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We present an analytical scheme, easily implemented numerically, to generate synthetic Gaussian
turbulent flows by using a linear Langevin equation, where the noise term acts as a stochastic
stirring force. The characteristic parameters of the velocity field are well introduced, in particular the
kinematic viscosity and the spectrum of energy. As an application, the diffusion of a passive scalar
is studied for two different energy spectra. Numerical results are compared favorably with analytical
calculations. ©1997 American Institute of Physics.@S1070-6631~97!00404-2#
to

co
m
th
h
e
in

n
ar
o
m
o
t

Th
in
ra
.
ad
u-

w
ke
p
in
ti
g
th
u
d
ul
ti
m
uc
e

is
ca
it

g a
for
-
tion

-
he

ian
part
of
ch a
t it
of
its
m-
nal
his
rty
-
e
d
ork-
e

ion
ran-

sort
if-
to
I. INTRODUCTION

The statistical approach to turbulence has a long his
on its own.1,2 Actually, it is the firm recognition that both
fundamental and applied aspects of turbulence can be
sistently addressed from the knowledge of the statistical
ments and correlations of the velocity flow that has made
approach particularly appealing. Since in any case suc
statistical point of view has adopted multiple perspectiv
during these last decades, let us first put our formulation
an appropriate context.

Our primary aim here is to describe an analytical a
numerical methodology to generate a statistically station
homogeneous, and isotropic two-dimensional turbulent fl
with zero mean velocity and well-defined energy spectru
Needless to say, such a regime of steady turbulence can
be maintained by means of an external input of energy
compensate the dissipative nature of the viscous forces.
external input could be conceptually associated with stirr
forces which are stochastic in nature so as to produce a
dom velocity field which is to represent the turbulent flow3

It is quite obvious that the statistical properties of the ste
stirring forces will ultimately determine those of the turb
lent flow.

Ideally, the statistical properties of any turbulent flo
should come as the output of a first principle, Navier-Sto
based, formulation of the problem. However, we will ado
here a somewhat reversed perspective aimed at develop
methodology to construct what would be a sort of synthe
turbulence.4–8 Rather than to retain the nonlinear couplin
which makes possible the redistribution of energy from
largest length scales down into the smaller ones, we ass
that the energy is incorporated into the system in an in
vidual wave number basis. In other words, our model wo
represent a collection of uncoupled stirrers each one ac
on a single-length scale and introducing its own wave nu
ber dependent energy contribution, but chosen to reprod
and this is the main point in our approach, the desired sp
tral distribution in steady state.

This practical approach to produce a turbulent flow
justified by the fact that what we want is to study a physi
process within the turbulent medium described only by
1078 Phys. Fluids 9 (4), April 1997 1070-6631/97/9(4
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statistical properties. Our strategy is accomplished by usin
generalized Ornstein-Uhlenbeck-like Langevin equation
the stream functionh(r ,t).4,6 Being more specific, our pro
posal is based on the use of the following Langevin equa

]h~r ,t !

]t
5n¹2h~r ,t !1Q@l2¹2#¹•z~r ,t !, ~1!

wheren is the kinematic viscosity andz is a Gaussian white
noise with zero mean value and correlation

^z i~r1 ,t1!z
j~r2 ,t2!&52e0nd~ t12t2!d~r12r2!d

i j . ~2!

In this last expression,e0, andl are parameters which con
trol, respectively, the intensity and correlation length of t
random flow.Q@l2¹2# will play the most relevant role in
our scheme, representing the random stirring forces.

The random flow generated in this way has Gauss
properties due to the linear nature of such an equation. A
from that, other limitations concerning some invariances
the turbulent flow appear also as a consequence of su
linearity.6 However, the big advantage of our model is tha
facilitates the control over the characteristic parameters
the turbulence, i.e., its integral time and length scales and
spectrum, just by appropriately prescribing the input para
eters of the noise entering into the Langevin equation. A fi
remark concerning Gaussianity is worth mentioning at t
point. Certainly, we recognize that such a statistical prope
is under scrutiny.9 However, particular experimental sce
narios supporting it,10 together with the lacking of conclusiv
results on intermittency,3 leave this question rather open an
allows us to use such a Gaussian property, at least as a w
ing simplifying hypothesis, mainly when the focus is in th
study of physical process inside this medium.

