Langevin approach to generate synthetic turbulent flows
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We present an analytical scheme, easily implemented numerically, to generate synthetic Gaussian
turbulent flows by using a linear Langevin equation, where the noise term acts as a stochastic
stirring force. The characteristic parameters of the velocity field are well introduced, in particular the
kinematic viscosity and the spectrum of energy. As an application, the diffusion of a passive scalar
is studied for two different energy spectra. Numerical results are compared favorably with analytical
calculations. ©1997 American Institute of Physids$§1070-663(97)00404-2

I. INTRODUCTION statistical properties. Our strategy is accomplished by using a

generalized Ornstein-Uhlenbeck-like Langevin equation for
The statistical approach to turbulence has a long historyhe stream functiom(r,t).*® Being more specific, our pro-

on its own>? Actually, it is the firm recognition that both posal is based on the use of the following Langevin equation

fundamental and applied aspects of turbulence can be con-

sistently addressed from the knowledge of the statistical mo- an(rb)

ments and correlations of the velocity flow that has made this = pV2y(r,t) + Q[N2V2]V - r,1), )

approach particularly appealing. Since in any case such a

statistical point of view has adopted multiple perspectives

during these last decades, let us first put our formulation int§vherew is the kinematic viscosity andlis a Gaussian white
an appropriate context. noise with zero mean value and correlation

ot

Our primary aim here is to describe an analytical and _ _ B
numerical methodology to generate a statistically stationary, ({'(rq1,t1)(r,,15))=2€qvd(t1—t5)8(ri—ry) . (2
homogeneous, and isotropic two-dimensional turbulent flow
with zero mean velocity and well-defined energy spectrumyp, this |ast expressions,, and\ are parameters which con-
Needless to say, such a regime of steady turbulence can onfiy|, respectively, the intensity and correlation length of the
be maintained by means of an external input of energy teandom flow.Q[A2V?2] will play the most relevant role in
compensate the dissipative nature of the viscous forces. Thisyr scheme, representing the random stirring forces.
external input could be conceptually associated with stirring  The random flow generated in this way has Gaussian
forces which are stochastic in nature so as to produce a ragroperties due to the linear nature of such an equation. Apart
dom velocity field which is to represent the turbulent fdw. from that, other limitations concerning some invariances of
It is quite obvious that the statistical properties of the steadyhe turbulent flow appear also as a consequence of such a
stirring forces will ultimately determine those of the turbu- inearity ® However, the big advantage of our model is that it
lent flow. facilitates the control over the characteristic parameters of

Ideally, the statistical properties of any turbulent flow the turbulence, i.e., its integral time and length scales and its
should come as the output of a first principle, Navier-Stokespectrum, just by appropriately prescribing the input param-
based, formulation of the problem. However, we will adopteters of the noise entering into the Langevin equation. A final
here a somewhat reversed perspective aimed at developing@mark concerning Gaussianity is worth mentioning at this
methodology to construct what would be a sort of synthetiqoint. Certainly, we recognize that such a statistical property
turbulence’~® Rather than to retain the nonlinear coupling is under scrutin)9. However, particular experimental sce-
which makes possible the redistribution of energy from thenarios supporting it° together with the lacking of conclusive
largest length scales down into the smaller ones, we assumesults on intermittencyJeave this question rather open and
that the energy is incorporated into the system in an indiallows us to use such a Gaussian property, at least as a work-
vidual wave number basis. In other words, our model wouldng simplifying hypothesis, mainly when the focus is in the
represent a collection of uncoupled stirrers each one actingtudy of physical process inside this medium.
on a single-length scale and introducing its own wave num-  This paper is organized as follows. In the next section
ber dependent energy contribution, but chosen to reproducese summarize the Langevin approach to generate the ran-
and this is the main point in our approach, the desired speadom flow (synthetic turbulende In Sec. Ill the technical
tral distribution in steady state. details of the numerical simulations are presented. As a sort

