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Interfacial instabilities of a fluid annulus in a rotating Hele–Shaw cell
Lluı́s Carrillo, Jordi Soriano, and Jordi Ortı́na)

Departament d’Estructura i Constituents de la Mate`ria, Facultat de Fı´sica, Universitat de Barcelona,
Diagonal 647, E-08028 Barcelona, Catalonia (Spain)

~Received 16 August 1999; accepted 6 April 2000!

We have studied the interfacial instabilities experienced by a liquid annulus as it moves radially in
a circular Hele–Shaw cell rotating with angular velocityV. The instability of the leading interface
~oil displacing air! is driven by the density difference in the presence of centrifugal forcing, while
the instability of the trailing interface~air displacing oil! is driven by the large viscosity contrast. A
linear stability analysis shows that the stability of the two interfaces is coupled through the pressure
field already at a linear level. We have performed experiments in a dry cell and in a cell coated with
a thin fluid layer on each plate, and found that the stability depends substantially on the wetting
conditions at the leading interface. Our experimental results of the number of fingers resulting from
the instability compare well with the predictions obtained through a numerical integration of the
coupled equations derived from a linear stability analysis. Deep in the nonlinear regime we observe
the emission of liquid droplets through the formation of thin filaments at the tip of outgrowing
fingers. © 2000 American Institute of Physics.@S1070-6631~00!01007-2#
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I. INTRODUCTION

Hele–Shaw flows~viscous flows in the gap between tw
closely spaced parallel plates! have been the subject of nu
merous studies in recent years. From a practical poin
view, the interest in these problems arises from the fact
Hele–Shaw flows are governed by the same equation
flows in porous media. In particular, Hele–Shaw flows e
hibit a viscous fingering instability,1 which is believed to
determine the efficiency of oil recovery processes by wa
displacement in porous oil reservoirs, and is also presen
underground storage of gas.2 Another related problem o
practical interest is injection molding, in which a fluid di
places air in a mold which often has the same parallel p
geometry as Hele–Shaw cells. The displacement in this c
is stable, and the question is to define the conditions
complete elimination of air in the mold. The study of Hele
Shaw flows driven by body forces~gravity or centrifugal!
may also be of interest in the technology of coating.3

On the other hand, the viscous fingering instability e
perienced by Hele–Shaw flows is regarded from a fun
mental point of view as a relatively simple but very ric
scenario to study generic features of interfacial pattern
mation in dynamic nonlinear systems.4,5 The Saffman–
Taylor problem, as commonly known in this context, is
prototypical example of a moving-boundary problem, r
evant to a broad class of morphological instabilities fou
not only in porous media flows, but also within the conte
of crystal growth, electrochemical deposition, dielect
breakdown, and flame propagation, for example.5

A number of modifications of the basic Saffman–Tay
problem have been considered in recent years.6 An interest-
ing possibility is to impose a uniform rotation about an a

a!Electronic mail: ortin@ecm.ub.es
1681070-6631/2000/12(7)/1685/14/$17.00
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perpendicular to the plane of the flow, in the circular geo
etry. The morphological instability induced by centrifug
forcing is driven by the density difference and not by t
viscosity difference of the two fluids. The linear stabili
analysis of this problem in the limits of high density an
viscosity contrast was worked out by Schwartz,8 and ex-
tended to arbitrary density and viscosity contrast by o
group.9 In this latter work we verified experimentally th
maximum growth rate selection of initial patterns within e
perimental uncertainty, and also studied the nonlinear reg
in the case of vanishing injection rate.

A particularly interesting arrangement in the rotating c
is that of a liquid annulus, centered in the cell, which defin
three different regions separated by two interfaces: A trail
or inner interface~i!, and a leading or outer interface~o!.
Depending on densities and viscosities of the fluids in
different regions, and on the experimental parameters
lected ~gap thickness, initial volume, and rotational fr
quency!, qualitatively different scenarios of interfacial insta
bilities can be considered. In this paper we study an ann
arrangement in the limits of high density and viscosity co
trast, where air occupies the innermost and outermost lay
and oil occupies the intermediate layer. Emphasis is laid
the general situation in which either one of the two or bo
interfaces are unstable, with particular interest on the beh
ior resulting from their coupled motion.

Related to this study, three-fluid annular Hele–Sh
flows with no centrifugal forcing were recently consider
by Cardoso and Woods.10 In their work the radial spreading
of the fluids is forced by the steady injection of fluid in th
innermost layer. The emphasis is on the behavior when
of the interfaces is highly stable and the other is unstable
this configuration, the authors report that surface tensio
small radii and the continuous thinning of the intermedia
layer at large radii stabilize the system.
5 © 2000 American Institute of Physics
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The work presented in this paper completes our stud
the problem of a fluid annulus in a rotating Hele–Shaw c
which was initiated in Ref. 11 with the study ofstabledis-
placements. Centrifugal forcing allows a wide range of dr
ing force amplitudes. This led us to study annular flows i
wide range of capillary numbers, covering about three ord
of magnitude. The study revealed the relevance of wet
conditions to the behavior of the flow; the interfaces of t
annulus moved with monotonously rising velocities in a c
prewet with a thin fluid layer on each glass plate, and w
much lower constant velocities in a dry cell.11 The conse-
quences of this different behavior on the instability thre
olds of the two interfaces of the annulus constitute the c
tral part of the study presented here.

In a rotating cell, the bulk pressure due to centrifug
forcing increases linearly in the radial direction. This e
hances secondary bifurcations and the occurrence of t
logical singularities in the flow, such as the formation
fluid filaments and the breakup of the interface into liqu
droplets. We report on qualitative observations of such p
nomena in our experiments.

In summary, we present a linear stability analysis and
experimental study of the fingering instabilities that occ
during the radial displacement of a spinning fluid annulus
a Hele–Shaw cell, for a wide range of experimental para
eters~fluid volume, rotational frequency, gap thickness!, dif-
ferent wetting conditions~prewet and dry!, and different
properties of the liquid~viscosity, density, and surface ten
sion!.

II. EXPERIMENT

A. Experimental apparatus

Our Hele–Shaw cell is made of two 6 mm thick circul
glass plates of 40 cm diam, separated by six calibrated s
ers of thicknessesb in the range 0.25–2.00 mm, and firm
clamped together. We estimate the fluctuations in gap s
ing at about 0.05 mm.