This paper is organized as follows. In the next sect
we summarize the Langevin approach to generate the
dom flow ~synthetic turbulence!. In Sec. III the technical
details of the numerical simulations are presented. As a
of application we consider the classical problem of the d
fusion of a passive scalar in Sec. IV. We devote Sec. V
draw some conclusions and perspectives.
)/1078/7/$10.00 © 1997 American Institute of Physics
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II. LANGEVIN APPROACH

As our approach starts with the generation of a sca
stream function,11 we are going to review first the relation
ships between the stream function properties and those o
velocity field. Leth(r ,t) be the stream function from whic
we define the two-dimensional incompressible turbulent fi
v(r ,t) (“ • v50),

v~r ,t !5S 2
]h~r ,t !

]y
,
]h~r ,t !

]x D . ~3!

Its mean value is taken to be zero and the two-point velo
autocorrelation is defined as usual through

^v i~r1 ,t1!v
j~r2 ,t2!&5Ri j ~r12r2 ,t12t2!, ~4!

where homogeneity in space and time is explici
denoted.2,3 Our scheme is entirely implemented in two d
mensions~2D!. However, it could be generalized to 3D ju
by taking a vector stream functionh and obtaining the ve-
locity field asv5¹3h. In this case each component of th
stream function must satisfy a Langevin equation similar
~1! with independent noises.

Making use of the spatial isotropy we define the rad
correlation function as

R~r ,s!5 1
2 @Rxx~r ,s!1Ryy~r ,s!#, ~5!

where r5ur12r2u and s5ut12t2u. The autocorrelation of
h(r ,t)

C~r ,s!5^h~r1 ,t1!h~r2 ,t2!& ~6!

is correspondingly assumed to have the properties of ho
geneity, isotropy, and stationarity. From the definition~3! we
can express the velocity correlation~5! in terms of~6!

R~r ,s!5
1

4pE0
`

dkk3J0~kr !C̄~k,s!, ~7!

where J0(kr) is the Bessel function of zeroth order an
C̄(k,s) is the Fourier transform ofC(r ,s).

The physical parameters of steady turbulence, i.e.,
intensity u0

2, and characteristic~integral! time and length
scales follow from their standard definitions,2,3

u0
25R~0,0!, t05

1

u0
2E

0

`

ds R~0,s!,

~8!

l 05
1

u0
2E

0

`

dr R~r ,0!.

With these definitions in mind let us move to the discuss
of the analytical scheme. The Fourier transform of~1! reads

]h~k,t !

]t
52nk2h~k,t !2 iQ~2l2k2!kjz j~k,t !. ~9!

Now we introduce the structure functionS(k,t) related with
the equal-time correlation function~6!, but in Fourier space

^h~k1 ,t !h~k2 ,t !&5~2p!2d~k11k2!S~k,t !. ~10!

By using standard stochastic calculus,12 S(k,t) is shown to
verify
Phys. Fluids, Vol. 9, No. 4, April 1997
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]S~k,t !

]t
522nk2S~k,t !12e0nk

2Q2~2l2k2!. ~11!

On the other hand,C̄(k,s) obeys, in the steady state, th
equation

]C̄~k,s!

]s
52nk2C̄~k,s!, ~12!

with the initial condition

C̄~k,0!5S~k,t→`!5Sst~k!. ~13!

From ~11! and ~12! we get

C̄~k,s!5e0Q
2~2l2k2!e2nk2s, ~14!

The energy spectrumE(k,t) is defined in terms of
S(k,t) as

E~k,t !5
1

4p
k3S~k,t !. ~15!

Using ~11! we can also obtain the equation of evolution
E(k,t)2,3,13

dE~k,t !

dt
522nk2E~k,t !12k2W~k!, ~16!

where

W~k!5
e0n

4p
k3Q2~2l2k2!. ~17!

This quantity can be regarded as the input of energy du
the stirring forces. The stationary state is achieved when
input term is exactly balanced by the dissipation term,

E~k,t→`!5E~k!5
1

n
W~k!5

e0
4p

k3Q2~2l2k2!

5
1

4p
k3C̄~k,0!. ~18!

