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Synopsis

Steady state viscosity and thixotropy of hydrophobically modified hydroxyethyl cellulose
(HMHEC) and nonassociative cellulose water solutions are studied. Although all the samples are
shear thinning, only the HMHEC is thixotropic, since the migration of hydrophobes to micelles is
controlled by diffusion. The Cross model fits steady state curves. The Mewis model, a
phenomenological model that proposes that the rate of change of viscosity when the shear rate is
suddenly changed is related to the difference between the steady state and current values of
viscosity raised to an exponent, fits structure construction experiments when the exponent,
estimated to be around 2. The Newtonian assumption used by Mewis cannot be used here, however.
This seems to be related to the fact that the thickening is due to bridged micelle formation, which
is a slow process, and also to topological constraints and entanglements, which are rapid processes.
The kinetic parameter was redefinedktpin order to make it independent of initial conditions. So,

ki, depends only on how the shear affects the structyyeeaches a plateau at shear rates too low

to produce structure destruction and decreases at higher shear rat€020The Society of
Rheology. [DOI: 10.1122/1.1516789

I. INTRODUCTION

Latex paints require the addition of thickeners in order to attain a proper rheology.
Thickeners traditionally used were water-soluble derivatives of cellulose, such as hy-
droxyethyl celluloses of high molecular weighfitlEC) [Wetzel et al. (1996]. These
derivatives thicken the medium because of chain entanglements between the long poly-
mer molecules, which are solvated and extended in an aqueous migda®oermick and
Johnson(1989; Emmons and Travis1978]. Coatings thickened with HECs have high
resistance to sagging, but poor level{i8eneker and Glagd996; Schwah(1986); Croll
and Kleinlein(1986]. To solve this problem, in the last few years these polymers have
been substituted in some applications by associative polyr#des) [Wetzel et al.
(1996; Yektaet al. (1993; Hoy and Hoy(1984], which consist of a hydrophilic back-
bone to which hydrophobic groups have been attached so that each molecule has two or
more hydrophobepTarnget al. (1996; Sau and Landol(1989] that are randomly dis-
tributed along the polymer chaifXu et al. (1997] or are present as terminal groups
[Tamet al. (1998]. In an aqueous medium, these groups form aggregates that are similar
to surfactant micelles. Hydrophobes of the same molecule can be joined to the same
micelle, forming a loop[Yekta et al. (1995]. Then flower-like independent micelles

@Author to whom all correspondence should be addressed; electronic mail: maestro@angel.qui.ub.es

© 2002 by The Society of Rheology, Inc.
J. Rheol. 4656), 1445-1457 November/Decemb@002 0148-6055/2002/46)/1445/14/$25.00 1445



1446 MAESTRO, GONZALEZ, AND GUTIERREZ

form. But these can also aggregate to different micelles. When this happens micelles are
bridged by hydrophilic backbones and a three-dimensional network forms that enhances
the viscosity of the medium. Under shear conditions, bridges are stretched, hydrophobes
are forced to leave their micelles, and a bridge-to-loop transition takes place that weakens
the network, resulting in a decrease of viscosity.

Linear viscoelasticity of these polymers has been extensively stlifledstroet al.

(2002; Tam et al. (1998; Svanholmet al. (1997); Xu et al. (1996; Groot and Agterof
(1995; Annable and Buscall1993; Yektaet al. (1993; Kaczmarski and Glas&l993;
Tanakaet al. (1992; Glasset al. (1991); Karunaseneet al. (1989] because it gives
information about the thickening mechanism. However, it is not useful for understanding
behavior during painting because it takes place out of the linear range, since changes in
the structure occur. In fact, the dependence of viscosity on shtesady state curyeand

the kinetics of the viscosity variation when the shear rate or the shear stress is modified
(thixotropy), are the determinants in the handling of the paint and quality of the final film.
Thus, they seem interesting enough to be quantified.

