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TheRusk–Skinner formalismwas developed in order to give a geometrical unified
formalism for describing mechanical systems. It incorporates all the characteristics
of Lagrangian and Hamiltonian descriptions of these systems~including dynamical
equations and solutions, constraints, Legendre map, evolution operators, equiva-
lence, etc.!. In this work we extend this unified framework to first-order classical
field theories, and show how this description comprises the main features of the
Lagrangian and Hamiltonian formalisms, both for the regular and singular cases.
This formulation is a first step toward further applications in optimal control theory
for partial differential equations. ©2004 American Institute of Physics.
@DOI: 10.1063/1.1628384#

I. INTRODUCTION

In ordinary autonomous classical theories in mechanics there is a unified formulati
Lagrangian and Hamiltonian formalisms,1 which is based on the use of theWhitney sumof the
tangent and cotangent bundlesW5TQ% T* Q[TQ3QT* Q ~the velocity and momentum phase
spacesof the system!. In this space, velocities and momenta are independent coordinates. Th
a canonical presymplectic formV ~the pull-back of the canonical form inT* Q), and a natural
coupling function, locally expressed aspiv

i , is defined by contraction between vectors and c
ectors. Given a LagrangianLPC`(TQ), a Hamiltonian function, locally given byH5piv

i

2L(q,v), is determined, and, using the usual constraint algorithm for the geometric equ
i (X)V5dH associated to the Hamiltonian system (W,V,H), we obtain that

~1! The first constraint submanifoldW1 is isomorphic toTQ, and the momenta]L/]v i5pi are
determined as constraints.

~2! The geometric equation contains the second order conditionv i5dqi /dt.
~3! The identificationW1[TQ allows us to recover the Lagrangian formalism.
~4! The projection to the cotangent bundle generates the Hamiltonian formalism, including

straints. The Legendre map and the time evolution operator are straightforwardly obtain
the previous identification and projection.2
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It is also worth noticing that this space is also appropriate for the formulation of different kin
problems in optimal control.3–7 Furthermore, in Refs. 8 and 9 this unified formalism has b
extended for nonautonomous mechanical systems.

Our aim in this paper is to reproduce the same construction for first-order field the
generating a unified description of Lagrangian and Hamiltonian formalisms and its corre
dence, starting from the multisymplectic description of such theories.~See, for instance, Refs
10–18, for some general references on this formalism. See, also, Refs. 19–25, for other ge
formulations of field theories.! As is shown throughout the paper, characteristics analogou
those pointed out for mechanical systems can be stated in this context. In Ref. 9, a first ap
to this subject has been made, focusing mainly on the constraint algorithm for the singular

The organization of the paper is as follows: Sec. II is devoted to reviewing the main fea
of the multisymplectic description of Lagrangian and Hamiltonian field theories. In Sec. II
develop the unified formalism for field theories: starting from theextended jet-multimomentum
bundle~analogous to the Whitney sum in mechanics!, we introduce the so-calledextended Hamil-
tonian systemand state the field equations for sections,m-vector fields, connections, and jet field
in this framework. It is also shown how the standard Lagrangian and Hamiltonian descriptio
recovered from this unified picture. As a typical example, theminimal surface problemis de-
scribed in this formalism in Sec. IV. Finally, we include an Appendix where basic features a
connections, jet fields, andm-vector fields are displayed.

Throughout this paperp:E→M will be a fiber bundle (dimM5m, dimE5N1m), whereM
is an oriented manifold with volume formvPVm(M ). p1:J1E→E is the jet bundle of local
sections ofp, and p̄15p+p1:J1E→M gives another fiber bundle structure. (xa,yA,va

A) will
denote natural local systems of coordinates inJ1E, adapted to the bundleE→M (a51,...,m; A
51,...,N), and such thatv5dx1∧•••∧dxm[dmx. Manifolds are real, paracompact, connecte
andC`. Maps areC`. Sum over crossed repeated indices is understood.

II. GEOMETRIC FRAMEWORK FOR CLASSICAL FIELD THEORIES

A. Lagrangian formalism

~For details concerning the contents of this and the next section, see, for instance,
10–13, 17, 18, and 26–31. See, also, the Appendix!.

A classical field theoryis described by giving aconfiguration fiber bundlep:E→M and a
Lagrangian density, which is a p̄1-semibasicm-form on J1E usually written asL5Lp̄1* v,
whereLPC`(J1E) is theLagrangian functiondetermined byL andv. ThePoincaré–Cartan m
and (m11)-formsassociated with the Lagrangian densityL are defined using thevertical endo-
morphismV of the bundleJ1E ~see Ref. 30!

QLª i ~V!L1LPVm~J1E!; VLª2dQLPVm11~J1E!.

A Lagrangian systemis a couple (J1E,VL). It is regular if VL is a multisymplectic (m11)-form
~a closedm-form, m.1, is calledmultisymplecticif it is one-nondegenerate; elsewhere it
pre-multisymplectic!. In natural charts inJ1E we have

V5~dyA2va
Adxa! ^

]

]vn
A

^
]

]xn
,

and

QL5
]L

]vm
A

dyA∧dm21xm2S ]L

]vm
A

vm
A2L D dmx,
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VL52
]2L

]vn
B]va

A
dvn

B∧dyA∧dm21xa2
]2L

]yB]va
A

dyB∧dyA∧dm21xa1
]2L

]vn
B]va

A
va

Advn
B∧dmx

1S ]2L

]yB]va
A

va
A2

]L

]yB
1

]2L

]xa]va
BD dyB∧dmx

~where dm21xa[ i (]/]xa)dmx); the regularity condition is equivalent to det(]2L/]va
A]vn

B(ȳ))Þ0, for
every ȳPJ1E.

The Lagrangian problemassociated with a Lagrangian system (J1E,VL) consists in finding
sectionsfPG(M ,E), the set of sections ofp, which are characterized by the condition

~ j 1f!* i ~X!VL50, for every XPX~J1E!.

In natural coordinates, iff(x)5(xa,fA(x)), this condition is equivalent to demanding thatf
satisfy theEuler–Lagrange equations

]L

]yAU
j 1f

2
]

]xa S ]L

]va
AD U

j 1f

50 ~ for A51,...,N!. ~1!

The problem of finding these sections can be formulated equivalently as follows: find
distribution D of T(J1E) such that it is integrable~that is, involutive!, m-dimensional,
p̄1-transverse, and the integral manifolds ofD are the image of sections solution of the abo
equations~therefore, lifting ofp-sections!. This is equivalent to stating that the sections solut
to the Lagrangian problem are the integral sections of one of the following equivalent elem

• A class of holonomicm-vector fields$XL%,Xm(J1E), such thati (XL)VL50, for every
XLP$XL%.

• A holonomic connection¹L in p̄1:J1E→M such thati (¹L)VL5(m21)VL .

• A holonomic jet fieldCL :J1E→J1J1E, such thati (CL)VL50 ~the contraction of jet fields
with differential forms is defined in Ref. 11!.

