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We study the forced displacement of a thin film of fluid in contact with vertical and inclined
substrates of different wetting properties, that range from hydrophilic to hydrophobic, using the
lattice-Boltzmann method. We study the stability and pattern formation of the contact line in the
hydrophilic and superhydrophobic regimes, which correspond to wedge-shaped and nose-shaped
fronts, respectively. We find that contact lines are considerably more stable for hydrophilic
substrates and small inclination angles. The qualitative behavior of the front in the linear regime
remains independent of the wetting properties of the substrate as a single dispersion relation
describes the stability of both wedges and noses. Nonlinear patterns show a clear dependence on
wetting properties and substrate inclination angle. The effect is quantified in terms of the pattern
growth rate, which vanishes for the sawtooth pattern and is finite for the finger pattern. Sawtooth
shaped patterns are observed for hydrophilic substrates and low inclination angles, while
finger-shaped patterns arise for hydrophobic substrates and large inclination angles. Finger
dynamics show a transient in which neighboring fingers interact, followed by a steady state where
each finger grows independently. © 2008 American Institute of Physics. �DOI: 10.1063/1.2940726�

I. INTRODUCTION

The stability of forced contact lines is the key to a vari-
ety of dynamic wetting processes1,2 that range from linear or
spin coating of surfaces3 to monodisperse drop formation4

and in-drop mixing in microchannels.5,6

In this paper we study the dynamics of a three-
dimensional thin film spreading on a dry inclined substrate,
where the contact line is gravity driven, as shown in Fig. 1.
In such a case, the contact line destabilizes and gives rise to
the growth of differently shaped patterns.

The stability of the front has been subject of active work
during the last two decades. Experimentally, efforts have fo-
cused on characterizing the destabilization of the contact line
and the patterns that emerge at long times. Patterns have
been shown to be influenced by fluid wetting properties.
Silvi and Dussan7 already observed such a dependence, as
patterns in their experiments ranged from sawtooth shaped
for mostly wetting fluids to finger shaped for mostly nonwet-
ting fluids. This feature was verified in the experimental
work of Jerret and de Bruyn,8 who found that the width of
the pattern is a function of the wetting properties as well as
of the imposed forcing, i.e., the inclination angle of the sub-
strate. In general, experiments indicate that closely spaced
patterns are expected for mostly wetting fluids at small incli-
nation angles.

Theoretically, the main framework is that of the lubrica-
tion approximation of the Navier–Stokes equations, subject
to some boundary condition at the moving contact line that

regularizes the so-called viscous dissipation singularity.2 In
the lubrication approximation one reduces the dynamics of
the thin film to a two-dimensional evolution equation for the
film thickness h, which is governed by a single parameter
D= �3Ca�1/3 cot���, where Ca is the capillary number and �
is the inclination angle of the substrate. Wetting properties
are fixed by the choice of the boundary condition at the
contact line, which generally corresponds to perfectly wet-
ting fluids, where the dynamic contact angle �D is zero �pre-
cursor film model�, or to mostly wetting fluids, where �D is
small �slip model�.

The lubrication equations were first examined qualita-
tively by Brenner,9 who proposed that the capillary ridge
located near the contact line �a consequence of the competi-
tion between capillary and driving forces� induces transverse
flows that destabilize the contact line when it is perturbed.
Troian et al.10 solved numerically the linear stability problem
in the long-wavelength limit using a precursor film model for
the contact line. Indeed, they found that the perturbation
growth rate can only be positive if the height profile is non-
monotonic. Bertozzi and Brenner11 extended the linear sta-
bility analysis to arbitrary wavelengths using the same con-
tact line model finding similar results. Spaid and Homsy12

compared the stability of the front for the precursor film
model and the slip model. They found that the front is rather
insensitive to the contact line model used and that the front
stability is very similar whenever the precursor film thick-
ness and the slip length are comparable. Anyhow, all studies
agree on the destabilization mechanism, which is based on
transverse variations of the height profile in the presence of a
capillary ridge. In this situation, the troughs of a perturbationa�Electronic mail: rodrigo@ecm.ub.es.
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feed the peaks �points B and A in Fig. 1, respectively�. As a
consequence, the peaks increase their local height and, in
turn, their velocity. In other words, a given value of the con-
trol parameter fixes the size of the capillary ridge and, in
turn, the stability of the front.

