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We study the fingering instability of a circular interface between two immiscible liquids in a radial
Hele-Shaw cell. The cell rotates around its vertical symmetry axis, and the instability is driven by
the density difference between the two fluids. This kind of driving allows studying the interfacial
dynamics in the particularly interesting case of an interface separating two liquids of comparable
viscosity. An accurate experimental study of the number of fingers emerging from the instability
reveals a slight but systematic dependence of the linear dispersion relation on the gap spacing. We
show that this result is related to a modification of the interface boundary condition which
incorporates stresses originated from normal velocity gradients. The early nonlinear regime shows
nearly no competition between the outgrowing fingers, characteristic of low viscosity contrast flows.
We perform experiments in a wide range of experimental parameters, under conditions of mass
conservation~no injection!, and characterize the resulting patterns by data collapses of two
characteristic lengths: the radius of gyration of the pattern and the interface stretching. Deep in the
nonlinear regime, the fingers which grow radially outwards stretch and become gradually thinner, to
a point that the fingers pinch and emit drops. We show that the amount of liquid emitted in the first
generation of drops is a constant independent of the experimental parameters. Further on there is a
sharp reduction of the amount of liquid centrifugated, punctuated by periods of no observable
centrifugation. ©2004 American Institute of Physics.@DOI: 10.1063/1.1644149#

I. INTRODUCTION

Within the broad subject of spatio-temporal pattern for-
mation in nonequilibrium systems,1 the problems of interfa-
cial pattern formation have attracted much attention in the
last 2 decades. This class of problems admits a description in
terms of an interface which separates two distinct, macro-
scopically structureless phases, so that the spatio-temporal
evolution of the system is given directly by the temporal
evolution of the morphology of the interface. Processes of
this kind include fluid flow in porous media, crystal growth,
chemical electrodeposition, and flame propagation.2

A prototype system of interfacial pattern formation prob-
lems is the morphological instability of the interface between
two immiscible fluids confined in a Hele-Shaw cell. This
system is relatively simple, both experimentally and theoreti-
cally, and yet exhibits nontrivial dynamics.

One interesting aspect of this problem is the nontrivial
role of the viscosity contrast between the two fluids on the
dynamics. In the channel geometry, a series of numerical
simulations,3 experiments,4 and further theoretical studies5,6

has proved that the viscosity contrast plays an important dy-
namical role in the deeply nonlinear regime, particularly on
the mechanisms of finger competition and the resulting inter-
face morphologies. The research reported in the present pa-
per is motivated by the question whether and how the vis-
cosity contrast plays a similarly crucial role in the radial
geometry, a question not yet addressed.

In the channel geometry, the limit of low viscosity con-
trast could be explored experimentally by performing
gravity-driven experiments.4 In this case the instability is ba-
sically originated by the density difference~not the viscosity
difference! between the two fluids. There is an exact param-
eter mapping between injection- and gravity-driven flows in
the channel geometry, however, which makes the two flows
equivalent in a dimensionless formulation, in the reference
frame moving with the average velocity of the interface.

The situation in the radial geometry is more complex,
since there is no simple analog of gravity in this geometry.
One interesting candidate is centrifugal driving, produced by
rotating the circular cell around its vertical symmetry axis.
Under centrifugal driving the instability also originates basi-
cally from the density difference between the two fluids, as
in the gravity-driven case. Centrifugally-driven Hele-Shaw
flows, however, cannot be exactly mapped to injection-
driven flows ~and hence are not the exact counterparts of
gravity-driven experiments, in the radial geometry!.7

Hele-Shaw flows under rotation have been recently the
subject of several theoretical and experimental studies. The
linear stability analysis of an axisymmetric drop in the case
of high density and high viscosity contrast, originally worked
out by Schwartz,8 has been extended to arbitrary density and
viscosity contrast by Carrilloet al.9 There have also been a
number of theoretical efforts to find families of exact solu-
tions for interfaces evolving out of an axisymmetric drop7,10

or an axisymmetric annular configuration11 under rotation.
Recently, it has been shown that rotation can help preventinga!Electronic mail: enric@ecm.ub.es
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the formation of cusp singularities in problems with zero
surface tension.12

Regarding experimental work, our group has pioneered
the study of interfacial instabilities under centrifugal forcing,
investigating the instabilities of axisymmetric drops in a ro-
tating Hele-Shaw cell, in the limit of high viscosity contrast.9

Specifically, we have verified the maximum growth rate se-
lection of initial patterns with and without injection, and also
studied the nonlinear regime in the case of vanishing injec-
tion rate. A second series of experiments in the rotating cell
has focused on the dynamics of axisymmetric annular con-
figurations, with air at the innermost and outermost layers,
and oil at the intermediate layer.13 This arrangement leads to
a rich variety of patterns, as the density difference drives the
instability of the leading interface~oil displacing air! and the
viscosity difference drives the instability of the trailing inter-
face~air displacing oil!. We have proved that the stability of
the two interfaces is coupled through the pressure field al-
ready at a linear level. By performing experiments in prewet
and dry conditions, we have shown that the stability of the
interfaces depends substantially on the wetting conditions at
the leading interface.

The main objective of this paper is to extend our previ-
ous experimental studies in the rotating Hele-Shaw cell to
low viscosity contrast flows. Specifically, we report on a de-
tailed experimental investigation of the linear and deeply
nonlinear evolution of a circular axisymmetric interface
separating two immiscible liquids. We focus on the case of
vanishing injection rate,Q50, which is the closest analog to
a gravity-driven experiment. This simplification reduces the
number of independent parameters in the problem to two:
namelyS ~ratio of centrifugal to capillary forces! andA ~vis-
cosity contrast or Atwood ratio!, and we expect data collapse
of several magnitudes to simple scaling laws more feasible.
The other experimental parameters~fluid volume, rotational
frequency, and gap thickness! are modified in a wide range
of values.

Experiments of low viscosity contrast flows in the rotat-
ing cell lead to interesting dynamical and morphological ef-
fects in the highly nonlinear regime. In particular, we report
on the frequent ocurrence of pinch-off singularities of the
radially growing fingers, and the concomitant emission of
droplets. Such phenomena were also observed in low viscos-
ity contrast gravity-driven experiments in the channel
geometry.4

The outline of the paper is as follows: Section II pro-
vides details of the experimental setup, the physical proper-
ties of the fluids, and the experimental procedure, together
with a general, qualitative picture of the dynamical and mor-
phological properties of the patterns observed in our experi-
ments. Section III is dedicated to analyze and discuss the
experimental results. First we outline the Hele-Shaw equa-
tions of the problem, with particular attention to the role of
the Young–Laplace boundary condition at the interface, and
compare the prediction of a linear stability analysis for the
fastest growing mode against experimental results. Second,
we present a quantitative characterization of the patterns,
based on their latency time, the interface stretching, and the
mass distribution. Next, we study pinch-off events and the

properties of emitted droplets, and analyze the latest stages
of the pattern evolution. This section concludes with a dis-
cussion of the role of low surface tension based on numerical
simulations. Finally, in Sec. IV, we provide a summary of our
main results and draw conclusions.

II. EXPERIMENT

A. Experimental setup

The experiments reported in this paper have been per-
formed in a radial Hele-Shaw cell formed by two circular
glass plates placed parallel one above the other, separated by
a narrow gap spacingb. The glass plates have 390 mm di-
ameter and either 7 or 10 mm thickness, and present a maxi-
mum deviation of60.03 mm from perfect flatness. The nar-
row spacing between the plates is provided either by a tefflon
ring or by six metallic spacers, placed near the edge of the
plates. The cell is placed on a sturdy rotating platform driven
by a dc motor and reductor.

