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We study the fingering instability of a circular interface between two immiscible liquids in a radial
Hele-Shaw cell. The cell rotates around its vertical symmetry axis, and the instability is driven by
the density difference between the two fluids. This kind of driving allows studying the interfacial
dynamics in the particularly interesting case of an interface separating two liquids of comparable
viscosity. An accurate experimental study of the number of fingers emerging from the instability
reveals a slight but systematic dependence of the linear dispersion relation on the gap spacing. We
show that this result is related to a modification of the interface boundary condition which
incorporates stresses originated from normal velocity gradients. The early nonlinear regime shows
nearly no competition between the outgrowing fingers, characteristic of low viscosity contrast flows.
We perform experiments in a wide range of experimental parameters, under conditions of mass
conservation(no injection, and characterize the resulting patterns by data collapses of two
characteristic lengths: the radius of gyration of the pattern and the interface stretching. Deep in the
nonlinear regime, the fingers which grow radially outwards stretch and become gradually thinner, to
a point that the fingers pinch and emit drops. We show that the amount of liquid emitted in the first
generation of drops is a constant independent of the experimental parameters. Further on there is a
sharp reduction of the amount of liquid centrifugated, punctuated by periods of no observable
centrifugation. ©2004 American Institute of Physic§DOI: 10.1063/1.1644149

I. INTRODUCTION In the channel geometry, the limit of low viscosity con-
trast could be explored experimentally by performing
Within the broad subject of spatio-temporal pattern for-gravity-driven experimentsin this case the instability is ba-
mation in nonequilibrium systentsthe problems of interfa-  sjcally originated by the density differenéeot the viscosity
cial pattern formation have attracted much attention in th&jitterence between the two fluids. There is an exact param-
last 2 decades. This class of problems admits a description i@ter mapping between injection- and gravity-driven flows in

termg Olfl antlnt(;:rfatl:e Wh'ﬁh separat(tahs ttvzﬁ dIStInt'Ct, tmacrofhe channel geometry, however, which makes the two flows
scopically structureless phases, so hat the spatio- empor@auivalent in a dimensionless formulation, in the reference
evolution of the system is given directly by the temporal

evolution of the morphology of the interface. Processes o
this kind include fluid flow in porous media, crystal growth,
chemical electrodeposition, and flame propagation.

A prototype system of interfacial pattern formation prob-

;rame moving with the average velocity of the interface.
The situation in the radial geometry is more complex,

since there is no simple analog of gravity in this geometry.

One interesting candidate is centrifugal driving, produced by

lems is the morphological instability of the interface between©tating the circular cell around its vertical symmetry axis.
two immiscible fluids confined in a Hele-Shaw cell. This Under centrifugal driving the instability also originates basi-

system is relatively simple, both experimentally and theoreti€lly from the density difference between the two fluids, as
cally, and yet exhibits nontrivial dynamics. in the gravity-driven case. Centrifugally-driven Hele-Shaw
One interesting aspect of this problem is the nontrivialflows, however, cannot be exactly mapped to injection-
role of the viscosity contrast between the two fluids on thedriven flows (and hence are not the exact counterparts of
dynamics. In the channel geometry, a series of numericagravity-driven experiments, in the radial geomety
simulations® experiment$, and further theoretical studie® Hele-Shaw flows under rotation have been recently the
has proved that the viscosity contrast plays an important dysubject of several theoretical and experimental studies. The
namical role in the deeply nonlinear regime, particularly onlinear stability analysis of an axisymmetric drop in the case
the mechanisms of finger competition and the resulting interef high density and high viscosity contrast, originally worked
face morphologies. The research reported in the present paut by Schwart? has been extended to arbitrary density and
per is motivated by the question whether and how the visviscosity contrast by Carrill@t al® There have also been a
cosity contrast plays a similarly crucial role in the radial number of theoretical efforts to find families of exact solu-

geometry, a question not yet addressed. tions for interfaces evolving out of an axisymmetric drdp

or an axisymmetric annular configuratidrunder rotation.
dElectronic mail: enric@ecm.ub.es Recently, it has been shown that rotation can help preventing
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the formation of cusp singularities in problems with zeroproperties of emitted droplets, and analyze the latest stages

surface tensiofh? of the pattern evolution. This section concludes with a dis-
Regarding experimental work, our group has pioneeredussion of the role of low surface tension based on numerical

the study of interfacial instabilities under centrifugal forcing, simulations. Finally, in Sec. IV, we provide a summary of our

investigating the instabilities of axisymmetric drops in a ro-main results and draw conclusions.

tating Hele-Shaw cell, in the limit of high viscosity contrdst.

Specifically, we have verified the maximum growth rate se-

lection of initial patterns with and without injection, and also - EXPERIMENT

studied the nonlinear regime in the case of vanishing injeca. Experimental setup

tion rate. A second series of experiments in the rotating cell . . .

has focused on the dynamics of axisymmetric annular con- The experiments reported in this paper have been per-

figurations, with air at the innermost and outermost Iayers],cormed in a radial Hele-Shaw cell formed by two circular
and oil at the intermediate lay&tThis arrangement leads to glass plates placed parallel one above the other, separated by
& narrow gap spacing. The glass plates have 390 mm di-
. o L oo - ; ameter and either 7 or 10 mm thickness, and present a maxi-
instability of the leading interfac@il displacing aiy and the o !
y g © P g ai mum deviation of+ 0.03 mm from perfect flatness. The nar-

viscosity difference drives the instability of the trailing inter- : . : .
face (air displacing oil. We have proved that the stability of row spacing between the plates is provided either by a tefflon

the two interfaces is coupled through the pressure field al'ny or by six metalllc spacers, placed near the edge of the
ready at a linear level. By performing experiments in prewe lates. The cell is placed on a sturdy rotating platform driven
and dry conditions, we have shown that the stability of the y a dc motor and reductor.

interfaces depends substantially on the wetting conditions ail Thle ]iln'%al 1cond(;t|on (_:on5|s|ts on afn Olilter(;ay_(?r of vas_le-
the leading interface. ine oil (fluid 1) and an inner layer of colored silicone oi

The main objective of this paper is to extend our previ-(fIUid 2)_’ separate_d by a circular ir_1terfa(:mdius Ro) cen- .
ous experimental studies in the rotating Hele-Shaw cell t&ered with the vertical symmetry axis of the cell. The two oils

low viscosity contrast flows. Specifically, we report on a de-2'€ immiscible. The inner liquid is qen3¢r2(>p1) and more
tailed experimental investigation of the linear and deeplyyISCOUS (“.2>'“1) than th(_a ogter I'qu'.d' The cell 1S clpsed,
nonlinear evolution of a circular axisymmetric interface €., therg IS no further injection or withdrawal of liqui@(
separating two immiscible liquids. We focus on the case of” 0) during the gxperlment. . . : .
In the experiment the cell is set into rotation around its

vanishing injection rateQ =0, which is the closest analog to " is at bed | lo@tvTh
a gravity-driven experiment. This simplification reduces the>YMMELY axis, at a prescribed angular velotlyTne evo-
|ution of the interface is monitored with a charge coupled

number of independent parameters in the problem to two: o
namelys (ratio of centrifugal to capillary forcandA (vis- fjewce camera mounted above the cell, and digitally recorded
cosity contrast or Atwood ratjpand we expect data collapse ina PC'_ _ . .

of several magnitudes to simple scaling laws more feasible Ad_dmonal details of the experimental setup can be
The other experimental parametéfisiid volume, rotational found in Refs. 9 and 13.

frequency, and gap thickngsare modified in a wide range
of values.

