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Interfacial instabilities of a fluid annulus in a rotating Hele—Shaw cell
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We have studied the interfacial instabilities experienced by a liquid annulus as it moves radially in
a circular Hele—Shaw cell rotating with angular velodily The instability of the leading interface

(oil displacing aijy is driven by the density difference in the presence of centrifugal forcing, while
the instability of the trailing interfacéair displacing oil is driven by the large viscosity contrast. A
linear stability analysis shows that the stability of the two interfaces is coupled through the pressure
field already at a linear level. We have performed experiments in a dry cell and in a cell coated with
a thin fluid layer on each plate, and found that the stability depends substantially on the wetting
conditions at the leading interface. Our experimental results of the number of fingers resulting from
the instability compare well with the predictions obtained through a numerical integration of the
coupled equations derived from a linear stability analysis. Deep in the nonlinear regime we observe
the emission of liquid droplets through the formation of thin filaments at the tip of outgrowing
fingers. © 2000 American Institute of Physids$S$1070-663(00)01007-2

I. INTRODUCTION perpendicular to the plane of the flow, in the circular geom-
etry. The morphological instability induced by centrifugal
Hele—Shaw flowgviscous flows in the gap between two forcing is driven by the density difference and not by the
closely spaced parallel platesave been the subject of nu- viscosity difference of the two fluids. The linear stability
merous studies in recent years. From a practical point oinalysis of this problem in the limits of high density and
view, the interest in these problems arises from the fact thajiscosity contrast was worked out by Schwéttand ex-
Hele—Shaw flows are governed by the same equations agnded to arbitrary density and viscosity contrast by our
flows in porous media. In particular, Hele—Shaw flows ex-group?® In this latter work we verified experimentally the
hibit a viscous fingering instability,which is believed to  maximum growth rate selection of initial patterns within ex-
determine the efficiency of oil recovery processes by wateperimental uncertainty, and also studied the nonlinear regime
displacement in porous oil reservoirs, and is also present ifh the case of vanishing injection rate.
underground storage of g&sAnother related problem of A particularly interesting arrangement in the rotating cell
practical interest is injection molding, in which a fluid dis- js that of a liquid annulus, centered in the cell, which defines
places air in a mold which often has the same parallel platghree different regions separated by two interfaces: A trailing
geometry as Hele—Shaw cells. The displacement in this cas§ inner interface(i), and a leading or outer interfade).
is stable, and the question is to define the conditions fopepending on densities and viscosities of the fluids in the
Complete elimination of air in the mold. The Study of Hele— different regions] and on the experimenta| parameters se-
Shaw flows driven by body force@ravity or centrifugal  |ected (gap thickness, initial volume, and rotational fre-
may also be of interest in the technology of coating. quency, qualitatively different scenarios of interfacial insta-
On the other hand, the viscous fingering instability ex-pjjities can be considered. In this paper we study an annular
perienced by Hele—Shaw flows is regarded from a fundagrrangement in the limits of high density and viscosity con-
mental point of view as a relatively simple but very rich trast, where air occupies the innermost and outermost layers,
scenario to study generic features of interfacial pattern forang oil occupies the intermediate layer. Emphasis is laid on
mation in dynamic nonlinear systehd. The Saffman— the general situation in which either one of the two or both
Taylor problem, as commonly known in this context, is ainterfaces are unstable, with particular interest on the behav-
prototypical example of a moving-boundary problem, rel-jq, resulting from their coupled motion.
evant to a broad class of morphological instabilities found  Rejated to this study, three-fluid annular Hele—Shaw
not only in porous media flows, but also within the contextfiows with no centrifugal forcing were recently considered
of crystal growth, electrochemical deposition, dielectric by Cardoso and Wood$.In their work the radial spreading
breakdown, and flame propagation, for e_xam“‘ple. of the fluids is forced by the steady injection of fluid in the
A number of modifications of the basic Saffman—Taylor jynermost layer. The emphasis is on the behavior when one
problem have been considered in recent yéd\:e.lnterest- ~ of the interfaces is highly stable and the other is unstable. In
ing possibility is to impose a uniform rotation about an axishjs configuration, the authors report that surface tension at
small radii and the continuous thinning of the intermediate
dElectronic mail: ortin@ecm.ub.es layer at large radii stabilize the system.
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FIG. 1. Sketch of the experimental apparatus.

The work presented in this paper completes our study of < >
the problem of a fluid annulus in a rotating Hele—Shaw cell, 100 mm
which was initiated in Ref. 11 with the study efabledis-
placements. Centrifugal forcing allows a wide range of driv-giG. 2. Digital picture of a liquid annuluénner radiusr; , outer radius )
ing force amplitudes. This led us to study annular flows in aextracted from a sequence of video frames. The dark central spot is a re-
wide range of capillary numbers, covering about three Orderge_c_tion of the camera qus on t_he glass plat_e, overlapped Wit_h the c_entral

: . orifice of the plate. The picture is representative of the resolution achieved
of mggmtude. The study revealed the releyance of wetting i our image acquisition setup.
conditions to the behavior of the flow; the interfaces of the
annulus moved with monotonously rising velocities in a cell
prewet with a thin fluid layer on each glass plate, and withheavy granite table with three adjustable feet, in order to
much lower constant velocities in a dry cEllThe conse- accurately level the cell, which is critical during rotation.
guences of this different behavior on the instability thresh-Before each run, the center of the cell is carefully aligned
olds of the two interfaces of the annulus constitute the cenwith the rotation axis, to a tolerance less than 0.02 mm in the
tral part of the study presented here. radial direction.

