, consider the (fh)-tensor field inJ*E defined by7:=i (V) (7'* o), whose local expression
is j=(dyA—v§dx“) Od™ 1x,® a/auﬁ. A connection formV in 7w1:J'E—M (and its associated
jet field W:J'E— JXJ'E) are said to besemi-holonomidqor a second order partial differential
equation), if

m
—_———

JRY,...,hn")=0,

whereh" denotes the horizontal projector associated Withf {X}C x™(JIE) is the associated
class ofr-transverse multivector fields, then this condition is equivalenf(t§) =0, for every
Xe{X}. Then the clas§X}, and its associated jet fielt and connection forn¥ are holonomic if,
and only if, they are integrable and semi-holonomic.
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