This practical approach to produce a turbulent flow isof application we consider the classical problem of the dif-
justified by the fact that what we want is to study a physicalfusion of a passive scalar in Sec. IV. We devote Sec. V to
process within the turbulent medium described only by itsdraw some conclusions and perspectives.
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Il. LANGEVIN APPROACH aS(k,t)
ot

= —2vk?S(k,t) + 2€qvk®Q?(— N2k?). (11)
As our approach starts with the generation of a scalar

stream functiort; we are going to review first the relation- 5y, the other handC(k,s) obeys, in the steady state, the

ships between the stream function properties and those of thg, ,ation ' ' ’

velocity field. Let7(r,t) be the stream function from which _

we define the two-dimensional incompressible turbulent field  dC(k,s)

—
v(r,t) (V - v=0), Frai vk“C(k,s), (12
an(rt) an(rt i initi it
vir=| - n{;y ) , 77;)( ) . 3 W|thihe initial condition
C(k,0)=S(k,t—%)=S5(K). (13

Its mean value is taken to be zero and the two-point velocity
autocorrelation is defined as usual through From (11) and(12) we get

(V(r,t)ol(rp, 1)) =RI(r—rp,t— ty), (4) C(k,s):EOQZ(_)\Zkz)e_szs, (14

where homogeneity in space and time is explicitly The energy spectruniE(k,t) is defined in terms of
denoted?® Our scheme is entirely implemented in two di- S(k,t) as
mensiong2D). However, it could be generalized to 3D just

) . - 1
by taking a vector stream function and obtaining the ve- E(k,t)= —k33(k,t). (15)
locity field asv=V X #. In this case each component of the 4m

stream function must satisfy a Langevin equation similar taysjng (11) we can also obtain the equation of evolution of

(1) with independent noises. E(k,t)2313

Making use of the spatial isotropy we define the radial dE(K

. . E(k,t

correlation function as ((jt ) _ 2 UCE(K ) + 2KW(K), 16

R(r,s)= z[R¥(r,s) +R/(r,s)], (5

where
wherer=|r,—r,| and s=|t;—t,|. The autocorrelation of
I’,t €V

77( ) W(k)= EkiiQZ(_)\ZkZ)_ (17)

C(r,s)=(n(rqy,t) n(ry,t3)) (6)

is correspondingly assumed to have the properties of hom
geneity, isotropy, and stationarity. From the definiti@hwe
can express the velocity correlati@d) in terms of(6)

This quantity can be regarded as the input of energy due to
(%he stirring forces. The stationary state is achieved when the
input term is exactly balanced by the dissipation term,

1 €
1 * - —00 )= = — :—O —
R(r,S)ZEJOdkngo(kr)C(k,S), @ E(k,t—x)=E(k) VW(k) 47Tk3Q2( A2k2)

where Jg(kr) is the Bessel function of zeroth order and =ik3C_(k,O). (18)
C(k,s) is the Fourier transform of(r,s). 4m

_ The physical parameters of steady turbulence, i.e., itghe stirring intensityu3 can also be related with the spec-
intensity ug, and characteristi¢integra) time and length  ,m

scales follow from their standard definitiohs,

1 (= 2= wdkEk, 19
u=R(0,0), to=—zf ds R0s), 1o fo () (19
LIO 0

(8) and the characteristic tim&, (9), and the characteristic

| — 1 °°d R(r.0) length (9) can be related as well with the viscosityand
O_u_oz 0 rR(r.0). \. Explicit relations will be obtained later on for particular
spectra.