The cell is mounted on top of a rotating cylindrical pla
form, as shown in Fig. 1. To accurately balance the cell e
at high angular velocities and to damp vibrations, the axis
the platform is conical and sits on a large conical ball bear
attached to the supporting structure. This structure rests

FIG. 1. Sketch of the experimental apparatus.
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heavy granite table with three adjustable feet, in order
accurately level the cell, which is critical during rotatio
Before each run, the center of the cell is carefully align
with the rotation axis, to a tolerance less than 0.02 mm in
radial direction.

The axis of the platform is coupled via a belt to a pull
mounted on the shaft of a variable speed motor, equip
with a reductor and a tachometer. The signal from the
chometer is used by an external servocontroller to mainta
highly constant rotation speedV, independently of load
variations, in the range 0–300 rev/min~0–5 Hz! with fluc-
tuations around60.1 rev/min. We have found empirically11

that the rotation speed of the platform, when it accelera
from rest to a preset valueV0 , is well described byV
5V0@12exp(2vt)#, wherev51.2(300/V0)2.5 and bothV
andV0 are given in rev/min. Thus, the platform accelera
to 50, 100, 200, and 300 rev/min in less than 0.04, 0.4, 2,
6 s, respectively. Except for a few exceptions, these trans
times are negligible in most experiments. The maximum
flection of the upper glass plate due to the rotation of the
is 0.03 mm at 300 rev/min.

Four white fluorescent tubes, arranged forming a squ
around the cell at the level of the gap, constitute the lig
source. The change in refraction index as the light pas
from air to liquid or vice versa renders the interfaces visib
An example is shown in Fig. 2. Images are recorded wit
JVC TK-S340 CCD camera, equipped with a 8 mmCosmi-
car Pentax objective, placed above the apparatus and foc
on the glass plates. Sharp images of patterns rotating at
speed are obtained using the electronic shutter of the cam
which allows pictures to be taken in 1/10 000 s. The cam
is connected to a Vitec VideoMaker frame grabber instal
in a personal computer, which digitizes the images sequ
tially and stores them in memory. The spatial resolution

FIG. 2. Digital picture of a liquid annulus~inner radiusr i , outer radiusr o)
extracted from a sequence of video frames. The dark central spot is
flection of the camera lens on the glass plate, overlapped with the ce
orifice of the plate. The picture is representative of the resolution achie
with our image acquisition setup.
se or copyright; see http://pof.aip.org/about/rights_and_permissions
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the images is fixed to 2883288 pixels, and the capture rate
varied between 0.25 and 6 images/s, with 256 gray levels
pixel. The relative orientation between successive image
determined by a number of markers on the top glass pla

B. Experimental procedure

We have used two silicone oils~Rhodorsil! of the same
density and surface tension, and very different viscosity,
a vaseline oil~Panreac! of intermediate viscosity, lower den
sity and higher surface tension. The properties of the liqu
are summarized in Table I. The viscosities were measu
using a Cannon–Fenske capillary viscometer. The interfa
tension of the vaseline oil was measured using the pen
drop method, after having checked the procedure on the
silicone oils, for which data were available. The three liqu
are transparent. They have been chosen for their Newto
behavior and for perfectly wetting the glass.

We have taken good care in properly cleaning the c
after each experiment. First, oil traces have been wiped
with paper. Next, the two plates have been thoroug
cleaned with soap and water, rinsed with distilled water a
acetone, and finally dried with pressurized air. Since the
uids used in the present experiments are rather insensitiv
substrate contamination, we have found this protocol su
cient to obtain reproducible surface conditions.

In our work on the radial displacement of the annulu11

we reported on the significant influence that wetting con
tions at the leading interface have on the properties of
flow. To further study this problem, this time in connectio
with the stability of the annulus interfaces, the same t
experimental procedures have been followed:

~i! Preparation of the annulus in a dry cell.
In the first procedure the displacement takes place
dry conditions. The rotation speed of the motor is fi
preselected. The liquid is injected into the motionle
cell ~which has been cleaned as described above! us-
ing a syringe pump through a central orifice of radi
RA54 mm machined in the upper plate. The liqu
droplet formed is allowed to grow until it reaches
prescribed radiusL0 . At this moment the injection
tube is removed and the motor is switched on. Sin
air enters the cell through the open central orifice,
liquid droplet quickly becomes a liquid annulus whic
spreads radially, and eventually destabilizes, giv
rise to a fingering pattern. The process is digita
recorded until the pattern reaches the edge of the c

~ii ! Preparation of the annulus in a prewet cell.
In the second procedure the aim is to prepare the
with a thin liquid layer deposited on each glass pla

TABLE I. Properties of the fluids used in the experiments.

Silicone
oil 50

Silicone
oil 500

Vaseline
oil 150

Kinematic viscosityn ~at 25 °C! mm2/s 50 500 150
Densityr kg/m3 998 998 870
Oil–air interfacial tensions mN/m 20.7 20.7 29.3
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To this end, oil is slowly injected into the motionles
cell up to a radius of about 100 mm, the injection tu
is disconnected, and the platform is set to rotate at l
speed~between 40 and 60 rev/min!. The liquid droplet
becomes an annulus, which slowly spreads radia
and finally disappears when the trailing interfa
reaches the edge of the cell. The motor is th
switched off. This method produces an oil layer
relative thickness 0.1 on each glass plate for a rotat
speed of 50 rev/min. In the cell prewetted in this wa
a new liquid droplet is formed immediately up to
radiusL0 by additional oil injection. The rest of the
procedure follows the same steps of the dry cell.

C. Experimental results

Our experiments have covered a large region of
available parameter space. The experimental parame
have centered around the following predetermined valu
b50.25, 0.50, 0.81, 1.0, and 1.94 mm;V530, 40, 50, 60,
80, 90, 120, 150, 180, 210, 240, 270, and 300 rev/min;L0

510, 16, 20, 32, 49, and 95~61!/mm.
The experiments show that the radial displacement of

annulus in prewet conditions is stable up to very large ra
The interface velocities rise in time. If the amount of liqu
~measured byL0) is sufficiently large to prevent the two
interfaces from meeting each other during the thinning p
cess experienced by the annular layer, the interfaces rem
stable until the liquid leaves the cell at the outer edge~Fig.
3!. For smaller amounts of liquid (L0 smaller! the interfaces
remain stable until they get so close to each other that
annulus becomes extremely thin, and visually seems to v
ish on the glass plates when the meniscii of the two int
faces pinch.