Experiments of low viscosity contrast flows in the rotat- The vaseline oil used in the present experiments is
ing cell lead to interesting dynamical and morphological ef-manufactured by PanredRef. 141003 The silicone oil is
fects in the highly nonlinear regime. In particular, we reportmanufactured by RhodorsiRef. 47V 500. Their nominal
on the frequent ocurrence of pinch-off singularities of thedensities at 20 °C ang, =875+ 10 kg/n? for the vaseline oil
radially growing fingers, and the concomitant emission ofand p,=975+ 10 kg/n? for the silicone oil. Their dynamic
droplets. Such phenomena were also observed in low viscosiscosities have been measured at several temperatures with
ity contrast gravity-driven experiments in the channela concentric cylinder viscometer HAAKE RV20/CVB20N
geometryt and with a Cannon—Fenske capillary viscometer. The results

The outline of the paper is as follows: Section Il pro- are independent of the technique used within 5%, and are
vides details of the experimental setup, the physical propershown in Figs. 1 and 2.
ties of the fluids, and the experimental procedure, together Originally the two liquids are colorless. In order to ren-
with a general, qualitative picture of the dynamical and mor-der the interface visible, the silicone oil has been colored
phological properties of the patterns observed in our experiblue by dispersing into it a tiny amount of oil colorant manu-
ments. Section Il is dedicated to analyze and discuss thactured by Galloplast S.L. Dynamic viscometric measure-
experimental results. First we outline the Hele-Shaw equaments confirm that the liquid remains Newtonian after the
tions of the problem, with particular attention to the role of coloring process, and its viscosity is not significantly af-
the Young—Laplace boundary condition at the interface, andected.
compare the prediction of a linear stability analysis for the  The interfacial tension between the two liquids,, is
fastest growing mode against experimental results. Secondn the order of 1 mN/m, typically 1 order of magnitude
we present a quantitative characterization of the patterngmaller than the surface tension at an oil—air interface. This
based on their latency time, the interface stretching, and thealue makes it difficult to measure, accurately. On the one
mass distribution. Next, we study pinch-off events and thehand, we have found it too small to be measured with the

B. Physical properties of the liquids
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o ) ) ) ~ FIG. 2. Dynamic viscosity of the silicone oil Rhodorsil 47V 500, colored
FIG. 1. Dynamic viscosity of the vaseline oil Panreac 141003 as a functiomjye, as a function of temperature. The measurements have been performed
of temperature. The measurements have been performed with a capillagyith a capillary viscometefcircles and with a concentric cylinder viscom-

viscometer(circles and with a concentric cylinder viscometésquares eter (squares The solid line is a fit of the Arrhenius equation
The solid line is a fit of the Arrhenius equatign= P, exp(—E; /kgT), to the =P, exp(~E, /kgT), to the latter data.
latter data.

. _ . glass plate. This condition ensures that advancing and reced-
classical method of the Du Nguring (tensiometer KRUSS ing parts of the interface will find similar wetting conditions

K100), since the lamella formed around the ring breaks beauring the experiment. Our experience is that the second

fore a reliable measurement can be taken. On the other hanﬁ’quid must be injected at rates higher than 100 mi/h in order

th'.s v_alue dOfUO tls :]us_t at tr;e u_ppe:j n;eaSLljtrmlg "”?'ttOff th? Ito obtain reproducible results, with no observable differences
spinning drop technique, designed for ultralow Intertacial,, 1, 450 my/h, Typically the injection rate has been set to

tensions. By averaging several measurements taken with 0 mi/h.
spinning drop tensiometer KRUSS SITE104 we have been
able to obtain a valuery=1.8+0.7 mN/m, subjected to a
large experimental uncertainty.

Once the two liquids are in the cell, the silicone oil fill-
ing the central region finds itself sandwiched between the
two thin layers of vaseline oil attached to the glass plates.
Because of the density difference, this stratification is gravi-
tationally unstable for the bottom layer. Our observations
Preparation of the glass plates at the beginning of eackhow that a dripping instability develops past the first 6 min
experimental run starts by cleaning them with a soap soluapproximately after the generation of the initial condition,
tion, followed by rinsing with distilled water and cleaning leading to the corrugation of the wetting layers of vaseline
again with acetone. This cleaning protocol is sufficient tooil and, finally, to the appearance of vaseline oil drops in the
obtain reproducible results. Occasionally we have also usedsilicone oil. In order to avoid any interference of this insta-
chromic mixture to complete the cleaning procedure, with ndoility with our experiments, we have restricted our analysis
significant differences. to experiments in which the patterns studied are completely
The initial circular interface is prepared in the following developed within 1 min after the generation of the initial
way. We inject the first liquidvaseline oil through an orifice  condition. For this reason we have tak@r=150 rpm as a
at the center of the top plate, using a syringe pump, until iminimum rotational frequency, angy=25 mm as a mini-
fills the whole cell. The injection rate is not critical in this mum initial radius, except for very high frequencieQ (
case. We have used rates in the range from 75 to 350 ml/k-240 rpm) for which we can explore initial radii down to
with no noticeable differences. Next, we inject the secondRy=15 mm safely.
liquid (colored silicone oil until it fills an inner circular We have taken particular care to avoid the presence of
region of the required radiuR,. Since the silicone oil is air bubbles in the cell. Air bubbles tend to form either at the
more viscous than the vaseline oil, the displacement is stablgrcular end of the cell or at the interface between the two
and the interface remains circular. We have found that thisiquids and, when the cell is set into rotation, they move
second liquid must be injected at a relatively high rate tostraight to the center of the cell across the interface, spoiling
ensure that a thin wetting layer of vaseline oil is left on eachthe experiment. In order to prevent the occurrence of air

C. Details of the experimental procedure
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bubbles, the procedure for closing the cell is critical. This 15 cm
procedure differs depending on the type of gap spacers used |

First, we have used six metallic spacers placed approxi-
mately equispaced around the cell edge. In this case theﬂ_15 5 . 15 em . 318
plates are tightly clamped at these six points from the begin-
ning. The air exits the cell freely while the liquids are being
injected, until the injection of the second liquid is almost
complete. Then the edge of the cell is closed with a rubber
band, and the injection is interrupted. Air bubbles formed
close to the rubber band leave the cell thanks to the slight 41 s
overpressure created by the remaining liquid injection, which
thereafter is accommodated by the rubber band itself.

The closing procedure is different when the gap spacing
is provided by an annular tefflon spacer. In this case, al-
though the glass plates are loosely clamped to keep themr
aligned with the axis of rotation, we leave a free space be- 63 s
tween the Teflon spacer and the top plate to evacuate the ai
displaced by the injection of the first liquid. Once this first
liquid reaches the Teflon spacer, injection is stopped. At this
point it is usual to have air bubbles formed at the contact of
the liquid with the tefflon spacer. In order to remove them,
the cell is tightly clamped at six points, as before, and it is set
to rotate until the air bubbles reach the central hole. The
bubbles are then withdrawn by producing a slight underpres-
sure in the cell, which is compensated by the injection of the
second liquid. Since this second injection must also be car-
ried out with the cell tightly closed, to avoid the formation of _ _ _ _
new bubbles near the tefflon spacer, we restrict ourselves dfi i' rfm”agsrlofl ‘;:r;he f]zgeinzgogTarzo”TEro.cniss nan exﬁer":i?tr;’]“th
initial radii in the range 26:Ry<<50 mm in order to prevent | 1o right and from top o botiom, T The fmages are shown o
a significant deformation of the glass plates. Measurements
of the plate deflection with a mechanical strain—gauge show

that a nominal gap spacing=1.2 mm increases by about . . . .
50 with the glass plates 10 mm thick, and by about 10oamics and morphology to the viscosity contrast is observed

with the glass plates 7 mm thick. a_t valges ofA closg to 1, while no significan_t §en_sitivity to

Although the first closing procedure has the advantage oY|sc05|ty3 E():(gntrast is observed in the remaining interval of
not producing any observable deformation of the gIaséowerA' o
plates, the second procedure is more efficient in preventin
the formation of air bubbles in the cell.