Most associative polymers are found to be shear deperdbang(2001); Reuvers
(1999; Svanholmet al. (1997; Xu et al. (1996; Kastner (2001); Sau and Landoll
(1989; Goodwinet al. (1989]. A plateau region followed by shear thickening and shear
thinning regions at higher shear rates is observed for HEUR solufiterkinset al.

(1996; Tarng et al. (1996; Svanholmet al. (1997; Annable and Buscal(1993; Xu

et al. (1996]. The shear thickening behavior at intermediate shear rates is attributed to a
change from intramolecular to intermolecular association as molecules become elongated
under sheafJenkinset al. (1991); Witten and Cohen(1985]. Shear thinning is also
observed with HMHEC solutiongSvanholmet al. (1997); Sau and Landoll(1989;
Goodwinet al. (1989]. Goodwin and Hughe&1997 proposed the Cross modelross
(1965] or the Papir moddlPapir and Kriegef1970] for the fitting of viscosity curves.
These models do not fit shear thickening behavior.

Besides being shear dependent, a large number of associative polymers are thixotropic
[Kastner (2001); Vittadello and Biggs(1998; Tarng and Glas$1999; Kastner et al.

(1996; Kroon (1993], although their thixotropy has not been studied in a quantitative
way, nor has systematic experimentation been developed. Some interesting models have
been created that try to predict thixotropic behavior of fluids. They fall into four groups:
first, there are those models that use a very general description of microstructure de-
scribed by a numerical value of a scalar paramgferhich can vary between @om-

pletely destroyed structurend 1(completely formed structuye Some authors of this
group are Tiu and Bogerl974), Alessandriniet al. (1982, De Keeet al. (1983, and
Baravianet al. (1996. Second are those authors who attempt some direct description of
the temporal change of the microstructure such as, for example, the number of bonds or
the size of the aggregates, for instance, Denny and Brodk@§2 or Lapasinet al.

(1996. Third, there are authors that use the viscosity-time data itself on which to base a
theory, such as Fredricksdda970 or Mewis and Schryver§1996 reported by Barnes
(1997. Finally, a number of authors use viscoelastic models, termed “thixoelastic” by
some. They introduce some madifications in the linear viscoelasticity expressions in
order to describe structural changes and obtain nonlinear viscoelasticity expressions.
Some of the authors in this last group are Acieet@l. (1976, Soong and She(1979,
Bautistaet al. (1999, and Quemad&l999.

None of the models we know of has been used for a description of the thixotropy of
the associative polymers used in paints. In the present article, the steady state curves and
thixotropy of HMHEC are studied and compared with HECs of several molecular
weights. A simple model is developed for an initial quantification of thixotropy.
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TABLE I. Thickeners used in the experiments.

Mw
Acronym (gmol™h) DS MS
(2-hydroxyethyjcellulose HEC9 90 000 15 25
(2-hydroxyethyjcellulose HEC130 1300 000 15 25

(2-hydroxyethyjcellulose, hydrophobically modified with  HMHEC 560 000 2.0 2.7-3.4
hexadecyl groups

Il. EXPERIMENT
A. Materials and preparation

All compounds were obtained from Aldrich. Molecular weid¥t,, molar substitu-
tion MS, and degree of substitutiddS of cellulose derivatives are summarized in Table
l.

The celluloses were received as a solid powder and were used as supplied. De-ionized
water further purified through a Millipore MilliQ purification system was used to prepare
solutions. Water was stirred and heated to 40 °C, and polymer was gradually added.
Stirring was maintained fo2 h and solutions were stored for at least 24 h before use to
assure complete hydration. When butoxy ethanol was used, a 20% butoxy ethanol-80%
water solution was prepared before the addition of the thickener. Solutions were used
during a 7-day period in order to avoid undesirable effects produced by enzymatic deg-
radation.

B. Rheological measurements

All rheological measurements were performed with a Haake RS150 rheometer. This
rheometer can work either as a controlled shear rate or a controlled shear stress rheom-
eter. The controlled shear rate mode was chosen. Two different sensors were used, de-
pending on the range of viscosity of the solutions, so as to ensure adequate sensitivity. A
60 mm diam double cone and 1° cone angle was used for solutions with small viscosity,
and a cone-and-plate sensor with a 60 mm diameter and 4° cone angle was used for the
other solutions. Some measurements were carried out with both sensors, and results were
compared to assure they did not influence the experimental data. The temperature was
controlled, with a deviation less than0.2 °C.