In a rotating cell, the bulk pressure due to centrifugal  The axis of the platform is coupled via a belt to a pulley
forcing increases linearly in the radial direction. This en-mounted on the shaft of a variable speed motor, equipped
hances secondary bifurcations and the occurrence of topavith a reductor and a tachometer. The signal from the ta-
logical singularities in the flow, such as the formation of chometer is used by an external servocontroller to maintain a
fluid filaments and the breakup of the interface into liquidhighly constant rotation speef, independently of load
droplets. We report on qualitative observations of such phevariations, in the range 0-300 rev/m{@—5 H2 with fluc-
nomena in our experiments. tuations around-0.1 rev/min. We have found empiricatly

In summary, we present a linear stability analysis and arthat the rotation speed of the platform, when it accelerates
experimental study of the fingering instabilities that occurfrom rest to a preset valu€,, is well described byf)
during the radial displacement of a spinning fluid annulus in=Q,[ 1—exp(— wt)], where w=1.2(300£),)%®° and bothQ)

a Hele—Shaw cell, for a wide range of experimental paramand{}, are given in rev/min. Thus, the platform accelerates

eters(fluid volume, rotational frequency, gap thickngsdif-  to 50, 100, 200, and 300 rev/min in less than 0.04, 0.4, 2, and
ferent wetting conditiongprewet and dry and different 6 s, respectively. Except for a few exceptions, these transient
properties of the liquidviscosity, density, and surface ten- times are negligible in most experiments. The maximum de-

sion). flection of the upper glass plate due to the rotation of the cell
is 0.03 mm at 300 rev/min.
Il. EXPERIMENT Four white fluorescent tubes, arranged forming a square

around the cell at the level of the gap, constitute the light
source. The change in refraction index as the light passes
Our Hele—Shaw cell is made of two 6 mm thick circular from air to liquid or vice versa renders the interfaces visible.
glass plates of 40 cm diam, separated by six calibrated spaégn example is shown in Fig. 2. Images are recorded with a
ers of thicknesseb in the range 0.25-2.00 mm, and firmly JVC TK-S340 CCD camera, equipped kvia 8 mmCosmi-
clamped together. We estimate the fluctuations in gap spacar Pentax objective, placed above the apparatus and focused
ing at about 0.05 mm. on the glass plates. Sharp images of patterns rotating at high
The cell is mounted on top of a rotating cylindrical plat- speed are obtained using the electronic shutter of the camera,
form, as shown in Fig. 1. To accurately balance the cell evemvhich allows pictures to be taken in 1/10000 s. The camera
at high angular velocities and to damp vibrations, the axis ofs connected to a Vitec VideoMaker frame grabber installed
the platform is conical and sits on a large conical ball bearingn a personal computer, which digitizes the images sequen-
attached to the supporting structure. This structure rests ontally and stores them in memory. The spatial resolution of

A. Experimental apparatus
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TABLE |. Properties of the fluids used in the experiments. To this end, oil is slowly injected into the motionless
Sil - ; cell up to a radius of about 100 mm, the injection tube
ilicone Silicone Vaseline L. .
oil 50  0il 500  oil 150 is disconnected, and the platform is set to rotate at low
speedbetween 40 and 60 rev/minThe liquid droplet

ngs'?t;zc viscosityr (at 25 °Q Tg'fnl]f ggg ggg é?g becomes an _annulus, which slowly sp_read_s radially

Oil—air interfacial tensionr mN/m 20.7 20.7 29.3 and finally disappears when the trailing interface
reaches the edge of the cell. The motor is then
switched off. This method produces an oil layer of
relative thickness 0.1 on each glass plate for a rotation

the images is fixed to 288288 pixels, and the capture rate is speed of 50 rev/min. In the cell prewetted in this way,

varied between 0.25 and 6 images/s, with 256 gray levels per a new liquid droplet is formed immediately up to a

pixel. The relative orientation between successive images is radiusL, by additional oil injection. The rest of the

determined by a number of markers on the top glass plate. procedure follows the same steps of the dry cell.

B. Experimental procedure C. Experimental results

We have used two silicone oil[Rhodorsi) of the same Our experiments have covered a large region of the

density and surface tension, and very different viscosity, an@vailable parameter space. The experimental parameters
a vaseline oilPanreagof intermediate viscosity, lower den- have centered around the following predetermined values:
sity and higher surface tension. The properties of the liquid$=0.25, 0.50, 0.81, 1.0, and 1.94 mfi:=30, 40, 50, 60,
are summarized in Table |. The viscosities were measuredo, 90, 120, 150, 180, 210, 240, 270, and 300 rev/raip;
using a Cannon—Fenske capillary viscometer. The interfaciak 10, 16, 20, 32, 49, and 95-1)/mm.
tension of the vaseline oil was measured using the pendant The experiments show that the radial displacement of the
drop method, after having checked the procedure on the tWannulus in prewet conditions is stable up to very large radii.
silicone oils, for which data were available. The three liquidsThe interface velocities rise in time. If the amount of liquid
are transparent. They have been chosen for their Newtonia@neasured byL,) is sufficiently large to prevent the two
behavior and for perfectly wetting the glass. interfaces from meeting each other during the thinning pro-
We have taken good care in properly cleaning the celiess experienced by the annular layer, the interfaces remain
after each experiment. First, oil traces have been wiped offtaple until the liquid leaves the cell at the outer edgie.
with paper. Next, the two plates have been thoroughlys) For smaller amounts of liquid smallej the interfaces
cleaned with soap and water, rinsed with distilled water ang¢emain stable until they get so close to each other that the
acetone, and finally dried with pressurized air. Since the lidynnulus becomes extremely thin, and visually seems to van-
uids used in the present experiments are rather insensitive {9 on the glass plates when the meniscii of the two inter-
substrate contamination, we have found this protocol suffit;ceg pinch.
cient to obtain reproducible surface conditions. The displacement of the annulus in dry conditions is
In our work on the radial displacement of the .annﬁﬂus _generally unstable. The circular interfaces move at nearly
we reported on the significant influence that wetting condi-oostant velocity, sensibly lower than in equivalent experi-
tions at the leading inte'rface have on th'e prpperties Of theénents in prewet conditiondig. 4), until fingering instabili-
flow. To further study this problem, this time in connection tjg5 Jevelop. The number of ripples generated depend on the
with the stability of the annulus interfaces, the same tWOgyherimental parameters. Most combinations of parameters
experimental procedures have been followed: make the leading interface destabilize first. It is also common
0 Preparation of the annulus in a dry cell. to have both interfaces destabilizing simultaneously when
In the first procedure the displacement takes place ifthe motion of the two interfaces is strongly coupled, particu-
dry conditions. The rotation speed of the motor is firstlarly for smallL. It is only for very largeL , that the insta-
preselected. The liquid is injected into the motionlessbilities develop first at the trailing interface.
cell (which has been cleaned as described apase The examples shown in Fig. 5 correspond to experi-
ing a syringe pump through a central orifice of radiusments with silicone oil 50 in dry conditions. In Fig(&,
R,=4 mm machined in the upper plate. The liquid although both interfaces become unstable, the leading inter-
droplet formed is allowed to grow until it reaches a face destabilizes first. In Fig(B), on the other hand, the two
prescribed radiud . At this moment the injection interfaces become unstable at the same time with the same
tube is removed and the motor is switched on. Sincedlominant wave number. This is a case in which the motion
air enters the cell through the open central orifice, theof the interfaces is strongly coupled becauge=r;. Al-
liquid droplet quickly becomes a liquid annulus which though the thickness of the annulus, about 3 mm, is still
spreads radially, and eventually destabilizes, givinglarger than the gap thicknessh=0.81mm, three-
rise to a fingering pattern. The process is digitally dimensional effects begin to play a role and this experiment
recorded until the pattern reaches the edge of the cellbpproaches the limit of validity of the Hele—Shaw regime. In
(i)  Preparation of the annulus in a prewet cell. Fig. 5(c), which corresponds to very lards,, the trailing
In the second procedure the aim is to prepare the celhterface destabilizes first, and it is only when this instability
with a thin liquid layer deposited on each glass plate.has developed far beyond the linear regime that the leading