Our experiments have covered a large region of the Once the initial condition has been prepared, the cell is
available parameter space. We have explored valud®,of set into motion. Figure 3 shows a temporal sequence of the
(radii of the initial circular interfacein the range from 15 to patterns obtained in a typical experiment.

85 mm, and rotational frequenci€kin the range from 150 There is first a latency periog, dependent on the pa-
to 300 rpm. The values selected for the gap thickiieBave  rameters of the experiment, in which the interface remains
been 0.76:0.04, 1.0@¢-0.05, and 1.350.08 mm for the circular. After this period the interface develops small
metallic spacers, and 1.29.08 and 1.480.12 mm for the ripples, at the onset of instability. The pattern formed is not
annular Teflon spacer. perfectly symmetric, due to unavoidable randomness in the

Combinations of these parameters have given rise to patnitial condition, but it presents a regular arrangement of fin-
terns with a number of fingers varying from 8 to 80. Produc-gers of similar size.
ing patterns with less than eight fingers is nearly impossible  The linear regime, in which the amplitude of the ripples
in our conditions. It requires setting, and() to values too is smaller than or comparable to their lateral size, is very
small to avoid dripping of one oil in the other, as explainedshort. Very quickly the interface perturbations grow in time,
above. both inwards (vaseline displacing siliconeand outwards

Since there is no control of the setup temperature, anésilicone displacing vaselinggiving rise to a characteristic
the viscosity of the liquids is highly sensitive to temperaturefingering pattern.
variations (Figs. 1 and 2 the viscosity contrasfA= (u, One of the most remarkable features of the temporal
—u)/ (ot wq) has been slightly different from one experi- evolution of this pattern is the absence of competition be-
ment to another, within the intervél=0.4-0.5, following tween adjacent fingers of different sizes, in the sense that the
the variations in room temperature. It is known from numeri-number of growing fingers present in the linear regime is not
cal simulations that a strong sensitivity of the fingering dy-modified during the development of the pattern. This is best

%. Qualitative description of the patterns
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120} _ FIG. 5. Snapshots of the patterns obtained in an experiment ith
t=87's =1.25 mm,Ry=54 mm, and) =270 rpm, showing the latest stages of the
pattern evolution. The images are shown from left to right and from top to
bottom.

geometry. Figure 5 presents the sequence of patterns ob-
tained in a second experiment, focusing on the nonlinear,
latest stages of the dynamics.

A salient feature of our patterns is the strong tendency of
the silicone fingers to pinch off, observed systematically in
all experiments. Pinch-off follows the relatively fast stretch-
ing of the longer outgrowing fingers, which evolve into
balloon-shaped fingers, with narrow filaments ending in a
wider, rounded droplet. The pinch-off takes place at the point
where the filament widens to form the droplet. A sequence of
pictures illustrating this characteristic behavior is presented

20 40 60 80 100 120 140 160 in Fig. 6. In some instances, provided that the filament of

6 (deg) silicone oil receives enough flux from the cell center, a

FIG. 4. Polar representation of the interfaces shown in Fig. 3. The initi.alp”mh'()]cf event Is fo!lowed by a S_e”es of n?W pinch-off
condition is reproduced on each plot as a reference. events of the same finger, giving rise to a train of progres-

sively smaller droplets, usually so small that can only be
resolved once the cell is at rest.
visualized in the plot of the interface radius as a function of  After the pinch-off process, there is nearly no further
the polar angle shown in Fig. 4. Represented in this way, thelisplacement of the inner fluid outwards, and therefore no
patterns show remarkable morphological similarities with thepossibility for the vaseline fingers to grow inwards. When all
patterns obtained in the channel geometry, both numerfcallyfingers have pinched, the system must reorganize itself to
and experimentall§,in the limit of low viscosity contrast continue the emission of the inner, denser liquid. We have
(except for the breaking of up—down symmetry observed two main mechanisms for this, both shown in Fig.
In our case, however, as the pattern goes into the deeply: first, the reconnection of the incoming vaseline fingers,
nonlinear regime, the fingers of silicone oil stretch and growwhich results in a reduction of their number, and second the
fast outwards, while the fingers of vaseline oil nearly stop agormation of new silicone fingers in the very late stages.
they approach the center of the cell. This asymmetric behavFhese questions will be analyzed in detail in Sec. lll F. Al-
ior is a purely geometrical effect not present in the channethough the total amount of time for displacing most of the
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975 The contribution proportional tR? arises from centrifu-
L2 Mm . . .
: gal forces, and the one proportional@oarises from Coriolis
109 s forces. The role of these two contributions has been demon-
strated in numerical simulations of large viscosity contrast
flows® Centrifugal forces tend to stretch an initially circular
115s droplet along the radial direction, producing elongated fin-
gers which, due now to Coriolis forces, experiment a slight
deviation from purely radial growth in the counter direction
of cell rotation.

Coriolis effects, however, are negligible in our experi-
ments. This is best seen by considering the reciprocal
Eckman number introduced by Schwértz

b2

!

121 s

127 s

133 s

(]

The largest value that Re takes in our experiments is Re

‘____ . 139 s =0.03, which corresponds to the largest gap thickness used
b=1.4 mm, the largest angular frequency accessible in our
setup =300 rpm, and the smallest kinematic viscosity

E——*m, . 146 s wlp=2x10"* m?/s. Since Re&l, the Coriolis term is just a
perturbation of the velocity of relative magnitude 2Re, which
can be safely neglected.

L.._._..__._ i . 154 s For typical experimental parameters=R&01, and the
typical radial velocity of well developed fingers i,

=1 mm/s. Under these conditions, Coriolis forces would

produce tangential velocitids ,=0.02 mm/s, which cannot

be resolved in the present experiments. For Coriolis effects

to be observable in our experimental setup, the kinematic

mass initially present in the inner layer never exceeds 5 minwscosny of the fluids should be smaller by about 2 orders of

st berecognized ht i e very e siages e pael 10, WEr, 1r Pearce would s o) oo,
is probably also affected by the corrugation of the wetting 9ap

. angular velocities.
layers coating the glass plates. : . .
y 9 g P Neglecting the Coriolis term in Eq2), Darcy’s law can

be written as

FIG. 6. Sequence of pictures extracted from an experiment wWith
=1.4 mm,Ry=37.5 mm, and)=180 rpm.