Semi-holonomic locally decomposablem-vector fields, jet fields, and connections which are
lution to these equations are calledEuler–Lagrange m-vector fields, jet fields, andconnectionsfor
(J1E,VL). In a natural chart inJ1E, the local expressions of these elements are

XL5 f ∧
a51

m S ]

]xa
1Fa

A ]

]yA
1Gan

A ]

]vn
AD ,

¹L5dxa
^ S ]

]xa
1Fa

A ]

]yA
1Gan

A ]

]vn
AD ,

CL5~xa,yA,va
A ,Fa

A ,Gah
A !,

with Fa
A5va

A ~which is the local expression of the semi-holonomy condition!, and where the
coefficientsGan

A are related by the system of linear equations

]2L

]va
A]vn

B
Gan

A 5
]L

]yB
2

]2L

]xn]vn
B
2

]2L

]yA]vn
B

vn
A ~A,B51,...,N!. ~2!
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f PC`(J1E) is an arbitrary nonvanishing function. A representative of the class$XL% can be
selected by the conditioni (XL)(p̄1* v)51, which leads tof 51 in the above local expression
Therefore, ifj 1f5(xm,fA,]fA/]xn) is an integral section ofXL , thenva

A5]fA/]xa, and hence,
the coefficientsGan

B must satisfy the equations

Gnh
A S xa,fA,

]fA

]xa D 5
]2fA

]xh]xn
~A51,...,N; h,n51,...,m!.

As a consequence, the system~2! is equivalent to the Euler–Lagrange Eq.~1! for f.
If ( J1E,VL) is a regular Lagrangian system, the existence of classes of Euler–Lag

m-vector fields forL ~or what is equivalent, Euler–Lagrange jet fields or connections! is assured.
For singular Lagrangian systems, the existence of this kind of solutions is not assured
perhaps on some submanifoldS�J1E. Furthermore, solutions of the field equations can exist~in
general, on some submanifold ofJ1E), but none of them are semi-holonomic~at any point of this
submanifold!. In both cases, the integrability of these solutions is not assured, except perha
a smaller submanifoldI such that the integral sections are contained inI.

B. Hamiltonian formalism

For the Hamiltonian formalism of field theories, we have theextended multimomentum bund
Mp, which is the bundle ofm-forms onE vanishing by contraction with twop-vertical vector
fields @or equivalently, the set of affine maps fromJ1E to p* LmT* M ~Refs. 10 and 32!#, and the
restricted multimomentum bundle J1* E[Mp/p* LmT* M . We have the natural projections

t1:J1* E→E, t̄15p+t1:J1* E→M , m:Mp→J1* E, m̂5 t̄1+m:Mp→M .

Given a system of coordinates adapted to the bundlep:E→M , we can construct natural coord
nates (xa,yA,pA

a ,p) (a51,...,m; A51,...,N) in Mp, corresponding to them-covectorp5pdmx
1pA

adyA∧dm21xaPMp, and (xa,yA,pA
a) in J1* E, for the class@p#5pA

adyA∧dm21xa1^dmx&
PJ1* E.

Now, if (J1E,VL) is a Lagrangian system, theextended Legendre mapassociated withL,
FL̃:J1E→Mp, is defined as

@FL̃~ ȳ!#~Z1 ,...,Zm!ª~QL! ȳ~ Z̄1 ,...,Z̄m!, ~3!

where Z1 ,...,ZmPTp1( ȳ)E, and Z̄1 ,...,Z̄mPTȳJ
1E are such thatTȳp

1Z̄a5Za . Then there-

stricted Legendre mapassociated withL is FLªm+FL̃. Their local expressions are

FL̃* xa5xa, FL̃* yA5yA, FL̃* pA
a5

]L

]va
A

, FL̃* p5L2va
A ]L

]va
A

,

FL* xa5xa, FL* yA5yA, FL* pA
a5

]L

]va
A

.

Therefore, (J1E,VL) is a regular Lagrangian system ifFL is a local diffeomorphism~this defi-
nition is equivalent to that given above!. Elsewhere (J1E,VL) is asingularLagrangian system. As
a particular case, (J1E,VL) is a hyper-regularLagrangian system ifFL is a global diffeomor-
phism. A singular Lagrangian system (J1E,VL) is almost-regularif: PªFL(J1E) is a closed
submanifold ofJ1* E ~we will denote the natural imbedding by :P�J1* E), FL is a submersion
onto its image, and for everyȳPJ1E, the fibresFL21(FL( ȳ)) are connected submanifolds o
J1E.

In order to construct aHamiltonian systemassociated with (J1E,VL), recall that the multi-
cotangent bundleLmT* E is endowed with a natural canonical formQPVm(LmT* E), which is
1 Jul 2010 to 161.116.168.227. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp
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the tautological form defined as follows: lettE :T* E→E be the natural projection, an
LmtE :LmT* E→E its natural extension; then, for everyp̄PLmT* E ~where p̄5(y,b), with y
PE andbPLmTy* E), and for everyX1 ,...,XmPX(LmT* E) we have

@Q~X1 ,...,Xm!# p̄ª@~LmtE!* b#~X1p̄
,...,Xmp̄

!5b~Tp̄L
mtE~X1p̄

!,...,Tp̄L
mtE~Xmp̄

!!.

Thus we also have the multisymplectic formVª2dQPVm11(LmT* E). But Mp[L1
mT* E is

a subbundle ofLmT* E. Then, if l:L1
mT* E�LmT* E is the natural imbedding,Qªl*Q and

Vª2dQ5l*V are canonical forms inMp, which are called themultimomentum Liouville mand
(m11) forms. In particular, we have thatQ(p)5(t1+m)* p, for everypPMp. Their local ex-
pressions are

Q5pA
adyA∧dm21xa1pdmx, V52dpA

a∧dyA∧dm21xa2dp∧dmx. ~4!

Observe thatFL̃* Q5QL , andFL̃* V5VL .
Now, if (J1E,VL) is a hyper-regular Lagrangian system, thenP̃ªFL̃(J1E) is a one-

codimensional andm-transverse imbedded submanifold ofMp ~we will denote the natural im-
bedding bỹ :P̃�Mp), which is diffeomorphic toJ1* E. This diffeomorphism ism21, whenm is
restricted toP̃, and also coincides with the maphªFL̃+FL21, when it is restricted onto its imag
~which is justP̃!. This maph is called aHamiltonian section, and can be used to construct th
Hamilton-Cartan mand (m11) formsof J1* E by making

Qh5h* QPVm~J1* E!, Vh5h* VPVm11~J1* E!.

The couple (J1* E,Vh) is said to be theHamiltonian systemassociated with the hyper-regula
Lagrangian system (J1E,VL). Locally, the Hamiltonian sectionh is specified by thelocal Hamil-
tonian function H5pA

a(FL21)* va
A2(FL21)* L, that is, h(xa,yA,pA

a)5(xa,yA,pA
a ,2H). Then

we have the local expressions

Qh5pA
adyA∧dm21xa2Hdmx, Vh52dpA

a∧dyA∧dm21xa1dH∧dmx.

Of courseFL* Qh5QL andFL* Vh5VL .
The Hamiltonian problemassociated with the Hamiltonian system (J1* E,Vh) consists in

finding sectionscPG(M ,J1* E), which are characterized by the condition

c* i ~X!Vh50, for every XPX~J1* E!.