The long time evolution of the lubrication equations has
been addressed numerically by Kondic and Diez13 for com-
pletely wetting fluids and by Moyle et al.14 for partially wet-
ting fluids. Kondic and Diez studied the effect of the incli-
nation angle � and observed the formation of fingers at large
�, while for sufficiently small inclination angle the growth of
the pattern saturates to a sawtooth shape. Moyle et al.14 fo-
cused on the effect of the capillary number and dynamic
contact angle on the shape of fingers. For small Ca and �D

they observe sawtooth shaped patterns, while for larger val-
ues of both parameters they observe the growth of fingers.

In spite of these results, there are a number of situations
that fall beyond the small-Ca and small-�D limit of lubrica-
tion theory.

Concerning the role of large �D, an interesting effect was
observed by Veretennikov et al.,15 who considered the flow
of films of partially wetting fluids at small inclination angles.
Instead of the wedge shaped front typical of lubrication
theory, they observe a multivalued film thickness profile; a
nose shaped front, where the flow is no longer unidirectional,
but has a vortex structure. This three-dimensional limit is
typical of the hydrophobic ��D�90° � and superhydrophobic
��D�120° � regimes.

Alternatively to lubrication theory, three-dimensional
flows of immiscible fluids can be modeled by a mesoscopic
version of the Navier–Stokes equations coupled to a
convection-diffusion equation for an order parameter. Such
an approach has been used by a number of authors in fields
as varied as spinodal decomposition16 and shearing17 of bi-
nary fluids, contact line motion between sheared solid
plates,18 and viscous fingering in Hele–Shaw cells.19,20 Un-
der this approach, the contact line and the free film surface
have a finite size, a feature that eliminates the complications
of a sharp interface. Additionally, the evolution equation of
the order parameter can be constructed from a well-known

equilibrium state, thus allowing for a correct description of
wetting properties. In our model, wetting is introduced by
considering a surface free energy of the Cahn type, which
fixes a boundary condition for the order parameter field at
the solid.

In this paper we perform numerical simulations of the
mesoscopic Navier–Stokes and convection-diffusion equa-
tions to study the full three-dimensional problem of a thin
film flowing down a dry inclined substrate using the lattice-
Boltzmann method. We focus mainly on situations in which
neither Ca nor �D are small, so the lubrication equations are
no longer valid. We consider fluids of arbitrary wetting prop-
erties at various inclination angles. We study in detail the
unperturbed front by characterizing the wedge and nose con-
figurations. We then study the stability of these solutions
where we pay particular attention to the effect of wetting
properties. For long periods, we study the formation of non-
linear patterns. We find that, depending on the wetting prop-
erties and the inclination angle, saturated sawtooth patterns
or steadily growing fingers are obtained, and subsequently
study the robustness of the finger pattern.

The present paper is organized as follows. In Sec. II we
present the three-dimensional model which consists of the
coupled Navier–Stokes and convection-diffusion equations
subject to a Cahn wetting boundary condition. We discuss
the lubrication limit of these equations. In Secs. III and IV
we present the lattice-Boltzmann method and the simulation
strategy, respectively. The flat contact line problem is ad-
dressed in Sec. V, where we explore the effects of wetting,
capillarity, and gravity on a propagating front. In Sec. VI we
perform a numerical linear stability analysis for a slightly
perturbed contact line. We explore the effect of wetting and
gravity and compare to previous results.12 In Sec. VII we
study the nonlinear regime of contact line dynamics. In Sec.
VII A we study the growth of sawtooth patterns and fingers,
which is controlled either by varying substrate wettability or
substrate inclination angle. Finger growth is studied in detail
in Sec. VII B, where we consider the effect of initial condi-
tions, system size, and nonlinear interaction between neigh-
boring fingers. In Sec. VIII we discuss our results and
present the conclusions of this work.

II. GOVERNING EQUATIONS

We consider the motion of a thin film of fluid that flows
down an inclined solid substrate under the action of gravity,
as depicted in Fig. 1. We consider a binary fluid composed of
two immiscible phases of very different viscosities. In this
approximation, the more viscous fluid plays the role of the
film, while the less viscous fluid plays the role of the sur-
rounding air. Each phase is determined by a dimensionless
composition variable, or order parameter, ��r��. In equilib-
rium, � minimizes a free energy functional given by

F��,�� =� dr��V��,�� +
�

2
��� ��2	 ,

where ��r�� is the fluid density. The first term in the integrand,
V�� ,��=A�2 /2+B�4 /4+� ln �, is a volume contribution
and determines the equilibrium composition values for each

FIG. 1. �Color online� Thin film flowing down an inclined plane. The height
of the film h is constant and equal to hc in the upstream region while it bends
into a ridge close to the contact line, where it meets the solid with a dynamic
contact angle �D. The maximum height of the film hmax�y� determines the
size of the ridge. Upon a perturbation of the contact line, the ridge varies
spatially. Points A and B correspond to the peak and the trough of the
perturbation. Relaxation of the ridge at point B tends to feed mass to point
A, therefore generating a destabilization mechanism.
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phase, while the second term penalizes composition gradi-
ents by a factor �, thus defining the free energy of the inter-
face.