Steady state curves were obtained for a range of shear rates between 0.07 and 500 s
Evolution of the viscosity over time when the shear rate changes suddenly from one
value to another was measured. The initial shear rate was maintained until the steady state
was reached, and then it was changed to the final shear rate, which was maintained for 15

min. Data of viscosity versus time were taken throughout the experiment.

IIl. RESULTS AND DISCUSSION
A. Viscosity as a function of shear rate  (steady state curve )

Figure 1 shows the steady state viscosity as a function of shear rate for HEC and
HMHEC solutions. For comparative purposes, we present the concentrations where simi-
lar low shear viscosities)y were obtained. For &g around 1.3 Pas, 10% HEC9 is
needed, but only 0.75% HEC130 or 0.5% HMHEC. As expected, the thickening effi-
ciency of HEC increases with the molecular weight due to the presence of more interac-
tions and entanglements. Hydrophobic modification of HEC increases efficiency because
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FIG. 1. Steady state curves for several cellulosic derivatives. Temperate °C.

of the formation of a three-dimensional micellar network. HMHEC solution has the
higher shear thinning behavior because of the shear-induced transitions from inter- to
intramolecular association.

The influence of temperature and concentration on the steady state curve of HMHEC
was studied. Figure 2 shows curves at different concentrations, and Fig. 3 at different
temperatures. The concentration increases viscosity over all the shear rate range because
of the presence of a large number of micelle-like aggregates, which favors the formation
of bridges and enhances the network. Shear thinning behavior is observed for all concen-
trations studied. Only at the lower concentration is a previous shear thickening region
observed. Tanet al. (1998 attributed the shear thickening behavior observed in HEUR
solutions to shear-induced loop-to-bridge transitions that increase the fraction of micelles
included in the mechanically active network and increase the number of bridges. At
higher concentrations of HMHEC, this shear thickening region is not observed, probably
because when the fraction of micelles is high enough micelles are close together and the
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FIG. 2. Steady state curves for HMHEC aqueous solutions at 20 °C and several concentrations.
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FIG. 3. Steady state curves for HMHEC 1.5% at several temperatures.

number of bridges is not limited by the distance between them. As a result, chain elon-
gation produced by intermediate shear, which favors hydrophobic interactions at low
concentrations, does not have much influence on the number of bridges when the con-
centration is high.

The experimental data shown in Figs. 2 and 3 were fitted through the Cross|iEqdel
()], whereng and 5., are the low and high shear viscosities, respectively. The exponent
m is found to be around 0.9. As shown, the fitting is quite good, except at 0.5%, because
the shear thickening behavior cannot be described by the Cross model,

70~ M
™
The high shear viscosity cannot be known accurately because of limitations of the
measuring range and possible hydrodynamic instabilities at very high shear rates, al-

though the results were very reproducible and no oscillation or evidence of instability
was observed for these shear rates. Figure 3 shows that the low shear visgpsity
decreases with temperatufe but viscosity tends to be independentTo&t high shear

rates. An Arrhenius dependence on the temperature was foung)fdn agreement with

other authorgAnnable and Buscall1l993]. The potential barrier to disengagement of a
chain end from a junction poinE,, which may be equated to the binding energy of the
hydrophobe to its micell¢Tam et al. (1998], is determined to have a value &,

= 72 kJ/mol, similar to that found by Annable for HEUR polymers. At higher shear
rates the Arrhenius dependence is lost. While at low shear, in the Newtonian range, the
associated structure and, as a consequence, the viscosity, depend on thermal motion, at
higher shear rates thermal dependence is negligible because it is masked by shear effects.
Thus, viscosity tends to be independent of the temperature.