The initial condition consists on an outer layer of vase-
line oil ~fluid 1! and an inner layer of colored silicone oil
~fluid 2!, separated by a circular interface~radiusR0) cen-
tered with the vertical symmetry axis of the cell. The two oils
are immiscible. The inner liquid is denser (r2.r1) and more
viscous (m2.m1) than the outer liquid. The cell is closed,
i.e., there is no further injection or withdrawal of liquid (Q
50) during the experiment.

In the experiment the cell is set into rotation around its
symmetry axis, at a prescribed angular velocityV. The evo-
lution of the interface is monitored with a charge coupled
device camera mounted above the cell, and digitally recorded
in a PC.

Additional details of the experimental setup can be
found in Refs. 9 and 13.

B. Physical properties of the liquids

The vaseline oil used in the present experiments is
manufactured by Panreac~Ref. 141003!. The silicone oil is
manufactured by Rhodorsil~Ref. 47V 500!. Their nominal
densities at 20 °C arer15875610 kg/m3 for the vaseline oil
and r25975610 kg/m3 for the silicone oil. Their dynamic
viscosities have been measured at several temperatures with
a concentric cylinder viscometer HAAKE RV20/CVB20N
and with a Cannon–Fenske capillary viscometer. The results
are independent of the technique used within 5%, and are
shown in Figs. 1 and 2.

Originally the two liquids are colorless. In order to ren-
der the interface visible, the silicone oil has been colored
blue by dispersing into it a tiny amount of oil colorant manu-
factured by Galloplast S.L. Dynamic viscometric measure-
ments confirm that the liquid remains Newtonian after the
coloring process, and its viscosity is not significantly af-
fected.

The interfacial tension between the two liquids,s0 , is
on the order of 1 mN/m, typically 1 order of magnitude
smaller than the surface tension at an oil–air interface. This
value makes it difficult to measures0 accurately. On the one
hand, we have found it too small to be measured with the
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classical method of the Du Nou¨y ring ~tensiometer KRUSS
K100!, since the lamella formed around the ring breaks be-
fore a reliable measurement can be taken. On the other hand,
this value ofs0 is just at the upper measuring limit of the
spinning drop technique, designed for ultralow interfacial
tensions. By averaging several measurements taken with a
spinning drop tensiometer KRUSS SITE104 we have been
able to obtain a values051.860.7 mN/m, subjected to a
large experimental uncertainty.

C. Details of the experimental procedure

Preparation of the glass plates at the beginning of each
experimental run starts by cleaning them with a soap solu-
tion, followed by rinsing with distilled water and cleaning
again with acetone. This cleaning protocol is sufficient to
obtain reproducible results. Occasionally we have also used a
chromic mixture to complete the cleaning procedure, with no
significant differences.

The initial circular interface is prepared in the following
way. We inject the first liquid~vaseline oil! through an orifice
at the center of the top plate, using a syringe pump, until it
fills the whole cell. The injection rate is not critical in this
case. We have used rates in the range from 75 to 350 ml/h
with no noticeable differences. Next, we inject the second
liquid ~colored silicone oil! until it fills an inner circular
region of the required radiusR0 . Since the silicone oil is
more viscous than the vaseline oil, the displacement is stable
and the interface remains circular. We have found that this
second liquid must be injected at a relatively high rate to
ensure that a thin wetting layer of vaseline oil is left on each

glass plate. This condition ensures that advancing and reced-
ing parts of the interface will find similar wetting conditions
during the experiment. Our experience is that the second
liquid must be injected at rates higher than 100 ml/h in order
to obtain reproducible results, with no observable differences
up to 450 ml/h. Typically the injection rate has been set to
400 ml/h.

Once the two liquids are in the cell, the silicone oil fill-
ing the central region finds itself sandwiched between the
two thin layers of vaseline oil attached to the glass plates.
Because of the density difference, this stratification is gravi-
tationally unstable for the bottom layer. Our observations
show that a dripping instability develops past the first 6 min
approximately after the generation of the initial condition,
leading to the corrugation of the wetting layers of vaseline
oil and, finally, to the appearance of vaseline oil drops in the
silicone oil. In order to avoid any interference of this insta-
bility with our experiments, we have restricted our analysis
to experiments in which the patterns studied are completely
developed within 1 min after the generation of the initial
condition. For this reason we have takenV5150 rpm as a
minimum rotational frequency, andR0525 mm as a mini-
mum initial radius, except for very high frequencies (V
.240 rpm) for which we can explore initial radii down to
R0515 mm safely.

We have taken particular care to avoid the presence of
air bubbles in the cell. Air bubbles tend to form either at the
circular end of the cell or at the interface between the two
liquids and, when the cell is set into rotation, they move
straight to the center of the cell across the interface, spoiling
the experiment. In order to prevent the occurrence of air

FIG. 1. Dynamic viscosity of the vaseline oil Panreac 141003 as a function
of temperature. The measurements have been performed with a capillary
viscometer~circles! and with a concentric cylinder viscometer~squares!.
The solid line is a fit of the Arrhenius equation,m5P1 exp(2E1 /kBT), to the
latter data.

FIG. 2. Dynamic viscosity of the silicone oil Rhodorsil 47V 500, colored
blue, as a function of temperature. The measurements have been performed
with a capillary viscometer~circles! and with a concentric cylinder viscom-
eter ~squares!. The solid line is a fit of the Arrhenius equation,m
5P1 exp(2E1 /kBT), to the latter data.
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bubbles, the procedure for closing the cell is critical. This
procedure differs depending on the type of gap spacers used.

First, we have used six metallic spacers placed approxi-
mately equispaced around the cell edge. In this case the
plates are tightly clamped at these six points from the begin-
ning. The air exits the cell freely while the liquids are being
injected, until the injection of the second liquid is almost
complete. Then the edge of the cell is closed with a rubber
band, and the injection is interrupted. Air bubbles formed
close to the rubber band leave the cell thanks to the slight
overpressure created by the remaining liquid injection, which
thereafter is accommodated by the rubber band itself.

The closing procedure is different when the gap spacing
is provided by an annular tefflon spacer. In this case, al-
though the glass plates are loosely clamped to keep them
aligned with the axis of rotation, we leave a free space be-
tween the Teflon spacer and the top plate to evacuate the air
displaced by the injection of the first liquid. Once this first
liquid reaches the Teflon spacer, injection is stopped. At this
point it is usual to have air bubbles formed at the contact of
the liquid with the tefflon spacer. In order to remove them,
the cell is tightly clamped at six points, as before, and it is set
to rotate until the air bubbles reach the central hole. The
bubbles are then withdrawn by producing a slight underpres-
sure in the cell, which is compensated by the injection of the
second liquid. Since this second injection must also be car-
ried out with the cell tightly closed, to avoid the formation of
new bubbles near the tefflon spacer, we restrict ourselves to
initial radii in the range 20,R0,50 mm in order to prevent
a significant deformation of the glass plates. Measurements
of the plate deflection with a mechanical strain–gauge show
that a nominal gap spacingb51.2 mm increases by about
5% with the glass plates 10 mm thick, and by about 10%
with the glass plates 7 mm thick.

Although the first closing procedure has the advantage of
not producing any observable deformation of the glass
plates, the second procedure is more efficient in preventing
the formation of air bubbles in the cell.