With these definitions in mind let us move to the discussion

! > As it is quite obvious, our scheme does not incorporate
of the analytical scheme. The Fourier transformbfreads

the nonlinear term of the Navier-Stokes equation. Notice,

an(k,t) , . p i nevertheless, that this scheme is versatile enough to repro-
. vken(k, 1) —iQ(—NkI)K I (k,1). (9 duce a large variety of energy spectra, just by appropriately

prescribing the differential operat@[\2V?2] in (1). In our

Now we introduce the structure functi@tk,t) related with  approach the noisy term represents the stirring mechanism

the equal-time correlation functiai®), but in Fourier space which feeds energy continuously into the system according

to the chosen spectrum. At the same time this energy is dis-

_ 2

(kO n(kz,0)=(2m)"6(ky Fkz) Sk, D). (10 sipated at time and spatial scales controlledvbyAs there
By using standard stochastic calcufdsS(k,t) is shown to  are only linear terms in the Langevin equation, no kind of
verify energy cascade is possible. The noise forces introduce the
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whole hierarchy of turbulent structures evolving according to yo 1
their own time and length scales, but without any interaction ~ B.(t)=| 260N“Q},.C ., [exp2ve, At)—1]

between them.
29
1- cos( N

. o where «,,,, are Gaussian random numbers, which satisfy
We have chosen for thle dlscre'ilzatlon of t.hﬁ rT:aI SPace @y (t)a,,,(t))=4,,6,,. We would proceed analogously
standard two- dimensional square lattiéeN with elemen-  ¢q, ¥,.(t). The correlation of the stream function in the

tary unit spacingA in both directions. In most of our simu- steady state is

lationsN=128 andA =0.5, unless other values are specified.

The discrete Fourier space is discretized accordingly (7su7po)si=Q%u€0(NA)?S,,6,, - (28)
k=(ky,ky)=2m/NA (u,v) (Greek indices are used in Fou- \when dealing with the diffusion of the passive scalars in
rier space on all that follows® We can take advantage of gec |V we will always start our simulations in a steady
the fact that(9), when written in the discrete Fourier space, configuration of the random flow. According to the result

transforms into a set of linear and not coupled ordinary dif-(2g) this is easily accomplished by taking as initial condition
ferential equations. In these circumstances the exact integra-

tion betweert andt+ At (At=0.1t,) gives 7,(0)= Q€0 ANA) a,,,(0). (29

D1+ A = eXp(rC , AL 7,,(1) + B (D) + (1), At ea_ch time_ step and after having generated the stream
function in Fourier space we proceed to antitransform and
using it in relation with the appropriate discretized forms for
the velocity field. We skip some details to refer directly to
the discrete version of the energy spectrum which finally

1/2
X ) 1), 27

Ill. SIMULATION ALGORITHM

in terms of new random variableg, (t) and vy, (t) are
defined according to

t+At
Bu()=Qd}, f dt’ £, (t)exr (t+At—t')vc,, ], read
t 60 2 . 27TM
(22) EMUZW(M2+UZ)1/2QMU SIHZ(—N )
t+At
= de dt' 2 (t’ t+At—t’ : 2
Vul D= Quutyy | - AU L, (1) exrl( )7yl +sir? %}) . (30

(22)
where Q,,, in the last two expressions denote the discrete

Fourier transform of the operat@®[\2V?]. In the Fourier V. DIFFUSION OF PASSIVE SCALARS

space the derivative operators have been translated into Before we start the study of the scalar diffusion, we will

) 2 27 2m7v discuss the selection of spectra. There are several possible
V2—c,,= 7| cog ) Feos |~ 2|, (23)  choices and between all of them we have selected two spec-
tra which are well behaved in all the range of wave numbers.
V__,d/w:% ex;{i 2% —1,ex;<i 2%’) _1}_ (24) A. Kraichnan’s and Ka "rman-Obukhov spectra