Downloaded 22 Sep 2010 to 161.116.168.227. Redistribution subject to AIP license or copyright; see http://pof.aip.org/about/rights_and_permissions



1688 Phys. Fluids, Vol. 12, No. 7, July 2000 Carrillo, Soriano, and Ortin

FIG. 4. Displacement of an annulus of silicone oil 50 in a prewet @)l
and a dry cell(b), showing the influence of wetting conditions on the sta-
bility of the interfaces. In the two experiments the parameters Lare
=30 mm, (1=120 rev/min, and=0.81 mm. The pictures have been taken
att=13.2 s in both cases.

ments with vaseline oil 150 in dry conditions. Here the only
parameter modified i&,, which increases from top to bot-
tom. For smallL, (on top the two interfaces become un-
stable almost simultaneously and with the same dominant
wave number. In the experiment shown here the perturba-
tions at the two interfaces are in phase, but in a few cases we
observed perturbations in phase opposition. For an interme-
diate value ofL, (in the middlg the leading interface is
) o o observed to destabilize first, while the trailing interface re-
FIG. 3. Displacement of an annular layer of silicone oil 50 in a prewet cell. . . - .
The interfaces are stable during the displacement until they reach the ed ams nearly perfectly CII’CUlE_iI’ Tor some Flme’ as shown In_
of the cell. The experimental parameters agg=30 mm, Q=60 rev/min, he picture. In most cases this interface finally also destabi-
andb=0.81 mm. The time interval between consecutive pictdiesn top  lizes, with a similar dominant wavenumber. Finally, for large
to bottom is 25 s. L, (at the bottormwe observe a situation very similar to that
shown in Fig. %¢) in which the instability develops first at
the trailing interface. The leading interface, in spite of having
interface shows signs of destabilization, with a dominanta very large radius, remains stable through most of the dis-
wave number independent of that developed at the trailingplacement.
interface. In this case the motion of the interfaces is practi- The behavior of the dominant wavenumbreemerging
cally uncoupled, since,>r; . from the linear regime with_ is the following: in most
The examples shown in Fig. 6 correspond to expericases the instability develops first at the leading interface,
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FIG. 5. Interfacial instabilities of an annulus of silicone oil 50, in a dry cell FIG. 6. Interfacial instabilities of an annulus of vaseline oil 150, in a dry cell
of gap spacingy=0.81 mm, for different initial radii and rotation speeds: of gap thicknes®&=0.81 mm rotating af2=180 rev/min. The initial radius

(@ Lo=30mm, Q=90 rev/min, (b) Lo=30 mm, Q=210 rev/min,(c) Lo of the drop in each rurl,,, increases from top to bottom.
=117 mm, =120 rev/min.

sequence of digital video images, captured at equal time in-
andn increases with_,. Above a givenLy, however, the tervals. Using edge detection techniques, we have deter-
instability develops first at the trailing interface, the value ofmined the liner(s) for each interface. This line gives the
n drops, and thertfor the limited parameter range that re- radial extent of the interface as a function of the interface
mains accessiblancreases again withg. arclength. Use of the arclength instead of the azimuthal angle
The time evolution of the interfaces is obtained from the# makes no substantial difference in the linear regime. In the
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FIG. 7. Evolution of the power spectrum ofleadinginterface at the onset FIG. 8. Evolution of the power spectrum of an unstatoigling interface.

of instability, demonstrating the development of modes of largas time ~ The inset shows fifteen interfaces digitized every 0.2 s, starting at
progresses. The inset shows the sequence of leading interfaces digitized a0.6 s. The fluid is silicone oil 50, in a dry cell, and the experimental
times 6.0, 6.2, 6.4, 6.6, 6.8, 7.0, 7.4, 7.6, 7.8, 8.0, and 8.4 s. The fluid iparameters arb=0.81 mm, =120 rev/min, and.,=117 mm.

silicone oil 50, in a dry cell, and the experimental parameters tare

=0.81 mm, (=150 rev/min, and_,=31 mm.

unchanged for the rest of the experiment, because deep in the

) ) o large amplitude regime there is no sign of any mechanism
nonlinear regime, however, it eliminates the problems assQip splitting or finger competitioncapable of modifying the
ciated with the possibility that(6) becomes multivalued. ymber of fingers growing out of the leading interface. The
The onset and development of the instability have been inteason must be found in the increasing lateral separation be-
vestigated by Fourier mode analysis. To this end, for eachyeen radially growing fingers in the circular geometry, and
digitized interfacer (s) we have computed the function in the fact that pressure grows with the square of the radial

p(s)=r(s)—R, (1)  distance in the presence of centrifugal forcing.