IIl. ANALYSIS AND DISCUSSION vi=Vé, i=12 (4)
A. Hele-Shaw equations with
Navier—Stokes equation for the velocity field of a fluid, b2 1
V, observed in a reference frame rotating with angular fre-  ¢;,=— T2, | P~ Epiﬂzrz), i=1,2. (5
i

quencyQ, reads
The condition of incompressibility of the two liquids,

ANV +(V-V)V=— EVp—Qx(er) V.v=0, leads to the Laplace equation for the velocity po-
p tential in the bulk
—2QXV+vAV, (N A¢;=0. (6)

sure field,r is the position of the fluid element measured proplem in two dimensions, we must provide kinematic and
from the rotation axis, and is the kinematic viscosityy  gynamic boundary conditions at the interface. The two

=plp. _ o ) ] ) boundary conditions considered usually are, first, the conti-
When this equation is particularized to a rotating Hele-nyjty of the normal velocity at the interface

Shaw cell withQ2=Z, inertial terms are much smaller than R R

viscous forces and pressure gradients, and the two terms on vp=N-V$=n-Ve, @)

the left hand side are negligible. Considering a Poiseuilleand, second, a linear relation between the local pressure
flow in the plane of the cell, and taking the average of thgump at the interface and its curvature

velocity field in thez direction, we obtaif

g . , P2 P1=0K, ®
v=— TV( pi— Epiﬂzrz +15-2pi02Xv,  (2)  whereo is the interfacial tension between the two liquids
i Hi and « is the local curvature of the interfadeonsidered a
wherev is the average velocity in theg plane. one-dimensional line
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Although it has been often ignored in the literature, thissuming that the expressions valid in the channel geometry
last equation is not strictly correct, particularly in the circular could be directly translated to the radial geoméfrin our
geometry** Equation(8) actually comes from the quasistatic specific case, howeveR =0 and therefore the interface is at
condition of local mechanical equilibrium: rest(in the reference frame rotating with the ¢edt the onset
of the instability. Any corrections proportional to power laws
of the interface velocity will be correspondingly small. Thus,
where 7 is the local stress tensor. The effect of the normalit is reasonable to assume that the dominant correction to the
velocity gradients may be negligible in most situations in thetwo-dimensional boundary conditions, in the linear regime,
channel geometry, in particular in the linear regime, since thavill come only from the influence of the wetting films on the
normal velocity gradients give rise to higher order contribu-curvaturex, of the meniscus. Following the derivation of
tions. Then the above condition reduces indeed to the usufark and Homsy for the channel geomeéfhEg. (11), the
one Eq.(8). However, in a radial cell, normal velocity gra- correction is simply a factotr/4 multiplying the surface ten-
dients on a circular interface do not vanish and the conditiorsion. Assuming that a similar correction would apply in our

N-[7—n] N=0ck, )

leads to case, but eventually with a different numerical factor, we
conclude that a convenient way to take three-dimensional
P2—P1—2(u20, 0 o= w10,V 1) = 0K, (10 effects into account, in the two-dimensional boundary condi-

wherev, ; andv, , are the radial components of the velocity tions of our problem, is to consider in Eg. (8) as an effec-
field in each of the two fluids. The additional terms in Eq.t'Ve interfacial tension, and leave it as a free parameter to be

(10) will turn out to be relevant for our experiments, as determineda posteriori This is even more reasonable if we

shown later. recall that the actual value af is itself subject to a large
The boundary conditions specified above are a Simp"ﬁ_e_xperimental uncertainty, as discussed in the previous sec-

cation of the real three-dimensional problem. In practice thé!on-

interface is a two-dimensional object with two local main

curvaturesx; andx, , in the directions parallel and perpen-

dicular to the plane of the cell respectively. This gives rise to  First we make use of Eq8) as a dynamic boundary

a number of complications: condition. The linear dispersion relation of an initially circu-
(i) Depending on the wetting properties of the fluids andlar interface reads in this case

their relative velocity, the interface may either leave behind ~

or absorb a liquid film on each glass plate. This modifies the w(n)=0n— %n(nz— 1), (13)

balance of mass at the interface and, consequently, the kine- Ry

matic boundary conditiofi7). . P
(ii) The thickness of the wetting films, and the dynamicWherew(n) Is the growth rate of an mﬁ_glatesmal perturba-
, . . ; i
contact angle at the contact line of the interface with thetIon of the circular interface of the forde™" (moden), and

glass plates, may be sensitively dependent on the interface _  Q2p? p,—p; _ b? o
velocity. As a result, the curvature, is not constanfas 0= 12 oty 0 12 pptpg
implicitly assumed in Eq(8)], but a function of the local
interface velocity. This affects the dynamic boundary condi-In our casep,>p;, making the centrifugal force destabiliz-
tion (8). ing for all modes, as expected. The interfacial tension does
These effects have been studied in detail in the channdlot affect the stability of the mode=1 (which preserves

geometry, for air displacing a wetting liquidiscosity con-  the circular shapebut stabilizes all modes>1. Finally,
trastA=1). Park and Homsy proved that Eq(8) should sinceQ=0, the viscosity contrast does not play any role at
read the linear level.

The fastest growing mode,, and the marginal mode,
(11) (separating unstable from stable modase given by

Nn=vs(1+S), n.=y1+S. 15
for Ca<1, where Ca is the capillary numbgi/ o, with V n= V319, N 19

the velocity of the interface. The next additional correction,Both depend on the parametgr Rgﬁ/a the ratio of cen-
derived by SchwartZ’ takes into account the influence of the trifugal to capillary forces, which plays the role of an inverse
viscous wetting film left on the plates as the interface movesgjimensionless surface tension. Sirieds very small in our

B. Linear stability analysis

(14)

2

po—pP1=0 5+ 75

2 203 experiments, we hav@>1 in most experimental conditions.
Po—P1=0 B + il + Tcam’ (12 Then,n;, andn. can be approximated by
whereJ=3.8 in the formulation of Park and Homsy. Npy= \E ne=1/S. (16)

A similar theoretical effort(including the extra stresses
from the velocity normal gradient$ias not been carried out |t js not difficult to show that, in this same limit, the growth
for the radial geometry. To our knowledge, Maxworthy hasrate of the fastest growing mode is given by
been the only author to consider kinetic corrections to the
boundary conditions in experiments on this geometry, by as-  o(ny,)= 3n,0(1). (17)
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When instead of Eq(8) we consider Eq(10) as the
proper boundary condition the linear dispersion relation
changes to

w*(n)= R?

~ o
5| Qn- —3n(n2—1)}
1+ 6n(n—A)<R—O)

o
3
I:20

1 -
= On— —=n3|, (18

1+ gnzez

where e=b/R, and the approximation is valid wham>1.
This dispersion relation differs from the previous one in the
prefactor, that introduces a dependence on the gap spacing
The correction is important only whene~1, i.e., for modes

of large wave numben~R,/b. While n; is not modified,

the wave number of the fastest growing mode is now given [0 S U S E——
by 1500 3000 4500 6000 7500 9000

2
. 1 18 24 18 FIG. 7. (Filled squaresNumber of fingers measured in a series of experi-
Nm= E S+ ? + S?_ S+ ? ments with gap spacing=1.4 mm and different values &, and(}, as a
function of the dimensionless paramegr(Solid line) Least-squares fit of
S &2\ s the data to a functiom,,=/S/3, giving an effective interfacial tensiom
=5 1+| g |5 Tote's | (19 ~ ~LomN/m.

The numbemp, coincides withn,, except for a correction  yhe |ack of finger competition makes lotv-flows particu-
depending on the dimensionless paramef& This COITeC- |arly suitable to check the predictions of a linear stability
tion results in larger wave numbers for larger gap spacingsanalysis.