Our experiments have covered a large region of the
available parameter space. We have explored values ofR0

~radii of the initial circular interface! in the range from 15 to
85 mm, and rotational frequenciesV in the range from 150
to 300 rpm. The values selected for the gap thicknessb have
been 0.7060.04, 1.0060.05, and 1.3560.08 mm for the
metallic spacers, and 1.2560.08 and 1.4060.12 mm for the
annular Teflon spacer.

Combinations of these parameters have given rise to pat-
terns with a number of fingers varying from 8 to 80. Produc-
ing patterns with less than eight fingers is nearly impossible
in our conditions. It requires settingR0 andV to values too
small to avoid dripping of one oil in the other, as explained
above.

Since there is no control of the setup temperature, and
the viscosity of the liquids is highly sensitive to temperature
variations ~Figs. 1 and 2!, the viscosity contrastA5(m2

2m1)/(m21m1) has been slightly different from one experi-
ment to another, within the intervalA50.4– 0.5, following
the variations in room temperature. It is known from numeri-
cal simulations that a strong sensitivity of the fingering dy-

namics and morphology to the viscosity contrast is observed
at values ofA close to 1, while no significant sensitivity to
viscosity contrast is observed in the remaining interval of
lower A.3,5,6

D. Qualitative description of the patterns

Once the initial condition has been prepared, the cell is
set into motion. Figure 3 shows a temporal sequence of the
patterns obtained in a typical experiment.

There is first a latency periodt l , dependent on the pa-
rameters of the experiment, in which the interface remains
circular. After this period the interface develops small
ripples, at the onset of instability. The pattern formed is not
perfectly symmetric, due to unavoidable randomness in the
initial condition, but it presents a regular arrangement of fin-
gers of similar size.

The linear regime, in which the amplitude of the ripples
is smaller than or comparable to their lateral size, is very
short. Very quickly the interface perturbations grow in time,
both inwards ~vaseline displacing silicone! and outwards
~silicone displacing vaseline!, giving rise to a characteristic
fingering pattern.

One of the most remarkable features of the temporal
evolution of this pattern is the absence of competition be-
tween adjacent fingers of different sizes, in the sense that the
number of growing fingers present in the linear regime is not
modified during the development of the pattern. This is best

FIG. 3. Snapshots of the pattern formation process in an experiment with
b51.4 mm, R0541 mm, andV5210 rpm. The images are shown from
left to right and from top to bottom.
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visualized in the plot of the interface radius as a function of
the polar angle shown in Fig. 4. Represented in this way, the
patterns show remarkable morphological similarities with the
patterns obtained in the channel geometry, both numerically3

and experimentally,4 in the limit of low viscosity contrast
~except for the breaking of up–down symmetry!.

In our case, however, as the pattern goes into the deeply
nonlinear regime, the fingers of silicone oil stretch and grow
fast outwards, while the fingers of vaseline oil nearly stop as
they approach the center of the cell. This asymmetric behav-
ior is a purely geometrical effect not present in the channel

geometry. Figure 5 presents the sequence of patterns ob-
tained in a second experiment, focusing on the nonlinear,
latest stages of the dynamics.

A salient feature of our patterns is the strong tendency of
the silicone fingers to pinch off, observed systematically in
all experiments. Pinch-off follows the relatively fast stretch-
ing of the longer outgrowing fingers, which evolve into
balloon-shaped fingers, with narrow filaments ending in a
wider, rounded droplet. The pinch-off takes place at the point
where the filament widens to form the droplet. A sequence of
pictures illustrating this characteristic behavior is presented
in Fig. 6. In some instances, provided that the filament of
silicone oil receives enough flux from the cell center, a
pinch-off event is followed by a series of new pinch-off
events of the same finger, giving rise to a train of progres-
sively smaller droplets, usually so small that can only be
resolved once the cell is at rest.

After the pinch-off process, there is nearly no further
displacement of the inner fluid outwards, and therefore no
possibility for the vaseline fingers to grow inwards. When all
fingers have pinched, the system must reorganize itself to
continue the emission of the inner, denser liquid. We have
observed two main mechanisms for this, both shown in Fig.
5: first, the reconnection of the incoming vaseline fingers,
which results in a reduction of their number, and second the
formation of new silicone fingers in the very late stages.
These questions will be analyzed in detail in Sec. III F. Al-
though the total amount of time for displacing most of the

FIG. 4. Polar representation of the interfaces shown in Fig. 3. The initial
condition is reproduced on each plot as a reference.

FIG. 5. Snapshots of the patterns obtained in an experiment withb
51.25 mm,R0554 mm, andV5270 rpm, showing the latest stages of the
pattern evolution. The images are shown from left to right and from top to
bottom.
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mass initially present in the inner layer never exceeds 5 min,
it must be recognized that in the very late stages the pattern
is probably also affected by the corrugation of the wetting
layers coating the glass plates.

III. ANALYSIS AND DISCUSSION

A. Hele-Shaw equations

Navier–Stokes equation for the velocity field of a fluid,
V, observed in a reference frame rotating with angular fre-
quencyV, reads

] tV1~V•¹!V52
1

r
¹p2V3~V3r !

22V3V1nDV, ~1!

wherer is the density of the fluid,p is the hydrostatic pres-
sure field,r is the position of the fluid element measured
from the rotation axis, andn is the kinematic viscosity,n
5m/r.

When this equation is particularized to a rotating Hele-
Shaw cell withV5V ẑ, inertial terms are much smaller than
viscous forces and pressure gradients, and the two terms on
the left hand side are negligible. Considering a Poiseuille
flow in the plane of the cell, and taking the average of the
velocity field in thez direction, we obtain8

v52
b2

12m i
¹S pi2

1

2
r iV

2r 2D1
b2

12m i
2r iV ẑ3v, ~2!

wherev is the average velocity in therf plane.

The contribution proportional toV2 arises from centrifu-
gal forces, and the one proportional toV arises from Coriolis
forces. The role of these two contributions has been demon-
strated in numerical simulations of large viscosity contrast
flows.8 Centrifugal forces tend to stretch an initially circular
droplet along the radial direction, producing elongated fin-
gers which, due now to Coriolis forces, experiment a slight
deviation from purely radial growth in the counter direction
of cell rotation.

Coriolis effects, however, are negligible in our experi-
ments. This is best seen by considering the reciprocal
Eckman number introduced by Schwartz8

Re[
b2

12m i
r iV. ~3!

The largest value that Re takes in our experiments is Re
.0.03, which corresponds to the largest gap thickness used
b51.4 mm, the largest angular frequency accessible in our
setup V5300 rpm, and the smallest kinematic viscosity
m/r5231024 m2/s. Since Re!1, the Coriolis term is just a
perturbation of the velocity of relative magnitude 2Re, which
can be safely neglected.

For typical experimental parameters Re.0.01, and the
typical radial velocity of well developed fingers isUr

.1 mm/s. Under these conditions, Coriolis forces would
produce tangential velocitiesUf.0.02 mm/s, which cannot
be resolved in the present experiments. For Coriolis effects
to be observable in our experimental setup, the kinematic
viscosity of the fluids should be smaller by about 2 orders of
magnitude. Water, for instance, would show chiral growth
associated with Coriolis forces even for narrow gaps and low
angular velocities.

Neglecting the Coriolis term in Eq.~2!, Darcy’s law can
be written as

vi5“f i , i 51,2 ~4!

with

f i52
b2

12m i
S pi2

1

2
r iV

2r 2D , i 51,2. ~5!

The condition of incompressibility of the two liquids,
“•v50, leads to the Laplace equation for the velocity po-
tential in the bulk

Df i50. ~6!