In natural coordinates, ifc(x)5(xa,yA(x),pA
a(x)), this condition leads to the so-calle

Hamilton–De Donder–Weyl equations~for the sectionc!.
The problem of finding these sections can be formulated equivalently as follows: find

distribution D of T(J1* E) such that D is integrable ~that is, involutive!, m-dimensional,
t̄1-transverse, and its integral manifolds are the sections solution to the above equations.
equivalent to stating that the sections solution to the Hamiltonian problem are the integral se
of one of the following equivalent elements:

• A class of integrable andt̄1-transversem-vector fields$XH%,Xm(J1* E) satisfying that
i (XH)Vh50, for everyXHP$XH%.

• An integrable connection¹H in t̄1:J1* E→M such thati (¹H)Vh5(m21)Vh .

• An integrable jet fieldCH :J1* E→J1J1* E, such thati (CH)Vh50.

t̄1-transverse and locally decomposablem-vector fields, orientable jet fields, and orientable co
nections, which are solutions of these equations, are calledHamilton–De Donder–Weyl (HDW)
m-vector fields, jet fields, and connectionsfor (J1* E,Vh). Their local expressions in natura
coordinates are
1 Jul 2010 to 161.116.168.227. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp
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XH5 f ∧
a51

m S ]

]xa
1Fa

A ]

]yA
1GAa

h ]

]pA
hD ,

CH5~xa,yA,pA
a ;Fa

A ,GAa
h !,

¹H5dxa
^ S ]

]xa
1Fa

A ]

]yA
1GAa

n
]

]pA
n D ,

where f PC`(J1* E) is a nonvanishing function, and the coefficientsFa
A , GAa

h are related by the
system of linear equations

Fa
A5

]H

]pA
a

, GAn
n 52

]H

]yA
.

Now, if c(x)5(xa,yA(x)5cA(x),pA
a(x)5cA

a(x)) is an integral section ofXH then

]H

]pA
aU

c

5Fa
A+c5

]cA

]xa
; 2

]H

]yAU
c

5GAa
a +c5

]cA
a

]xa
,

which are the Hamilton–De Donder–Weyl equations forc. As above, a representative of the cla
$XH% can be selected by the conditioni (XH)( t̄1* v)51, which leads tof 51 in the above local
expression. The existence of classes of HDWm-vector fields, jet fields, and connections is a
sured.

In an analogous way, if (J1E,VL) is an almost-regular Lagrangian system, the submani
:P�J1* E, is a fiber bundle overE andM. In this case them-transverse submanifoldP̃�Mp is
diffeomorphic toP. This diffeomorphism is denoted bym̃:P̃→P, and it is just the restriction of
the projectionm to P̃. Then, taking the Hamiltonian sectionh̃ª ̃+m̃21, we define the Hamilton–
Cartan forms

Qh
05h̃* Q; Vh

05h̃* V,

which verify thatFL0* Qh
05QL andFL0* Qh

05VL ~whereFL0 is the restriction map ofFL onto
P!. Then (P,Vh

0) is theHamiltonian systemassociated with the almost-regular Lagrangian sys
(J1E,VL), and we have Diagram 1.

~5!

Then, theHamiltonian problemassociated with the Hamiltonian system (P,Vh
0), and the equa-

tions for the sections ofG(M ,P) solution to the Hamiltonian problem are stated as in the reg
case. Now, the existence of the corresponding Hamilton–De Donder–Weylm-vector fields, jet
fields, and connections for (P,Vh

0) is not assured, except perhaps on some submanifoldP of P,
where the solution is not unique.

From now on we will consider only regular or almost-regular systems.
1 Jul 2010 to 161.116.168.227. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp
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III. UNIFIED FORMALISM

A. Extended Hamiltonian system

Given a fiber bundlep:E→M over an oriented manifold (M ,v), we define theextended
jet-multimomentum bundleW and therestricted jet-multimomentum bundleWr as

WªJ1E3EMp, WrªJ1E3EJ1* E,

whose natural coordinates are (xa,yA,va
A ,pA

a ,p) and (xa,yA,va
A ,pA

a), respectively. We have the
natural projections~submersions!

r1 :W→J1E, r2 :W→Mp, rE :W→E, rM :W→M ,
~6!

r1
r :Wr→J1E, r2

r :Wr→J1* E, rE
r :Wr→E, rM

r :Wr→M .

Note thatp1+r15t1+m+r25rE . In addition, there is also the natural projection

mW :W→Wr ,

~ ȳ,p!°~ ȳ,@p# !.

The bundleW is endowed with the following canonical structures:

Definition 1:

~1! Thecouplingm-form in W, denoted byC, is an m-form alongrM which is defined as follows
for every ȳPJy

1E, with p̄1( ȳ)5p(y)5xPE, and pPMyp, let w[( ȳ,p)PWy , then
C~w!ª~Txf!* p,

wheref:M→E satisfies that j1f(x)5 ȳ.
Then, we denote byĈPVm(W) the rM-semibasic form associated withC.

~2! The canonical m-form QWPVm(W) is defined by QWªr2* Q, and it is therefore
rE-semibasic.

The canonical (m11)-form is the pre-multisymplectic formVWª2dQW5r1* V
PVm11(W).

Being Ĉ a rM-semibasic form, there isĈPC`(W) such thatĈ5Ĉ(rM* v). Note also thatVW
is not one-nondegenerate, its kernel being ther2-vertical vectors; then, we call (W,VW) a pre-
multisymplectic structure. This definition of the coupling form is in fact an alternative~obviously
equivalent! presentation of the extended multimomentum bundle as the set of affine maps fro
jet bundleJ1E to p-basicm-forms.

The local expressions forQW andVW are the same as~4!, and for Ĉ we have

Ĉ~w!5~p1pA
ava

A!dmx.

Given a Lagrangian densityLPVm(J1E), we denoteL̂ªr1* LPVm(W), and we can write
L̂5L̂(rM* v), with L̂5r1* LPC`(W). We define aHamiltonian submanifold

W0ª$wPWuL̂~w!5 Ĉ~w!%.

So,W0 is the submanifold ofW defined by the constraint functionĈ2L̂50. In local coordinates
this constraint function is

p1pA
ava

A2L̂~xn,yB,vn
B!50.
1 Jul 2010 to 161.116.168.227. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp
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We have the natural imbedding0 :W0�W, as well as the projections~submersions!

r1
0:W0→J1E, r2

0:W0→Mp, rE
0:W0→E, rM

0 :W0→M ,

which are the restrictions toW0 of the projections~6!, and r̂2
05m+r2

0:W0→J1* E. So we have
Diagram 2.

Local coordinates inW0 are (xa,yA,va
A ,pA

a), and we have that

r1
0~xa,yA,va

A ,pA
a!5~xa,yA,va

A!,

0~xa,yA,va
A ,pA

a!5~xa,yA,va
A ,pA

a ,L2va
ApA

a!,

r2
0~xa,yA,va

A ,pA
a!5~xa,yA,pA

a ,L2va
ApA

a!,

r̂2
0~xa,yA,va

A ,pA
a!5~xa,yA,pA

a!.

Proposition 1:W0 is a one-codimensionalmW-transversal submanifold ofW, diffeomorphic
to Wr .

~Proof! For every ~ ȳ,p!PW0 , we have L~ ȳ![L̂~ ȳ,p!5Ĉ~ ȳ,p!,

and

~mW+0!~ ȳ,p!5mW~ ȳ,p!5~ ȳ,m~p!!5~ ȳ,@p# !.