The _Iow v_alue of the interfacial teq5|on in our experi- Figure 7 presents the number of fingers measured in ex-
ments gives rise to a Iarge_ n_umber of fingers and makes ”}?eriments witho=1.4 mm and different values &, andQ
correction above non-negllg|ble. On thg other hand but for(allowing for the control paramete to vary between 1500
the same reasam>A, making the correction independent of 54 900, as a function of. In each experiment the number
the viscosity contrast. of fingers has been determined at the beginning of the non-
linear regime and, also, at the end of the nonlinear regime
when the first droplets reach the cell edge. Both countings
never differ by more than 5%. The difference is represented

Since the growth of the unstable modes in the lineaby the vertical error bars. The error bars fron the other
regime is exponential, it is reasonable to expect that the fastiand, reflect the experimental uncertaintiespin p,, R,
est growing moddas given by the maximum of the linear and (), but not in the interfacial tension. The solid line
dispersion relationdetermines the typical number of fingers running through the experimental points is a fit of the form
formed at the onset of instability, provided that the noise isn,,= \/S/3, Eq. (16), in which o has been left as a fitting
sufficiently weak and uniformly distributed in all modes. In parameter. The fit gives=1.9+0.1 mN/m.
experiments, however, this is not quite the case and, since the Compared to previous analysis of the linear dispersion
bandwidth of unstable modes is large and the duration of theelation®'"*® our experimental data show a remarkably
linear regime is very short, the direct experimental verifica-small dispersion. This reflects the good reproducibility of the
tion of the linear dispersion relation is rather diffictilt’'®  experimentsthe number of fingers formed in identical ex-
In the highA limit, in addition, the nonlinear regime pre- perimental conditions is reproducible within less than)5%
sents a dynamic competition between neighbor fingers othanks to the absence of finger competition.
differing sizes, which results in a systematic reduction of the ~ We must emphasize that the interfacial tension obtained
number of fingers present in the nonlinear regime. in the fit, although consistent with our experimental estima-

Low-A flows, however, exhibit no competition between tion of this parameter, does not necessarily coincide with the
neighbor fingers, not only in the linear and weakly nonlinearactual value ofo. First, we recall that wetting effects renor-
regime but in the deeply nonlinear regime as well. This guarmalize o by an unknown factofthe factor#/4 in channel
antees that the wave number of the mode of largest amplgeometry andA=1), and second, it remains to be deter-
tude at the end of the linear regime coincides with the nummined whether the gap spacifghas an influence on the
ber of fingers observed in a given experiment. In summaryeffective value ofo, as predicted by Eq19).

C. Number of fingers emerging from the linear
instability
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FIG. 8. (Symbol3 Number of fingersN, measured in experiments with FIG. 9. Data collapse of the measured number of fingésachieved by
different values oRy, (, and three gap spacings against the number of plotting this number against}, [the number of fingers predicted by Eq.
fingers predicted by the fastest growing mode of the linear dispersion relatl9)] with an effective surface tensian=1.4 mN/m.

tion, n,= JS/3. The straight line reproduces the fit with=1.9 mN/m

shown in Fig. 7.

. ) _ tially by two dimensionless parameters, the viscosity contrast

~ We have addressed this second question by performing and the ratio of centrifugal to capillary forc& The first
similar experiments with different gap spacings<1.4, 1.0,  of them (not varied in the present experimentss no influ-
and 0.7 mrﬂ_l The results are shov_vn in F|g._8, in which the gnce on the linear regime, provided ti@¢ 0, but plays an
number of fingers observed experimentaly,is represented  jmportant dynamic role in the nonlinear regime by control-
against the prediction fony, given by Eq.(16). The solid jing finger competition. The second one determines the
squares are the data fbr=1.4 mm presented already in Fig. gominant wave number emerging from the linear regime,
7, and the straight line the corresponding fit with  \yhich remains dominant throughout the whole evolution for
=1.9 mN/m. It is clear from the figure that the other data|o,, A-flows. On the other hand, our discussion about the
points are shifted systematically from the linear fit. The errorappropriate dynamic boundary condition in the circular ge-
bars (shown only for two points for clarifyreveal that the ometry has shown that the gap spacing also plays a measur-
deviation from the fit is not accidental. We conclude that agpje role in the linear regime and, thus, introduces a third

variation of the gap spacing seems to change the effectivgimensionless group. The influence of this third parameter

interfacial tension in a systematic way. 3 in the deeply nonlinear regime is more difficult to assess but
This result can be accounted for by the modified dy-ye do not expect it to be very significant.

is demonstrated in Fig. 9, where the same data points angake length and time dimensionless, usRig(initial radiug
represented againsf;,, given by Eq.(19), and are seen to gpq 1ks(1) [where (1), the growth rate of the moda
collapse in a single straight line corresponding to an effective:1 is simply Q] as the characteristic length and time
interfacial tensionoc=1.4 mN/m. It becomes clear that sca,les. ’

working with two similar liquids makes the interfacial ten- In our experiments of high viscosity contrast i

sion very small, Whlch favors a large n_umber of f"?gers' SGhis simple choice proved adequate to scale several measures
that the small correction that leads i, is relevant in our of the patterns, including the latency period before the devel-
expenments. . . . pment of the pattern, the radius of gyration of the pattern,
This "’?”a'YS'S ha; prowdgd us with an accurate value o he radial extent of the mixing zone, and others. This choice,
the effective interfacial tensiony=1.4 mN/m. In the case however, did not provide a good scaling of the interface

where we had. a precise experimental determlnauon. of thgtretching. This lack of scaling was attributed to the sensitiv-
actual interfacial tension, we would be able to determine theﬁy of interface stretching to capillary forces

correction. factor QUe to wetting effects. Currently we can " A nhatural way to introduce a dimensionless time scale
o_nly mention that if we use the valqe measu_red by the SPINfhat takes into account the stabilizing role of the in-plane
ning drop methodg=1.8 mN/m, which is subject to a large surface tensions is to replacet- w(1) by t-w(n,). Since,
uncertainty, we get a correction factor very closentid. according to Eq. (17), w(ny)~w(1)-n and n

. ’ m m: m

=(S/3)Y? this new time scale introduceS (the ratio of
centrifugal to capillary forcesin the empirical scaling.

An analysig of the Hele-Shaw equations presented in ~ On the other hand, our study of the linear regi(Bec.
Sec. Il A shows that the experiments are controlled essenil C) has showed that replacimg, by n’, captures the slight

D. Empirical scaling of the patterns
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FIG. 11. Dimensionless latency timg; w(1)-n%, as a function ofi},, in
a series of experiments with differebt Ry, and ().
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mined in this way, in the dimensionless forin w(1)-nj,
FIG. 10. Interface stretching as a function of time, in a series of experimentgersus the number of fingers formed in the experiment, rep-
with differentb, Ry, and(. resented byn* . We recall than”, depends on experimental

parameters through the two dimensionless grasps. The

dependence o introduced by the modified boundary con- data show _that_, within the large e>_<per|mental En_certa|nt_|es in
the determination of the latency timg; w(1)-n7, is practi-

dition (10). A suitable dimensionless time scale is therefore | 192 § Il th . idered
given byt- w(L)-n* . cally a constant ( ) for all the experiments considered.

In order to make a quantitative characterization of theTh|s observation is consistent with a scenario in which the

spatiotemporal evolution of the morphological instability, we N°1S€ present in the initial condition has similar amplitude

study in some detail the interface stretching, the latency timéﬁr allhpofssmle mode.s and IZ sufflhmently We";k' Th|§ ensures
before the onset of instability, the radius of gyration of thethat the fastest growing mode, whose growth rate is propor-

. % .
pattern, and the mass of the droplets emitted by the radiall§)Onal to w(1)-np, has a much larger amplitude than any
outgrowing fingers.

other mode at the end of the linear regime, and is therefore
the first one to show up in the pattern.