To complete the set of equations for the free boundary
problem in two dimensions, we must provide kinematic and
dynamic boundary conditions at the interface. The two
boundary conditions considered usually are, first, the conti-
nuity of the normal velocity at the interface

vn5n̂•“f15n̂•“f2 ~7!

and, second, a linear relation between the local pressure
jump at the interface and its curvature

p22p15sk, ~8!

where s is the interfacial tension between the two liquids
and k is the local curvature of the interface~considered a
one-dimensional line!.

FIG. 6. Sequence of pictures extracted from an experiment withb
51.4 mm,R0537.5 mm, andV5180 rpm.
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Although it has been often ignored in the literature, this
last equation is not strictly correct, particularly in the circular
geometry.14 Equation~8! actually comes from the quasistatic
condition of local mechanical equilibrium:

n̂•@t¢12t¢2#•n̂5sk, ~9!

wheret¢ is the local stress tensor. The effect of the normal
velocity gradients may be negligible in most situations in the
channel geometry, in particular in the linear regime, since the
normal velocity gradients give rise to higher order contribu-
tions. Then the above condition reduces indeed to the usual
one Eq.~8!. However, in a radial cell, normal velocity gra-
dients on a circular interface do not vanish and the condition
leads to

p22p122~m2] rv r ,22m1] rv r ,1!5sk, ~10!

wherev r ,1 andv r ,2 are the radial components of the velocity
field in each of the two fluids. The additional terms in Eq.
~10! will turn out to be relevant for our experiments, as
shown later.

The boundary conditions specified above are a simplifi-
cation of the real three-dimensional problem. In practice the
interface is a two-dimensional object with two local main
curvatures,k i andk' , in the directions parallel and perpen-
dicular to the plane of the cell respectively. This gives rise to
a number of complications:

~i! Depending on the wetting properties of the fluids and
their relative velocity, the interface may either leave behind
or absorb a liquid film on each glass plate. This modifies the
balance of mass at the interface and, consequently, the kine-
matic boundary condition~7!.

~ii ! The thickness of the wetting films, and the dynamic
contact angle at the contact line of the interface with the
glass plates, may be sensitively dependent on the interface
velocity. As a result, the curvaturek' is not constant@as
implicitly assumed in Eq.~8!#, but a function of the local
interface velocity. This affects the dynamic boundary condi-
tion ~8!.

These effects have been studied in detail in the channel
geometry, for air displacing a wetting liquid~viscosity con-
trast A51). Park and Homsy15 proved that Eq.~8! should
read

p22p15sF2

b
1

p

4
k iG ~11!

for Ca!1, where Ca is the capillary numbermV/s, with V
the velocity of the interface. The next additional correction,
derived by Schwartz,16 takes into account the influence of the
viscous wetting film left on the plates as the interface moves

p22p15sF2

b
1

p

4
k iG1

2sJ

b
Ca2/3, ~12!

whereJ.3.8 in the formulation of Park and Homsy.
A similar theoretical effort~including the extra stresses

from the velocity normal gradients! has not been carried out
for the radial geometry. To our knowledge, Maxworthy has
been the only author to consider kinetic corrections to the
boundary conditions in experiments on this geometry, by as-

suming that the expressions valid in the channel geometry
could be directly translated to the radial geometry.17 In our
specific case, however,Q50 and therefore the interface is at
rest~in the reference frame rotating with the cell! at the onset
of the instability. Any corrections proportional to power laws
of the interface velocity will be correspondingly small. Thus,
it is reasonable to assume that the dominant correction to the
two-dimensional boundary conditions, in the linear regime,
will come only from the influence of the wetting films on the
curvaturek' of the meniscus. Following the derivation of
Park and Homsy for the channel geometry,15 Eq. ~11!, the
correction is simply a factorp/4 multiplying the surface ten-
sion. Assuming that a similar correction would apply in our
case, but eventually with a different numerical factor, we
conclude that a convenient way to take three-dimensional
effects into account, in the two-dimensional boundary condi-
tions of our problem, is to considers in Eq. ~8! as an effec-
tive interfacial tension, and leave it as a free parameter to be
determineda posteriori. This is even more reasonable if we
recall that the actual value ofs is itself subject to a large
experimental uncertainty, as discussed in the previous sec-
tion.

B. Linear stability analysis

First we make use of Eq.~8! as a dynamic boundary
condition. The linear dispersion relation of an initially circu-
lar interface reads in this case9

v~n!5Ṽn2
s̃

R0
3 n~n221!, ~13!

wherev(n) is the growth rate of an infinitesimal perturba-
tion of the circular interface of the formdeinu ~moden), and

Ṽ5
V2b2

12

r22r1

m21m1
, s̃5

b2

12

s

m21m1
. ~14!

In our caser2.r1 , making the centrifugal force destabiliz-
ing for all modes, as expected. The interfacial tension does
not affect the stability of the moden51 ~which preserves
the circular shape! but stabilizes all modesn.1. Finally,
sinceQ50, the viscosity contrast does not play any role at
the linear level.

The fastest growing modenm and the marginal modenc

~separating unstable from stable modes! are given by

nm5A 1
3 ~11S!, nc5A11S. ~15!

Both depend on the parameterS5R0
3Ṽ/s̃, the ratio of cen-

trifugal to capillary forces, which plays the role of an inverse
dimensionless surface tension. Sinces̃ is very small in our
experiments, we haveS@1 in most experimental conditions.
Then,nm andnc can be approximated by

nm.AS

3
, nc.AS. ~16!

It is not difficult to show that, in this same limit, the growth
rate of the fastest growing mode is given by

v~nm!5 2
3 nmv~1!. ~17!
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When instead of Eq.~8! we consider Eq.~10! as the
proper boundary condition the linear dispersion relation
changes to

v* ~n!5
1

11
1

6
n~n2A!S b

R0
D 2 F Ṽn2

s̃

R0
3 n~n221!G

.
1

11
1

6
n2e2

F Ṽn2
s̃

R0
3 n3G , ~18!

wheree5b/R0 and the approximation is valid whenn@1.
This dispersion relation differs from the previous one in the
prefactor, that introduces a dependence on the gap spacingb.
The correction is important only whenne;1, i.e., for modes
of large wave numbern;R0 /b. While nc is not modified,
the wave number of the fastest growing mode is now given
by

nm* 5A1

2
FAS S1

18

e2D 2

1S
24

e22S S1
18

e2D G
5AS

3
F11S e2

9
D S

3
1O~e4S2!G . ~19!

The numbernm* coincides withnm except for a correction
depending on the dimensionless parametere2S. This correc-
tion results in larger wave numbers for larger gap spacings.

The low value of the interfacial tension in our experi-
ments gives rise to a large number of fingers and makes the
correction above non-negligible. On the other hand but for
the same reasonn@A, making the correction independent of
the viscosity contrast.

C. Number of fingers emerging from the linear
instability

Since the growth of the unstable modes in the linear
regime is exponential, it is reasonable to expect that the fast-
est growing mode~as given by the maximum of the linear
dispersion relation! determines the typical number of fingers
formed at the onset of instability, provided that the noise is
sufficiently weak and uniformly distributed in all modes. In
experiments, however, this is not quite the case and, since the
bandwidth of unstable modes is large and the duration of the
linear regime is very short, the direct experimental verifica-
tion of the linear dispersion relation is rather difficult.9,17,18

In the high-A limit, in addition, the nonlinear regime pre-
sents a dynamic competition between neighbor fingers of
differing sizes, which results in a systematic reduction of the
number of fingers present in the nonlinear regime.