First, mW+0 is injective: let (ȳ1 ,p1), (ȳ2 ,p2)PW0 , then we have

~mW+0!~ ȳ1 ,p1!5~mW+0!~ ȳ2 ,p2!⇒~ ȳ1 ,m~p1!!5~ ȳ2 ,m~p2!!⇒ ȳ15 ȳ2 ,m~p1!5m~p2!,

hence,

L~ ȳ1!5L~ ȳ2!5Ĉ~ ȳ1 ,p1!5Ĉ~ ȳ2 ,p2!.

In a local chart, third equality gives

p~p1!1pA
a~p1!va

A~ ȳ1!5p~p2!1pA
a~p2!va

A~ ȳ2!,

but m(p1)5m(p2) implies that
1 Jul 2010 to 161.116.168.227. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp
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pA
a~p1!5pA

a~@p1# !5pA
a~@p2# !5pA

a~p2!,

therefore,p(p1)5p(p2), and hence,p15p2 .
Second,mW+0 is onto: Let (ȳ,p)PWr , then there exists (ȳ,q)P0(W0) such that@q#5@p#.

In fact, it suffices to take@q# in such a way that, in a local chart ofJ1E3EMp5W

pA
a~q!5pA

a~@p# !, p~q!5pA
a~@p# !va

A~ ȳ!2L~ ȳ!.

Finally, observe thatW0 is defined by the constraint functionL̂2Ĉ and, as kermW*
5$]/]p% and ]/]p(L̂2Ĉ)51, then W0 is a 1-codimensional submanifold ofW and
mW-transversal. j

As a consequence of this property, the submanifoldW0 induces a sectionĥ:Wr→W of the
projection mW . Locally, ĥ is specified by giving the localHamiltonian function Hˆ 52L̂
1pA

ava
A ; that is, ĥ(xa,yA,va

A ,pA
a)5(xa,yA,va

A ,pA
a ,2Ĥ). In this sense,ĥ is said to be aHamil-

tonian sectionof mW .

Remark:It is important to point out that, from every HamiltonianmW-sectionĥ:Wr→W in the
extended unified formalism, we can recover a Hamiltonianm-sectionh̃:P→Mp in the standard
Hamiltonian formalism. In fact, given@p#PJ1* E, the sectionĥ maps every point (ȳ,@p#)
P(r2

r )21(@p#) into r2
21@r2(ĥ( ȳ,@p#))#. So, the crucial point is the projectability of the loc

function Ĥ by r2 . But, being]/]va
A a local basis for kerr2* , Ĥ is r2-projectable if, and only if,

pA
a5]L/]vA

a , and this condition is fulfilled when@p#PP5Im FL,J1* E, which implies that
r2@ ĥ(r2

r )21)(@p#))] PP̃5Im FL,Mp. Hence, the Hamiltonian sectionh̃ is defined as follows:

h̄~@p# !5~r2+ĥ!@~r2
r !21~~@p# !!#, for every @p#PP.

So we have Diagram 3~see also Diagram 1!.

~For ~hyper! regular systems this diagram is the same with ImFL5J1* E.)
Finally, we can define the forms

Q0ª j 0* QW5r2
0* QPVm~W0!, V0ª j 0* VW5r2

0* VPVm11~W0!,

with local expressions

Q05~L2pA
ava

A!dmx1pA
adyA∧dm21xa ,

~7!
V05d~pA

ava
A2L !∧dmx2dpA

a∧dyA∧dm21xa ,

and we have obtained a~pre-multisymplectic! Hamiltonian system (W0 ,V0), or equivalently
(Wr ,ĥ* VW).

B. Field equations for sections

The Lagrange-Hamiltonian problemassociated with the system (W0 ,V0) consists in finding
sectionsc0PG(M ,W0) which are characterized by the condition

c0* i ~Y0!V050, for every Y0PX~W0!. ~8!
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This equation gives different kinds of information, depending on the type of the vector fieldY0

involved. In particular, using vector fieldsY0 which arer̂2
0-vertical, we have:

Lemma 1: If Y0PXV( r̂2
0)(W0) (i.e., Y0 is r̂2

0-vertical), then i(Y0)V0 is rM
0 -semibasic.

~Proof! A simple calculation in coordinates leads to this result. In fact, taking$]/]va
A% as a

local basis for ther̂2
0-vertical vector fields, and bearing in mind~7! we obtain

i S ]

]va
AD V05S pA

a2
]L

]va
AD dmx,

which are obviouslyrM
0 -semibasic forms. j

As an immediate consequence, whenY0PXV( r̂2
0)(W0), condition~8! does not depend on th

derivatives ofc0 : is a pointwise~algebraic! condition. We can define the submanifold

W15$~ ȳ,p!PW0u i ~V0!~V0!~ ȳ,p!50, for every V0PV~ r̂2
0!%,

which is called thefirst constraint submanifoldof the Hamiltonian pre-multisymplectic system
(W0 ,V0), as every sectionc0 solution to~8! must take values inW1 . We denote by1 :W1�W0

the natural embedding.
Locally, W1 is defined inW0 by the constraintspA

a5]L/]va
A . Moreover:

Proposition 2:W1 is the graph ofFL̃; that is, W15$( ȳ,FL̃( ȳ))PWu ȳPJ1E%.
~Proof! ConsiderȳPJ1E, let f:M→E be a representative ofȳ, andp5FL̃( ȳ). For every

UPTp̄1( ȳ)M , considerV5Tp̄1( ȳ)f(U) and its canonical liftingV̄5Tp̄1( ȳ) j
1f(U). From the defi-

nition of the extended Legendre map~3! we have that (Tȳp)* (FL̃( ȳ))5(QL) ȳ , then

i ~V̄!@~Tȳp
1!* ~FL̃~ ȳ!!#5 i ~V̄!~QL! ȳ .

Furthermore, asp5FL̃( ȳ), we also have that

i ~V̄!@~Tȳp
1!* ~FL̃~ ȳ!!#5 i ~Tp̄1~ ȳ! j

1f~U !!@~Tȳp
1!* p!

5 i ~Tp1~ ȳ!@~Tp̄1~ ȳ! j
1f~U !# !p5 i ~Tp̄1~ ȳ!f~U !!p5 i ~V!p.

Therefore, we obtain

i ~U !~f* p!5 i ~U !@~ j 1f!* ~QL! ȳ#,

and bearing in mind the definition of the coupling formC, this condition becomes

i ~U !~C~ ȳ,p!!5 i ~U !@~ j 1f!* QL! ȳ].