A collapse of the latency time was also obtained for high
viscosity contrast flows, but therg- w(1) rather thant,

The latency periodt, , is the time interval in which the - (1)-n* was independent of the number of fing&rEhe
circular oil bubble(initial condition) remains circular, within ~ reason for the different behavior must be found in the differ-
experimental resolution, before the instability sets in and theent wetting conditions at the interface, since high viscosity
pattern develops appreciably. contrast experiments were carried out in a ¢mpt prewet-

All measures of the patterisuch as the interface stretch- ted cell.
ing, the radius of gyration, ef¢.when plotted as a function
of time, remain constant durirtg, and then increase sharply
as the instability develops and the pattern enters the nonli
ear regime. The pronounced stretching of the interface presented in

In order to characterizg, we consider in particular the Fig. 10 is represented in dimensionless variahlg®, ver-
time evolution of the interface length in experiments withSust- (1), in Fig. 12. These variables do not produce a
different gap thickness, initial radius, and rotation frequencycollapse of the different curves. Actually, the mean slope of
reported in Fig. 10. The interface length remains at its the different curves in the sharp growth region can be seen to
initial value 2R, for a period of time, increases sharply in depend linearly on the number of fingeld, as shown in
the linear regime, and then grows at a nearly constant rate ifig. 13. The linear fit provides
the nonlinear regime. Our data points follow the interface L
stretching until a first point of the interface reaches the cell V =————-=60+3.2\. (20
edge.t; is obtained by a backward extrapolation of this last Row(1) dt
regime, thus measuring the time at which the instabilityThe interpretation of this result is that the interface stretching
would have set in, had the interface length always grown atate (V) follows two different time scales simultaneously.
the same rate. The independent term, 60, reflects a scaling wfith (1),

Figure 11 presents the results of the latency time deterwhich is dominant for a small number of fingers—infrequent

1. Latency period

n2_. Interface stretching
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FIG. 12. Dimensionless interface stretchihgR,, as a function of dimen-

sionless timet- w(1), for theexperiments represented in Fig. 10.

in our experiments. The term proportional ko reflects a
scaling oft with w(1)-n},, which is dominant for a large

number of fingers.

The linear dependence dhin Eq. (20) corresponds to a
scenario in which:(i) all fingers grow simultaneously at
roughly the same speed afid) in the highly nonlinear re-
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FIG. 13. Dimensionless stretching rai,, vs number of fingersN. The
solid line is a least-squares linear fit of the data.
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FIG. 14. Plot of Inf/R,) as a function of dimensionless tintew(1). The
radial coordinater gives the distance of the silicone oil droplets to the
rotation axis. The average slope of the linear fits ist106L.

gime the contribution of a finger to the overall interface
lengthL comes basically from its two lateral, nearly parallel
walls; the contribution, therefore, is twice its radial size,
measured from the beginning of the finger to the end of the
droplet. To verify this picture, we have measured directly the
growth of the fingertipgradiusr) in a large number of ex-
periments. The experimental resul(Big. 14 show that
In(r/Ry) grows linearly with (—tg)- w(1) (wheretg is the
time when the finger is formegdand the slope is practically
independent of experimental parameters=1.60+0.15.
Consequently, if we consider that the dominant contribution
to the interface stretching is the stretching of the finger,
which is particularly accurate when the number of fingers is
large enough, we havé=2Nr=2NR,exd a(t—ty) o(1)]
=2NRy[ 1+ a(t—tp) w(1)], and thus

1 dL

—_— *
Roo(D) dt =23, (21)

in excellent agreement with the result of E§O) derived
directly from the experiments for large.
From the former discussion it follows that, for lark
the interface length should grow with a time scale»(1)
-n},. The corresponding data collapse is shown in Fig. 15.
The simple model of the evolution of the pattern out-
lined in this section will be validated in forthcoming sections
through other characterizations of the spatio-temporal dy-
namics.
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1/n
n=1,2,.... (22)

n

J2mdp i Prmr dr
157 f{Prdr

A different characterization of the morphological insta- The first moment is the average radius of the pattern. The
bility, complementary of the interface stretching, is providedsecond moment of the distribution is the so called “radius of
by its radial mass distribution. “Mass” refers here to the gyration” R.
two-dimensional area covered by the pattern. The properties The time evolution ofR, for our set of experiments is
of this distribution are measured by the momeRy{s defined presented in Fig. 16. The overall picture shows a radius of
as gyration that remains constant during the latency time, starts
growing in the linear regime, and increases exponentially in
the nonlinear regime, until the droplets at the fingertips reach
the end of the cell and no more data are available.

We have verified that the proper time scale to collapse
the growth of the dimensionless radius of gyrati®y/R,,
is t-w(1). The collapse is shown in Fig. 17. Not surpris-
ingly, the different curves are laterally displaced, since the
time scale of the latency time tsw(1)-ny,.

The result presented in Fig. 17 can be understood in the
same scenario described above: all fingers grow simulta-
neously, at a similar rate that scales wtitlm(1). Making the
assumption that the main contribution to the growthRyf
comes from the droplet-shaped terminations of the fingers,
and taking into account that there am§, fingers, we con-
clude that the mass carried by each finger and droplet must
be inversely proportional to the number of fingers,Rgr' R,
to scale witht- w(1) rather than with- w(1)-n?,.

This conclusion is consistent with the morphology of the
patterns(Fig. 3), where we see that, in the mixing zone, the
pattern is formed by an alternancy of outward-growing sili-

ool 0w cone fingers and inward-growing vaseline fingers, all of
0 40 80 120 160 200 similar width. Thus, the silicone fingers take up nearly the
t (s) same room in all the experiments, independently of the num-
ber of growing fingersp?,, each finger carrying an amount
FIG. 16. Radius of gyration of the patterns as a function of time. of fluid proportional to 1A%, .

3. Mass distribution
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4000 - the droplets is essentially a constant, as predicted, rather than
a fraction or some other function of the initial area. This
constancy holds above a finite threshoRp.=35 mm
(7R5.=4000 mnt). We have not found a limit to this be-

“g 30007 havior at large radii.
% The threshold valu®&k,.;=35 mm is consistent with the
s fact that the overall droplet areaA§=1200 mnt) would
S‘ 2000 + correspond to an initial circle of radiu®y=20 mm. Thus,
o for initial conditions withRy<<20 mm the constancy of the
o + + + overall droplet area cannot hold. For 20 rrR,<35 mm
ST:) *ﬁ# +++ + + the constant droplet area is not yet attained because the fin-
1000 - . .
gers also carry a fraction of the overall available area.