7(y) = 7ot ()

B. Thixotropy
1. Thixotropy of HEC and HMHEC

The evolution of viscosity over time when the shear rate changes suddenly was studied
for solutions of HECs and HMHEC. An example of the results is shown in Fig. 4, where
it can be seen that the viscosity of the HECs studied increases and quickly reaches the
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FIG. 4. Viscosity () vs time (t) when the shear rate is changed suddenly from 2000 t6'8 Eempera-
ture= 20 °C.

steady state viscosity corresponding to the new shear rate. The same happens at all
temperatures and concentrations tested. So, thixotropy of these HECs is so fast that the
kinetics cannot be quantified. In contrast, the increase of viscosity for the HMHEC
solution is gradual enough to be measured, so that a significant thixotropic behavior is
observed. These differences between HEC and HMHEC are in agreement sitieKa
studies(1996, 2001 We attribute them to the fact that the thickening mechanism of
HECs is due to topological constraints and entanglements between the long chains of
polymer, which are fast processes. On the other hand, although topological constraints
and entanglements also exist for the HMHEC water solutions, the main thickening
mechanism is due to hydrophobic interactions. So, the recovery of viscosity requires the
migration of hydrophobes through the medium towards the micelles, which is a slow
diffusion-controlled process. It can be concluded that the HEC water solutions studied do
not have significant thixotropy at the concentrations and temperatures tested. The thixo-
tropic behavior of HMHEC water solutions is studied in Sec. Il B2.

2. Model used for HMHEC

Experiments were carried out in which the shear rate was suddenly changed from a
low value to higher onesstructure destruction experimeptand from a high value to
lower ones(structure construction experiments-igure 5 shows the results obtained
when the shear rate was changed from 0.1t several higher values. Viscosity is seen
to decrease over time and tends to move toward the new equilibrium viscosity because of
the structure destruction produced by shear. An overshoot is observed at short times; this
indicates the presence of elasticjautistaet al. (1999; Barnes(1997)]. This is sup-
ported by the fact that HMHEC solutions were found to be viscoelastic in publications
where linear viscoelasticity was studi¢ilaestroet al. (2002; Karlson et al. (2000);
Svanholmet al. (1997); Brown (1994; Sau and Landol(1989; Goodwinet al. (1989;
Landoll (1982]. Although this overshoot is not so evident at 5lsand cannot be
observed at 508" or higher shear rates, it is only due to partial masking of the effect
produced by the shear. As a result, if some model were to be found for the description of
thixotropic behavior, elasticity should be included. Some authors have successfully com-
bined thixotropy and elasticitjBautistaet al. (1999; Quemada1999; Barnes(1997);

Mewis (1979; Acierno et al. (1976]. Some, like Quemada or Bautista, find relatively
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FIG. 5. Viscosity vs time when the shear rate is changed suddenly from @.fosseveral higher shear rates.
HMHEC 1% and 20 °C.

simple models using a simple Maxwell equation for the description of linear viscoelas-
ticity. However, when a generalized Maxwell model is used, the models obtained remain
rather complex and thus difficult to use in practice. Linear viscoelastic characterization of
HMHEC solutions indicates that it is not a simple Maxwell fljilkarlsonet al. (2000);
Svanholmet al. (1997)], but it has a relaxation time spectrum that is the result of two
relaxation processes: a long relaxation process with a logarithmic distribution of relax-
ation times, related to the lifetime of hydrophobic junctions, plus a relaxation process
related to rapid relaxation of topological constraiftdaestroet al. (2002]. So, the
fitting of destruction experiments should require the development of a very complex
model. This is not the purpose of this article, but it is the development of some simple
model that could quantify the change of viscosity over time in a simple way with only a
few parameters. Figure 6 shows an example of construction experiments where the shear
rate is changed from an initial shear ratg = 2000 s * to several smaller shear rates
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2 20s”
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FIG. 6. Viscosity vs time when the shear rate is changed suddenly from 200® several lower shear rates.
Fittings are shown as a continuous line. HMHEC IPe= 20 °C.
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v1 . Although, of course, these curves are also influenced by elasticity, their shape seems
to indicate that a single kinetic constant could be used that would include pure thixotropy
and elasticity. This seems interesting for initial quantification of the thixotropy of an
associative polymer.