The displacement of the annulus in dry conditions
generally unstable. The circular interfaces move at nea
constant velocity, sensibly lower than in equivalent expe
ments in prewet conditions~Fig. 4!, until fingering instabili-
ties develop. The number of ripples generated depend on
experimental parameters. Most combinations of parame
make the leading interface destabilize first. It is also comm
to have both interfaces destabilizing simultaneously wh
the motion of the two interfaces is strongly coupled, partic
larly for smallL0 . It is only for very largeL0 that the insta-
bilities develop first at the trailing interface.

The examples shown in Fig. 5 correspond to expe
ments with silicone oil 50 in dry conditions. In Fig. 5~a!,
although both interfaces become unstable, the leading in
face destabilizes first. In Fig. 5~b!, on the other hand, the two
interfaces become unstable at the same time with the s
dominant wave number. This is a case in which the mot
of the interfaces is strongly coupled becauser o.r i . Al-
though the thickness of the annulus, about 3 mm, is s
larger than the gap thickness,b50.81 mm, three-
dimensional effects begin to play a role and this experim
approaches the limit of validity of the Hele–Shaw regime.
Fig. 5~c!, which corresponds to very largeL0 , the trailing
interface destabilizes first, and it is only when this instabil
has developed far beyond the linear regime that the lead
se or copyright; see http://pof.aip.org/about/rights_and_permissions
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interface shows signs of destabilization, with a domin
wave number independent of that developed at the trai
interface. In this case the motion of the interfaces is pra
cally uncoupled, sincer o@r i .

The examples shown in Fig. 6 correspond to expe

FIG. 3. Displacement of an annular layer of silicone oil 50 in a prewet c
The interfaces are stable during the displacement until they reach the
of the cell. The experimental parameters areL0530 mm, V560 rev/min,
andb50.81 mm. The time interval between consecutive pictures~from top
to bottom! is 25 s.
oaded 22 Sep 2010 to 161.116.168.227. Redistribution subject to AIP licen
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ments with vaseline oil 150 in dry conditions. Here the on
parameter modified isL0 , which increases from top to bot
tom. For smallL0 ~on top! the two interfaces become un
stable almost simultaneously and with the same domin
wave number. In the experiment shown here the pertur
tions at the two interfaces are in phase, but in a few cases
observed perturbations in phase opposition. For an inter
diate value ofL0 ~in the middle! the leading interface is
observed to destabilize first, while the trailing interface
mains nearly perfectly circular for some time, as shown
the picture. In most cases this interface finally also desta
lizes, with a similar dominant wavenumber. Finally, for larg
L0 ~at the bottom! we observe a situation very similar to th
shown in Fig. 5~c! in which the instability develops first a
the trailing interface. The leading interface, in spite of havi
a very large radius, remains stable through most of the
placement.

The behavior of the dominant wavenumbern emerging
from the linear regime withL0 is the following: in most
cases the instability develops first at the leading interfa

l.
ge

FIG. 4. Displacement of an annulus of silicone oil 50 in a prewet cell~a!,
and a dry cell~b!, showing the influence of wetting conditions on the st
bility of the interfaces. In the two experiments the parameters areL0

530 mm, V5120 rev/min, andb50.81 mm. The pictures have been take
at t513.2 s in both cases.
se or copyright; see http://pof.aip.org/about/rights_and_permissions
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and n increases withL0 . Above a givenL0 , however, the
instability develops first at the trailing interface, the value
n drops, and then~for the limited parameter range that r
mains accessible! increases again withL0 .

The time evolution of the interfaces is obtained from t

FIG. 5. Interfacial instabilities of an annulus of silicone oil 50, in a dry c
of gap spacingb50.81 mm, for different initial radii and rotation speed
~a! L0530 mm, V590 rev/min, ~b! L0530 mm, V5210 rev/min,~c! L0

5117 mm,V5120 rev/min.
oaded 22 Sep 2010 to 161.116.168.227. Redistribution subject to AIP licen
f

sequence of digital video images, captured at equal time
tervals. Using edge detection techniques, we have de
mined the liner (s) for each interface. This line gives th
radial extent of the interface as a function of the interfa
arclength. Use of the arclength instead of the azimuthal an
u makes no substantial difference in the linear regime. In

FIG. 6. Interfacial instabilities of an annulus of vaseline oil 150, in a dry c
of gap thicknessb50.81 mm rotating atV5180 rev/min. The initial radius
of the drop in each run,L0 , increases from top to bottom.
se or copyright; see http://pof.aip.org/about/rights_and_permissions
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nonlinear regime, however, it eliminates the problems as
ciated with the possibility thatr (u) becomes multivalued
The onset and development of the instability have been
vestigated by Fourier mode analysis. To this end, for e
digitized interfacer (s) we have computed the function

r~s!5r ~s!2R, ~1!

where R is the radius of a circle obtained from a leas
squares fit ofr (s). The functionr(s) represents the defor
mation of the interface line with respect to this circle. T
discrete Fourier transform ofr(s) is given by

r̂~n!5 (
j 50

N21

r~2p j /N!ein2p j /N, ~2!

wheren is the azimuthal wave number andN is the number
of data points in the digitized curver(s).

The power spectrum of the leading interface of an an
lus of silicone oil 50, computed at five successive instants
shown in Fig. 7. At the earliest time the amplitude of t
maximum atn52 is of the order of the noise in the spe
trum, and no dominant mode can be identified. As time
vances, the maximum in the spectrum shifts ton512 and
then ton517. Competing with this moden517 there is a
mode atn520, which grows at a similar or higher rate, an
which can be identified with the number of fingers develo
ing at later times, already in the large amplitude regim
Some harmonics~at n534 in particular! and other modes o
smaller amplitude also appear.

The evolution towards modes of larger wave numb
revealed by this numerical analysis, cannot be easily der
by a visual inspection of the digitized interfaces. The tim
sequence shown in the inset contains a total of eleven in
faces, of which the first~still practically unperturbed!, the
fifth, the eighth, the tenth, and the last~slightly beyond the
linear regime! have been used in the Fourier analysis. Insp
tion of the latter interface confirms that the number of fing
is ;20. It is important to mention that this number remai

FIG. 7. Evolution of the power spectrum of aleading interface at the onse
of instability, demonstrating the development of modes of largern as time
progresses. The inset shows the sequence of leading interfaces digitiz
times 6.0, 6.2, 6.4, 6.6, 6.8, 7.0, 7.4, 7.6, 7.8, 8.0, and 8.4 s. The flu
silicone oil 50, in a dry cell, and the experimental parameters arb
50.81 mm,V5150 rev/min, andL0531 mm.
oaded 22 Sep 2010 to 161.116.168.227. Redistribution subject to AIP licen
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unchanged for the rest of the experiment, because deep i
large amplitude regime there is no sign of any mechan
~tip splitting or finger competition! capable of modifying the
number of fingers growing out of the leading interface. T
reason must be found in the increasing lateral separation
tween radially growing fingers in the circular geometry, a
in the fact that pressure grows with the square of the ra
distance in the presence of centrifugal forcing.