Low-A flows, however, exhibit no competition between
neighbor fingers, not only in the linear and weakly nonlinear
regime but in the deeply nonlinear regime as well. This guar-
antees that the wave number of the mode of largest ampli-
tude at the end of the linear regime coincides with the num-
ber of fingers observed in a given experiment. In summary,

the lack of finger competition makes low-A flows particu-
larly suitable to check the predictions of a linear stability
analysis.

Figure 7 presents the number of fingers measured in ex-
periments withb51.4 mm and different values ofR0 andV
~allowing for the control parameterS to vary between 1500
and 9000!, as a function ofS. In each experiment the number
of fingers has been determined at the beginning of the non-
linear regime and, also, at the end of the nonlinear regime
when the first droplets reach the cell edge. Both countings
never differ by more than 5%. The difference is represented
by the vertical error bars. The error bars forS, on the other
hand, reflect the experimental uncertainties inr1 , r2 , R0 ,
and V, but not in the interfacial tensions. The solid line
running through the experimental points is a fit of the form
nm.AS/3, Eq. ~16!, in which s has been left as a fitting
parameter. The fit givess51.960.1 mN/m.

Compared to previous analysis of the linear dispersion
relation,9,17,18 our experimental data show a remarkably
small dispersion. This reflects the good reproducibility of the
experiments~the number of fingers formed in identical ex-
perimental conditions is reproducible within less than 5%!,
thanks to the absence of finger competition.

We must emphasize that the interfacial tension obtained
in the fit, although consistent with our experimental estima-
tion of this parameter, does not necessarily coincide with the
actual value ofs. First, we recall that wetting effects renor-
malize s by an unknown factor~the factorp/4 in channel
geometry andA51), and second, it remains to be deter-
mined whether the gap spacingb has an influence on the
effective value ofs, as predicted by Eq.~19!.

FIG. 7. ~Filled squares! Number of fingers measured in a series of experi-
ments with gap spacingb51.4 mm and different values ofR0 andV, as a
function of the dimensionless parameterS. ~Solid line! Least-squares fit of
the data to a functionnm.AS/3, giving an effective interfacial tensions
51.9 mN/m.
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We have addressed this second question by performing
similar experiments with different gap spacings (b51.4, 1.0,
and 0.7 mm!. The results are shown in Fig. 8, in which the
number of fingers observed experimentally,N, is represented
against the prediction fornm given by Eq.~16!. The solid
squares are the data forb51.4 mm presented already in Fig.
7, and the straight line the corresponding fit withs
51.9 mN/m. It is clear from the figure that the other data
points are shifted systematically from the linear fit. The error
bars ~shown only for two points for clarity! reveal that the
deviation from the fit is not accidental. We conclude that a
variation of the gap spacing seems to change the effective
interfacial tension in a systematic way.

This result can be accounted for by the modified dy-
namic boundary condition~10! discussed in Sec. III A. This
is demonstrated in Fig. 9, where the same data points are
represented againstnm* , given by Eq.~19!, and are seen to
collapse in a single straight line corresponding to an effective
interfacial tensions51.4 mN/m. It becomes clear that
working with two similar liquids makes the interfacial ten-
sion very small, which favors a large number of fingers, so
that the small correction that leads tonm* is relevant in our
experiments.

This analysis has provided us with an accurate value of
the effective interfacial tension,s51.4 mN/m. In the case
where we had a precise experimental determination of the
actual interfacial tension, we would be able to determine the
correction factor due to wetting effects. Currently we can
only mention that if we use the value measured by the spin-
ning drop method,s51.8 mN/m, which is subject to a large
uncertainty, we get a correction factor very close top/4.

D. Empirical scaling of the patterns

An analysis7 of the Hele-Shaw equations presented in
Sec. III A shows that the experiments are controlled essen-

tially by two dimensionless parameters, the viscosity contrast
A and the ratio of centrifugal to capillary forcesS. The first
of them~not varied in the present experiments! has no influ-
ence on the linear regime, provided thatQ50, but plays an
important dynamic role in the nonlinear regime by control-
ling finger competition. The second one determines the
dominant wave number emerging from the linear regime,
which remains dominant throughout the whole evolution for
low A-flows. On the other hand, our discussion about the
appropriate dynamic boundary condition in the circular ge-
ometry has shown that the gap spacing also plays a measur-
able role in the linear regime and, thus, introduces a third
dimensionless groupe. The influence of this third parameter
in the deeply nonlinear regime is more difficult to assess but
we do not expect it to be very significant.

The linear dispersion relation suggests a simple way to
make length and time dimensionless, usingR0 ~initial radius!
and 1/v(1) @where v~1!, the growth rate of the moden
51, is simply Ṽ], as the characteristic length and time
scales.

In our experiments of high viscosity contrast flows9,14

this simple choice proved adequate to scale several measures
of the patterns, including the latency period before the devel-
opment of the pattern, the radius of gyration of the pattern,
the radial extent of the mixing zone, and others. This choice,
however, did not provide a good scaling of the interface
stretching. This lack of scaling was attributed to the sensitiv-
ity of interface stretching to capillary forces.

A natural way to introduce a dimensionless time scale
that takes into account the stabilizing role of the in-plane
surface tensions is to replacet•v(1) by t•v(nm). Since,
according to Eq. ~17!, v(nm);v(1)•nm , and nm

.(S/3)1/2, this new time scale introducesS ~the ratio of
centrifugal to capillary forces! in the empirical scaling.

On the other hand, our study of the linear regime~Sec.
III C ! has showed that replacingnm by nm* captures the slight

FIG. 8. ~Symbols! Number of fingers,N, measured in experiments with
different values ofR0 , V, and three gap spacingsb, against the number of
fingers predicted by the fastest growing mode of the linear dispersion rela-
tion, nm.AS/3. The straight line reproduces the fit withs51.9 mN/m
shown in Fig. 7.

FIG. 9. Data collapse of the measured number of fingers,N, achieved by
plotting this number againstnm* @the number of fingers predicted by Eq.
~19!# with an effective surface tensions51.4 mN/m.
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dependence one introduced by the modified boundary con-
dition ~10!. A suitable dimensionless time scale is therefore
given by t•v(1)•nm* .

In order to make a quantitative characterization of the
spatiotemporal evolution of the morphological instability, we
study in some detail the interface stretching, the latency time
before the onset of instability, the radius of gyration of the
pattern, and the mass of the droplets emitted by the radially
outgrowing fingers.

1. Latency period

The latency period,t l , is the time interval in which the
circular oil bubble~initial condition! remains circular, within
experimental resolution, before the instability sets in and the
pattern develops appreciably.

All measures of the pattern~such as the interface stretch-
ing, the radius of gyration, etc.!, when plotted as a function
of time, remain constant duringt l , and then increase sharply
as the instability develops and the pattern enters the nonlin-
ear regime.

In order to characterizet l , we consider in particular the
time evolution of the interface length in experiments with
different gap thickness, initial radius, and rotation frequency,
reported in Fig. 10. The interface lengthL remains at its
initial value 2pR0 for a period of time, increases sharply in
the linear regime, and then grows at a nearly constant rate in
the nonlinear regime. Our data points follow the interface
stretching until a first point of the interface reaches the cell
edge.t l is obtained by a backward extrapolation of this last
regime, thus measuring the time at which the instability
would have set in, had the interface length always grown at
the same rate.