_ . The spectrum introduced by Kraichnéi)*® describes
The correlation of the random variables can be expressegljent velocity fields with a widely distributed band of

as excitations and a peak centered at well-defined wave number
(B0 Byo(1) = QuuQpu i d, ko
2
t+At t+At
x [ ar [avtm g, Elo=kexp| = a). @1
X Xt At —t') 1 ., + 1€, o (t+AL—t")], In this case, the operat@ has to be chosen according to
2v2
(25) QI\2VZ]=exp| + > (32

and similar equations for the,,,(t). Using (2), the symme- . _ o
try properties of th& operatorQ,,,=Q_,_,=Q%, and fur- yvhere)\: k_0 . Usmg (11_1) and substituting in7), the veloc-
ther integrating and using the expressions defined above fdfy correlation function in steady state reads

the discrete operators in Fourier space we finally have 2

€ r
(B Boo(1) =2€08,,,8,,N?Q% .. exp(2ve,,, At — 1] RIS = grinzr 92| 1~ ain2T0s)
2 r?
X 1—cos( T) . (26) Xex;{ T I0Ts) | (33
We can now construct an explicit expression 8],,(t) From it, we can obtairlucz,, and the integral time and length
adapted to the result just obtained scales according to
1080 Phys. Fluids, Vol. 9, No. 4, April 1997 Marti et al.
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2 €o (3 4) 0.40

0TGN
A2 I
to=—, 35 o
14
AT w 0.20
2
The dimensionless Reynolds number, defined according to 910
Re=Iquq/v, is thus expressed in terms of the noise param-
eters as
0.00 *
. €0 1/2 1 2 .

FIG. 1. Dynamical evolution oE(k,t) (dashed lines from an initially flat

P 4 _ ) _ spectrum to its steady state;=0.5, and t,=t,; K: Kraichnan’s, K-O:
Our second choice is the Kaan-Obukhov'KO) spec Karman-Obukhov. Solid lines correspond to the continuous steady spectra,

trum which was introduced to study Kolgomorov turbu- Egs.(31) and(38), respectively, and dotted lines correspond to discrete Eq.
lence with a long “-5/3" tail in the spectrum for larg&. To  (30) (u2=0.25,t,=0.1,1,=1.5, 100 realizations

this end we select the family of Kaan-Obukhov spectra,

whose general behavior is

2
1+ —
ko

—(5+3n)/6 B. Scalar diffusion in a continuous scheme

E(k)xk" (39

Scalar diffusion in turbulent flows is a classical
problent” which still deserves a lot of attentidf.Our start-
ing point is the Eulerian equation of motion for a scalar
distribution (r,t) which is assumed to be passively ad-
2021 (1 _y 292\~ 7/6 vected by the previously prescribed isotropic homogeneous
QINVI= (1= (39 and stationary random flow(r,t),
In this case we obtain the following results for the three basic
parameters (1)

For convenience we have takern=3. The choice of th&)
operator is then

o =DV2y(r,t)—= V. [v(r,t)y(r,t)]. (44)
»  9e

Uo=35 34 (40 |n the standard notation used i@4), D stands for the
“bare” molecular diffusion coefficient. By averaging over
A2 realizations ofv(r,t) we simply obtain from the above equa-

tozﬁl 4D tion the temporal evolution ofy(r,t)). Actually taking a
S-like initial condition, this quantity is nothing but the prob-
I'(1/2)T'(5/6) ability density for the spatiotemporal dispersion of a unit

N T (42 amount of the randomly advected scafa?® Thus the first

nonzero moment
The corresponding Reynolds number is expressed as
60)1’2 1 3I(5/6) ' ey = fRndvriri<t/f(r,t)> (45)

Re=\72| anp2ram) (43

is all that we need to compute an effective diffusion coeffi-

A closed expression for the correlation function cannot becient. The procedure outlined above, although simply enun-
obtained in this case. ciated, is quite involved in its analytical resolution. The best