The same analysis has been performed on a trailing
terface, as shown in Fig. 8. In early stages the maximum
the power spectrum is at the moden51, which represents a
circular interface slightly off axis. Above 1.0 s the mod
n57 andn59 take off with similar amplitude. Finally, a
the latest time shown~2.2 s! the mode withn59 has reached
the maximum amplitude. The lower amplitude modesn
511 andn516, however, are seen to grow at similar rate
and presumably will take over from lowern modes at later
times.

For this case we have chosen a time sequence of d
tized interfaces~inset! extending deep in the large amplitud
regime. Out of the fifteen interfaces shown, the power sp
trum covers the time interval from the first to the ninth i
terface, which is already beyond the linear regime. As
posed to the behavior of the leading interface, deeper in
nonlinear regime the time evolution of the fingering patte
of the trailing interface is characterized by a growing numb
of fingers, due to finger splitting at the tip of wide finger
This behavior is characteristic of viscosity driven instabiliti
in the radial geometry. Notice that the last interface sho
displays about fifteen well-developed fingers, but this nu
ber changes to about eighteen fingers due to tip splitting

III. ANALYSIS AND DISCUSSION

In this Section, we review the Hele–Shaw equations
the annular geometry in the presence of centrifugal forci
and perform a linear stability analysis of the interfaces. T
provides the theoretical background required to guide
analysis of our experimental results.

at
is

FIG. 8. Evolution of the power spectrum of an unstabletrailing interface.
The inset shows fifteen interfaces digitized every 0.2 s, starting at
50.6 s. The fluid is silicone oil 50, in a dry cell, and the experimen
parameters areb50.81 mm,V5120 rev/min, andL05117 mm.
se or copyright; see http://pof.aip.org/about/rights_and_permissions
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A. Hele–Shaw equations

We consider an oil annulus of inner radiusr i and outer
radius r o , in a circular Hele–Shaw cell of plate spacingb
rotating with angular velocityV. In the high-friction limit
~Hele–Shaw approximation! the velocity field in the bulk of
the liquid, averaged in the direction perpendicular to
plates, obeys Darcy’s law

v5¹f, ~3!

where

f52M ~p2 1
2rV2r 2!, ~4!

and the mobilityM5b2/12m. Herem is the dynamic viscos-
ity and r is the density of the oil. Since the liquid is incom
pressible,¹•v50, and Darcy’s law leads to a Laplace equ
tion for the velocity potential

¹2f50. ~5!

The nonlinearities enter through the boundary conditio
at the interfaces.

The first set of boundary conditions specifies the pr
sure jump at the two interfaces

f~r i !

M
2

1

2
rV2r i

25s~k' i
1k i i

!, ~6!

f~r o!

M
2

1

2
rV2r o

25s~k'o
2k io

!, ~7!

where i ando refer to the inner and outer interface, respe
tively, andk' , k i are the curvatures of the interface in th
directions perpendicular and parallel to the plates, resp
tively. In writing these boundary conditions we have n
glected the contribution of air to the pressure difference.

The second set of boundary conditions refers to the c
tinuity of the normal velocity across the interfaces

] rf1u i5] rf2u i•
1

12a i
, ~8!

] rf1uo5] rf2uo•
1

12ao
, ~9!

wherea i , ao , are the relative thicknesses of the liquid film
on the glass plates, behind the leading interface and ahea
the trailing interface respectively~see Ref. 11!.

When the two interfaces are circular, the solution of E
~5! for the velocity potential has the form

f0~r !5A ln r 1B, ~10!

where conditions~6! and ~7! determine the constantA as

A5M
~1/2!rV2L22s@~2/b!~cosuDi2cosuDo!11/r i11/r o#

ln~r o /r i !
.

~11!

Here L2[r o
22r i

2, and initially L25L0
2. We have taken

k' i ,o5(2/b)cosuDi,o andk i i ,o51/r i ,o , whereuDi ,o represent
the dynamic contact angles at the two interfaces. The c
stant B is determined by prescribing the magnitude of t
oaded 22 Sep 2010 to 161.116.168.227. Redistribution subject to AIP licen
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pressure at some point in the flow. The index 0 inf0 is a
reminder that this solution is valid for an annulus with u
perturbed circular interfaces.

B. Influence of wetting

In our first paper on the problem of the annulus11 we
focused on stable~radial! displacements. We found that thes
displacements are very sensitive to the prewet or dry co
tions of the cell, and identified the two main phenome
responsible for this:

~i! The dynamic contact angles at the interfaces exp
ence variations in the range 0 top, depending on their
normal velocity. This makes the perpendicular curv
tures independently variable in the range 2/b to 22/b.
If the curvatures remain the same at the two int
faces, as is approximately the case in a prewet c
the corresponding jumps of capillary pressure at
interfaces cancel out. If not, as in a dry cell, the jum
of capillary pressure may be very different and hav
relevant influence on the radial velocity.

~ii ! In both prewet and dry cells the trailing interfac
leaves a liquid layer on the two glass plates. T
thickness of the layer depends on the normal veloc
of the interface. The thickness was measured b
stable displacement of the annulus in Ref. 11~Fig. 8!.
In a dry cell, the formation of the layer results in
progressive loss of liquid in the annulus. In a prew
cell, this loss is largely compensated at the lead
interface by the liquid regained from the film coatin
the glass plates. As a result,L2 ~the amount of liquid
in the annulus!, decreases with time in a dry cell an
stays almost constant in a prewet cell.

It is important to note that the two phenomena d
pend on the instantaneous radial velocity of the int
faces.