I The large error bars in the plot reflect that the spatial
. resolution of our images is relatively low to measure the area
0 - L . L . L of droplets, since their radii fall in the range from 2 to 7 mm.
0 5000 10000 15000 The number of pixels on the droplet interface is comparable
nR,” (mm°) to the number of pixels within the droplet. The error bars
account for the dispersion in droplet area after considering or

FIG. 18. Total area covered by the silicone oil droplets, after the first pinch-nag1ecting the contribution of the droplet interface. Another
off process, vs the area covered by the initial condition. The solid line shows

the behavior expected if the two magnitudes were mutually proportional. €/TOr source isa SligKbUt_de_teCtablbincrease of th? droplet
area as the droplet velocity increases. This effect is due to the
thickening of the vaseline films coating the two glass plates,

Another consequence of this picture is that the tota@bove and below a silicone droplet, compressing the droplet
amount of silicone oil displaced outwarda the outgrowing in the vertical direction and expanding it in the horizontal
fingers will be a constant, irrespective of the initial radius Plane. To minimize this error source we have measured the
Ro. Only at small enoughR,, when the overall amount of droplet area well beyond pinch-off, when all droplets move
silicone oil is too small to provide for this constant value, at roughly the same velocity.
should a cutoff to this behavior be expected. The implica- ~ The numerical value&y.=35 mm and droplet are,
tions of this result on the size and overall mass of the drop=1200 mnf would presumably change if surface tension
lets formed by finger pinchoff are discussed in the next secand/or viscosity contrast were changed. Theoretical analysis

tion. and numerical simulations that we are currently performing
show that surface tension and viscosity contrast do play a
E. Mass of emitted drops role in the pinch-off process, e.g., in the time to pinch-off

A tvpical f the pinch-off that i and in the mass flow through the filaments. Surface tension
. ypical sequence of the pinch-ofl process that gives,, g viscosity contrast may also have an influence on pinch-
rise to the release of a silicone oil droplet is shown in Fig. 6

. . . ‘off through three-dimensional effects not considered in the
We observe that the droplet at the fingertip widens as th‘I:"—|ele-8haw equations. This can modify the mass flow into the

finger stretches into an elongated filament. This continuearoplets thus changing, (and henceR,,). We expect this
. . . . - . y 0 Oc/ -
while the filament is wide enough to allow for the silicone oil change to be small, however, since this flow is already low

to flow towards the tip. Close to pinch-off the filament is well before pinch-off takes place. Additional experiments
already too thin for this. Finger pinch-off takes place at the P P . P

junction of the filament and the droplet. Given that beforeWOUId be necessary to ascertain the relevance of these ef-
. : . fects.
and after pinch-off, droplets are by large the main contribu-
tion to the variation ofRy, the argument of the preceding
section means that the typical area of a droplet should b
proportional to ¥ , wheren’, is the number of fingers in Once the silicone fingers experience the first generation
the pattern. Accordingly, the overall area of all the dropletsof pinch-off, the dynamics of the patterns is substantially
should be a constant, irrespective of the number of dropletgnodified. After pinching, the silicone oil filaments, still con-
This is actually an average description, since not all dropletsiected to the central region, are too thin to allow for a sub-
in a given experiment are identical, and there is some dispestantial outward flux of silicone oil. Thus, the pattern after
sion of their areas. pinch-off is rather stable, and it takes a long time to displace
We have measured the total area covered by the firdt outwards. The pattern must reorganize itself to emit the
generation of emitted dropletéhe contribution of subse- remaining silicone oil. We recall that the mechanisms for it,
quent generations is negligiblén a large collection of ex- described in Sec. Il D, aréi) the generation of new silicone
periments with different experimental parametdrysR,,(), oil fingers in a nonsystematic way afio) the coalescence of
giving rise to a wide distribution of numbers of fingers. Theincoming vaseline oil fingers, which allows a region of sili-
results are presented in Fig. 18, where the total area of theone oil to become disconnected from the center and be
droplets is plotted againstR?, the area of the initial circle. emitted outwards. In the last stages of the pattern the vase-
The graph demonstrates clearly that the total area covered tiye fingers become considerably wide, and their number is

g. The long-time regime after pinch-off
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A b=O70Q=240R=S8 . | . o 100Red2 high rate, followed by_ another _at much lower rat_e and punc-
oo A tuated by constarfeF intervals(inse, corresponding to the
: Ej ;gii:i:’gg::g o b=1.40,0=180,R=37 long-time regime analyzed in this section.
0 bei250=370R=54 * D=1-40.0=210R=42 The transition from one stage to the other, for one par-
ticular experiment, is illustrated in the figure by two straight
| o4 IR lines drawn to guide the eye. The transition is much more
ot ' abrupt in experiments with smaR, and few fingers(15,
= 0.3 :FI':HH'_i + say) than in experiments with large, and many finger$70,
ol ”"4. + say). There are two reasons for this: first, the mass emitted
0.8 02l o MR- S0 “‘“"‘: outwards in the first stages of the nonlinear regime is roughly
Al il constant for all experiments, and therefore the experiments
el . HENTREVMIENTIA, with larger Ry have more silicone oil to emit in the last
il U8 et il e stages. Second, in the experiments with a larger number of
- fingers the silicone oil fingers present an irregular, filament-
% like appearance, which favors the main mechanisms of sili-
Waal il DR IR cone oil emissiorfreconnection of vaseline oil fingers, elon-
* ql gation of the silicone oil finger necksOn the contrary, the
I e : experiments with smalleR, and few fingers present a more
nelk i - regular arrangement in the mixing zone, with vaseline oil
il ED\‘.\:{.‘ fingers clearly separated by silicone oil fingers. Being so,
it .K inner reconnection is not easy, nor is the elongation of sili-
f ARl S A cone oil finger necks. These difficulties prevent the system

15 20 25 30 85
t-w(1)

D'%.U 0.5 1.0 from displacing the silicone oil outwards, once the thicker
silicone oil finger has pinched. Consequently, the rate at
which FF(Rg,t) decays is abruptly reduced.
e i /O neresting feature GFF(Ry.) n the lates
té:)s ﬁeIL:Jn?elggg%izing a change in the ra(tte).of siIicong oil emission, in thetStages .Of the nonllnear. regime I.S the presence of plateaus,
nonlinear regime. The inset shows the presence of flat regions in the lateb€., Periods where the filled fraction does not change appre-
stages. The values &f, Q, andR are given in mm, rpm, and mm respec- Ciably, showing that there is no flux of silicone oil through
tively. the circumference of radiuR,. The plateaus can be clearly
recognized in the inset of Fig. 19. Their presence does not
mean that the interface is frozen. Suppose that new fingers
reduced dramatically down to values between two and fivdiave been formed at timg which account for the flux of
fingers. They remain separated by rather thin silicone oibilicone oil throughR, at timet. A plateau starts when these
filaments, which finally break up in many minute droplets. fingers, before pinching, become too narrow to allow for any
With the purpose of making a characterization of thisflux acrossRy. Furthermore, immediately after the fingers
long-time regime, we introduce the paramefé¥(r,t) (fill- pinching the filaments left behind relax, allowing no flux to
ing fraction defined as crossR, until new fingers grow again from the radius they
f%rr’dr’f(%”f(r’,@d(p were formed from and reach the radigg.

FF(r,t)= r o ’ In summary, the last stages of the highly nonlinear re-
Jor'dr'fg"d¢ gime are particularly lengthy. The outward displacement of
where the silicone oil in these last stages relies on the asymmetries
- ] of the pattern, and is dominated by the inner reconnection of
Hr )= 1 silicone oil (23 incoming vaseline fingers and the pinch-off of new outgoing

0 vaseline oil. silicone fingers.