The stirring intensityu0
2 can also be related with the spe

trum

u0
25E

0

`

dkE~k!, ~19!

and the characteristic timet0 ~9!, and the characteristic
length ~9! can be related as well with the viscosityn and
l. Explicit relations will be obtained later on for particula
spectra.

As it is quite obvious, our scheme does not incorpor
the nonlinear term of the Navier-Stokes equation. Noti
nevertheless, that this scheme is versatile enough to re
duce a large variety of energy spectra, just by appropria
prescribing the differential operatorQ@l2¹2# in ~1!. In our
approach the noisy term represents the stirring mechan
which feeds energy continuously into the system accord
to the chosen spectrum. At the same time this energy is
sipated at time and spatial scales controlled byn. As there
are only linear terms in the Langevin equation, no kind
energy cascade is possible. The noise forces introduce
1079Martı́ et al.
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Downloade
whole hierarchy of turbulent structures evolving according
their own time and length scales, but without any interact
between them.

III. SIMULATION ALGORITHM

We have chosen for the discretization of the real spac
standard two- dimensional square latticeN3N with elemen-
tary unit spacingD in both directions. In most of our simu
lationsN5128 andD50.5, unless other values are specifie
The discrete Fourier space is discretized accordin
k5(kx ,ky)52p/ND (m,y) ~Greek indices are used in Fou
rier space on all that follows!.14 We can take advantage o
the fact that~9!, when written in the discrete Fourier spac
transforms into a set of linear and not coupled ordinary d
ferential equations. In these circumstances the exact inte
tion betweent and t1Dt (Dt50.1t0) gives

hmy~ t1Dt !5exp~ncmyDt !hmy~ t !1bmy~ t !1gmy~ t !,
~20!

in terms of new random variablesbmy(t) and gmy(t) are
defined according to

bmy~ t !5Qmydmy
x E

t

t1Dt

dt8zmy
x ~ t8!exp@~ t1Dt2t8!ncmy#,

~21!

gmy~ t !5Qmydmy
y E

t

t1Dt

dt8zmy
y ~ t8!exp@~ t1Dt2t8!ncmy#,

~22!

whereQmy in the last two expressions denote the discr
Fourier transform of the operatorQ@l2¹2#. In the Fourier
space the derivative operators have been translated into

¹2→cmy5
2

D2 FcosS 2pm

N D1cosS 2py

N D22G , ~23!

¹.→dmy5
1

D FexpS i 2pm

N D21,expS i 2py

N D21G . ~24!

The correlation of the random variables can be expres
as

^bmy* ~ t !brs~ t !&5QmyQrsdmy
x* drs

x

3E
t

t1Dt

dt8E
t

t1Dt

dt9^zmn
x* ~ t8!zrs

x ~ t9!&

3exp@~t1Dt2t8!ncmy1ncrs~ t1Dt2t9!#,

~25!

and similar equations for thegmy(t). Using ~2!, the symme-
try properties of theQ operatorQmy5Q2m2y5Qmy* and fur-
ther integrating and using the expressions defined above
the discrete operators in Fourier space we finally have

^bmy* ~ t !brs~ t !&52e0dmrdysN
2Qmy

2 cmy
21@exp~2ncmyDt !21#

3F12cosS 2pm

N D G . ~26!

We can now construct an explicit expression forbmy(t)
adapted to the result just obtained
1080 Phys. Fluids, Vol. 9, No. 4, April 1997
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bmy~ t !5S 2e0N
2Qmy

2 cmy
21@exp~2ncmyDt !21#

3F12cosS 2pm

N D G D 1/2amy~ t !, ~27!

where amy are Gaussian random numbers, which sati
^amy* (t)ars(t)&5dmrdys . We would proceed analogousl
for gmy(t). The correlation of the stream function in th
steady state is

^hmy* hrs&st5Qmy
2 e0~ND!2dmrdys . ~28!

When dealing with the diffusion of the passive scalars
Sec. IV we will always start our simulations in a stea
configuration of the random flow. According to the resu
~28! this is easily accomplished by taking as initial conditio

hmy~0!5Qmye0
1/2~ND!amy~0!. ~29!