The experiments confirmed that the approximation
perfect wetting,k' i.k'o andL2.L0

2, provides an accurate
description of stable displacements in prewet conditions
this case, the velocities of the two interfaces scaled as
dicted by the above equations.11

On the other hand, for stable displacements in a dry
a nontrivial result arises; the velocity of the two interfaces
nearly constant throughout the displacement. The velo
seems to be dynamically selected by the interplay of the
phenomena considered above, both dependent on inte
velocity. Defining the capillary number for constant veloci
displacements asCa5mv/s, and the ratio of centrifugal to
capillary forces asS5rV2L0

3/s, our experiments showed
that in dry conditionsCa scales with (b/L0)2 S5/4 for about
three orders of magnitude of the two quantities.11

C. Linear stability analysis of the fingering instability

To carry out a linear stability analysis of the interface
we write the perturbative equations in their simplest for
without including corrections due to wetting. We assume t
it is enough to account for these corrections on the unp
turbed velocity field.
se or copyright; see http://pof.aip.org/about/rights_and_permissions
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Let us modify the two circular interfaces instantaneou
~Fig. 9! by adding an infinitesimal perturbation of the form

dr i5z ie
inu, ~12!

dr o5zoeimu, ~13!

to each interface, respectively. Theansatzfor the velocity
potential of the perturbed annulus takes the form

f~r ,u!5f0~r !1f i
1~r !einu1fo

1~r !eimu, ~14!

where

f i
1~r !5

Cn

r n 1Dnr n, fo
1~r !5

Cm

r m 1Dmr m. ~15!

Adding the condition that the perturbation at one interfa
does not affect the other:

f i
1~r o!50, fo

1~r i !50, ~16!

leads to:

Cn52Dnr o
2n , Cm52Dmr i

2m . ~17!

The constantsDn , Dm are determined by the boundary co
ditions ~6! and ~7!. Taking into account the fact thatf0(r )
itself satisfies these boundary conditions for the circular
terfaces (r 5r i , k i i51/r i , and r 5r 0 , k io51/r o , respec-
tively! and linearizing the curvatures in the parallel directio
we obtain

1

M
] rf

0U
r i

dr i2rV2r idr i1
1

M
f i

1~r i !e
inu

5
s

r i
2 ~n221!dr i , ~18!

1

M
] rf

0U
r o

dr o2rV2r odr o1
1

M
fo

1~r o!eimu

52
s

r o
2 ~m221!dr o , ~19!

to first order in the perturbation. Taking into account~12!
and ~13!, and solving forf i

1 andfo
1, we obtain

FIG. 9. Perturbation of the two circular interfaces of a liquid annulus
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f i
1~r i !5H M

s

r i
2 ~n221!1MrV2r i2] rf

0U
r i

J z i , ~20!

fo
1~r o!5H 2M

s

r o
2 ~m221!1MrV2r o2] rf

0U
r o

J zo ,

~21!

which implies

Dn5
1

@12~r o /r i !
2n#r i

n Piz i , ~22!

Dm5
1

@12~r i /r o!2m#r o
m Pozo , ~23!

with

Pi5M H s

r i
2 ~n221!1rV2r i2

A

Mr i
J , ~24!

Po5M H 2
s

r o
2 ~m221!1rV2r o2

A

Mr o
J . ~25!

The growth rate of the perturbation is derived from Da
cy’s law, which relates the time derivative of the radial c
ordinate to the spatial derivative off in the radial direction.
We obtain

d ṙ i5] rr f
0ur i

dr i1] r~f i
1einu1fo

1eimu!ur i
, ~26!

d ṙ o5] rr f
0ur o

dr o1] r~f i
1einu1fo

1eimu!ur o
. ~27!

The overdot stands for a time derivative. Substituting
velocity potentials by their expressions~10! and ~15! and
taking spatial derivatives, these two equations can be rew
ten in the form

ż i52
A

r i
2 z i2

n

r i

11~r i /r o!2n

12~r i /r o!2n Piz i

2
2m

r i

ei ~m2n!u

~r i /r o!m2~r o /r i !
m Pozo , ~28!

żo52
A

r o
2 zo2

2n

r o

ei ~n2m!u

~r o /r i !
n2~r i /r o!n Piz i

2
m

r o

11~r o /r i !
2m

12~r o /r i !
2m Pozo . ~29!

Since the amplitudesz i and zo cannot depend on the az
muthal angle, two possibilities arise:

~i! The term with the exponential is zero in the expre
sions above@Eqs. ~28! and ~29!#. This occurs in the
limit of a large separation between the two interfac
r o@r i , which will be discussed in detail later.

~ii ! m5n, independently of the ratio betweenr o and r i .
This case is discussed next.

The conditionm5n leads to a dispersion relation of th
form
se or copyright; see http://pof.aip.org/about/rights_and_permissions
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S ż i

żo
D 5S a11 a12

a21 a22
D S z i

zo
D , ~30!

where

a1152
A

r i
22

n

r i

11~r i /r o!2n

12~r i /r o!2n Pi , ~31!

a1252
2n

r i

1

~r i /r o!n2~r o /r i !
n Po , ~32!

a2152
2n

r o

1

~r o /r i !
n2~r i /r o!n Pi , ~33!

a2252
A

r o
22

n

r o

11~r o /r i !
2n

12~r o /r i !
2n Po . ~34!

This relation shows that, in the generic caser i;r o , the two
interfaces are coupled to each other through the pres
field, already at a linear level.

To determine whether the perturbation at the interfa
grows or decays in time we have to diagonalize the disp
sion relation~30!. The corresponding eigenvaluesv6(n) de-
termine the growth rates of the normal modes. We find:

v65 1
2~a111a22!6 1

2@~a111a22!
2

14~a12a212a11a22!#
1/2. ~35!

These growth rates correspond to the following norm
modes of perturbation:

dr15z ie
inuS 1

v12a11

a12

D , for which
d ṙ 1

dr 1
5v1 ,

~36!

dr25zoeinuS v22a22

a21

1
D , for which

d ṙ 2

dr 2
5v2 .

~37!

The behavior of these two modes depends on the sig
the component (v62aii )/ai j . If this component is real and
positive, the perturbations at the two interfaces are in ph
and the mode is abendingmode. If this component is rea
and negative, the perturbations have a phase differenc
p/2 rads and the mode is asqueezingmode. This componen
can also have a nonzero imaginary part, which would lea
a spatio-temporal oscillation of the perturbations at the t
interfaces.

D. Linear stability of a very wide annulus „r ošr i…

It is interesting to analyze the stability of the interfac
in the limit of a large separation distance,r o@r i . We have

a11.2
A

r i
22

n

r i
Pi , ~38!

a22.2
A

r o
2 1

m

r o
Po , ~39!

a12.0, ~40!
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a21.0. ~41!

We see that the nondiagonal terms in Eq.~30! vanish and the
stability of the leading and trailing interface becomes ind
pendent. As the nondiagonal terms are negligible, the co
tion m5n does not necessarily hold, and we are led to d
tinguish again between the azimuthal wavenumbersn andm.
The growth rates, Eq.~35!, are given now by

v1.a11.M H 2
s

r i
3 n~n221!2rV2n1

A

Mr i
2 ~n21!J , ~42!

v2.a22.M H 2
s

r o
3 m~m221!1rV2m2

A

Mr o
2 ~m11!J ,

~43!

and the corresponding modes by

dr1.z ie
inuS 1

0D , ~44!

dr2.zoeinuS 0
1D . ~45!