Since it holds for everyUPTp̄1( ȳ)M , we conclude thatC( ȳ,p)5@( j 1f)* QL# ȳ , or equivalently,
Ĉ( ȳ,p)5L̂( ȳ,p), where we have made use of the fact thatQL is the sum of the Lagrangian
densityL and a contact formi (V!L ~vanishing by pull-back of lifted sections!. This is the con-
dition definingW0 , and thus we have proved that (ȳ,FL̃( ȳ))PW0 , for every ȳPJ1E; that is,
graphFL̃,W0 . Furthermore, graphFL andW1 are defined as subsets ofW0 by the same local
conditions:pA

a2]L/]va
A50. So we conclude that graphFL̃5W1 . j

Being W1 the graph ofFL, it is diffeomorphic toJ1E. Every sectionc0 :M→W0 is of the
form c05(cL ,cH), with cL5r1

0+c0 :M→J1E, and if c0 takes values inW1 then cH5FL̃
+cL . In this way, every constraint, differential equation, etc., in the unified formalism ca
translated to the Lagrangian or the Hamiltonian formalisms by restriction to the first or the s
factors of the product bundle.
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However, as was pointed out before, the geometric condition~8! in W0 , which can be solved
only for sectionsc0 :M→W1,W0 , is stronger than the Lagrangian conditioncL* i (Z)VL50, @for
everyZPX(J1E)] in J1E, which can be translated toW1 by the natural diffeomorphism betwee
them. The reason is thatTW1

W05TW1% VW1
(r1

0), so the additional information comes therefo

from ther1
0-vertical vectors, and it is just the holonomic condition. In fact:

Theorem 1: Let c0 :M→W0 be a section fulfilling Eq. (8), c05(cL ,cH)5(cL ,FL̃+cL),
wherecL5r1

0+c0 . Then:
(1) cL is the canonical lift of the projected sectionf5rE

0+c0 :M→E (that is, cL is a
holonomic section).

(2) The sectioncL5 j 1f is a solution to the Lagrangian problem, and the sectionm+cH
5m+FL̃+cL5FL+ j 1f is a solution to the Hamiltonian problem.

Conversely, for every sectionf:M→E such that j1f is solutions to the Lagrangian problem
(and henceFL+ j 1f is solution to the Hamiltonian problem) we have that the sectionc0

5( j 1f,FL̃+ j 1f), is a solution to (8)~see Diagram 4!.

~Proof!

~1! Taking $]/]pA
a% as a local basis for ther1

0-vertical vector fields:

i S ]

]pA
aD V05va

Admx2dyA∧dm21xa ,

so that for a sectionc0 , we have

05c0* F i S ]

]pA
aD V0G5S va

A~x!2
]yA

]xa D dmx,

and thus the holonomy condition appears naturally within the unified formalism, and it is
necessary to impose it by hand toc0 . Thus, we have thatc05(xa,yA,]yA/]xa,]L/]va

A), sincec0

takes values inW1 , and hence, it is of the formc05( j 1f,FL̃+ j 1f), for f5(xa,yA)5rE
0+c0 .
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~2! Since sectionsc0 :M→W0 solution to~8! take values inW1 , we can identify them with
sectionsc1 :M→W1 . These sectionsc1 verify, in particular, thatc1* i (Y1)V150 holds for every
Y1PX(W1). Obviously,c051+c1 . Moreover, asW1 is the graph ofFL̃, denoting byr1

15r1
0

+1 :W1→J1E the diffeomorphism which identifiesW1 with J1E, if we defineV151* V0 , we
have thatV15r1

1* VL . In fact; as (r1
1)21( ȳ)5( ȳ,FL̃( ȳ)), for every ȳPJ1E, then (r0

2+1

+(r1
1)21)( ȳ)5FL̃( ȳ)PMp, and hence,

VL5~r0
2+1+~r1

1!21!* V5@~~r1
1!21!* +1* +r0

2* #V5@~~r1
1!21!* +1* #V05~~r1

1!21!* V1 .

Now, let XPX(J1E). We have

~ j 1f!* i ~X!VL5~r1
0+c0!* i ~X!VL5~r1

0+1+c1!* i ~X!VL

5~r1
1+c1!* i ~X!VL5c1* i ~~r1

1!
*
21X!~r1

1* VL!5c1* i ~Y1!V1 ~9!

5c1* i ~Y1!~1* V0!5~c1* +1* !i ~Y0!V05c0* i ~Y0!V0 ,

whereY0PX(W0) is such thatY051* Y1 . But asc0* i (Y0)V050, for everyY0PX(W0), then
we conclude that (j 1f)* i (X)VL50, for everyXPX(J1E).

Conversely, letj 1f:M→J1E such that (j 1f)* i (X)VL50, for everyXPX(J1E), and define
c0 :M→W0 asc0ª( j 1f,FL̃+ j 1f) ~observe thatc0 takes its values inW1). Taking into account
that, on the points ofW1 , everyY0PX(W0) splits intoY05Y0

11Y0
2, with Y0

1PX(W0) tangent to

W1 , andY0
2PXV(r1

0)(W0), we have that

c0* i ~Y0!V05c0* i ~Y0
1!V01c0* i ~Y0

2!V050,

because forY0
1, the same reasoning as in~9! leads to

c0* i ~Y0
1!V05~ j 1f!* i ~X0

1!VL50

@whereX0
15(r1

1)
*
21Y0

1] and for Y0
2, following also the same reasoning as in~9!, a local calculus

gives

c0* i ~Y0
2!V05~ j 1f!* F S f A

a~x!S va
A2

]yA

]xa D D dmxG50,

since j 1f is a holonomic section.
The result for the sectionsFL+ j 1f is a direct consequence of theequivalence theorembe-

tween the Lagrangian and Hamiltonian formalisms~see, for instance, Refs. 12 and 31!. j

Remark:The results in this section can also be recovered in coordinates taking an arb
local vector fieldY05 f A(]/]yA)1ga

A(]/]va
A)1hA

a(]/]pA
a)PX(W0), then

i ~Y0!V052 f A~]L/]yA!dmx1 f AdpA
a∧dm21xa1ga

A~pA
a2~]L/]va

A!!dmx

1hA
ava

Admx2hA
adyA∧dm21xa

and, for a sectionc0 fulfilling ~8!,
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05c0* i ~Y0!V05F f AS ]pA
a

]xa
2

]L

]yAD 1ga
AS pA

a2
]L

]va
AD 1hA

aS va
A2

]yA

]xa D Gdmx

reproduces the Euler–Lagrange equations, the restricted Legendre map~that is, the definition of
the momenta!, and the holonomy condition.

Summarizing, Eq.~8! gives different kinds of information, depending on the type of vertic
lity of the vector fieldsY0 involved. In particular, we have obtained equations of three differ
classes:

~1! Algebraic ~not differential! equations, determining a subsetW1 of W0 , where the sections
solution must take their values. These can be calledprimary Hamiltonian constraints, and in
fact they generate, byr̂2

0 projection, the primary constraints of the Hamiltonian formalism
singular Lagrangians, i.e., the image of the Legendre transformation,FL(J1E),J1* E.

~2! The holonomic differential equations, forcing the sections solutionc0 to be lifting of
p-sections. This property is similar to the one in the unified formalism of Classical Mecha
and it reflects the fact that the geometric condition in the unified formalism is stronger tha
usual one in the Lagrangian formalism.

~3! The classical Euler–Lagrange equations.

C. Field equations for m-vector fields, connections, and jet fields

The problem of finding sections solution to~8! can be formulated equivalently as follow
finding a distributionD0 of T(W0) such that it is integrable~that is, involutive!, m-dimensional,
rM

0 -transverse, and the integral manifolds ofD0 are the sections solution to the above equatio
~Note that we do not ask them to be lifting ofp-sections; that is, the holonomic condition.! This
is equivalent to stating that the sections solution to this problem are the integral sections of
the following equivalent elements:

• A class of integrable andrM
0 -transversem-vector fields$X0%,Xm(W0) satisfying that

i~X0!V050, for every X0P$X0%. ~10!