At each time step and after having generated the stre
function in Fourier space we proceed to antitransform a
using it in relation with the appropriate discretized forms f
the velocity field. We skip some details to refer directly
the discrete version of the energy spectrum which fina
reads4

Emy5
e0

2ND3 ~m21y2!1/2Qmy
2 Fsin2S 2pm

N D
1sin2S 2py

N D G . ~30!

IV. DIFFUSION OF PASSIVE SCALARS

Before we start the study of the scalar diffusion, we w
discuss the selection of spectra. There are several pos
choices and between all of them we have selected two s
tra which are well behaved in all the range of wave numbe

A. Kraichnan’s and Ka ´rman-Obukhov spectra

The spectrum introduced by Kraichnan~K!15 describes
turbulent velocity fields with a widely distributed band o
excitations and a peak centered at well-defined wave num
;k0

E~k!}k3exp F2
k2

k0
2G . ~31!

In this case, the operatorQ has to be chosen according to

Q@l2¹2#5exp S 1
l2¹2

2 D , ~32!

wherel5k0
21. Using ~14! and substituting in~7!, the veloc-

ity correlation function in steady state reads

R~r ,s!5
e0

8p~l21ns!2 F12
r 2

4~l21ns!G
3expF2

r 2

4~l21ns!G . ~33!

From it, we can obtainu0
2, and the integral time and lengt

scales according to
Martı́ et al.
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u0
25

e0
8pl4 , ~34!

t05
l2

n
, ~35!

l 05
lAp

2
. ~36!

The dimensionless Reynolds number, defined accordin
Re5 l 0u0 /n, is thus expressed in terms of the noise para
eters as

Re5S e0
2 D 1/2 1

4ln
. ~37!

Our second choice is the Ka´rman-Obukhov’s~KO! spec-
trum which was introduced16 to study Kolgomorov turbu-
lence with a long ‘‘25/3’’ tail in the spectrum for largek. To
this end we select the family of Ka´rman-Obukhov spectra
whose general behavior is

E~k!}knF11
k2

k0
2G2~513n!/6

. ~38!

For convenience we have takenn53. The choice of theQ
operator is then

Q@l2¹2#5~12l2¹2!27/6. ~39!

In this case we obtain the following results for the three ba
parameters

u0
25

9e0
32pl4 , ~40!

t05
l2

3n
, ~41!

l 05l
G~1/2!G~5/6!

2G~1/3!
. ~42!

The corresponding Reynolds number is expressed as

Re5S e0
2 D 1/2 1

4ln

3G~5/6!

2G~1/3!
. ~43!

A closed expression for the correlation function cannot
obtained in this case.

These two spectra have been simulated according to
recipes of the previous section. In Fig. 1 we have plotted
evolution of an initially flat spectrum towards its final stea
state. By looking at the patterns corresponding to differ
time intervals we can judge the role of the kinematic visc
ity. In particular the modes with smallerk relax slower than
modes with largerk. Continuous and discrete analytical r
sults are also compared in the steady state to see the d
ences introduced by the discretization procedure specially
largek. The clear differences between both spectra are go
to influence the diffusion of passive scalar as it will be d
cussed later on.
Phys. Fluids, Vol. 9, No. 4, April 1997
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B. Scalar diffusion in a continuous scheme

Scalar diffusion in turbulent flows is a classica
problem17 which still deserves a lot of attention.18 Our start-
ing point is the Eulerian equation of motion for a scal
distribution c(r ,t) which is assumed to be passively a
vected by the previously prescribed isotropic homogene
and stationary random flowv(r ,t),

]c~r ,t !

]t
5D¹2c~r ,t !2“•@v~r ,t !c~r ,t !#. ~44!

In the standard notation used in~44!, D stands for the
‘‘bare’’ molecular diffusion coefficient. By averaging ove
realizations ofv(r ,t) we simply obtain from the above equa
tion the temporal evolution of̂c(r ,t)&. Actually taking a
d-like initial condition, this quantity is nothing but the prob
ability density for the spatiotemporal dispersion of a un
amount of the randomly advected scalar.19,20 Thus the first
nonzero moment

^r i r j&^c~r ,t !&5E
Rn
dvr i r j^c~r ,t !& ~45!

is all that we need to compute an effective diffusion coef
cient. The procedure outlined above, although simply en
ciated, is quite involved in its analytical resolution. The be
way to proceed is thus to follow the standard analytical str
egies furnished by the theory of Gaussian stochastic p
cesses. The central difficulty arises from the non-Markov
nature of the process at hand. Controlled perturbat
schemes are thus necessary. In particular a consis
expansion,20 based on the smallness of the correlation tim
t0, leads to a closed equation for^c(r ,t)&, linear in the au-
tocorrelation tensor, from which a diffusive regime is ide
tified through the common linear law for the scalar dispe
sion

^r 2&2^r &25^~Dr !2&54Defft54~D1DD !t. ~46!