A phenomenological model devised by Mewis and Schryy&arnes(1997] was
used to fit results. It proposes that the rate of change of viscosity when the shear rate is
suddenly changed from an initial shear raig (at the steady stat¢o a new oney; is
related to the difference between the steady state and current values of viscosity:

& = K[ 7e(y)— 7" 2
dt 7\ — 71l -

This integrates as

7= 76— (e— m)(N—Dkt(7— )"~ 1+27 A1), 3)

where 7, is the equilibrium viscosity at a given shear ratg, »; is the initial viscosity
for this new shear rat§4, andn is the kinetics order. Mewis and Schryvers then made
the Newtonian assumption;(y1) = 7e(7y0), which makes use of the equation simpler
because it is easier to measure the viscosity of the initial steady state condition. This
assumes that the viscosity at the end of the initial steady state period is the same as that
at the beginning of the new shear rate test, i.e., the system is Newtonian between these
conditions and viscosity is only a function of the quantity of structure formed and not a
function of both the structure and shear rate. However, as Mewis points out, this is only
true for high shear rates.

Figure 6 shows some examples of fitting experimental data using the Mewis and
Schryvers model, but with some modifications. First of all, the kinetics ordeas found
to ben = 2. Second, the model was unable to fit results if the Newtonian assumption
used by Mewis was made. Sg, was used as a free parameter. Then, the equation used
to fit experimental data was

1
= Pt———.
e 1U(m; — me) —kt

Three parameters are used: the equilibrium viscosity at the new sheapdatibe initial
viscosity at the new shear ratg; ; and the kinetic constank,

Ui (4)

3. Shear rate dependence of the fitting parameters

Experiments at several initial and final shear rates were performed. The dependence of
the initial viscosity#; on the initial (yg) and the final {1) shear rate is shown in Fig. 7.
As expectedy; decreases witlyg, since the transient network is destroyed under shear
and, at timet = 0, when shear rate has just been changed, the intramolecular to inter-
molecular balance corresponding to the initial state still remains. Howeyealso de-
creases withy, for the sameyq, indicating that the Newtonian assumption proposed by
Mewis cannot be used here. This is attributed to the fact that topological constraints and
chain entanglements, which are rapid processes, are one of the factors that determine the
viscosity of HMHEC solutions, besides bridged micelle formation. Figuiag shows the
steady state viscosity of HMHEC solutions when 20% of butoxy ethanol was added in
order to prevent micelle formation. It can be seen that this solution is also shear thinning,
although, of course, to a much smaller extent than HMHEC, indicating that chain inter-
actions or entanglements contribute to the thickening besides hydrophobic interactions.
For the same solution, Fig(l® shows time curves when the shear rate changes from an
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FIG. 7. Initial viscosity vs final shear rate at several initial shear rates. HMHECTL%; 20 °C.

initial shear rateyy = 2000 $ 1 to several smaller shear ratgs. It can be seen that
equilibrium viscosity is quickly reached and no significant thixotropy is observed. So,
besides the slow process of micelle formation, the HMHEC solutions are characterized
by a rapid relaxation process that is very likely responsible for the invalidity of the
Mewis Newtonian assumption.

The equilibrium viscosityne, as expected, is independent ®f and shows shear
thinning behavior withy,;. The results coincide with the steady state curves found
through shear rate sweeps and shown in Fig. 2. This indicates;thiat correctly esti-
mated by the model proposed.