Minimization of F leads to the chemical potential,

� = ��V − ��2� ,

and total pressure tensor,

P� T = ��

3
+ ���V − V − �
��2� +

1

2
��� ��2�	��

+ ��� ��� � ,

where �� is the diagonal matrix. The pressure tensor has an

ideal contribution given by P� = �� /3��� , and an order param-
eter contribution. The equilibrium order parameter profile is
�*�n�=−�eq tanh�n /	�, where �eq= �−A /B�1/2 is the bulk
equilibrium value of the order parameter, 	= �−� /2A�1/2 is
the length scale of the interfacial region, and n is a coordi-
nate that measures the distance from the interface in the nor-
mal direction. The energy per unit area of the interface is

= �−8�A3 /9B2�1/2.

The divergence of the pressure tensor yields the force

per unit volume that acts on the fluid: −�� P−��� �. The first
term is the pressure gradient, while the second arises from
order parameter inhomogeneities. Including this last term,
the Navier–Stokes equations are written as follows:

���tv� + v� · �� v�� = − �� P − ��� � + ��2v� + �g� , �1�

where v� is the fluid velocity, � is the fluid viscosity, and g� is
the acceleration of gravity.

The dynamics of the order parameter are described by a
convection-diffusion equation,

�t� + v� · �� � = M�2� , �2�

where M is a mobility. For small deviations from the equi-
librium configuration, an expansion of the chemical potential
in powers of �−�* yields a first-order diffusion coefficient
D�=M�A+3B�eq

2 �.
In the sharp interface limit ��→0� Eq. �1� reduces to the

usual Navier–Stokes equations in the bulk of each fluid,
while at the interface the Gibbs–Thomson condition is recov-
ered. In addition, for low D�, the diffusive term in Eq. �2�
vanishes. Consequently, the order parameter is advected by
the velocity field.

In this limit, the standard approach of previous works9–14

is to restrict the equations to the lubrication regime, which
follows by considering only the components of the equations
of motion parallel to the solid substrate averaged over the
film thickness, h�x ,y�. Consequently, the local fluid velocity
is given by

v�� = −
h2

3�
��� P − �g sin���ı̂� , �3�

where the x-component of the gravitational force comes from
the choice of the reference frame �see Fig. 1�. In Eq. �3�, the
local pressure is composed of a surface term and a hydro-
static term, P=−
�2h+�gh cos���. The local velocity is

then a function of the local height and of its spatial deriva-
tives.

Averaging the continuity equation over h and combining
with Eq. �3� give a fourth-order partial differential equation
for the film thickness, which is the main equation in lubrica-
tion theory,

�h

�t
= −

1

3�
�� · �
h3�� �2h − �gh3�� cos��� + �gh3 sin���ı̂� .

�4�

This equation can be nondimensionalized by using units h�
=h /hc, �x� ,y��= �x /xc ,y /xc�, and t�= t / tc, where hc is the film
height far from the contact line. Space and time units are
chosen as xc=hc�3Ca�−1/3 and tc=xc /U, where Ca=�U /
 is
the capillary number and U=hc

2�g sin��� /3� is the average
velocity of the film. In terms of the nondimensional variables
Eq. �4� becomes

�h�

�t�
= − �� ��h�3�� ���2h� − Dh�3�� �h� + h�3ı̂� , �5�

where D= �3Ca�1/3 cot��� measures the magnitude of the
normal gravitational force. According to lubrication theory,
D is the only relevant control parameter of the system.