) ) ) ) The same analysis has been performed on a trailing in-
where R is the radius of a_cwcle obtained from a least- terface, as shown in Fig. 8. In early stages the maximum of
squares fit off (s). The functionp(s) represents the defor- o hower spectrum is at the mode- 1, which represents a
matlon of the_ interface line Wlth_ res_pect to this circle. The .jcylar interface slightly off axis. Above 1.0 s the modes
discrete Fourier transform gf(s) is given by n=7 andn=9 take off with similar amplitude. Finally, at

N-1 the latest time show(R2.2 9 the mode witm=9 has reached
p(n)= > p(2mj/N)en?miN, (2)  the maximum amplitude. The lower amplitude modes
1=0 =11 andn=16, however, are seen to grow at similar rates,
wheren is the azimuthal wave number ahdis the number and presumably will take over from lowarmodes at later
of data points in the digitized curye(s). times.

The power spectrum of the leading interface of an annu-  For this case we have chosen a time sequence of digi-
lus of silicone oil 50, computed at five successive instants, isized interfacesinse) extending deep in the large amplitude
shown in Fig. 7. At the earliest time the amplitude of theregime. Out of the fifteen interfaces shown, the power spec-
maximum atn=2 is of the order of the noise in the spec- trum covers the time interval from the first to the ninth in-
trum, and no dominant mode can be identified. As time adterface, which is already beyond the linear regime. As op-
vances, the maximum in the spectrum shiftsnte 12 and  posed to the behavior of the leading interface, deeper in the
then ton=17. Competing with this moda=17 there is a nonlinear regime the time evolution of the fingering pattern
mode atn= 20, which grows at a similar or higher rate, and of the trailing interface is characterized by a growing number
which can be identified with the number of fingers develop-of fingers, due to finger splitting at the tip of wide fingers.
ing at later times, already in the large amplitude regime.This behavior is characteristic of viscosity driven instabilities
Some harmonicéat n=_34 in particulay and other modes of in the radial geometry. Notice that the last interface shown
smaller amplitude also appear. displays about fifteen well-developed fingers, but this num-

The evolution towards modes of larger wave numberper changes to about eighteen fingers due to tip splitting.
revealed by this numerical analysis, cannot be easily derived
by a visual inspegtion qf the digiti;ed interfaces. The t.ime“l_ ANALYSIS AND DISCUSSION
sequence shown in the inset contains a total of eleven inter-
faces, of which the firststill practically unperturbed the In this Section, we review the Hele—Shaw equations for
fifth, the eighth, the tenth, and the laslightly beyond the the annular geometry in the presence of centrifugal forcing,
linear regime have been used in the Fourier analysis. Inspecand perform a linear stability analysis of the interfaces. This
tion of the latter interface confirms that the number of fingersprovides the theoretical background required to guide the
is ~20. It is important to mention that this number remainsanalysis of our experimental results.
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A. Hele—Shaw equations

We consider an oil annulus of inner radigsand outer
radiusr,, in a circular Hele—Shaw cell of plate spacibg
rotating with angular velocity). In the high-friction limit
(Hele—Shaw approximatigrihe velocity field in the bulk of
the liquid, averaged in the direction perpendicular to the
plates, obeys Darcy’s law

v=V¢, 3
where
¢=—M(p—3pQ%r?), @ @

and the mobilityM =b?/12u. Herep is the dynamic viscos-
ity and p is the density of the oil. Since the liquid is incom-
pressibleV-v=0, and Darcy’s law leads to a Laplace equa-
tion for the velocity potential

V2¢4=0. 5

The nonlinearities enter through the boundary conditions
at the interfaces.

The first set of boundary conditions specifies the presgii)
sure jump at the two interfaces

o 1

wherei ando refer to the inner and outer interface, respec-
tively, andk, , «, are the curvatures of the interface in the
directions perpendicular and parallel to the plates, respec-
tively. In writing these boundary conditions we have ne-
glected the contribution of air to the pressure difference.
The second set of boundary conditions refers to the con-

Interfacial instabilities of a fluid annulus . . . 1691

pressure at some point in the flow. The index 0¢ifi is a
reminder that this solution is valid for an annulus with un-
perturbed circular interfaces.

B. Influence of wetting

In our first paper on the problem of the anndfuse
focused on stablgadial) displacements. We found that these
displacements are very sensitive to the prewet or dry condi-
tions of the cell, and identified the two main phenomena
responsible for this:

The dynamic contact angles at the interfaces experi-
ence variations in the range 040 depending on their
normal velocity. This makes the perpendicular curva-
tures independently variable in the rangb & — 2/b.
If the curvatures remain the same at the two inter-
faces, as is approximately the case in a prewet cell,
the corresponding jumps of capillary pressure at the
interfaces cancel out. If not, as in a dry cell, the jumps
of capillary pressure may be very different and have a
relevant influence on the radial velocity.
In both prewet and dry cells the trailing interface
leaves a liquid layer on the two glass plates. The
thickness of the layer depends on the normal velocity
of the interface. The thickness was measured by a
stable displacement of the annulus in Ref.(Elg. 8).
In a dry cell, the formation of the layer results in a
progressive loss of liquid in the annulus. In a prewet
cell, this loss is largely compensated at the leading
interface by the liquid regained from the film coating
the glass plates. As a resulf? (the amount of liquid
in the annulug decreases with time in a dry cell and
stays almost constant in a prewet cell.

It is important to note that the two phenomena de-
pend on the instantaneous radial velocity of the inter-

tinuity of the normal velocity across the interfaces

1
‘9r¢1|i:‘9r¢2|i‘1_—aiv (8)

1
ar¢1|o:ar¢2|o' 11—’ 9
o

whereq;, a,, are the relative thicknesses of the liquid films
on the glass plates, behind the leading interface and ahead

the trailing interface respectivelpee Ref. 11

When the two interfaces are circular, the solution of Eqg.

(5) for the velocity potential has the form
#°(r)=Alnr+B, (10)
where conditiong6) and (7) determine the constarnt as
(1/2)pQ2L2— o[(2/b)(coSbp; — COSOp o)+ 1/r +1/r ]
A=M .
In(ro/ry)

11
Here L?=r2—r?, and initially L?>=L3. We have taken
K1 i o= (2/b)cosby; , andk; ,=1/ri o, Wheredp; , represent

faces.

The experiments confirmed that the approximation of
perfect wettingx ;= «, , andL?=L3, provides an accurate
description of stable displacements in prewet conditions. In
this case, the velocities of the two interfaces scaled as pre-
dicted by the above equatiofs.