These two spectra have been simulated according to thgay to proceed is thus to follow the standard analytical strat-
recipes of the previous section. In Fig. 1 we have plotted thegies furnished by the theory of Gaussian stochastic pro-
evolution of an initially flat spectrum towards its final steady cesses. The central difficulty arises from the non-Markovian
state. By looking at the patterns corresponding to differenhature of the process at hand. Controlled perturbative
time intervals we can judge the role of the kinematic viscoSschemes are thus necessary. In particular a consistent
ity. In particular the modes with smallérrelax slower than  expansiorf® based on the smallness of the correlation time,
modes with largek. Continuous and discrete analytical re- t, leads to a closed equation fog(r,t)), linear in the au-
sults are also compared in the steady state to see the diffefocorrelation tensor, from which a diffusive regime is iden-

ences introduced by the discretization procedure specially foified through the common linear law for the scalar disper-
largek. The clear differences between both spectra are goingion

to influence the diffusion of passive scalar as it will be dis-
cussed later on. (r)—(ry2=((Ar)?)=4Dt=4(D+AD)t. (46)
Phys. Fluids, Vol. 9, No. 4, April 1997 Marti et al. 1081
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Moreover from such an expansion, the explicit expressions
for the leading contribution t&a D can be simply evaluated
as

AD.= fwdsF{O,s)+4DfmdssF¥(0,s), (47)
0 0

whereR"(0,8) = [#?R(r,s)/dr?]|,—,. Computing these left \
integrals for both spectra we end up with a common expres- s
sion which reads

_ 2 _2_D 60} 4
AD¢=ufto| 1-—/. (49) \

In particular for the Kraichnan'’s flow

2 D’TTtO
ADcK:Uoto 1- ?— .
0

40

(49

20

An analogous expression would be obtained for theniémn-
Obukhov’s spectrum.

Both expressions identify the zeroth-order contribution, o A

uéto, which can also be viewed as an exactly correct limiting

case of the classical Roberts anal%gfor the diffusion of FIG. 2. Pattern of an initial black drop of the dispersed scalar under the

a scalar field advected by a rapidly varying random velocityinfluence of the Kraichnan’s flow{=0.10, e,=651.8,A\=2.26, v=5.1,
field. andt=160).

C. Discrete scheme ) ) )
we are sure to be in an isotropic and homogeneous turbulent

Needless to say that given the discrete nature of ougnyironment from the beginning of the simulation. Ran-
simulations, the numerical results for the scalar dispersiogiomly advected by the turbulent velocity field the scalar
will be more favorably compared when referring to the dis-spreads over the lattice, Fig. 2. At each time step we measure
crete version of the analytical results given above. In particUthe variance (Ar)?) and we fit, after transients, its temporal
lar (47) transforms into evolution to a linear law, to obtaib ;.

Summarized in Fig. 3 we present two series of results for

© 2D ©
ADd=f dsF{A,s)+Ff dsgR(2Y2A,s)
0 0

+R(2A,s)—2R(A,s)], 0.10 . . . ;

For the spectra here analyzed the explicit expression reads o
2 .
€p . 27TM . 27TU Qp,v 0.08 - e B
= el B _ | — . e
ADq 2VN2A4§, sie| = ) S'”Z( N ) —C,., 6
o 27 N 2@v\ |1 2D O
ex = ex N > AZCMV 0.06 | ,
o
-1 27w _2mv 91 7
X|——+expg —i ——|+exp —i —|||. (50 S
2 N N 0.04 - R i
X s
7, e
D. Results 7
Numerical simulation proceeds first by constructing the 0.02 - 7

random velocity field with the desired statistical properties 4
and then by seeding the system witlA-¢ike initial condition ’
for the dispersed scalar at the center of the lattice. Equation 0.00 & \ . , ,
(44) is numerically simulated by using a first-order Euler ~0.00 0.03 0.05 , 0.08 . 0.10
algorithm for the time variable and symmetric forms for the Up t
derivative operators. The values &dfand At where those of
Sec. Il which satisfy numeric stability criteria. FIG. 3. AD vs ut, (Kraichnan’s spectrujn Here and in the following

.. . L . . plots, solid lines correspond to E@9), broken lines to the discrete expres-
As anticipated in Sec. Ill, the initial condition(r,0) is sion, Eq. (50), and symbols stand for simulations. Parameter values:

chosen to correspond to the steady statep@f,t) (under- p—0.30, 10 realizations. Circlesx=1.00, v=5.0. Squares\=1.69,
stood here in a statistical sengeee Eq.(29)]. In this way  v»=285.