FF(r,t) measures the rat!o of t.he area ogcuplgd by the S|I|-G_ The role of low surface tension
cone oil to the total area, in a circle of radiuat timet. We
focus onFF(Ry,t), corresponding to a circle defined by the Having a low viscosity contrast implies working with
initial condition of the pattern. We study how the silicone oil two liquids, which in our case results in a very low value of
initially filling this circle is displaced outwards, particularly the interfacial tensiomr, about 1 order of magnitude smaller
at long times. than at an air—liquid interface. The question arises as
Figure 19 shows the evolution 6 (Ry,t) as a function  whether the dynamic and morphological features identified
of the dimensionless time w(1) in different experiments. in our work are related only to the low viscosity contrast, or
As usual, there is first a latency period in which the initial the low interfacial tension plays also a relevant role. In this
condition is not modified, followed by the exponential sense, it is important to note that the morphologies observed
change characteristic of the linear regime during a very shoiit the present experiments are remarkably similar to those
time, and then a decay associated with the nonlinear regimebtained numerically for miscible flow&egligible interfa-
This decay comprises two stages: one at a nearly constanial tension in a rotating Hele-Shaw cetf
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FIG. 20. Numerical integration of the spatiotemporal
i ] evolution of a circular drop. The three snapshots on the
left correspond toA=0.4 andS=2500, and the three
snapshots on the right #8=0.4 andS=80. The inter-

faces are shown at dimensionless timds=0,

. At . 2x107%4, 4.4x107* (left), and =0, 2.5x10°2, 3.7
T X102 (right), measured in units of 12(
2| ] + u) R (60).
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Viscosity contrast and interfacial tension could be modi-left panel of the figure, purposely designed to produce a large
fied nearly independently in channel geometry, by controlnumber of fingers, reproduces the basic features observed in
ling the 4temperature of a binary fluid mixture near our experimentsti) All fingers formed in the early stages of
criticality.” Even though our current experimental setup doeshe instability keep growing in the deeply nonlinear regime,
not allow us to work along this way, we will present here gemonstrating the absence of finger competitidin.As in
accurate numerical solutions of our flows that do provide &xperiments, the number of fingers matches the wave num-
definite answer to the question above—together with interpey of the fastest growing mode in the linear dispersion re-
eS“”FQ add|t2|onal mforma::on. s of ol lation, n,,=(1+S)/3=29. (i) Competition for space of

igure 20 presents the resu ts of two numerical experiy, incoming fingers gives rise, in the later stages, to a typi-
ments. The one on the left is féx=0.4, S=2500, and the . . . . L
. o - cal fork-like structure in which the tip of an outcoming finger
one on the right foA=0.4, S=80. The same initial condi- . . . . '
Blfurcates in two new fingersiv) Droplets form at the finger

tion has been used in both runs: a perfect circle perturbe d 4 ch teristic si f imminent pinch-off at th
with 50 modes of 0.1% amplitude and random phases. Th 5NAs, and characteristic signs of imminent pinch-oft-at the
finger—droplet junctions are visible, just before the code is

numerical algorithm is described in detail in Ref. 20.
The valueA=0.4 has been chosen to match the viscosity@lt€d due to lack of accuracy. ,

contrast in the experiments. This value is representative of It IS worth noting that the same spatio-temporal evolu-

low viscosity contrast flows because, as mentioned in Sedion of the interfacgin dimensionless variablgss obtained

Il C, the fingering dynamics is sensitive foonly whenA is  for all sets of parameters compatible with given value# of

very close to Laround 0.9, and practically insensitive t& (viscosity contragtandS (inverse dimensionless surface ten-

in the remaining interval of loweh.>®®We have performed sion), because these are the only two dimensionless param-

the same simulations foh=0 and obtained numerical re- eters of the problem fo=0." In particular, a modification

sults nearly identical to the ones presented in Fig. 20. of the surface tensiony, has the only effect of changing the
The point to stress is that the simulation presented in théime scale, if the other parameters of the flow are modified in
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such a way that remains unchanged. This means that therelevant and measurable on displacements that involve a
results presented in Fig. 20 are representative of the dynanarge number of fingers. This is the most frequent situation in
ics for the A,S values reported, irrespective of the actualour experiments. The delicate scrutiny of the linear disper-
value of o, and therefore the features listed above are spesion relation required to verify this effect has been possible
cific of low viscosity contrast flows, and cannot be attributedthanks to the lack of dynamic competition between fingers,
to the low value ofc in the experiments. characteristic of low viscosity contrast displacements, which

A separate issue refers to the validity of the dynamicallows us to equate the number of fingers in the nonlinear
equations for extreme values of the physical parameters. Foegime to the fastest growing wave number in the linear re-
instance, a low value ofr may lead to morphological fea- gime.
tures on the scale of the cell thicknelss Even with this Concerning the empirical scaling of different character-
concern in mind, the striking similarity with the numerical istic measures of the patterns, we have found that most mea-
simulations makes us confident that our experiments arsures follow the time scale (1), but theinterface stretch-
properly described by the Hele-Shaw equations. ing follows the time scalé- w(1)-ny,, which introduces the

In the right panel of Fig. 20 we show the spatio-temporalnumberS (ratio of centrifugal to capillary forcesn the scal-
evolution for low viscosity contrast fingeringmall A) with ing. The same happened also for high viscosity contrast
a reduced number of fingefsmall S). Let us recall that displacement® Nevertheless, one must be careful in drawing
these patterns are not accessible in our experiments becausanclusions from the comparison between our experiments
o is small and() must be kept relatively large for the insta- and those of Ref. %or high viscosity contrast because the
bility to develop before dripping in the vertical direction sets latter were carried out in a dry cell, and hence under very
in. These simulations show again that fingers do not competdifferent wetting conditions. By comparing experimental re-
(they all keep growing In this case the absence of compe- sults to numerical simulations of air—oil displacements, we
tition cannot be attributed solely to the low viscosity con-have found that the Hele-Shaw equations reproduce only the
trast, but predominantly to the increasing available space foexperiments of oil displacing air when the cell has been
outgrowing fingers in the radial geometry. Nevertheless, nuprewetted. Wetting conditions play a determinant role in the
merical simulations in the channel geométspow the same pattern morphologies, and may also be relevant in the scaling
lack of competition for similar number of fingers than the of the different measures. This issue will be addressed in a
two sets of parameters of Fig. 20. forthcoming work.

The problem of finger pinch-off and the formation of
droplets is interesting for a variety of reasons. Pinch-off
seems to be favored by the low viscosity contrast and by the

We have conducted a systematic investigation of the dyrotation of the cell(since centrifugal pressure increases lin-
namics and morphology of the viscous fingering patterngarly with radial distance to the rotation axi8ut the ques-
formed in a rotating Hele-Shaw cell, due to the displacemention remains whether the finite-time pinch-off observed in
of a lighter fluid by a denser fluid of comparable dynamicour experiments is only a three-dimensional effect not con-
viscosity. tained in the two-dimensional Hele-Shaw equatigniich

Working with two liquids has been found to be particu- could lead to pinch-off at infinite timeor, on the contrary,
larly involved and delicate. The liquids must be introduced inthe two-dimensional model can lead spontaneously to finite-
the cell under well controlled conditions. When displaced bytime pinch-off. The question cannot be answered experimen-
the second liquid, the first liquid leaves a coating layer ontally, since in experiments the three-dimensional structure of
each glass plate whose thickness depends on the injectiéhe meniscus shows up unavoidably near pinch-off, as soon
rate during the preparation. The experiment must also bas the width of a finger becomes comparable to the gap spac-
carried out before dripping of these coating layers sets ining b. The interplay between viscosity contrast and rotation
Great care must also be put in avoiding air bubbles at thén the possible existence of finite-time singularities in the
interface between the two liquids. two-dimensional Hele-Shaw equations is an interesting open

The patterns obtained in our experiments make it evidenguestion.
that the condition of low viscosity contrast between the two
liquids suppresses the dynamic competition between fingers,
characteristic of air-liquid displacementhigh viscosity aAckNOWLEDGMENTS
contrast. The morphologies observed are strikingly different
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IV. SUMMARY AND CONCLUSIONS
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