On the other hand, for stable displacements in a dry cell
%tnontrivial result arises; the velocity of the two interfaces is
nearly constant throughout the displacement. The velocity
seems to be dynamically selected by the interplay of the two
phenomena considered above, both dependent on interface
velocity. Defining the capillary number for constant velocity
displacements a€a= uv/o, and the ratio of centrifugal to
capillary forces asSszZLg/a, our experiments showed
that in dry conditiongCa scales with /L )2 S°* for about
three orders of magnitude of the two quantittés.

C. Linear stability analysis of the fingering instability

To carry out a linear stability analysis of the interfaces,
we write the perturbative equations in their simplest form,
without including corrections due to wetting. We assume that

the dynamic contact angles at the two interfaces. The corit is enough to account for these corrections on the unper-
stantB is determined by prescribing the magnitude of theturbed velocity field.
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FIG. 9. Perturbation of the two circular interfaces of a liquid annulus.

Let us modify the two circular interfaces instantaneously

(Fig. 9 by adding an infinitesimal perturbation of the form
ory=¢en’, (12)
(13

to each interface, respectively. Tlamsatzfor the velocity
potential of the perturbed annulus takes the form

oro= é«oeimB,

B(r,0)=¢°(r)+ $i(r)eM+ pi(r)e™?, (14)
where
1 Cn 1 Cm
¢ (1)= 7 +Dar", do(r) =~ +Dpr ™ (15)

Carrillo, Soriano, and Ortin

F

d’il(ri):[ M I%(nz—1)+'\/hOQZl’i—f?rd)O ]é“i , (20

¢é(ro)=l_M%(m2_1)+MPQZro_ar¢0 ]goy
RN

which implies

VLTS =

"L (g o 29
with

o A

Pi=M|F2-(n2—1)+p\eri—W}, (24)

Po=M| = Z(mP—1)+ pO2r,— — 25)

0o~ I‘(ZJ(m )+pQrr, Mro- (

The growth rate of the perturbation is derived from Dar-
cy’'s law, which relates the time derivative of the radial co-
ordinate to the spatial derivative @fin the radial direction.
We obtain

5i’i:5rr¢o|ri5ri+‘9r(¢ilein0+ ¢geim9)|ri= (26)

(27)

S o=r ¢°l; ST o+ O (B €+ g™ .

(o]

Adding the condition that the perturbation at one interface

does not affect the other:

$l(re)=0, 5(r;)=0, (16)
leads to:
Ch=—D.r2", Cp=—-Dnr?". (17

The constant®,,, D,, are determined by the boundary con-
ditions (6) and (7). Taking into account the fact that’(r)

itself satisfies these boundary conditions for the circular in-

terfaces (=r;, «;=1/r;, andr=rq, «,,=1/I,, respec-
tively) and linearizing the curvatures in the parallel direction,

we obtain
1 0 2 1 1 ing
Mﬁrfﬁ ori—pQ ri6ri+m¢i(ri)e
f
)
=r—2(n —1)6r;, (18
i
1 0 2 1 1 ime@
Marcb Sro— pQ) r05r0+m¢o(ro)e
I'0
pP)
=—r—2(m —1)6r,, (19

(0]

to first order in the perturbation. Taking into accoymp)
and(13), and solving forg! and ¢, we obtain

The overdot stands for a time derivative. Substituting the
velocity potentials by their expressiori0) and (15) and
taking spatial derivatives, these two equations can be rewrit-
ten in the form

: A n14(rilry®
Gi=— 2l — 7 Pidi
ri ri 1—(ri/ry)
2m ei(mfn)(i
BRGUEA AL 29
A 2n g
O T2 (ot ()
m 1+ (rg/r)%m
(rolri) 29

Ty T (1 )P ok

Since the amplitudeg; and ¢, cannot depend on the azi-
muthal angle, two possibilities arise:

(i) The term with the exponential is zero in the expres-
sions abovd Egs. (28) and (29)]. This occurs in the
limit of a large separation between the two interfaces,
ro>r;, which will be discussed in detail later.

(i)  m=n, independently of the ratio betweep andr;.

This case is discussed next.

The conditionm=n leads to a dispersion relation of the
form
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( §| (811 A éﬁ) (30 az=0. (4)
{o) \ap ag/\lo/’ . . .
We see that the nondiagonal terms in E2f)) vanish and the
where stability of the leading and trailing interface becomes inde-
A nL+(rilry? pendent. As the nondiagonal terms are negligible, the condi-
an=-— 2T I Pi, (31))  tion m=n does not necessarily hold, and we are led to dis-
Pt o tinguish again between the azimuthal wavenumbeaadm.
2n 1 The growth rates, Eq35), are given now by
B T o (o) (32 .
(o
2n 1 w+zalle‘——3n(n2—1)—pQZn+—2(n—1)}, (42

N (N DGy L
A n 1+(r,/rp®

Ayy= — —5— — ————_P_.
225y ro1—(r/r)™ e

=a,~=M{ — gm(m2—1)+ Q%m-— A (m+1)
(34 w-=axp= i P Mr2 )
(43
This relation shows that, in the generic cager,, the two
interfaces are coupled to each other through the pressuggq the corresponding modes by
field, already at a linear level.

To determine whether the perturbation at the interfaces _
grows or decays in time we have to diagonalize the disper-  or, =¢;e"?
sion relation(30). The corresponding eigenvalues. (n) de-
termine the growth rates of the normal modes. We find:

~ ing
0= 3ay+az) =3[ (a1t 8z)° o -=¢o€ (1 '

+4(ay80,— agjam) |2 (35
1 e _ In this limit, the first mode is an exclusive perturbation
These growth rates correspond to the following normalyn the inner interface, and the second mode an exclusive

1
J, (44)

(45

modes of perturbation: perturbation on the outer interface. The growth rate of the
1 ) perturbation of the inner interface, E@2), reproduces the
i . r classic result of Paters6ifior air displacing oil in a circular
=" w,—a =
or.=¢iet| @+ —8u |, for which or . Dt geometry, in which the instability is driven by the viscosity
a12 (36) contrast between the two fluids, with surface tension stabi-
lizing modes of short wavelengitargen). Here there is an
w_—ay 5 additional term accounting for centrifugal forcing, which sta-
or_=z.6" “ay |, for which . bilizes due to the fact that at this interface the outer floit)
1 or _ is the densest. The growth rate of the perturbation of the