1082 Phys. Fluids, Vol. 9, No. 4, April 1997 Marti et al.

Downloaded-21-Sep-2010-to-161.116.168.227.-Redistribution-subject-to-AlP-license-or-copyright;-see=http://pof.aip.org/about/rights_and_permissions



0.04 T T T

0.08 . ; —_———— {
|
/B 0.03 | ]
0.06 - i j
]
tj""_:;f'/””—‘~~— ] +
8002+ 7 .
g8 004 ‘ <
0.01 |
0.02 J
0.00 L . .
0.00 L L —— — 1.0 15 2.0 2.5 3.0
0.00 0.02 0.04 0.06 J.08 I
1/v 0
; ; P ; _ FIG. 5. AD vslg. (uU3=0.25,t,=0.10,D=0.30,A=0.5 for the open sym-
FIG. 4. AD vs the inverse of the kinematic wscosn;ué& 0.25,A=2.0, 0- 1-0 0
D=0.30, 10 realizations. Ili)r?(les) and short dashed lind=1.0 for the full symbols and long dashed

AD corresponding to two different choices for the correla-representation oAD vs ut, for both flows with identical
tion time of the random flow,. Simulation results are com- integral valued, andty,. What we see is that the KO spec-
pared with the appropriate, perturbative obtained theoreticatum has more statistical dispersion and lower values of the
predictions both in their continuous and discrete versions. Agffective diffusion than K spectrum. These facts can be un-
evidenced in that figure the agreement is entirely satisfacderstood by comparing both spectra in Fig. 1. The most re-
tory. The general conclusion is that a large enough relativenarkable difference between both spectra concerns the iner-
correction to molecular diffusion, up to 25% in Fig. 3, can betial subrange they mean to represent: KO spectrum is much
accurately predicted as long as the correlation time of thdéroader than K wave-number dispersion. This in turn is di-
random flow,tq, is small enough relative to the typical time rectly reflected in the different behavior of both spectra for
scale for the scalar advectidg/uy. In addition we note that largek. Thus KO spectrum shows a richer variety of turbu-
the differences between the discrete and continuous theordent structures at short distances. For lakgeKO spectrum
ical results are easily interpreted when comparing the corre-
sponding expressions foAD. Actually the correlation
R(r,s) evaluated at the origin=0 or to first neighbors may 0.04 . . . —
be significantly different given the small value af here
employed (A=1) relative to the elementary spacing (A e KO e
=0.5) chosen in all our simulations. - K s
The role of the parametey is better analyzed in relation 0.03 - S i
with the results of Fig. 4. Plotted against the inverse of the s
value of the viscosity, a direct measuretgffor |, fixed as e |
prescribed here, the effective scalar dispersion increases with 7
v~ 1. As expected from the intrinsic limitation of the pertur- 8 oo b / J
bative approach here developed, numerical simulations and® ™ =
theoretical predictions, although showing similar trends, dif- 2
fer progressively as, increases. Complementary to the re-
sults depicted in Fig. 4, chosen to consider the role of corre- i
lation time of the random flow, we propose Fig. 5 to examine ~ 001 |
the influence of the correlation length Our theoretical re- A
sult Eq.(49) predicts a very small dependence Ignwhich pe
is the behavior observed in Fig. 5. Note in this respect that in '
going fromly=1.0 toly=3.0, €y had to be increased nearly 0.00 : l \
two orders of magnitude to keapﬁ andt, fixed, butAD 0.00 0.01 uoz'?z 0.03 0.04
hardly changes. 0
The last worthy remark refers to the comparison of KgiG. 6. AD for Kraichnan(circles and Kaman-Obukhowsquaresspectra
and KO spectra. To this end we proposed in.Big standard  (t,=0.10,1,=1.5, 5 realizations
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