A. Boundary conditions

Wetting properties in the mesoscopic model presented
above are included by means of an interaction energy be-
tween the fluid and the solid

FS = �
S

dSfS��S� ,

where S is the solid-fluid boundary and fS��S� is the free
energy per unit surface, which is a function of the local com-
position �S. In equilibrium this expression yields the follow-
ing boundary condition at the solid-fluid interface:

��� � · n̂� =
1

�

dfS

d�S
, �6�

where n̂ is normal to the boundary. Here we consider a linear
form for the surface free energy density, fS=H�S, which al-
ready allows a wetting transition.21

For a rectangular box of dimensions LWb, stick
boundary conditions are imposed at the solid, v��x ,y ,z=0�
=0� , while no flow boundary conditions are imposed for the

order parameter, �v��x ,y ,z=0�=0� . Far above from the film
and at both ends of the box the flow is homogeneous. We
ensure these conditions by fixing �z�v��x ,y ,z=b�
=�z�v��x ,y ,z=b�=0� , �x�v��x=0,y ,z�=�x�v��x=L ,y ,z�=0� ,

and �x�v��x=0,y ,z�=�x�v��x=L ,y ,z�=0� . Periodic boundary
conditions are applied in the y direction.

Contact line dynamics arise from the diffuse nature of
the interface, which allows for slip in the interfacial region
by a diffusive mechanism. The size over which slip takes
place, lD, is a function of the fluid properties and has been
estimated by Briant and Yeomans,18 who have given a scal-
ing relation, lD���	2M /��2�1/4.
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III. LATTICE-BOLTZMANN METHOD

We solve numerically Eqs. �1� and �2� by means of the
lattice-Boltzmann algorithm presented in Ref. 16. The dy-
namics are introduced by discretized Boltzmann equations of
two velocity distribution functions,

f i�r� + c�i,t + 1� − f i�r�,t� = −
1

� f
�f i − f i

eq� + Fi
f �7�

and

gi�r� + c�i,t + 1� − gi�r�,t� = −
1

�g
�gi − gi

eq� . �8�

In these equations, f i and gi are velocity distribution func-
tions of particles that move with velocity c�i, where the index
i counts over the model velocity set. Space is discretized as a
cubic lattice where nodes are joined by velocity vectors.
Space and time units in Eqs. �7� and �8� are set to unity.
Likewise, the density of the fluids is set to one. We use the
D3Q15 velocity set,21 which consists of 15 velocity vectors:
six of magnitude 1 that correspond to nearest neighbors,
eight of magnitude �3 that correspond to third-nearest neigh-
bors, and one of zero magnitude that accounts for rest par-
ticles. In the D3Q15 model the speed of sound is cs=1 /�3.
In Eqs. �7� and �8�, distribution functions are first relaxed to
equilibrium values, represented by f i

eq and gi
eq, with relax-

ation time scales � f and �g. The term Fi
f is related to the

external forcing. Following the collision stage, distribution
functions are propagated to neighboring sites.

Hydrodynamic variables are defined through moments of
the f i and gi; the local density and order parameter are intro-
duced as �i f i=� and �igi=�. The fluid momentum is defined
as �i f ic�i=�v� . Local conservation of mass and momentum is
enforced through the conditions �i f i

eq=�, �igi
eq=�, and

�i f i
eqc�i=�v� . In equilibrium, the order parameter current,

pressure tensor and chemical potential are defined as

�igi
eqc�i=�v� , �i f i

eqc�ic�i=�v�v� + P� T, and �igi
eqc�ic�i=M̂��� +�v�v� .

The equilibrium distribution functions and the forcing
term are written as expansions in powers of v� ,22 i.e.,

f i
eq = ����A�

f + 3v� · c�i + 9
2v�v�:c�ic�i − 3

2v2 + G� f:c�ic�i� ,

gi
eq = ����A�

g + 3v� · c�i + 9
2v�v�:c�ic�i − 3

2v2 + G� g:c�ic�i� ,

and

Fi
f = 4��
1 −

1

2� f
��f� · c�i�1 + v� · c�i� − v� · f�� .

Here, � stands for the three possible magnitudes of the c�i set.
Coefficient values are �0=2 /9, �1=1 /9, and ��3=1 /72;

A0
f =9 /2−7 /2 Tr P� , A1

f =A�3
f =1 /� Tr P� , and G� f =9 / �2��P�

−3�� Tr P� ; A0
g=9 /2−21 /2M̂�, A1

g=A�3
g =3M̂� /�, and G� g

=9 / �2��M̂��1� −�� �, where 1� is the unit matrix.
Equations �1� and �2� are recovered by performing a

Chapman–Enskog expansion of Eqs. �7� and �8�.23 The
lattice-Boltzmann scheme maps to the hydrodynamic model
through the relaxation time scales, i.e., �= �2� f −1� /6 and

M = ��g−1 /2�M̂, and through the body force f�=�g� .