(37) outer interface, Eq(43), on the other hand, reproduces the
) ) results of Schwarfzand Carrilloet al? for oil displacing air
The behavior of these two modes depends on the sign Gf; the presence of centrifugal forcing. In this case the insta-

the componentd.. —&;)/aj; . If this component is real and vy is driven by the density contrast between the two flu-
positive, the perturbations at the two interfaces are in phasgys " \hile the viscosity contrast and the interfacial tension
and the mode is dendingmode. If this component is real ove 4 stabilizing effect.

and negative, the perturbations have a phase difference of

«/2 rads and the mode issgueezingnode. This component £ |inear stability of a very thin annulus ~ (r,=r,)

can also have a nonzero imaginary part, which would lead to ) - ) )

a spatio-temporal oscillation of the perturbations at the two ~ We study the linear stability of the circular interfaces as

interfaces. the radially spreading annulus becomes very thin and the two
interfaces get very close to each other. This is the opposite
D. Linear stability of a very wide annulus ~ (r,>r,) limit of the previous case, and the coupling of the two inter-

faces is expected to play an important role here. This limit
can only be carried up to the point at which the thickness
ro—r; of the annulus becomes comparable with the gap

A n thicknessb of the cell, since at this point three-dimensional
an=-— 2 Pi, (39) effects become determinant and the Hele—Shaw approxima-
pot tion fails.

m The limit of a very thin annulus must be taken with some

822=" 2 + - Po, B9 care becausg—r,, while L?>=r2—r?2 remains a constant of

° ° the motion. To take both aspects into consideration at the
a;,=0, (40 same time, we define a small parameterL/r,, such that

It is interesting to analyze the stability of the interfaces
in the limit of a large separation distanag>r;. We have
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ri\? 2 ) The different behavior of the normal modes, however,
(E) =1—(E) =1-€—1, as -0, (46)  must be rationalized in terms of the evolution of the base
state itself. Notice that the growth—decay rate of the two

corresponding ta ,— with L constant. We now consider modes is given by the reciprocal of 12u/(pQ?b?), which

the constanA in the approximation of perfect wetting is precisely the time scale of a rotating Hele—Shaw system.
(1/2)pQ2L2— o( L+ 1) This has important consequences on the bghavior of the nor-
A=M n(ro/r) , (47) mal modes. To see why, consider conditions of perfect
olli

wetting—which were assumed in the derivation of the pre-
and expand?, P;, P, in powers ofe. After a lengthy calcu- ceding results. The velocity of the leading interfacevis
lation, one obtains =Alr,=MpQ?r,=r,/7. Thereforer, grows exponentially
with time in prewet conditions as expf). Given thatL?
}' (48) =ro—rfis a constant of the motion, the radisfollows
this same behavior. These predictions have been confirmed

1
=2 4
66 +O(€%)

9 1 2
an=M[—EﬂBe +0(e)]-pQ

experimentally in Ref. 11. Finally, it is not difficult to show

], (49  that the separation of the interfaceg—r; goes to zero as
exp(—t/7), i.e., with the same constantNow, the amplitude

] of the modedr, must be compared with the radii of the

1
) 4
€ +0O(€%)

g
aoo= M[F[Bfl‘F O(E)]+p92

(o
a;p;=M [ F[8€_1+ O(e)]+pQ? circular interfaces. Only if the amplitude grows at higher rate
than the two radii will the morphological instability develop
(50 at finite time. It turns out that they grow at exactly the same

] rate 7, which is equivalent to saying that their relative am-

1
1+5¥+0@%

plitude remains constant in time, ad , is marginal with

respect to the base state. The overall behavior can be re-
(51) garded as a spatial rescaling at successive times of the per-
turbed thin annulus. The amplitude of the matgte , on the
other hand, must be compared with the separation of the
interfaces. If the unperturbed interfaces approach each other
w.=*MpQ? (52 at higher rate than the mode decays, there is pinching of the
interfaces at finite time—even though the amplitude of the
mode decays in time. It turns out that they all decay at ex-
actly the same rate, so thatér _ is marginal with respect to
the base state. In conclusion, none of the two normal modes
is expected to produce a morphological instability of the thin

ing annulus in prewet conditions at finite time.
or ={ie 1) ’ (53 In dry conditions the situation is different, since the radii
of the circular interfaces do not grow exponentially with

o 1
a21=M[ - F[Sefl-l- O(e)]+p92[1— 6€2+ O(eh

The linear growth rates of the normal modes, given by Eq
(35), now become:

to leading order ire. The leading contribution is in the non-
diagonal termsa;, anda,;, which account for the coupling
of the two interfaces. Notice that the growth rates are inde
pendent ofn. The corresponding modes are

23
_ n E pO°L 6 time, but linearly, and their velocity is significantly lower
or_={.e"’ 4 o : (54)  than in prewet conditiont: The growth—decay rate of the
1 normal modes could be comparatively higher. These ques-

The modedr , is apure bendingnode. The perturbations at tions are addressed in the next section.

the two interfaces are in phase and have identical amplitudE C : :
as a consequence of the strong coupling of the interface%' Num_erlcal Integration of the equations and
. . omparison with experimental results

The modesr _ is also a bending mode because the perturba-

tions at the two interfaces are in phase, but now the ampli-  To compare the predictions of the linear stability analy-

tude of the perturbation at the trailing interface is larger tharsis with our experimental observations, we have carried out a

the amplitude of the perturbation at the leading interfacenumerical integration of the coupled equatipksis.(28) and

This can give rise to the formation of trapped fluid regions(29)].

right before the two interfaces meet each other, similarly to ~ The first point to consider is that the base state in the

what would be observed for a squeezing mode. We will callinear stability analysigcircular interfaces of radii, andr;)