• An integrable connection¹0 in rM
0 :W0→M such that

i~¹0!V05~m21!V0. ~11!

• An integrable jet fieldC0 :W0→J1W0 , such that

i ~C0!V050. ~12!

Locally decomposable andrM
0 -transversem-vector fields, orientable jet fields, and orientab

connections, which are solutions of these equations will be calledLagrange–Hamiltonian
m-vector fields, jet fields, andconnectionsfor (W0 ,V0).

Recall that, in a natural chart inW0 , the local expressions of a connection form, its associa
jet field, and them-multivector fields of the corresponding associated class are

¹05dxa
^ S ]

]xa
1Fa

A ]

]yA
1Gan

A ]

]vn
A

1HaA
n

]

]pA
n D ,

C05~xa,yA,va
A ,Fa

A ,Gah
A ,HaA

n !, ~13!

X05 f ∧
a51

m S ]

]xa
1Fa

A ]

]yA
1Gan

A ]

]vn
A

1HaA
n

]

]pA
n D ,
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wheref PC`(J1E) is an arbitrary nonvanishing function. A representative of the class$X% can be
selected by the conditioni (X)( r̄M

0* v)51, which leads tof 51 in the above local expression.
Now, the equivalence of the unified formalism with the Lagrangian and Hamiltonian for

isms can be recovered as follows:

Theorem 2: Let $X0% be a class of integrable Lagrange–Hamiltonian m-vector fields inW0 ,
whose elements X0 :W0→LmTW0 are solutions to (10), and let¹0 :W0→rM

0* T* M ^ W0
TW0 be

its associated Lagrange–Hamiltonian connection form [which is a solution to (11)], an
C0 :W0→J1W1 its associated Lagrange–Hamiltonian jet field [which is a solution to (12)].

(1) For every X0P$X0%, the m-vector field XL :J1E→LmTJ1E defined by

XL+r1
05LmTr1

0+X0 ,

is a holonomic Euler–Lagrange m-vector field for the Lagrangian system(J1E,VL) (where
LmTr1

0:LmTW0→LmTJ1E is the natural extension of Tr1
0).

Conversely, every holonomic Euler–Lagrange m-vector field for the Lagrangian syste
(J1E,VL) can be recovered in this way from an integrable Lagrange–Hamiltonian m-vector field
X0PXW1

m (W0).

(2) The Ehresmann connection form¹L :J1E→p̄1* T* M ^ J1ETJ1E defined by

¹L+r1
05kW0

+¹0 ,

is a holonomic Euler–Lagrange connection form for the Lagrangian system(J1E,VL) (where
kW0

is defined as the map making the following diagram commutative)~see Diagram 5!.

Conversely, every holonomic Euler–Lagrange connection form for the Lagrangian syste
(J1E,VL) can be recovered in this way from an integrable Lagrange–Hamiltonian connection
form ¹0 .

(3) The jet fieldCL :J1E→J1J1E defined by

CL+r1
05 j 1r1

0+C0 ,

is a holonomic Euler–Lagrange jet field for the Lagrangian system(J1E,VL). Conversely, every
holonomic Euler–Lagrange jet field for the Lagrangian system(J1E,VL) can be recovered in this
way from an integrable Lagrange–Hamiltonian jet fieldC0 .

~Proof! Let X0 be a rM
0 -transversalm-vector field onW0 solution to ~10!. As sections

c0 :M→W0 solution to the geometric equation~8! must take value inW1 , then X0 can be
identified with am-vector field X1 :W0→LmTW1 ~i.e., LmT1+X15X0uW1

), and hence, there

existsXL :J1E→LmTJ1E such thatX15LmT(r1
1)21+XLPXm(W1). Therefore as a consequenc

of item ~1! in theorem 1, for every sectionc0 solution to~8!, there existsXL
0PXm( j 1f(M )) such

thatLmTf+XL
05XLu j 1f(M ) , wheref : j 1f→E is the natural imbedding. So,XL is p̄1-transversal

and holonomic. Then, bearing in mind that1* V05r1
1* VL , we have

1* i ~X0!V05 i ~X1!~1* V0!5 i ~X1!~r1
1* VL!5r1

1* i ~XL!VL ,
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then i (X0)V050⇒ i (XL)VL50.
Conversely, given an holonomic Euler–Lagrangem-vector fieldXL , from i (XL)VL50, and

taking into account the above chain of equalities, we obtain thati (X0)V0P@X(W1)#0 @the anni-
hilator of X(W1)]. Moreover, beingXL holonomic,X0 is holonomic, and then the extra conditio

i (Y0) i (X0)V050 is also fulfilled for everyY0PXV(r1
0)(W0). Thus, remembering thatTW1

W0

5TW1% VW1
(r1

0), we conclude thati (X0)V050.
The proof for Ehresmann connections and jet fields is straightforward, taking into accoun

they are equivalent alternative descriptions in the Lagrangian formalism. j

This statement also holds for nonintegrable classes ofm-vector fields, connections, and je
fields in W0 , but now the corresponding classes of Euler–Lagrangem-vector fields, connections
and jet fields inJ1E will not be holonomic~but only semi-holonomic!. To prove this assertion i
suffices to compute Eq.~10! in coordinates, using the local expressions~7! and ~13!, concluding
then that, in the expressions~13!, Fa

A5va
A , which is the local expression of the semi-holonom

condition ~see, also, Ref. 9!.
Finally, the Hamiltonian formalism is recovered in the usual way, by using the following

Theorem 3: Let (J1* E,Vh) be the Hamiltonian system associated with a (hyper) regu
Lagrangian system(J1E,VL).

(1) (Equivalence theorem for m-vector fields! Let XLPXm(J1E) and XHPXm(J1* E) be the
m-vector fields solution to the Lagrangian and the Hamiltonian problems respectively. T

LmTFL+XL5 f XH+FL,

for some fPC`(J1* E) (we say that the classes$XL% and $XH% are FL-related).

(2) (Equivalence theorem for jet fields and connections) LetYL and YH be the jet fields solution
of the Lagrangian and the Hamiltonian problems respectively. Then

j1FL+YL5YH+FL
(we say that the jet fieldsYL and YH are FL-related). As a consequence, their associa
connection forms, ¹L and ¹H respectively, areFL-related, too.
(For almost-regular systems the statement is the same, but changing J1* E for P!.
~Proof! See Ref. 31.~The proof for the almost-regular case follows in a straight-forw

way.! j

As a consequence of these latter theorems, similar comments to those made at the end
II A and II B about the existence, integrability, and nonuniqueness of Euler–Lagrange
Hamilton–de Donder–Weylm-vector fields, connections, and jet fields, can be applied to t
associated elements in the unified formalism. In particular, for singular systems, the existe
these solutions is not assured, except perhaps on some submanifoldS�W1 , and the number of
arbitrary functions which appear depends on the dimension ofS and the rank of the Hessia
matrix of L ~an algorithm for finding this submanifold is outlined in Ref. 9!. The integrability of
these solutions is not assured~even in the regular case!, except perhaps on a smaller submanifo
I�S such that the integral sections are contained inI.