Figure 11 presents the results of the latency time deter-

mined in this way, in the dimensionless formt l•v(1)•nm*
versus the number of fingers formed in the experiment, rep-
resented bynm* . We recall thatnm* depends on experimental
parameters through the two dimensionless groupsS, e. The
data show that, within the large experimental uncertainties in
the determination of the latency time,t l•v(1)•nm* is practi-
cally a constant (1262) for all the experiments considered.
This observation is consistent with a scenario in which the
noise present in the initial condition has similar amplitude
for all possible modes and is sufficiently weak. This ensures
that the fastest growing mode, whose growth rate is propor-
tional to v(1)•nm* , has a much larger amplitude than any
other mode at the end of the linear regime, and is therefore
the first one to show up in the pattern.

A collapse of the latency time was also obtained for high
viscosity contrast flows, but theret l•v(1) rather thant l

•v(1)•nm* was independent of the number of fingers.9 The
reason for the different behavior must be found in the differ-
ent wetting conditions at the interface, since high viscosity
contrast experiments were carried out in a dry~not prewet-
ted! cell.

2. Interface stretching

The pronounced stretching of the interface presented in
Fig. 10 is represented in dimensionless variables,L/R0 ver-
sus t•v(1), in Fig. 12. These variables do not produce a
collapse of the different curves. Actually, the mean slope of
the different curves in the sharp growth region can be seen to
depend linearly on the number of fingers,N, as shown in
Fig. 13. The linear fit provides

Vs[
1

R0 v~1!

dL

dt
56013.2N. ~20!

The interpretation of this result is that the interface stretching
rate (Vs) follows two different time scales simultaneously.
The independent term, 60, reflects a scaling oft with v(1),
which is dominant for a small number of fingers—infrequent

FIG. 10. Interface stretching as a function of time, in a series of experiments
with different b, R0 , andV.

FIG. 11. Dimensionless latency time,t l•v(1)•nm* , as a function ofnm* , in
a series of experiments with differentb, R0 , andV.
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in our experiments. The term proportional toN reflects a
scaling of t with v(1)•nm* , which is dominant for a large
number of fingers.

The linear dependence onN in Eq. ~20! corresponds to a
scenario in which:~i! all fingers grow simultaneously at
roughly the same speed and~ii ! in the highly nonlinear re-

gime the contribution of a finger to the overall interface
lengthL comes basically from its two lateral, nearly parallel
walls; the contribution, therefore, is twice its radial size,
measured from the beginning of the finger to the end of the
droplet. To verify this picture, we have measured directly the
growth of the fingertips~radiusr ) in a large number of ex-
periments. The experimental results~Fig. 14! show that
ln(r/R0) grows linearly with (t2t0)•v(1) ~where t0 is the
time when the finger is formed!, and the slope is practically
independent of experimental parameters:a51.6060.15.
Consequently, if we consider that the dominant contribution
to the interface stretching is the stretching of the finger,
which is particularly accurate when the number of fingers is
large enough, we haveL.2Nr.2NR0 exp@a(t2t0) v(1)#
.2NR0@11a(t2t0) v(1)#, and thus

1

R0 v~1!

dL

dt
.2anm* .3.2N, ~21!

in excellent agreement with the result of Eq.~20! derived
directly from the experiments for largeN.

From the former discussion it follows that, for largeN,
the interface length should grow with a time scalet•v(1)
•nm* . The corresponding data collapse is shown in Fig. 15.

The simple model of the evolution of the pattern out-
lined in this section will be validated in forthcoming sections
through other characterizations of the spatio-temporal dy-
namics.

FIG. 12. Dimensionless interface stretching,L/R0 , as a function of dimen-
sionless time,t•v(1), for theexperiments represented in Fig. 10.

FIG. 13. Dimensionless stretching rate,Vs , vs number of fingers,N. The
solid line is a least-squares linear fit of the data.

FIG. 14. Plot of ln(r/R0) as a function of dimensionless timet•v(1). The
radial coordinater gives the distance of the silicone oil droplets to the
rotation axis. The average slope of the linear fits is 1.660.1.
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3. Mass distribution

A different characterization of the morphological insta-
bility, complementary of the interface stretching, is provided
by its radial mass distribution. ‘‘Mass’’ refers here to the
two-dimensional area covered by the pattern. The properties
of this distribution are measured by the momentsRn , defined
as

Rn5F*0
2pdf*0

r (f)r nr dr

*0
2pdf*0

r (f)r dr G1/n

n51,2,... . ~22!

The first moment is the average radius of the pattern. The
second moment of the distribution is the so called ‘‘radius of
gyration’’ Rg .

The time evolution ofRg for our set of experiments is
presented in Fig. 16. The overall picture shows a radius of
gyration that remains constant during the latency time, starts
growing in the linear regime, and increases exponentially in
the nonlinear regime, until the droplets at the fingertips reach
the end of the cell and no more data are available.

We have verified that the proper time scale to collapse
the growth of the dimensionless radius of gyration,Rg /R0 ,
is t•v(1). The collapse is shown in Fig. 17. Not surpris-
ingly, the different curves are laterally displaced, since the
time scale of the latency time ist•v(1)•nm* .

The result presented in Fig. 17 can be understood in the
same scenario described above: all fingers grow simulta-
neously, at a similar rate that scales witht•v(1). Making the
assumption that the main contribution to the growth ofRg

comes from the droplet-shaped terminations of the fingers,
and taking into account that there arenm* fingers, we con-
clude that the mass carried by each finger and droplet must
be inversely proportional to the number of fingers, forRg /R0

to scale witht•v(1) rather than witht•v(1)•nm* .
This conclusion is consistent with the morphology of the

patterns~Fig. 3!, where we see that, in the mixing zone, the
pattern is formed by an alternancy of outward-growing sili-
cone fingers and inward-growing vaseline fingers, all of
similar width. Thus, the silicone fingers take up nearly the
same room in all the experiments, independently of the num-
ber of growing fingers,nm* , each finger carrying an amount
of fluid proportional to 1/nm* .

FIG. 15. Dimensionless interface stretching,L/R0 , as a function of dimen-
sionless time,t•v(1)•nm* , for the experiments represented in Fig. 10.

FIG. 16. Radius of gyration of the patterns as a function of time.

FIG. 17. Dimensionless radius of gyration,Rg /R0 , as a function of dimen-
sionless time,t•v(1).
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Another consequence of this picture is that the total
amount of silicone oil displaced outwards~in the outgrowing
fingers! will be a constant, irrespective of the initial radius
R0 . Only at small enoughR0 , when the overall amount of
silicone oil is too small to provide for this constant value,
should a cutoff to this behavior be expected. The implica-
tions of this result on the size and overall mass of the drop-
lets formed by finger pinchoff are discussed in the next sec-
tion.

E. Mass of emitted drops

A typical sequence of the pinch-off process that gives
rise to the release of a silicone oil droplet is shown in Fig. 6.
We observe that the droplet at the fingertip widens as the
finger stretches into an elongated filament. This continues
while the filament is wide enough to allow for the silicone oil
to flow towards the tip. Close to pinch-off the filament is
already too thin for this. Finger pinch-off takes place at the
junction of the filament and the droplet. Given that before
and after pinch-off, droplets are by large the main contribu-
tion to the variation ofRg , the argument of the preceding
section means that the typical area of a droplet should be
proportional to 1/nm* , wherenm* is the number of fingers in
the pattern. Accordingly, the overall area of all the droplets
should be a constant, irrespective of the number of droplets.
This is actually an average description, since not all droplets
in a given experiment are identical, and there is some disper-
sion of their areas.

We have measured the total area covered by the first
generation of emitted droplets~the contribution of subse-
quent generations is negligible! in a large collection of ex-
periments with different experimental parameters (b,R0 ,V),
giving rise to a wide distribution of numbers of fingers. The
results are presented in Fig. 18, where the total area of the
droplets is plotted againstpR0

2, the area of the initial circle.
The graph demonstrates clearly that the total area covered by

the droplets is essentially a constant, as predicted, rather than
a fraction or some other function of the initial area. This
constancy holds above a finite thresholdR0c.35 mm
(pR0c

2 .4000 mm2). We have not found a limit to this be-
havior at large radii.