Sr_ anenhanced bendingiode. is actually evolving in time. This makes the linear growth
The linear growth rate of the pure bending mode is posifates of the normal modes dependent on time, and the relax-

tive for all n. Hence, the annulus is always unstable againsation or growth of the modes not truly exponential. This is

bending, when it becomes sufficiently thin. The picture onusual in circular geometry. For example, in the classic ex-

top of Fig. 4 provides an example of slight destabilization byperiments of Paterséith air displacing oil in a motionless

a pure bending mode in prewet conditions. The linear growtttircular Hele—Shaw cell, the linear evolution of the unstable

rate of the enhanced bending mode shows that this modaterface proceeds through a cascade of modes, with increas-

always decays, so that upon thinning the annulus becomesg participation of highen modes as time progresses.

linearly stable against this kind of perturbation. In our case the linear evolution of the interfaces is more
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3 each time. In both prewet and dry conditions, the figure
shows two maxima at=0 which decay in time at short
times. Of these two maxima, the one for lows associated

4 with the trailing interface. This interface is always unstable
®(s7) at the beginning because of its large initial velocity (
~1/r), but can only accommodate perturbations of very low
wave number due to its small radius. The other initial maxi-
mum, for intermediat®, is associated with the leading inter-
face. The stability of this interface is not significantly af-
fected by the trailing interface at short times, and thus it is
governed by Eq(43), i.e., by the interplay between the de-
stabilizing effect of density contrast and the stabilizing effect
of both viscosity contrast and surface tension.

The influence of wetting conditions appears at later
times, when the two original maxima in Fig. 10 have nearly
disappeared. In prewet conditions the radii of the interfaces
grow exponentially in time. As a result, the linear growth
rates remain small and nearly constant in time. In dry condi-
tions, on the other hand, the radii of the two interfaces grow
linearly in time, and the growth rates of the unstable modes
rise sharply in time.

The fact that the linear growth rates depend on time
means that the relaxation or growth of the normal modes for
FIG. 10. Linear growth rate of the different modesis a function of t_ime_ a wavenumben is not proportional to exjw. (n)]t. Rather, a
for prewet and dry conditions. The parameters use_d in the numerical 'medirect integration of the linearized equations for the evolu-
gration areb=0.81 mm, L,=30 mm, Q=180 rev/min, p=1000 kg/n, .

»=50 mnf/s, 0=20.7 mN/m. tion of the normal modeg28) and(29), leads to

t
complicated, because the linear growth rates depend on or.(t)= 5r+(0)exp{ Joau(n)dt’}, (55)
the radiir, andr; through the matrix elements; . To cal-
culate the time dependence of the linear growth rates, thﬁrovided thatfgwi(n)dt’>0, which means that the distur-

annulus is originally defined as having inner radRjg (the 1306 grows and the modes are unstable. The number of
radius of the central orifice of the top plat@nd outer radius fingers at the end of the linear regime is typically given by

Lo. The subsequent radii of the stable circular interfaces, the moden which has grown to the largest amplitude, not by
andr,, and the matrix elements; are computed as a func- the instantaneous fastest growing mode.

tion of time using the equations for the stable displacement With these considerations in mind, we have computed
derived in our previous work. the time dependence of the amplitudes of the different modes

(i) In prewet conditions we use Eqd.0) and(11), with from a numerical integration of Eq§28) and (29). Follow-
Opi= 0po=0 and L2=r2—r2 practically constant— ing Cardoso and Wood&and Miranda and Widon, we
because the relative thicknesses verify=a,. Since  assume the presence of a constant level of noise in the ex-

L remains constanty; and o, have no influence on Pperiment, which perturbs each modevith the same ampli-

Fi, o tude| or (0)|. The calculation requires a specific value of the
(i)  In dry conditions we follow the same procedure only temporal extent of the linear regime, which is not readily
in the first time steps, until the velocity of the trail-  experimentally accessible. We have decided to carry out the

ing interface becomes larger than the velocity givennumerical integration up to a timg=0.3r, wherer is the
by the empirical scaling relationv=0.1(c/u) natural time scale for radial Hele—Shaw displacements under

X (b/L)2S”. From this time step on, we determine centrifugal forcing and has been defined in Sec. llIE. This
v, from the scaling relation. Next,; is used to deter- choice, although arbitrary, is based on empirical results ob-
mine r; and the functionA given by A= —uv,r;/M. tained for experiments of fingering of a circular drop under
Finally, the radius, of the leading interface is deter- centrifugal forcing in the same experimental setup.these
mined fromrcz): L2+ ri2, taking into account that in €xperiments the instability developed systematically only af-
dry conditionsa,=0 and a;#0, which makesL a ter a latency time/7=0.3. We take this scaling quantity as
decreasing function of;. The thicknessy; is com- indicative of the duration of the linear regime.

puted fromu; through Reinelt’'s formulas for a circu- The result of the calculation is shown in Fig. 11. The
lar interfacet? relative amplitude of the different modes is plotted as a func-

tion of time, for prewet and dry conditiond, is the ampli-

The time dependence of the linear growth rates is showtude att=0 (amplitude of the noise in the initial conditipn
in Fig. 10. Since it is difficult to keep track of the two modes Again, only the mode that has the largest amplitude is shown
separately, we plot only the mode of highest growth rate aat each time. It is clear from this result that the time scale for
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Ly (mm)
20 40 60 80 100 120 140

| Prewetcell |-

AA,

]
300 vV Leading interface
FIG. 11. Relative amplitude of the different modess a function of time O n=1-6
for prewet and dry conditions. The parameters used in the numerical inte- O n=712
gration are the same as in Fig. 10. 250 O n=13-18
o 7 raven
development of the instability is very different in prewet and A Fy
dry conditions. Under equivalent experimental conditions,-= 200 T'ai"”r?:i;;ifgw i
the instability in a prewet cell will possibly not develop ap- E = S M
preciably during the experiment, while in a dry cell it will q>) N
clearly do so in almost all instances. In both prewet and dry= 150 -2
conditions the wave number of maximum amplitude in- G ) & v
creases slightly with time, predicting a cascade towards 100
modes of largen as time increases. These predictions are in ? Oo| o
good agreement with our experimental observations.
The preceding analysis has been carried out systemati 50 dD a | .
cally in the range of parameters explored experimentally in oY
dry conditions. We have determined numerically the wave 5
numbem of the mode which grows to its largest amplitude at 20 40 60 80 100 120 140

the first unstable interface, as a function of rotation Qte L (mm)
and initial radiud_y. The result is presented in Fig. 1@p). 0
The region from the lower-left corner to the middle of the FIG. 12. Lines of constant wave numhbgrin the parameter spade (rota-
diagram corresponds to the leading interface, and the regiofbnal frequencyvs L, (initial radius of the oil drop, for displacements in
from the middle to the upper-right corner to the trailing in- dry conditions, withb=0.81 mm, »=50 mnf/s, andg=20.7 mN/m. Top:
terface. Clearly, in view of the assumptions required to Comprediption of the linear stgbility analysis for the mode that grows to Iarge'st