IV. EXAMPLE: MINIMAL SURFACES „in R3
…

@In Ref. 9 we find another interesting example, thebosonic string~which is a singular model!,
described in this unified formalism.#

A. Statement of the problem: Geometric elements

The problem consists in looking for mappingsw:U,R2→ such that their graphs have min
mal area as sets ofR3, and satisfy certain boundary conditions.
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For this model, we have thatM5R2, E5R23R, and

J1E5p* T* R2
^ R5p* T* M5p* T* R2,

Mp5p* ~TM3ME! ~affine maps fromJ1E to p* L2T* M !,

J1* E5p* TM5p* TR2 ~classes of affine maps fromJ1E to p* L2T* M !.

The coordinates inJ1E, J1* E and Mp are denoted (x1,x2,y,v1 ,v2), (x1,x2,y,p1,p2), and
(x1,x2,y,p1,p2,p), respectively. Ifv5dx1∧dx2, the Lagrangian density is

L5@11~v1!21~v2!2#1/2dx1∧dx2[Ldx1∧dx2,

and the Poincare´–Cartan forms are

QL5
v1

L
dy∧dx22

v2

L
dy∧dx11LS 12S v1

L D 2

2S v2

L D 2Ddx1∧dx2,

VL52dS v1

L D∧dy∧dx21dS v2

L D∧dy∧dx12dFLS 12S v1

L D 2

2S v2

L D 2D G∧dx1∧dx2.

The Legendre maps are

FL~x1,x2,y,v1 ,v2!5S x1,x2,y,
v1

L
,
v2

L D ,

FL̃~x1,x2,y,v1 ,v2!5S x1,x2,y,
v1

L
,
v2

L
,L2

~v1!2

L
2

~v2!2

L D ,

and thenL is hyperregular. The Hamiltonian function is

H52@12~p1!22~p2!2#1/2. ~14!

So the Hamilton–Cartan forms are

Qh5p1dy∧dx22p2dy∧dx12Hdx1∧dx2,

Vh52dp1∧dy∧dx21dp2∧dy∧dx11dH∧dx1∧dx2.

B. Unified formalism

For the unified formalism we have

W5p* T* M3Ep* ~TM3ME!, Wr5p* T* M3Ep* TM5p* ~T* M3MTM!.

If

w5~x1,x2,y,v1 ,v2 ,p1,p2,p!PW,

the coupling form is

Ĉ5~p1v11p2v21p!dx1∧dx2,

therefore,
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W05$~x1,x2,y,v1 ,v2 ,p1,p2,p!PWu@11~v1!21~v2!2#1/22p1v12p2v22p50%,

and we have the forms

Q05~@11~v1!21~v2!2#1/22p1v12p2v2!dx1∧dx22p2dy∧dx11p1dy∧dx2 ,

V052d~@11~v1!21~v2!2#1/22p1v12p2v2!∧dx1∧dx21dp2∧dy∧dx12dp1∧dy∧dx2 .

Taking first r̂2
0-vertical vector fields]/]va we obtain

05 i S ]

]va
D V05S pa2

va

L Ddx1∧dx2,

which determines the submanifoldW15graphFL̃ ~diffeomorphic toJ1E), and reproduces the
expression of the Legendre map. Now, takingr1

0-vertical vector fields]/]pa, the contraction
i (]/]pa)V0 gives, fora51,2, respectively,

v1dx1∧dx22dy∧dx2, v2dx1∧dx21dy∧dx1,

so that, for a section

c05~x1,x2,y~x1,x2!,v1~x1,x2!,v2~x1,x2!,p1~x1,x2!,p2~x1,x2!!,

taking values inW1 , we have that the condition

c0* F i S ]

]paD V0G50

leads to

S v12
]y

]x1D dx1∧dx250, S v22
]y

]x2D dx1∧dx250,

which is the holonomy condition. Finally, taking the vector field]/]y we have

i S ]

]yDV052dp2∧dx11dp1∧dx2,

and, for a sectionc0 fulfilling the former conditions, the equation

05c0* F i S ]

]yDV0G ,
leads to

05S ]p2

]x2
1

]p1

]x1D dx1∧dx2

5F ]

]x1 S v1

L D1
]

]x2 S v2

L D Gdx1∧dx2

5
1

L3 F S 11S ]y

]x1D 2D ]2y

]x2]x2
1S 11S ]y

]x2D 2D ]2y

]x1]x1
22

]y

]x1

]y

]x2

]2y

]x1]x2Gdx1∧dx2,
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which gives the Euler–Lagrange equation of the problem.
Now, bearing in mind~14!, and the expression of the Legendre map, from the Euler–Lagra

equations we get

]y

]x1
52

p1

H
,

]y

]x2
52

p2

H
;

]p1

]x1
52

]p2

]x2
,

which are the Hamilton–De Donder–Weyl equations of the problem.
The m-vector fields, connections and jet fields which are the solutions to the problem i

unified formalism are

X05 f S ]

]x1
1v1

]

]y
1

]v1

]x1

]

]v1
1

]v2

]x1

]

]v2
1

]p1

]x1

]

]p1
1

]p2

]x1

]

]p2D
∧S ]

]x2
1v2

]

]y
1

]v1

]x2

]

]v1
1

]v2

]x2

]

]v2
1

]p1

]x2

]

]p1
1

]p2

]x2

]

]p2D ,

C05S x1,x2,y,p1,p2;v1 ,v2 ,
]v1

]x1
,
]v1

]x2
,
]v2

]x1
,
]v2

]x2
,
]p1

]x1
,
]p1

]x2
,
]p2

]x1
,
]p2

]x2D ,

¹05dx1
^ S ]

]x1
1v1

]

]y
1

]v1

]x1

]

]v1
1

]v2

]x1

]

]v2
1

]p1

]x1

]

]p1
1

]p2

]x1

]

]p2D
1dx2

^ S ]

]x2
1v2

]

]y
1

]v1

]x2

]

]v1
1

]v2

]x2

]

]v2
1

]p1

]x2

]

]p1
1

]p2

]x2

]

]p2D
~f being a nonvanishing function!, where the coefficients]va /]xn5]2y/]xn]xa are related by the
Euler–Lagrange equations, and the coefficients]pa/]xn are related by the Hamilton–De Donder
Weyl equations~the third one!. Hence, the associated Euler–Lagrangem-vector fields, connections
and jet fields which are the solutions to the Lagrangian problem are

XL5 f S ]

]x1
1v1

]

]y
1

]v1

]x1

]

]v1
1

]v2

]x1

]

]v2
D ∧S ]

]x2
1v2

]

]y
1

]v1

]x2

]

]v1
1

]v2

]x2

]

]v2
D ,

CL5S x1,x2,y,p1,p2;v1 ,v2 ,
]v1

]x1
,
]v1

]x2
,
]v2

]x1
,
]v2

]x2D ,

¹L5dx1
^ S ]

]x1
1v1

]

]y
1

]v1

]x1

]

]v1
1

]v2

]x1

]

]v2
D 1dx2

^ S ]

]x2
1v2

]

]y
1

]v1

]x2

]

]v1
1

]v2

]x2

]

]v2
D ,

and the corresponding Hamilton–De Donder–Weylm-vector fields, connections, and jet field
which are the solutions to the Hamiltonian problem are

XH5 f S ]

]x1
2

p1

H

]

]y
1

]p1

]x1

]

]p1
1

]p2

]x1

]

]p2D ∧S ]

]x2
2

p2

H

]

]y
1

]p1

]x2

]

]p1
1

]p2

]x2

]

]p2D ,

CH5S x1,x2,y,p1,p2;2
p1

H
,2

p2

H
,
]p1

]x1
,
]p1

]x2
,
]p2

]x1
,
]p2

]x2D ,
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¹H5dx1
^ S ]

]x1
2

p1

H

]

]y
1

]p1

]x1

]

]p1
1

]p2

]x1

]

]p2D 1dx2
^ S ]

]x2
2

p2

H

]

]y
1

]p1

]x2

]

]p1
1

]p2

]x2

]

]p2D .