Solid boundaries in the lattice-Boltzmann method are
implemented by means of the well-known bounce-back
rules.21,23 In the fluid nodes that link to solid nodes, the
propagation scheme is modified so the distribution functions
are bounced back to the fluid rather than absorbed by the
solid. As a consequence, a stick condition for the velocity is
recovered approximately halfway from the fluid node to the
solid node.

IV. SIMULATION SETUP AND MEASUREMENTS

Our aim is to study the flow of thin films for different
Ca, �, and �E. To achieve this we must choose values for the
model parameters that assure the numerical stability of the
algorithm.

The typical experimental situation is that of the forced
spreading of a viscous fluid on a substrate in the presence of
air at relatively small velocities. Inertial effects, quantified by
the Reynolds number Re=�hcU /�, are expected to be small.
This is enforced in our simulations by neglecting the nonlin-
ear term in Eq. �1�. The local viscosity is set according to the
mixing rule ����= ��+�A��1+� /�eq� /2, where c= ��
−�A� / ��+�A� is the viscosity contrast between the fluids and
the subscript A stands for the less viscous phase. To repro-
duce the high asymmetry of viscous dissipation between
both fluids, we fix c=0.9, so viscous dissipation occurs
mainly inside the film.

Given that we work with a finite-size interface, the ratio
between the interfacial and macroscopic scales should be
reasonably small so that bulk effects do not become shad-
owed by the interface structure. Still, the interface has to be
sufficiently thick to avoid lattice artifacts. This is ensured by
fixing �=0.57 which is sufficiently large to resolve the
interface.21 For this interface size, film dynamics is correctly
resolved by taking h�O�10�.

As we have mentioned before, the contact line slips by
virtue of diffusion. This means that the diffusion coefficient
D� must be chosen to ensure that the order parameter relaxes
rapidly compared to the advection time scale. In a previous
study we have shown that this is accomplished as long as the
product between the Péclet number Pe=Uh /D� and the cap-
illary number is O�10−1�.19

After these considerations all other parameters are fixed
by a choice of Ca, �E, and �. The corresponding velocity,
viscosity, and surface tension lie in the ranges of 0.001�U
�0.01, 0.05���0.5, and 0.001�
�0.01, respectively.
The body force terms are fixed according to gx=3�U��
+1� /h2 and gz=−gx cot���. Then, choosing � fixes the cap-
illary number. As for wetting properties, fixing �E determines
the value of the wetting coefficient H.

Initial conditions are set by fixing the height h, length l,
and width w of a rectangular film. Lattice nodes lying inside
of the film are set to �=�eq, while the rest of the nodes are
set to �=−�eq. The initial velocity of all nodes is set to
�U ,0 ,0�.

For a given configuration of the order parameter, a
choice of an iso-� curve determines the location of the in-
terface. Here we choose the value �=0. The dynamic contact
angle is extracted by a circle fit to interface coordinates in
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the xz-plane. To improve the accuracy, the fitting region is
varied systematically by increasing the arc length along the
interface until the fitting error becomes minimum. As is stan-
dard, we only consider the part of the interface that couples
to bulk dynamics and discard the region close to the wall,
where the profile distorts due to the wetting boundary
condition24 �see, for instance, Fig. 3�e��.

V. FLAT CONTACT LINE

Before exploring the stability and pattern formation of
the thin film let us consider the effect of wetting properties
on the evolution of an unperturbed front, for which the con-
tact line is flat. Here we depart from the lubrication regime,
in which the only parameter D gathers the effects of Ca and
�. Apart from these parameters, we study fronts at three
different equilibrium contact angles: �E=0°, �E=25°, and
�E=90°.

A. Vertical substrates

Let us first examine the low Ca and low �D limit for a
vertical substrate �D=0�, which corresponds to the lubrica-
tion regime, and compare to lattice-Boltzmann results. We
perform a simulation fixing �E=0° and Ca=0.04. The result-
ing profile, shown in Fig. 2�a�, has a dynamic contact angle
of �D=28°. In our model, the contact line slips over the solid
surface due the diffusive mechanism that originates from the
finite-sized interface. Therefore, we choose to compare to the
slip-velocity lubrication model of Ref. 12, which follows
from coupling Eq. �5� to a slip boundary condition at the
solid-fluid interface. For a flat, steady contact line, the height
profile of such a model satisfies the equation