In this limit, the first mode is an exclusive perturbatio
on the inner interface, and the second mode an exclu
perturbation on the outer interface. The growth rate of
perturbation of the inner interface, Eq.~42!, reproduces the
classic result of Paterson7 for air displacing oil in a circular
geometry, in which the instability is driven by the viscosi
contrast between the two fluids, with surface tension sta
lizing modes of short wavelength~largen!. Here there is an
additional term accounting for centrifugal forcing, which st
bilizes due to the fact that at this interface the outer fluid~oil!
is the densest. The growth rate of the perturbation of
outer interface, Eq.~43!, on the other hand, reproduces th
results of Schwartz8 and Carrilloet al.9 for oil displacing air
in the presence of centrifugal forcing. In this case the ins
bility is driven by the density contrast between the two fl
ids, while the viscosity contrast and the interfacial tens
have a stabilizing effect.

E. Linear stability of a very thin annulus „r o¶r i…

We study the linear stability of the circular interfaces
the radially spreading annulus becomes very thin and the
interfaces get very close to each other. This is the oppo
limit of the previous case, and the coupling of the two inte
faces is expected to play an important role here. This li
can only be carried up to the point at which the thickne
r o2r i of the annulus becomes comparable with the g
thicknessb of the cell, since at this point three-dimension
effects become determinant and the Hele–Shaw approx
tion fails.

The limit of a very thin annulus must be taken with som
care becauser i→r o , while L25r o

22r i
2 remains a constant o

the motion. To take both aspects into consideration at
same time, we define a small parametere5L/r o , such that
se or copyright; see http://pof.aip.org/about/rights_and_permissions
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S r i

r o
D 2

512S L

r o
D 2

512e2→1, as e→0, ~46!

corresponding tor o→` with L constant. We now conside
the constantA in the approximation of perfect wetting

A5M
~1/2!rV2L22s~1/r i11/r o!

ln~r o /r i !
, ~47!

and expandA, Pi , Po in powers ofe. After a lengthy calcu-
lation, one obtains

a115M H 2
s

L3 @8e211O~e!#2rV2F1

6
e21O~e4!G J , ~48!

a225M H s

L3 @8e211O~e!#1rV2F1

6
e21O~e4!G J , ~49!

a125M H s

L3 @8e211O~e!#1rV2F11
1

6
e21O~e4!G J ,

~50!

a215M H 2
s

L3 @8e211O~e!#1rV2F12
1

6
e21O~e4!G J .

~51!

The linear growth rates of the normal modes, given by
~35!, now become:

v6.6MrV2, ~52!

to leading order ine. The leading contribution is in the non
diagonal terms,a12 anda21, which account for the coupling
of the two interfaces. Notice that the growth rates are in
pendent ofn. The corresponding modes are

dr1.z ie
inuS 1

1D , ~53!

dr2.zoeinuS 11
1

4

rV2L3

s
e

1
D . ~54!

The modedr1 is apure bendingmode. The perturbations a
the two interfaces are in phase and have identical amplit
as a consequence of the strong coupling of the interfa
The modedr2 is also a bending mode because the pertur
tions at the two interfaces are in phase, but now the am
tude of the perturbation at the trailing interface is larger th
the amplitude of the perturbation at the leading interfa
This can give rise to the formation of trapped fluid regio
right before the two interfaces meet each other, similarly
what would be observed for a squeezing mode. We will c
dr2 an enhanced bendingmode.

The linear growth rate of the pure bending mode is po
tive for all n. Hence, the annulus is always unstable aga
bending, when it becomes sufficiently thin. The picture
top of Fig. 4 provides an example of slight destabilization
a pure bending mode in prewet conditions. The linear gro
rate of the enhanced bending mode shows that this m
always decays, so that upon thinning the annulus beco
linearly stable against this kind of perturbation.
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The different behavior of the normal modes, howev
must be rationalized in terms of the evolution of the ba
state itself. Notice that the growth–decay rate of the t
modes is given by the reciprocal oft512m/(rV2b2), which
is precisely the time scale of a rotating Hele–Shaw syste9

This has important consequences on the behavior of the
mal modes. To see why, consider conditions of perf
wetting—which were assumed in the derivation of the p
ceding results. The velocity of the leading interface isvo

5A/r o.MrV2r o5r o /t. Thereforer o grows exponentially
with time in prewet conditions as exp(t/t). Given thatL2

5r o
22r i

2 is a constant of the motion, the radiusr i follows
this same behavior. These predictions have been confir
experimentally in Ref. 11. Finally, it is not difficult to show
that the separation of the interfacesr o2r i goes to zero as
exp(2t/t), i.e., with the same constantt. Now, the amplitude
of the modedr1 must be compared with the radii of th
circular interfaces. Only if the amplitude grows at higher ra
than the two radii will the morphological instability develo
at finite time. It turns out that they grow at exactly the sam
rate t, which is equivalent to saying that their relative am
plitude remains constant in time, anddr1 is marginal with
respect to the base state. The overall behavior can be
garded as a spatial rescaling at successive times of the
turbed thin annulus. The amplitude of the modedr2 , on the
other hand, must be compared with the separation of
interfaces. If the unperturbed interfaces approach each o
at higher rate than the mode decays, there is pinching of
interfaces at finite time—even though the amplitude of
mode decays in time. It turns out that they all decay at
actly the same ratet, so thatdr2 is marginal with respect to
the base state. In conclusion, none of the two normal mo
is expected to produce a morphological instability of the th
annulus in prewet conditions at finite time.

In dry conditions the situation is different, since the ra
of the circular interfaces do not grow exponentially wi
time, but linearly, and their velocity is significantly lowe
than in prewet conditions.11 The growth–decay rate of th
normal modes could be comparatively higher. These qu
tions are addressed in the next section.

F. Numerical integration of the equations and
comparison with experimental results

To compare the predictions of the linear stability ana
sis with our experimental observations, we have carried o
numerical integration of the coupled equations@Eqs.~28! and
~29!#.

The first point to consider is that the base state in
linear stability analysis~circular interfaces of radiir o andr i)
is actually evolving in time. This makes the linear grow
rates of the normal modes dependent on time, and the re
ation or growth of the modes not truly exponential. This
usual in circular geometry. For example, in the classic
periments of Paterson7 with air displacing oil in a motionless
circular Hele–Shaw cell, the linear evolution of the unsta
interface proceeds through a cascade of modes, with incr
ing participation of highern modes as time progresses.