The threshold valueR0c.35 mm is consistent with the
fact that the overall droplet area (A0.1200 mm2) would
correspond to an initial circle of radiusR0.20 mm. Thus,
for initial conditions withR0,20 mm the constancy of the
overall droplet area cannot hold. For 20 mm,R0,35 mm
the constant droplet area is not yet attained because the fin-
gers also carry a fraction of the overall available area.

The large error bars in the plot reflect that the spatial
resolution of our images is relatively low to measure the area
of droplets, since their radii fall in the range from 2 to 7 mm.
The number of pixels on the droplet interface is comparable
to the number of pixels within the droplet. The error bars
account for the dispersion in droplet area after considering or
neglecting the contribution of the droplet interface. Another
error source is a slight~but detectable! increase of the droplet
area as the droplet velocity increases. This effect is due to the
thickening of the vaseline films coating the two glass plates,
above and below a silicone droplet, compressing the droplet
in the vertical direction and expanding it in the horizontal
plane. To minimize this error source we have measured the
droplet area well beyond pinch-off, when all droplets move
at roughly the same velocity.

The numerical valuesR0c.35 mm and droplet areaA0

51200 mm2 would presumably change if surface tension
and/or viscosity contrast were changed. Theoretical analysis
and numerical simulations that we are currently performing
show that surface tension and viscosity contrast do play a
role in the pinch-off process, e.g., in the time to pinch-off
and in the mass flow through the filaments. Surface tension
and viscosity contrast may also have an influence on pinch-
off through three-dimensional effects not considered in the
Hele-Shaw equations. This can modify the mass flow into the
droplets, thus changingA0 ~and henceR0c). We expect this
change to be small, however, since this flow is already low
well before pinch-off takes place. Additional experiments
would be necessary to ascertain the relevance of these ef-
fects.

F. The long-time regime after pinch-off

Once the silicone fingers experience the first generation
of pinch-off, the dynamics of the patterns is substantially
modified. After pinching, the silicone oil filaments, still con-
nected to the central region, are too thin to allow for a sub-
stantial outward flux of silicone oil. Thus, the pattern after
pinch-off is rather stable, and it takes a long time to displace
it outwards. The pattern must reorganize itself to emit the
remaining silicone oil. We recall that the mechanisms for it,
described in Sec. II D, are:~i! the generation of new silicone
oil fingers in a nonsystematic way and~ii ! the coalescence of
incoming vaseline oil fingers, which allows a region of sili-
cone oil to become disconnected from the center and be
emitted outwards. In the last stages of the pattern the vase-
line fingers become considerably wide, and their number is

FIG. 18. Total area covered by the silicone oil droplets, after the first pinch-
off process, vs the area covered by the initial condition. The solid line shows
the behavior expected if the two magnitudes were mutually proportional.
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reduced dramatically down to values between two and five
fingers. They remain separated by rather thin silicone oil
filaments, which finally break up in many minute droplets.

With the purpose of making a characterization of this
long-time regime, we introduce the parameterFF(r ,t) ~fill-
ing fraction! defined as

FF~r ,t !5
*0

2r r 8dr8*0
2p f ~r 8,f!df

*0
r r 8dr8*0

2pdf
,

where

f ~r ,f!5H 1 silicone oil

0 vaseline oil .
~23!

FF(r ,t) measures the ratio of the area occupied by the sili-
cone oil to the total area, in a circle of radiusr at timet. We
focus onFF(R0 ,t), corresponding to a circle defined by the
initial condition of the pattern. We study how the silicone oil
initially filling this circle is displaced outwards, particularly
at long times.

Figure 19 shows the evolution ofFF(R0 ,t) as a function
of the dimensionless timet•v(1) in different experiments.
As usual, there is first a latency period in which the initial
condition is not modified, followed by the exponential
change characteristic of the linear regime during a very short
time, and then a decay associated with the nonlinear regime.
This decay comprises two stages: one at a nearly constant

high rate, followed by another at much lower rate and punc-
tuated by constantFF intervals~inset!, corresponding to the
long-time regime analyzed in this section.

The transition from one stage to the other, for one par-
ticular experiment, is illustrated in the figure by two straight
lines drawn to guide the eye. The transition is much more
abrupt in experiments with smallR0 and few fingers~15,
say! than in experiments with largeR0 and many fingers~70,
say!. There are two reasons for this: first, the mass emitted
outwards in the first stages of the nonlinear regime is roughly
constant for all experiments, and therefore the experiments
with larger R0 have more silicone oil to emit in the last
stages. Second, in the experiments with a larger number of
fingers the silicone oil fingers present an irregular, filament-
like appearance, which favors the main mechanisms of sili-
cone oil emission~reconnection of vaseline oil fingers, elon-
gation of the silicone oil finger necks!. On the contrary, the
experiments with smallerR0 and few fingers present a more
regular arrangement in the mixing zone, with vaseline oil
fingers clearly separated by silicone oil fingers. Being so,
inner reconnection is not easy, nor is the elongation of sili-
cone oil finger necks. These difficulties prevent the system
from displacing the silicone oil outwards, once the thicker
silicone oil finger has pinched. Consequently, the rate at
which FF(R0 ,t) decays is abruptly reduced.

Another interesting feature ofFF(R0 ,t) in the latest
stages of the nonlinear regime is the presence of plateaus,
i.e., periods where the filled fraction does not change appre-
ciably, showing that there is no flux of silicone oil through
the circumference of radiusR0 . The plateaus can be clearly
recognized in the inset of Fig. 19. Their presence does not
mean that the interface is frozen. Suppose that new fingers
have been formed at timet, which account for the flux of
silicone oil throughR0 at timet. A plateau starts when these
fingers, before pinching, become too narrow to allow for any
flux acrossR0 . Furthermore, immediately after the fingers
pinching the filaments left behind relax, allowing no flux to
crossR0 until new fingers grow again from the radius they
were formed from and reach the radiusR0 .

In summary, the last stages of the highly nonlinear re-
gime are particularly lengthy. The outward displacement of
the silicone oil in these last stages relies on the asymmetries
of the pattern, and is dominated by the inner reconnection of
incoming vaseline fingers and the pinch-off of new outgoing
silicone fingers.

G. The role of low surface tension

Having a low viscosity contrast implies working with
two liquids, which in our case results in a very low value of
the interfacial tensions, about 1 order of magnitude smaller
than at an air–liquid interface. The question arises as
whether the dynamic and morphological features identified
in our work are related only to the low viscosity contrast, or
the low interfacial tension plays also a relevant role. In this
sense, it is important to note that the morphologies observed
in the present experiments are remarkably similar to those
obtained numerically for miscible flows~negligible interfa-
cial tension! in a rotating Hele-Shaw cell.19

FIG. 19. The fraction of the initial circle filled with silicone oil,FF(R0 ,t),
as a function of the dimensionless timet•v(1). The straight lines are drawn
to help recognizing a change in the rate of silicone oil emission, in the
nonlinear regime. The inset shows the presence of flat regions in the latest
stages. The values ofb, V, andR are given in mm, rpm, and mm respec-
tively.
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Viscosity contrast and interfacial tension could be modi-
fied nearly independently in channel geometry, by control-
ling the temperature of a binary fluid mixture near
criticality.4 Even though our current experimental setup does
not allow us to work along this way, we will present here
accurate numerical solutions of our flows that do provide a
definite answer to the question above—together with inter-
esting additional information.