�3h�

�x�3 = 1 −
1 + �h

h�2 + �h
,

where �h is the slip parameter. Typical values of this param-
eter used in Ref. 12 lie in the range of 0.01��h�0.1. Nu-
merical solution of this equation is performed by fixing �h,

the contact slope C= �3Ca�−1/3 tan �D, and using a fourth or-
der Runge–Kutta integration scheme. To compare to lattice-
Boltzmann results, we vary �h and C until a best fit of the
lattice-Boltzmann profile is achieved. Figure 2�a� shows the
comparison for �h=0.04 and C=1.1. Both profiles compare
acceptably. Nonetheless, in the region behind the capillary
ridge a characteristic “dip” is absent from the lattice-
Boltzmann solution. To improve this comparison, we de-
crease the diffusion strength at the contact line, which is
responsible for the slip velocity and, in turn, the strength of
this dip. Decreasing this strength has the effect of increasing
the contact slope slightly. Nonetheless, the resulting profile
now compares better to the lubrication prediction with �h

=0.05 and C=1.56, as can be seen in Fig. 2�b�. In both cases,
deviations are comparable to the size of the interface, as
shown in the figure.

Let us now explore the effect of larger equilibrium con-
tact angles at different Ca values. Plots of the steady free
surface are shown in Fig. 3. Simulation parameters for these
runs are summarized in Table I. For all runs the free surface
relaxes to a steady state shape, consisting of a flat height
profile that couples to a curved ridge near the contact line.

Profiles �a�–�e� in the figure correspond to �E=0° and
increasing Ca. The effect of Ca is to increase the curvature of
the ridge, which in turn makes �D larger. This is also ob-
served for runs �f�–�j� and �k�–�o�, which correspond to �E

=25° and �E=90°, respectively. Measured contact angles are
shown in Fig. 4 as a function of Ca. As seen in the plot, the
profile changes from a wedge to a nose configuration by
increasing the capillary number, even for �E=0°. As ob-
served in experiments by Veretennikov et al.,15 the nose con-
figuration has a multivalued height profile, a condition that is
fulfilled only for �D�90°. For sufficiently large Ca, we
achieve contact angles as large as �D�140°, a situation that
renders the effective interaction between the wall and the
fluid superhydrophobic.

Looking again at Fig. 3 we notice that Ca has an effect
on the size of the capillary ridge, given by the maximum film

(a) (b)

FIG. 2. Height profile comparison between lattice-Boltzmann and lubrication theory in the small Ca and �D limit. Parameter values are D=0, Ca=0.041, and
�E=0°. �a� D�=0.074 and �D=28° and �b� D�=0.006 and �D=48°. Deviations from the lubrication prediction are comparable to the size of the interface,
represented by the black segment located in the ridge of each profile.
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thickness hmax and by the width over which h is larger than
hc �see Fig. 1�. This effect is clearly different for hydrophilic
and hydrophobic substrates. For a given Ca value, we ob-
serve thicker and wider ridges for hydrophobic substrates;
runs �a�, �f�, and �k� were carried on at the same Ca value,
still hmax is approximately twice as large in run �k� than in
runs �a� and �f�. This tendency persists regardless of the
value of the capillary number. Figure 5 shows plots of hmax

as a function of Ca for each contact angle considered. For
�E=0° and �E=25° �Figs. 5�a� and 5�b��, hmax has a weak
dependence with Ca, while for �E=90° �Fig. 5�c��, we find
that hmax decreases strongly as Ca increases. This effect is
understood if we consider the limiting case of Ca→0, where
the contact line is expected to recede due to an uncompen-
sated Young force. As the contact line recedes the ridge
grows without bound due to mass conservation.2 A finite Ca
adds a driving force to the picture. The ridge then grows until
the driving force and the Young force is balanced by viscous
stresses. Given that the Young force is larger for larger �E,
the size of the ridge is expected to be larger for hydrophobic
substrates.

We draw as a conclusion that the wetting properties of
the substrate are relevant for the shape of the front. In con-
trast with lubrication theory, D is not the only control param-
eter of the system. One can already anticipate the relevance
of this observation to the stability of the contact line. If the
instability is controlled by the size of the ridge, then hydro-

phobic substrates will, in general, give rise to unstable fronts,
while the opposite will be expected for hydrophilic sub-
strates.

B. Inclined substrates

To study the effect of the inclination angle �D�0� on
the shape of the front we perform runs at five inclination
angles for �E=90° at fixed Ca. Figure 6 shows stationary
profiles for these runs. The main effect of decreasing the
inclination angle is to flatten the profile. In turn, the dynamic
contact angle decreases with decreasing �.