. . . . . amplitude. Bottom: Experimental results. Both diagrams comprise two dif-
pute it, this diagram can only be considered from a qua“ta'ferent regions; one from the bottom-left corner to the middle of the diagram,
tive point of view. In particular, the boundary between thein which the first unstable interface is the leading interface, and another,
two regions is strongly dependent on the arbitrary choice ofrom the middle to the top-right corner, in which the first unstable interface
the total time of integratiot; . Is the trailing interface.

Nevertheless, the trend exhibited by the lines of constant

n reproduces well our experimental observations, which are
also summarized on Fig. 1@ottom. Experimentally, the fingers(finger competition or tip splittingdo not seem to be
values ofn have been determined in the following way. In operative. In the less frequent case of analyzing a trailing
the case of a leading interface, which is the case encounteréaterface, the numben is taken as the wave number of the
most often,n is the number of fingers observed in the devel-mode that displays the peak of largest amplitude in the
oped pattern. As discussed before, this number is a goopower spectrum, at the end of the linear regime. The extent
estimate of the dominant wave number emerging from thef the linear regime is determined by the condition that the
linear regime, due to the fact that at the leading interface thamplitude of the ripples in the radial direction is smaller than
nonlinear mechanisms capable of modifying the number otheir azimuthal wavelength.
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FIG. 13. Late stages in the evolution of a rotating annulus in a dry cell. The
picture shows a cord of liquid which emits droplets in the radial direction
through the formation of thin fluid filaments at the tip of outgrowing fingers.
In this experiment the fluid is silicone oil 500=120 rev/min, b
=1.94 mm,L,=30 mm, and the picture is takentat 2.6 s.

FIG. 14. Sequence of pictures taken from the experiment shown in Fig. 13,
The dependence di on initial radiusL,, which has dem(_)nstrating the formation ofa_droplet at the tip of an o_utgrowing_finge_r,
been discussed in connection with Fig. 6, is observed here tg?nd its fast departurg from_the finger through the formgnon of a thin fluid
. ; - ament. The first picture is taken a&2.2's, and the interval between

be general; for smallL, the first unstable interface is the pictures is 0.2 s.
leading interface, andis small. AsL increasesn increases
correspondingly. Theh reaches a threshold value at which
the leading interface is replaced by the trailing interface, andendant drop as well as a driven jet. Our centrifugally driven
the numbem becomes small again. Our observations showtecks and droplets seem somewhere between these two
that the threshold value df,, which separates the onset of cases. This analysis, which goes beyond the scope of the
instability at one or another interface, becomes loweflas Present paper, is currently in progress.
increases.

IV. SUMMARY

G. Other experimental observations We have studied the stability of an annular layer of fluid

An interesting feature of the fingering patterns observedctonfined in a circular Hele—Shaw cell and subjected to cen-
in the present experiments is the radial emission of dropletgifugal forcing. The annular configuration is interesting be-
in the deep nonlinear regime. This observation might be reecause the two interfaces can be made simultaneously un-
lated to the problems of pearling and pinching in Hele—Shawstable. The instability of the leading interface is driven by the
flows, which have been studied theoretically and numericallydensity contrast in the presence of centrifugal forcing. The
in recent year$?*~1’In our experiment, the emission of drop- instability of the trailing interface is driven by the large vis-
lets occurs in very thin annuli, and in dry conditions it is cosity contrast.
accompanied by the formation of thin fluid filaments at the  Our experimental results have shown that flows in a cell
tip of radially outgrowing fingers, as shown in Fig. 13. It is prewet with an oil coating are highly stable in the range of
interesting to point out that the radial growth velocity of a parameters explored. On the other hand, in a dry cell the
fluid filament is appreciably larger than the radial velocity of flows are unstable. In this case the instability develops first at
the finger from which it formed, as shown in the sequence othe leading interface, or simultaneously at both interfaces if
pictures in Fig. 14. the annulus becomes very thin. This kind of instability gen-

Given that the thicknesses in the radial direction and irerates fingers, which grow radially. The number of fingers is
the direction perpendicular to the glass plates are comparabtbe same at both interfaces when the annulus is very thin.
in this case, it is not clear that the secondary instability giv-Deep in the nonlinear regime, these fingers are not seen to tip
ing rise to the formation of fluid filaments and the emissionsplit or compete. Only for initially thick annuli does the in-
of droplets can be analyzed within the framework of thestability develop first at the trailing interface, and the fingers
Hele—Shaw approximation. at this interface exhibit tip splitting.

Ignoring the real possibility of non-Hele—Shaw effects, We have carried out a linear stability analysis of the
our experimental observations could be analyzed in theroblem and shown that the stability of the two interfaces is
framework of the nonlinear theory developed by Goldsteincoupled through the pressure field, already at a linear level.
Pesci, and Shelle} in which they use the lubrication theory We have studied the limit of a thick annulus, for which
for Hele—Shaw flows to study the pinching of the neck of athe two interfaces decouple. The result of the linear stability

Downloaded 22 Sep 2010 to 161.116.168.227. Redistribution subject to AIP license or copyright; see http://pof.aip.org/about/rights_and_permissions



1698 Phys. Fluids, Vol. 12, No. 7, July 2000 Carrillo, Soriano, and Ortin

analysis reduces in this limit to the classical dispersion rela-  Finally, we have observed a secondary bifurcation of the
tions of the circular interfaces in the presence of centrifugafingers in very thin annuli, with the formation of fluid drop-
forcing; at the leading interfacil displacing aij the insta-  lets and their emission at large velocity in the radial direc-
bility is driven by the density contrast between the fluids, intion.

competition with the stabilizing effects of viscosity contrast
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