In our case the linear evolution of the interfaces is mo
se or copyright; see http://pof.aip.org/about/rights_and_permissions
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complicated, because the linear growth ratesv6 depend on
the radii r o and r i through the matrix elementsai j . To cal-
culate the time dependence of the linear growth rates,
annulus is originally defined as having inner radiusRA ~the
radius of the central orifice of the top plate! and outer radius
L0 . The subsequent radii of the stable circular interfacesr i

andr o , and the matrix elementsai j are computed as a func
tion of time using the equations for the stable displacem
derived in our previous work.11

~i! In prewet conditions we use Eqs.~10! and ~11!, with
uDi.uDo.0 and L25r o

22r i
2 practically constant—

because the relative thicknesses verifya i.ao . Since
L remains constant,a i and ao have no influence on
r i , r o .

~ii ! In dry conditions we follow the same procedure on
in the first time steps, until the velocityv i of the trail-
ing interface becomes larger than the velocity giv
by the empirical scaling relationv50.1(s/m)
3(b/L0)2S5/4. From this time step on, we determin
v i from the scaling relation. Next,v i is used to deter-
mine r i and the functionA given by A52v i r i /M .
Finally, the radiusr o of the leading interface is deter
mined from r o

25L21r i
2, taking into account that in

dry conditionsao50 and a iÞ0, which makesL a
decreasing function ofr i . The thicknessa i is com-
puted fromv i through Reinelt’s formulas for a circu
lar interface.12

The time dependence of the linear growth rates is sho
in Fig. 10. Since it is difficult to keep track of the two mod
separately, we plot only the mode of highest growth rate

FIG. 10. Linear growth rate of the different modesn as a function of time
for prewet and dry conditions. The parameters used in the numerical
gration areb50.81 mm, L0530 mm, V5180 rev/min, r51000 kg/m3,
n550 mm2/s, s520.7 mN/m.
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each time. In both prewet and dry conditions, the figu
shows two maxima att50 which decay in time at shor
times. Of these two maxima, the one for lown is associated
with the trailing interface. This interface is always unstab
at the beginning because of its large initial velocityv
;1/r ), but can only accommodate perturbations of very lo
wave number due to its small radius. The other initial ma
mum, for intermediaten, is associated with the leading inte
face. The stability of this interface is not significantly a
fected by the trailing interface at short times, and thus i
governed by Eq.~43!, i.e., by the interplay between the de
stabilizing effect of density contrast and the stabilizing effe
of both viscosity contrast and surface tension.

The influence of wetting conditions appears at la
times, when the two original maxima in Fig. 10 have nea
disappeared. In prewet conditions the radii of the interfa
grow exponentially in time. As a result, the linear grow
rates remain small and nearly constant in time. In dry con
tions, on the other hand, the radii of the two interfaces gr
linearly in time, and the growth rates of the unstable mod
rise sharply in time.

The fact that the linear growth rates depend on ti
means that the relaxation or growth of the normal modes
a wavenumbern is not proportional to exp@v6(n)#t. Rather, a
direct integration of the linearized equations for the evo
tion of the normal modes,~28! and ~29!, leads to

dr 6~ t !5dr 6~0!expF E
0

t

v6~n!dt8G , ~55!

provided that*0
t v6(n)dt8.0, which means that the distur

bance grows and the modes are unstable. The numbe
fingers at the end of the linear regime is typically given
the moden which has grown to the largest amplitude, not
the instantaneous fastest growing mode.

With these considerations in mind, we have compu
the time dependence of the amplitudes of the different mo
from a numerical integration of Eqs.~28! and ~29!. Follow-
ing Cardoso and Woods10 and Miranda and Widom,13 we
assume the presence of a constant level of noise in the
periment, which perturbs each moden with the same ampli-
tudeudr (0)u. The calculation requires a specific value of t
temporal extent of the linear regime, which is not read
experimentally accessible. We have decided to carry out
numerical integration up to a timet f50.3t, wheret is the
natural time scale for radial Hele–Shaw displacements un
centrifugal forcing and has been defined in Sec. III E. T
choice, although arbitrary, is based on empirical results
tained for experiments of fingering of a circular drop und
centrifugal forcing in the same experimental setup.9 In these
experiments the instability developed systematically only
ter a latency timet/t50.3. We take this scaling quantity a
indicative of the duration of the linear regime.

The result of the calculation is shown in Fig. 11. Th
relative amplitude of the different modes is plotted as a fu
tion of time, for prewet and dry conditions.A0 is the ampli-
tude att50 ~amplitude of the noise in the initial condition!.
Again, only the mode that has the largest amplitude is sho
at each time. It is clear from this result that the time scale

e-
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development of the instability is very different in prewet a
dry conditions. Under equivalent experimental conditio
the instability in a prewet cell will possibly not develop a
preciably during the experiment, while in a dry cell it wi
clearly do so in almost all instances. In both prewet and
conditions the wave number of maximum amplitude
creases slightly with time, predicting a cascade towa
modes of largern as time increases. These predictions are
good agreement with our experimental observations.

The preceding analysis has been carried out system
cally in the range of parameters explored experimentally
dry conditions. We have determined numerically the wa
numbern of the mode which grows to its largest amplitude
the first unstable interface, as a function of rotation rateV
and initial radiusL0 . The result is presented in Fig. 12~top!.
The region from the lower-left corner to the middle of th
diagram corresponds to the leading interface, and the re
from the middle to the upper-right corner to the trailing i
terface. Clearly, in view of the assumptions required to co
pute it, this diagram can only be considered from a qual
tive point of view. In particular, the boundary between t
two regions is strongly dependent on the arbitrary choice
the total time of integrationt f .