V. CONCLUSIONS AND OUTLOOK

We have generalized theRusk–Skinner unified formalismto first-order classical field theories
Corresponding to the Whitney sumTQ3QT* Q in autonomous mechanics, here we takeJ1E
3EMp as standpoint, but the field equations are stated in a submanifoldW0,J1E3EMp. As a
particular case of this situation, the unified formalism for nonautonomous mechanics is reco
the Whitney sum being nowJ1E3ET* E, wherep:E→R is the configuration bundle.8,9 Once the
suitable ~pre! multisymplectic structures are introduced, the field equations can be writte
several equivalent ways: using sections and vector fields~8! in W0 , m-vector fields~10!, connec-
tions ~11!, or jet fields~12!.

Starting from Eq.~8!, we have seen how, when different kinds of vertical vector fields inW0

are considered, this equation gives a different type of information. In particular, usingr̂2
0-vertical

vector fields, we can define a submanifoldW1�W0 , which turns out to be the graph of th
~extended! Legendre transformation~and hence diffeomorphic toJ1E). Furthermore, the field
equations are only compatible inW1 . As sections solution to the field equations take values
W1 , they split in a natural way into two components,c05(cL ,cH), ~with cL :M→J1E, and
cH5FL̃+cL). Then, takingr1

0-vertical vector fields in~8!, we have proved that the section
solution to the field equations in the unified formalism are automatically holonomic, even i
singular case. They are so in the following sense: for every sectionc0 solution in the unified
formalism, the corresponding sectioncL is holonomic.~As a special case, nonintegrablem-vector
fields, connections and jet fields which are solutions to the field equations are semi-holon!
These solutions only exist in general in a submanifold ofW1 . Finally, considering~8! for a
generic vector field, the Euler–Lagrange equations forcL , and the Hamilton–De Donder–Wey
equations form+cH5FL+cL arise in a natural way. Conversely, starting from sectionscL
5 j 1f and FL+cL solutions to the corresponding field equations, we can recover sectionc0

solution to ~8!. Thus, we have shown the equivalence between the standard Lagrangia
Hamiltonian formalisms and the unified one. This equivalence has been also proved form-vector
fields, connections and jet fields.

Although the subject is not considered in this work,K operators~i.e., the analogous operator
in field theories to the so-calledevolution operatorin mechanics!, in their different alternative
definitions,33 can easily be recovered from the unified formalism, similarly to the case of clas
mechanics.

In a forthcoming paper, this formalism will be applied to give a geometric framework
optimal control with partial differential equations. Although this subject has been dealt with i
context of functional analysis, to our knowledge there has been no geometric treatment o
date.
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APPENDIX: m-VECTOR FIELDS, JET FIELDS, AND CONNECTIONS IN JET BUNDLES

~See Refs. 17 and 27 for the proofs and other details of the following assertions.!
Let E be an-dimensional differentiable manifold. Form<n, sections ofLm(TE) are called

m-vector fieldsin E ~they are contravariant skew-symmetric tensors of orderm in E!. We denote
by Xm(E) the set ofm-vector fields inE. YPXm(E) is said to belocally decomposableif, for
every pPE, there exists an open neighborhoodUp,E and Y1 ,...,YmPX(Up) such that
Y.Y1∧•••∧Ym . Contraction ofm-vector fields and tensor fields inE is the usual one.
Up
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We can define the following equivalence relation: ifY,Y8PXm(E) are nonvanishingm-vector
fields, thenY;Y8 if there exists a nonvanishing functionf PC`(E) such thatY85 f Y ~perhaps
only in a connected open setU#E). Equivalence classes will be denoted by$Y%. There is a
one-to-one correspondence between the set ofm-dimensional orientable distributionsD in TE and
the set of the equivalence classes$Y% of nonvanishing, locally decomposablem-vector fields inE.
Then, there is a bijective correspondence between the set of classes of locally decomposa
p-transversem-vector fields$Y%,Xm(E), and the set of orientable jet fieldsC:E→J1E; that is,
the set of orientable Ehresmann connection forms¹ in p:E→M . This correspondence is chara
terized by the fact that the horizontal subbundle associated withC ~and¹! coincides withD(Y).

If YPXm(E) is nonvanishing and locally decomposable, the distribution associated wit
class$Y% is denotedD(Y). A nonvanishing, locally decomposablem-vector fieldYPXm(E) is
said to beintegrable ~respectively,involutive! if its associated distributionDU(Y) is integrable
~respectively, involutive!. Of course, ifYPXm(E) is integrable~respectively, involutive!, then so
is every m-vector field in its equivalence class$Y%, and all of them have the same integr
manifolds. Moreover,Frobenius’ theoremallows us to say that a nonvanishing and locally deco
posablem-vector field is integrable if, and only if, it is involutive. Of course, the orientable
field C, and the connection form¹ associated with$Y% are integrable if, and only if, so isY, for
everyYP$Y%.

Let us consider the following situation: ifp:E→M is a fiber bundle, we are concerned wi
the case where the integral manifolds of integrablem-vector fields inE are sections ofp. Thus,
YPXm(E) is said to bep-transverseif, at every pointyPE, (i (Y)(p* b))yÞ0, for everyb
PVm(M ) such thatb(p(y))Þ0. Then, ifYPXm(E) is integrable, it isp-transverse if its integra
manifolds are local sections ofp. In this case, iff:U,M→E is a local section withf(x)5y and
f(U) is the integral manifold ofY throughy, thenTy(Im f) is Dy(Y). Integral sectionsf of the
class$Y% can be characterized by the conditionLmTf5 f Y+f+sM , wheresM :LmTM→M is the
natural projection, andf PC`(E) is a nonvanishing function.

As a particular case, let$X%:J1E→DmTJ1E,$LmTJ1E% be a class of nonvanishing, locall
decomposable andp̄1-transversem-vector fields inJ1E, C:J1E→J1J1E its associated jet field
and¹:J1E→p̄1* TM ^ J1ETJ1E its associated connection form. Then, these elements are sa
beholonomicif they are integrable and their integral sectionsw:M→J1E are holonomic. Further-
more, consider the (1,m)-tensor field inJ1E defined byJª i (V)(p̄1* v), whose local expression
is J5(dyA2va

Adxa)∧dm21xn ^ ]/]vn
A . A connection form¹ in p̄1:J1E→M ~and its associated

jet field C:J1E→J1J1E) are said to besemi-holonomic~or a second order partial differential
equation!, if

whereh¹ denotes the horizontal projector associated with¹. If $X%,Xm(J1E) is the associated
class ofp̄1-transverse multivector fields, then this condition is equivalent toJ(X)50, for every
XP$X%. Then the class$X%, and its associated jet fieldC and connection form¹ are holonomic if,
and only if, they are integrable and semi-holonomic.
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