We extend our simulations for various Ca and �E values.
Figure 5 shows plots of hmax /hc as a function of Ca for each
� and �E considered. The effect of wetting properties is di-
minished as the inclination angle increases. For very small �,
hmax /hc→1, regardless of the capillary number and equilib-
rium contact angle. Figure 7 shows plots of the excess con-
tact angle, �D−�E, as a function of Ca. In all cases the con-
tact angle increases with increasing force, as expected. The
slope of the plots decreases for large Ca, indicating that the
contact angle saturates to a limiting value. The effect of de-
creasing the inclination angle is to make the excess contact
angle smaller for a given Ca value.

VI. LINEAR STABILITY ANALYSIS

Having explored the effect of wetting properties in the
unperturbed front, we explore how these affect the evolution
of a slightly perturbed contact line. Here, simulation param-
eters are chosen so the dynamic contact angle lies not only in
the hydrophilic regime, but also in the hydrophobic and su-
perhydrophobic regimes, which have not been studied previ-
ously.

FIG. 3. Stationary xz-interface profiles for D=0 at various �E and Ca. The
interface is defined by the isosurface �=0. The x- and z-scales are the same
for all plots. Each column corresponds to a different equilibrium contact
angle; from left to right: �E=0°, �E=25°, and �E=90°. For each column Ca
increases downward �rows do not correspond to the same Ca value�.

TABLE I. Simulation parameters for runs presented in Fig. 3.

�E=0° �E=25.2° �E=90°

Run Ca �D�°� Run Ca �D�°� Run Ca �D�°�

�a� 0.08 19.9 �f� 0.08 42.4 �k� 0.08 101.1

�b� 0.25 49.7 �g� 0.25 70.6 �l� 0.25 113.6

�c� 0.41 68.9 �h� 0.41 89.4 �m� 0.28 128.0

�d� 0.58 90.3 �i� 0.58 98.8 �n� 0.41 128.5

�e� 0.83 110.0 �j� 0.83 126.1 �o� 0.58 143.2

FIG. 4. Dynamic contact angle as a function of Ca.
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Front destabilization occurs by virtue of a spatial varia-
tion of the capillary ridge. When the front is perturbed trans-
versely �see Fig. 1�, the ridge at the troughs of the perturba-
tion relaxes due to capillarity, generating transverse flows
that feed the peaks. As a consequence, the peaks increase
their local thickness and, in turn, their velocity. This is coun-
tered by surface tension, which tends to flatten the perturbed
contact line. For long wavelengths surface tension is out-
weighed by the driving force and the front destabilizes.

A. Vertical substrates

We first consider a vertical substrate and explore the
dynamics for five different equilibrium contact angles: �E

=0°, �E=25°, �E=60°, �E=75°, and �E=90° at Ca=0.41. In
steady state, the dynamic contact angle for each substrate is
�D=71°, �D=78°, �D=97°, �D=106°, and �D=128°, respec-
tively. For a given steady front, we impose a single-mode
perturbation to the contact line, xP=xU+� cos�ky�, where xU

and xP are the unperturbed and perturbed x-coordinates of
the contact line, respectively, k is the perturbation mode, and
� the perturbation amplitude. In the linear regime, �
�exp��t�, where � is the growth rate of the perturbation. To
estimate � we measure � as a function of time and perform a
linear fit to the log���-t data.

Figure 8�a� shows plots of � /�c as a function of k /kc,
where �c=1 / tc and kc=1 /xc are the characteristic scales of
the problem. For each angle, there exists a band of unstable
modes, which broadens as one increases �D. There is hence a
clear dependence of the stability of the front on the wetting
properties of the solid. Nevertheless, the qualitative form of

FIG. 5. Maximum film thickness as a function of Ca. �a� �E=0°. �b� �E

=25°. The results are presented explicitly for � and Ca, as h does not scale
with the lubrication parameter D. �c� �E=90°.

FIG. 6. Height profiles for varying inclination angle at Ca=0.41 and �E

=90°.