Figure 9 shows that the kinetic constdntlepends ony;, and also onyg, i.e., it
depends on the initial conditions. This constant was substituted for a new kinetic constant
k, defined as

K = k(76— 7). (5)

Equations(2) and(4) can be rewritten as follows:

—
-

I ce e,
I .
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4 . 4
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z | ) z
8 . 8
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FIG. 8. Rheological measurements of 1.5% HMHEC aqueous solutions with 20% of butoxy ethanol;

T = 20°C. (a) Steady state curvegh) viscosity vs time when the shear rate is changed suddenly from 2000
s 1 to several lower shear rates.
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FIG. 9. Kinetic constantk) vs initial shear rate at several final shear rates. HMHEC 1%, 20 °C.

dn |y~ 2 ©
dt = e
7=

n= 7 — (7)

.
1=[Ky/(7i— me) ]t

Figure 10 shows the dependencekgfon y, for severalyg. It can be observed that
ky, is independent ofyg. On the other hands,, decreases witty; for high shear rates,
but takes a constant value at lower ones. So, this curve qualitatively has the same shape
as the steady state cur¢€ig. 2). In the range of high shear rates, the shear rate greatly
influences the structure. Hellg, increases when the shear rate is decreased. On the other
hand, in the range of low shear rates, where the shear does not affect the structure and, as
a consequence, a plateau is observed for the equilibrium vischgibecomes indepen-
dent of the shear rate. It now appears thabnly depends on how the shear rate affects
the structure.

IV. CONCLUSIONS

The HEC and the HMHEC water solutions tested present shear thinning behavior.
Only the HMHEC presents thixotropy, since transitions from intra- to intermolecular
associations are limited by diffusion.

Steady state curves obtained with HMHEC can be fitted through the Cross model for
concentrations higher than 0.75%. For lower concentrations, shear thickening behavior is
observed at intermediate shear rates, due to shear-induced transitions from intra-to inter-
molecular associations.

As HMHEC is a viscoelastic fluid, elastic effects are observed coupled to thixotropy.
The Mewis and Schryvers model, with some modifications, properly fits structure con-
struction experiments. However, the Newtonian assumpti@fy1) = 7e(yo) used by
Mewis cannot be made for this case since, although the main thickening mechanism is
due to hydrophobic interactions, viscosity is also influenced by rapid chain interactions
and entanglements.
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FIG. 10. Kinetic constant k) vs final shear rate at several initial shear rates. HMHEC 1%, 20 °C.

The kinetic parametek can be redefined t&, = k(7e— 77i)2. This parameter is
independent of the initial conditions and only depends on how the shear rate affects the
structure. Thenk,, decreases with shear at the higher shear rates and takes a constant
value at shear rates too low to affect the structure.

References

Acierno, D., F. P. La Mantia, G. Marrucci, and G. Titomanlio, “A non-linear viscoelastic model with structure-
dependent relaxation times,” J. Non-Newtonian Fluid Meth125-146(1976.

Alessandrini, A., R. Lapasin, and F. Sturzi, “The kinetics of thixotropic behavior in clay/kaolin aqueous
solutions,” Chem. Eng. Commuri7, 13—22(1982.

Annable, T., and R. Buscall, “The rheology of solutions of associating polymers: Comparison of experimental
behavior with transient network theory,” J. Rhe8ll, 695—726(1993.

Baravian, C., D. Quemada, and A. Parker, “Modeling thixotropy using a novel structural kinetics approach.
Basis and application to a solution of iota-carrageenan,” J. Texture 3#&71-390(1996.

Barnes, H. A., “Thixotropy—A review,” J. Non-Newtonian Fluid Mecl0, 1-33(1997).

Bautista, F., J. M. de Santos, J. E. Puig, and O. Manero, “Understanding thixotropic and antithixotropic
behavior of viscoelastic micellar solutions and liquid crystalline dispersions,” J. Non-Newtonian Fluid
Mech. 80, 93—-113(1999.

Brown, R., “Advances on thickener technology for waterborne coatings,” Eur. Polyi®4)267—-270(1994).

Croll, S. G., and R. L. Kleinlein, “Influence of cellulose ethers on coatings performance,” Adv. Chen21Ser.
333-350(1986.

Cross, M. M., “Rheology of non-Newtonian fluids. Flow equation for pseudoplastic systems,” J. Colloid Sci.
20, 417-437(1965.

De Kee, D., R. K. Code, and G. Turcotte, “Flow properties of time-dependent foodstuffs,” J. R:&ol.
581-604(1983.