Nevertheless, the trend exhibited by the lines of cons
n reproduces well our experimental observations, which
also summarized on Fig. 12~bottom!. Experimentally, the
values ofn have been determined in the following way.
the case of a leading interface, which is the case encount
most often,n is the number of fingers observed in the dev
oped pattern. As discussed before, this number is a g
estimate of the dominant wave number emerging from
linear regime, due to the fact that at the leading interface
nonlinear mechanisms capable of modifying the numbe

FIG. 11. Relative amplitude of the different modesn as a function of time
for prewet and dry conditions. The parameters used in the numerical
gration are the same as in Fig. 10.
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fingers~finger competition or tip splitting! do not seem to be
operative. In the less frequent case of analyzing a trail
interface, the numbern is taken as the wave number of th
mode that displays the peak of largest amplitude in
power spectrum, at the end of the linear regime. The ex
of the linear regime is determined by the condition that
amplitude of the ripples in the radial direction is smaller th
their azimuthal wavelength.

e-

FIG. 12. Lines of constant wave numbern, in the parameter spaceV ~rota-
tional frequency! vs L0 ~initial radius of the oil drop!, for displacements in
dry conditions, withb50.81 mm,n550 mm2/s, ands520.7 mN/m. Top:
prediction of the linear stability analysis for the mode that grows to larg
amplitude. Bottom: Experimental results. Both diagrams comprise two
ferent regions; one from the bottom-left corner to the middle of the diagr
in which the first unstable interface is the leading interface, and anot
from the middle to the top-right corner, in which the first unstable interfa
is the trailing interface.
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The dependence ofn on initial radiusL0 , which has
been discussed in connection with Fig. 6, is observed her
be general; for smallL0 the first unstable interface is th
leading interface, andn is small. AsL0 increases,n increases
correspondingly. ThenL0 reaches a threshold value at whic
the leading interface is replaced by the trailing interface, a
the numbern becomes small again. Our observations sh
that the threshold value ofL0 , which separates the onset
instability at one or another interface, becomes lower asV
increases.

G. Other experimental observations

An interesting feature of the fingering patterns observ
in the present experiments is the radial emission of drop
in the deep nonlinear regime. This observation might be
lated to the problems of pearling and pinching in Hele–Sh
flows, which have been studied theoretically and numeric
in recent years.14–17In our experiment, the emission of drop
lets occurs in very thin annuli, and in dry conditions it
accompanied by the formation of thin fluid filaments at t
tip of radially outgrowing fingers, as shown in Fig. 13. It
interesting to point out that the radial growth velocity of
fluid filament is appreciably larger than the radial velocity
the finger from which it formed, as shown in the sequence
pictures in Fig. 14.

Given that the thicknesses in the radial direction and
the direction perpendicular to the glass plates are compar
in this case, it is not clear that the secondary instability g
ing rise to the formation of fluid filaments and the emissi
of droplets can be analyzed within the framework of t
Hele–Shaw approximation.

Ignoring the real possibility of non-Hele–Shaw effec
our experimental observations could be analyzed in
framework of the nonlinear theory developed by Goldste
Pesci, and Shelley,14 in which they use the lubrication theor
for Hele–Shaw flows to study the pinching of the neck o

FIG. 13. Late stages in the evolution of a rotating annulus in a dry cell.
picture shows a cord of liquid which emits droplets in the radial direct
through the formation of thin fluid filaments at the tip of outgrowing finge
In this experiment the fluid is silicone oil 50,V5120 rev/min, b
51.94 mm,L0530 mm, and the picture is taken att52.6 s.
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pendant drop as well as a driven jet. Our centrifugally driv
necks and droplets seem somewhere between these
cases. This analysis, which goes beyond the scope of
present paper, is currently in progress.

IV. SUMMARY

We have studied the stability of an annular layer of flu
confined in a circular Hele–Shaw cell and subjected to c
trifugal forcing. The annular configuration is interesting b
cause the two interfaces can be made simultaneously
stable. The instability of the leading interface is driven by t
density contrast in the presence of centrifugal forcing. T
instability of the trailing interface is driven by the large vi
cosity contrast.

Our experimental results have shown that flows in a c
prewet with an oil coating are highly stable in the range
parameters explored. On the other hand, in a dry cell
flows are unstable. In this case the instability develops firs
the leading interface, or simultaneously at both interface
the annulus becomes very thin. This kind of instability ge
erates fingers, which grow radially. The number of fingers
the same at both interfaces when the annulus is very t
Deep in the nonlinear regime, these fingers are not seen t
split or compete. Only for initially thick annuli does the in
stability develop first at the trailing interface, and the finge
at this interface exhibit tip splitting.

We have carried out a linear stability analysis of t
problem and shown that the stability of the two interfaces
coupled through the pressure field, already at a linear le

We have studied the limit of a thick annulus, for whic
the two interfaces decouple. The result of the linear stabi

e

.

FIG. 14. Sequence of pictures taken from the experiment shown in Fig
demonstrating the formation of a droplet at the tip of an outgrowing fing
and its fast departure from the finger through the formation of a thin fl
filament. The first picture is taken att52.2 s, and the interval betwee
pictures is 0.2 s.
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analysis reduces in this limit to the classical dispersion re
tions of the circular interfaces in the presence of centrifu
forcing; at the leading interface~oil displacing air! the insta-
bility is driven by the density contrast between the fluids,
competition with the stabilizing effects of viscosity contra
and interfacial tension. At the trailing interface~air displac-
ing oil! the instability is driven by the viscosity contrast b
tween the two fluids, and density contrast and interfacial t
sion stabilize.

We have also studied the limit of a thin annulus, whi
is gradually reached as the annulus spreads radially in
circular cell. In this limit and in prewet conditions the co
pling of the two interfaces is shown to lead to two possi
modes of perturbation; a bending modedr1 , unstable,
which in the linear regime grows exponentially at a ratet
for all wave numbersn, and an enhanced bending mo
dr2 , stable, which decays at a rate21/t. We have shown
that the two modes are marginally stable with respect to
radial displacement of the annulus~in the case ofdr1) and
to the radial thinning of the annulus~in the case ofdr2).
Consequently they are not expected to produce a morp
logical instability of the thin annulus at finite time. This
not the case in dry conditions, for which the radii of th
circular interfaces grow comparatively slower.

Between these two limits, the linear stability of the a
nulus has been addressed by a numerical integration o
coupled equations for the linear growth rates of the norm
modes. The result shows a mode-to-mode cascade to larn
as time progresses. The effect of wetting conditions has
been taken into account in the numerical integration, thro
the unperturbed velocity fields derived in Ref. 11. We ha
found that the time scale for amplification of infinitesim
perturbations is much shorter in a dry cell than in a c
previously coated with oil, in agreement with our experime
tal observations.

Although the predictions of the linear stability analys
cannot be easily verified experimentally at a quantitat
level, we have succeeded in showing that the general tre
of the number of fingers predicted at the end of the lin
regime, in the parameter space of rotational frequency
initial radius, are in good qualitative agreement with our e
perimental observations.
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Finally, we have observed a secondary bifurcation of
fingers in very thin annuli, with the formation of fluid drop
lets and their emission at large velocity in the radial dire
tion.
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