Figure 20 presents the results of two numerical experi-
ments. The one on the left is forA50.4, S52500, and the
one on the right forA50.4, S580. The same initial condi-
tion has been used in both runs: a perfect circle perturbed
with 50 modes of 0.1% amplitude and random phases. The
numerical algorithm is described in detail in Ref. 20.

The valueA50.4 has been chosen to match the viscosity
contrast in the experiments. This value is representative of
low viscosity contrast flows because, as mentioned in Sec.
II C, the fingering dynamics is sensitive toA only whenA is
very close to 1~around 0.9!, and practically insensitive toA
in the remaining interval of lowerA.3,5,6We have performed
the same simulations forA50 and obtained numerical re-
sults nearly identical to the ones presented in Fig. 20.

The point to stress is that the simulation presented in the

left panel of the figure, purposely designed to produce a large
number of fingers, reproduces the basic features observed in
our experiments:~i! All fingers formed in the early stages of
the instability keep growing in the deeply nonlinear regime,
demonstrating the absence of finger competition.~ii ! As in
experiments, the number of fingers matches the wave num-
ber of the fastest growing mode in the linear dispersion re-
lation, nm5A(11S)/3.29. ~iii ! Competition for space of
the incoming fingers gives rise, in the later stages, to a typi-
cal fork-like structure in which the tip of an outcoming finger
bifurcates in two new fingers.~iv! Droplets form at the finger
ends, and characteristic signs of imminent pinch-off at the
finger–droplet junctions are visible, just before the code is
halted due to lack of accuracy.

It is worth noting that the same spatio-temporal evolu-
tion of the interface~in dimensionless variables! is obtained
for all sets of parameters compatible with given values ofA
~viscosity contrast! andS ~inverse dimensionless surface ten-
sion!, because these are the only two dimensionless param-
eters of the problem forQ50.7 In particular, a modification
of the surface tension,s, has the only effect of changing the
time scale, if the other parameters of the flow are modified in

FIG. 20. Numerical integration of the spatiotemporal
evolution of a circular drop. The three snapshots on the
left correspond toA50.4 andS52500, and the three
snapshots on the right toA50.4 andS580. The inter-

faces are shown at dimensionless timest̃ 50,

231024, 4.431024 ~left!, and t̃ 50, 2.531022, 3.7
31022 ~right!, measured in units of 12(m1

1m2)R0
3/(b2s).

922 Phys. Fluids, Vol. 16, No. 4, April 2004 Alvarez-Lacalle, Ortı́n, and Casademunt

Downloaded 22 Sep 2010 to 161.116.168.227. Redistribution subject to AIP license or copyright; see http://pof.aip.org/about/rights_and_permissions



such a way thatS remains unchanged. This means that the
results presented in Fig. 20 are representative of the dynam-
ics for the A,S values reported, irrespective of the actual
value of s, and therefore the features listed above are spe-
cific of low viscosity contrast flows, and cannot be attributed
to the low value ofs in the experiments.

A separate issue refers to the validity of the dynamic
equations for extreme values of the physical parameters. For
instance, a low value ofs may lead to morphological fea-
tures on the scale of the cell thicknessb. Even with this
concern in mind, the striking similarity with the numerical
simulations makes us confident that our experiments are
properly described by the Hele-Shaw equations.

In the right panel of Fig. 20 we show the spatio-temporal
evolution for low viscosity contrast fingering~smallA) with
a reduced number of fingers~small S). Let us recall that
these patterns are not accessible in our experiments because
s is small andV must be kept relatively large for the insta-
bility to develop before dripping in the vertical direction sets
in. These simulations show again that fingers do not compete
~they all keep growing!. In this case the absence of compe-
tition cannot be attributed solely to the low viscosity con-
trast, but predominantly to the increasing available space for
outgrowing fingers in the radial geometry. Nevertheless, nu-
merical simulations in the channel geometry6 show the same
lack of competition for similar number of fingers than the
two sets of parameters of Fig. 20.

IV. SUMMARY AND CONCLUSIONS

We have conducted a systematic investigation of the dy-
namics and morphology of the viscous fingering patterns
formed in a rotating Hele-Shaw cell, due to the displacement
of a lighter fluid by a denser fluid of comparable dynamic
viscosity.

Working with two liquids has been found to be particu-
larly involved and delicate. The liquids must be introduced in
the cell under well controlled conditions. When displaced by
the second liquid, the first liquid leaves a coating layer on
each glass plate whose thickness depends on the injection
rate during the preparation. The experiment must also be
carried out before dripping of these coating layers sets in.
Great care must also be put in avoiding air bubbles at the
interface between the two liquids.

The patterns obtained in our experiments make it evident
that the condition of low viscosity contrast between the two
liquids suppresses the dynamic competition between fingers,
characteristic of air–liquid displacements~high viscosity
contrast!. The morphologies observed are strikingly different
from previous viscous fingering morphologies found in ra-
dial geometry. Instead of being unstable against tip-splitting
or side-branching, the fingers here stretch along the radial
direction and form a droplet at the tip, which usually de-
taches from the finger through a pinch-off singularity.

The radial geometry imposes a modification of the usual
Young–Laplace boundary condition at the interface~pressure
jump proportional to interface curvature!, which introduces a
dependence of the linear dispersion relation on gap spacing.
We have presented experimental evidence that this effect is

relevant and measurable on displacements that involve a
large number of fingers. This is the most frequent situation in
our experiments. The delicate scrutiny of the linear disper-
sion relation required to verify this effect has been possible
thanks to the lack of dynamic competition between fingers,
characteristic of low viscosity contrast displacements, which
allows us to equate the number of fingers in the nonlinear
regime to the fastest growing wave number in the linear re-
gime.

Concerning the empirical scaling of different character-
istic measures of the patterns, we have found that most mea-
sures follow the time scalet•v(1), but theinterface stretch-
ing follows the time scalet•v(1)•nm* , which introduces the
numberS ~ratio of centrifugal to capillary forces! in the scal-
ing. The same happened also for high viscosity contrast
displacements.9 Nevertheless, one must be careful in drawing
conclusions from the comparison between our experiments
and those of Ref. 9~for high viscosity contrast!, because the
latter were carried out in a dry cell, and hence under very
different wetting conditions. By comparing experimental re-
sults to numerical simulations of air–oil displacements, we
have found that the Hele-Shaw equations reproduce only the
experiments of oil displacing air when the cell has been
prewetted. Wetting conditions play a determinant role in the
pattern morphologies, and may also be relevant in the scaling
of the different measures. This issue will be addressed in a
forthcoming work.

The problem of finger pinch-off and the formation of
droplets is interesting for a variety of reasons. Pinch-off
seems to be favored by the low viscosity contrast and by the
rotation of the cell~since centrifugal pressure increases lin-
early with radial distance to the rotation axis!. But the ques-
tion remains whether the finite-time pinch-off observed in
our experiments is only a three-dimensional effect not con-
tained in the two-dimensional Hele-Shaw equations~which
could lead to pinch-off at infinite time! or, on the contrary,
the two-dimensional model can lead spontaneously to finite-
time pinch-off. The question cannot be answered experimen-
tally, since in experiments the three-dimensional structure of
the meniscus shows up unavoidably near pinch-off, as soon
as the width of a finger becomes comparable to the gap spac-
ing b. The interplay between viscosity contrast and rotation
in the possible existence of finite-time singularities in the
two-dimensional Hele-Shaw equations is an interesting open
question.
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