Denny, D. A,, and R. S. Brodkey, “Kinetic interpretation of non-Newtonian flow,” J. Appl. PI335.2269—
2274(1962.

Emmons, W. D., and E. S. Travis, “Polyurethane thickeners in latex compositions,” U.S. Patent No. 4079,028
(filed 1978.

Fredrickson, A. G., “A model for the thixotropy of suspensions,” AIChELS, 436—441(1970.

Glass, J. E., D. N. Schulz, and C. F. Zukoski, “Polymers as rheology modifiers,” ACS Sympi&eR—-17
(1991).

Goodwin, J. W., and R. W. Hughes, “Particle interactions and dispersion rheology,” ACS SympG63ser.
94-125(1997).

Goodwin, J. W., R. W. Hughes, C. K. Lam, J. A. Miles, and B. C. H. Warren, “The rheological properties of a
hydrophobically modified cellulose,” Adv. Chem. S@23 365—-378(1989.



1456 MAESTRO, GONZALEZ, AND GUTIERREZ

Groot, R. D., and G. M. Agterof, “Dynamic viscoelastic modulus of associative polymer networks: Off-lattice
simulations, theory and comparison to experiments,” Macromole@8e6284—-62931995.

Hoy, K. L., and R. C. Hoy, “Polymers with hydrophobe branches,” U.S. Patent No. 4,426fd&% 1984.

Jenkins, R. D., L. M. DeLong, and D. R. Basset, “Influence of alkali-soluble associative emulsion polymer
architecture on rheology,” Adv. Chem. S@48 425-447(1996.

Jenkins, R. D., C. A. Silebi, and M. S. El-Aasser, “Steady-shear and linear-viscoelastic material properties of
model associative polymer solutions,” ACS Symp. SE?2, 222-233(1991)).

Kaczmarski, J. P., and J. E. Glass, “Synthesis and solution properties of hydrophobically-modified ethoxylated
urethanes with variable oxyethylene spacer lengths,” Macromole@fe5149—-51561993.

Karlson, L., F. Joabson, and K. Thuresson, “Phase behavior and rheology in water and in model paint formu-
lations thickened with HM-EHEC: Influence of the chemical structure and the distribution of hydrophobic
tails,” Carbohydr. Polym41, 25—-35(2000.

Karunasena, A., G. Brown, and J. E. Glass, “Hydrophobically modified ethoxylated urethane architecture.
Importance for aqueous- and dispersed-phase properties,” Adv. Chen223e495-525(1989.

Kastner, U., “The impact of rheological modifiers on water-borne coatings,” Colloids Surf83 805-821
(200D).

Kastner, U., H. Hoffmann, R. Dgges, and R. Ehrler, “Interactions between modified hydroxyethyl cellulose
(HEC) and surfactants,” Colloids Surf., A12, 209—-225(1996).

Kroon, G., “Associative behavior of hydrophobically modified hydroxyethyl celluld$#®IHECS) in water-
borne coatings,” Prog. Org. Coa22, 245-260(1993.

Landoll, L. M., “Nonionic polymer surfactants,” J. Polym. S&0, 443—-455(1982.

Lapasin, R., M. Grassi, and S. Pricl, “Fractal approach to rheological modeling of aggregate suspensions,” in
A. Ait-Kadi, J. M. Dealy, D. F. James, and M. C. Williams, Proceedings of the XllIth International Congress
on Rheology, Laval University, Quebec City, Canada, 1996, p. 524.

Maestro, A., C. Gondaz, and J. M. Gufirez, “Rheological behavior of HMHEC solutions,” J. Rhedl6,
127-143(2002.

McCormick, C. L., and C. B. Johnson, “Synthetically structured water-soluble copolymers. Associations by
hydrophobic or ionic mechanisms,” Adv. Chem. S223 437-454(1989.

Mewis, J., “Thixotropy—A general review,” J. Non-Newtonian Fliud Med.1-20(1979.