FIG. 1. Dynamical evolution ofE(k,t) ~dashed lines!, from an initially flat
spectrum to its steady state;t150.5t0 and t25t0; K: Kraichnan’s, K-O:
Kárman-Obukhov. Solid lines correspond to the continuous steady spe
Eqs.~31! and~38!, respectively, and dotted lines correspond to discrete E
~30! (u0

250.25, t050.1, l 051.5, 100 realizations!.
1081Martı́ et al.
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Moreover from such an expansion, the explicit expressi
for the leading contribution toDD can be simply evaluated
as

DDc5E
0

`

dsR~0,s!14DE
0

`

dssR9~0,s!, ~47!

whereR9(0,s)5 @]2R(r ,s)/]r 2# ur50. Computing these left
integrals for both spectra we end up with a common exp
sion which reads

DDc5u0
2t0S 12

2D

n D . ~48!

In particular for the Kraichnan’s flow

DDcK5u0
2t0S 12

Dpt0
2l 0

2 D . ~49!

An analogous expression would be obtained for the Ka´rman-
Obukhov’s spectrum.

Both expressions identify the zeroth-order contributio
u0
2t0, which can also be viewed as an exactly correct limiti
case of the classical Roberts analysis21,22 for the diffusion of
a scalar field advected by a rapidly varying random veloc
field.

C. Discrete scheme

Needless to say that given the discrete nature of
simulations, the numerical results for the scalar dispers
will be more favorably compared when referring to the d
crete version of the analytical results given above. In parti
lar ~47! transforms into

DDd5E
0

`

dsR~D,s!1
2D

D2 E
0

`

dss@R~21/2D,s!

1R~2D,s!22R~D,s!#,

For the spectra here analyzed the explicit expression rea

DDd5
e0

2nN2D4(
my

Fsin2S 2pm

N D1sin2S 2py

N D G Qmy
2

2cmy

3FexpS 2 i
2pm

N D1expS 2 i
2py

N D GF122
2D

D2cmyn

3F21

2
1expS 2 i

2pm

N D1expS 2 i
2py

N D G G . ~50!

D. Results

Numerical simulation proceeds first by constructing t
random velocity field with the desired statistical propert
and then by seeding the system with ad-like initial condition
for the dispersed scalar at the center of the lattice. Equa
~44! is numerically simulated by using a first-order Eul
algorithm for the time variable and symmetric forms for t
derivative operators. The values ofD andDt where those of
Sec. III which satisfy numeric stability criteria.

As anticipated in Sec. III, the initial conditionh(r ,0) is
chosen to correspond to the steady state ofh(r ,t) ~under-
stood here in a statistical sense! @see Eq.~29!#. In this way
1082 Phys. Fluids, Vol. 9, No. 4, April 1997
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we are sure to be in an isotropic and homogeneous turbu
environment from the beginning of the simulation. Ra
domly advected by the turbulent velocity field the sca
spreads over the lattice, Fig. 2. At each time step we mea
the variancê (Dr )2& and we fit, after transients, its tempora
evolution to a linear law, to obtainDeff .

Summarized in Fig. 3 we present two series of results

FIG. 2. Pattern of an initial black drop of the dispersed scalar under
influence of the Kraichnan’s flow (D50.10, e05651.8,l52.26, n55.1,
and t5160).