Papir, . S., and I. M. Krieger, “Rheological studies on dispersions of uniform colloidal spheres. II. Dispersions
in nonaqueous media,” J. Colloid Interface S84, 126-130(1970.

Quemada, D., “Rheological modeling of complex fluids. IV: Thixotropic and ‘thixoelastic’ behavior. Start-up
and stress relaxation, creep tests and hysteresis cycles,” Eur. Phy§, 19A—-207(1999.

Reuvers, A. J., “Control of rheology of water-borne paints using associative thickeners,” Prog. Org3goat.
171-181(1999.

Sau, A. C., and L. M. Landoll, “Synthesis and solution properties of hydrophobically modifigdroxy-
ethyl)cellulose,” Adv. Chem. Ser223 343-363(1989.

Schwab, F. G., “Advantages and disadvantages of associative thickeners in coatings performance,” Adv. Chem.
Ser.213 369-373(1986.

Seneker, S. D., and J. E. Glass, “Reaction parameter effects on substituent distributions in the heterogeneous
synthesis of cellulose ethers,” Adv. Chem. S&48 125-137(1996.

Soong, D. S., and M. M. Shen, “A kinetic network model for nonlinear viscoelastic flow properties of entangled
monodisperse polymers,” J. Polym. Sci., Polym. Lett. Ed. 595-599(1979.

Svanholm, T., F. Molenaar, and A. Toussaint, “Associative thickeners: Their adsorption behavior onto latexes
and the rheology of their solutions,” Prog. Org. Cod®, 159—-165(1997.

Tam, K. C., R. D. Jenkins, M. A. Winnik, and D. R. Basset, “A structural model of hydrophobically modified
urethane-ethoxylatetheun associative polymers in shear flow,” Macromolecubds 4149—-41591998.

Tanaka, R., J. Meadows, P. A. Williams, and G. O. Phillips, “Interactions of hydrophobically modified
droxyethy)cellulose with various added surfactants,” Macromolec®@8s1304—-13101992.

Tarng, M. R., and J. E. Glass, “Thixotropy in HMHEC/SDS associative thickener aqueous solutions,” Polym.
Mater. Sci. Eng72, 380—381(1995.

Tarng, M. R., M. Zeying, K. Alahapperuma, and J. E. Glass, “Associative thickeners in the land of commercial
reality: Coating formulations,” Adv. Chem. Se248 450—486(1996.

Tiu, C., and D. V. Boger, “Complete rheological characterization of time-dependent products,” J. Texture Stud.
5, 329-338(1974.

Vittadello, S. T., and S. Biggs, “Shear history effects in associative thickener solutions,” Macromol8aules
7691-7697(1998.

Wetzel, W. H., M. Chen, and J. E. Glass, “Associative thickeners. An overview with an emphasis on synthetic
procedures,” Adv. Chem. Se248 163—-179(1996.

Witten, T. A. and M. H. Cohen, “Cross-linking in shear-thickening ionomers,” Macromolecl8e$915-1918
(1985.

Xu, B., A. Yekta, and M. A. Winnik, “Viscoelastic properties in water of comb associative polymers based on
poly(ethylene oxidg” Langmuir 13, 6903-6911(1997).



SHEAR THINNING AND THIXOTROPY 1457

Xu, B., A. Yekta, Z. Masoumi, and M. A. Winnik, “The functionality of associative polymer networks: The
association behavior of hydrophobically modified urethane-ethoxyl@#&dJR) associative polymers in
aqueous solution,” Colloids Surf., A12, 239-250(1996.

Yekta, A., J. Duhamel, H. Adiwidjaja, P. Brochard, and M. A. Winnik, “Fluorescence studies of associating
polymers in water: Determination of the chain end aggregation number and a model for the association
process,” Macromolecule28, 956-966(1995.

Yekta, A., B. Xu, J. Duhamel, H. Adiwidjaja, and M. A. Winnik, “Association structure of telechelic associative
thickeners in water,” Langmui, 881—-883(1993.

Zhang, L. M., “Cellulosic associative thickeners,” Carbohydr. Poly, 1-10(2002.