FIG. 3. DD vs u0
2t0 ~Kraichnan’s spectrum!. Here and in the following

plots, solid lines correspond to Eq.~49!, broken lines to the discrete expres
sion, Eq. ~50!, and symbols stand for simulations. Parameter valu
D50.30, 10 realizations. Circles:l51.00, n55.0. Squares:l51.69,
n528.5.
Martı́ et al.
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DD corresponding to two different choices for the corre
tion time of the random flowt0. Simulation results are com
pared with the appropriate, perturbative obtained theoret
predictions both in their continuous and discrete versions
evidenced in that figure the agreement is entirely satis
tory. The general conclusion is that a large enough rela
correction to molecular diffusion, up to 25% in Fig. 3, can
accurately predicted as long as the correlation time of
random flow,t0, is small enough relative to the typical tim
scale for the scalar advectionl 0 /u0. In addition we note that
the differences between the discrete and continuous the
ical results are easily interpreted when comparing the co
sponding expressions forDD. Actually the correlation
R(r ,s) evaluated at the originr50 or to first neighbors may
be significantly different given the small value ofl here
employed ~l51! relative to the elementary spacingD ~D
50.5! chosen in all our simulations.

The role of the parametert0 is better analyzed in relation
with the results of Fig. 4. Plotted against the inverse of
value of the viscosity, a direct measure oft0 for l 0 fixed as
prescribed here, the effective scalar dispersion increases
n21. As expected from the intrinsic limitation of the pertu
bative approach here developed, numerical simulations
theoretical predictions, although showing similar trends, d
fer progressively ast0 increases. Complementary to the r
sults depicted in Fig. 4, chosen to consider the role of co
lation time of the random flow, we propose Fig. 5 to exam
the influence of the correlation lengthl 0. Our theoretical re-
sult Eq.~49! predicts a very small dependence onl 0, which
is the behavior observed in Fig. 5. Note in this respect tha
going from l 051.0 to l 053.0, e0 had to be increased near
two orders of magnitude to keepu0

2 and t0 fixed, butDD
hardly changes.

The last worthy remark refers to the comparison of
and KO spectra. To this end we proposed in Fig. 6 a standard

FIG. 4. DD vs the inverse of the kinematic viscosity. (u0
250.25, l52.0,

D50.30, 10 realizations.!
Phys. Fluids, Vol. 9, No. 4, April 1997
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representation ofDD vs u0
2t0 for both flows with identical

integral valuesl 0 and t0. What we see is that the KO spec
trum has more statistical dispersion and lower values of
effective diffusion than K spectrum. These facts can be
derstood by comparing both spectra in Fig. 1. The most
markable difference between both spectra concerns the
tial subrange they mean to represent: KO spectrum is m
broader than K wave-number dispersion. This in turn is
rectly reflected in the different behavior of both spectra
largek. Thus KO spectrum shows a richer variety of turb
lent structures at short distances. For largek, KO spectrum

FIG. 5. DD vs l 0. (u0
250.25,t050.10,D50.30,D50.5 for the open sym-

bols and short dashed line,D51.0 for the full symbols and long dashe
line.!

FIG. 6. DD for Kraichnan~circles! and Kárman-Obukhov~squares! spectra
(t050.10, l 051.5, 5 realizations!.
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Downloade
still allows structures of the same order than the lattice s
D. This is not the case of K spectrum where very sm
structures have a very low weight as can be seen in the v
of the intensity of both spectra fork52. So in KO spectrum
there is less energy concentrated in the interval of thosek’s
where the maximum of the energy takes place. This wo
finally result in a reduction of the effectiveness of stirring
the case of KO spectrum, since smallk-eddies can be
thought to be more effective in dispersing the scalar.

V. SUMMARY AND PERSPECTIVES

A stochastic method, based in a Langevin equation
generate Gaussian synthetic turbulent flows has been
sented. Characteristic parameters of the flow such as its
tensity and integral time and space scales are well contro
A relevant aspect of our method is that multiple choices
flow spectra can be generated. Two of those spectra are
plicitly presented here. As a practical application of th
methodology we have considered the study of the diffus
of a passive scalar under the influence of two different fl
spectra. The role of the different parameters, in particular
kinematic viscosity, which control the characteristic of t
flow is discussed.

The generation of well-controlled flow spectra can be
very useful tool in other problems of practical applicatio
For example, this approach was already used in the stud
phase separation dynamics under stirring.23 Reactive fronts,
i.e., flames propagating under turbulent convection is p
ently under study following also this technique.24
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