FIG. 7. Excess dynamic angle �with respect to equilibrium contact angle� as
a function of Ca. �a� �E=0°. �b� �E=25°. �c� �E=90°.
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the dispersion relation remains the same for all substrates. In
Fig. 8�b� we scale the dispersion relations, scalings being
�→� /�max and k→k /kn. Here �max and kn are the maxi-
mum growth rate and the first unstable mode of each disper-
sion relation. The collapse is remarkably good. We draw as a
conclusion that the stability of wedge- and nose-shaped
fronts is determined by the same mechanism. Given that the
instability is driven by gravity, thicker ridges should lead to a
wider band of unstable modes and a larger growth rate. This
is consistent with the fact that the size of the ridge, hmax, is
larger for hydrophobic substrates at fixed Ca as explained in
Sec. V �see Fig. 3�. A signature of this effect can be appre-
ciated in the inset of Fig. 8�b�, where we plot
�kmax /kc� / �hmax /hc�2 and �kn /kc� / �hmax /hc�2 as a function of
�hmax /hc�2. Using this scaling, the most unstable mode shows
no dependence on hmax, a condition that can only be fulfilled
if �kmax /kc���hmax /hc�2. Hence, as the size of the capillary
ridge increases, the front has a smaller most unstable wave-
length.

Previous results obtained by Spaid and Homsy12 corre-
spond to the Ca�1 �and therefore �D�1� limit. To regular-
ize the contact line singularity they introduce a slip length at
the solid, which affects the stability of the front. For
tan��D��0.1 they find a most unstable mode kmax /kc=0.5,
the corresponding growth rate lies approximately in the
range of 0.05��max /�c�0.2, and a first unstable mode in
the range of 0.7�kn /kc�0.9. In their simulations, larger
�max and smaller kn are observed as the slip length becomes
small. To recover these results we fix �E=0° and Ca=0.041.
The dynamic contact angle of the steady front is �D=28°.
The resulting dispersion relation is shown in Fig. 8�a� and
should be compared to the one corresponding to �D=71°
which was done at Ca=0.41 and equal �E. The main effect of
decreasing the capillary number is to increase the growth rate
of the perturbation. This is because the size of the ridge �here
given by its width� is typically larger for small Ca �see Figs.
3�a�–3�e��. For Ca=0.041 we obtain kmax /kc�0.5, kn /kc

�0.7 and a maximum growth rate �max /�c�0.07. These
values agree with those reported by Spaid and Homsy. Hence
our results converge to the lubrication theory results at low

Ca. As expected, this low-Ca dispersion relation is qualita-
tively equal to the rest as it collapses to the same universal
curve shown in Fig. 8�b�.

B. Inclined substrates

We now consider the effect of the substrate inclination
angle. We fix �E=90° and Ca=0.41 and consider five incli-
nation angles, �=60°, �=45°, �=30°, �=15°, and �=5°.
As shown in Fig. 6, the profile gradually flattens as the in-
clination angle is decreased. For �=5° the bump disappears
completely. Dispersion relations for each front are shown in
Fig. 9. The effect of the normal force, in agreement with
previous results,11,13 is to suppress the instability. Indeed, for
��15° all wavelengths considered are stable. The maximum
height of the front at this inclination angle is hmax /hc�1.1

The critical inclination angle for the front destabilization
is expected to increase for wetting fluids. To illustrate this
effect, consider, for instance, the low-Ca region of the maxi-
mum height plots shown in Figs. 5�a�–5�c� for, say, �=30°.
At this inclination angle and for Ca=0.08, we have hmax /hc

=1.02, hmax /hc=1.15, and hmax /hc=1.63 for �E=0°, �E

=25°, and �E=90°, respectively. Therefore, the front should

FIG. 8. �a� Dispersion relation curves
for fronts with different �E and Ca. �b�
Collapsed dispersion relations. Inset:
first unstable mode and maximum un-
stable mode scalings with the maxi-
mum film thickness. ���: Ca=0.041,
�E=0°; ���: Ca=0.41, �E=0°; ���:
Ca=0.41, �E=25°; ���: Ca=0.41, �E

=60°; ���: Ca=0.41, �E=75°; ���:
Ca=0.41, �E=90°.

FIG. 9. Dispersion relation for varying substrate inclination angle at Ca
=0.41 and �E=90°.
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be stable for �E=0° as the height approaches the limiting
value h /hc→1. For �E=25°, the ridge must be marginally
unstable, given that the bump size is close �and above� the
threshold value obtained for �E=90°. For �E=90°, the front
must be unstable. Therefore, the critical destabilization angle
increases as �E decreases. From Fig. 5, the critical inclination
angle to destabilize the front at �E=0° is �c�60°.

VII. NONLINEAR DYNAMICS

A. Sawtooth and finger patterns

Having explored the linear stability of the front, we ad-
dress the long time behavior of the instability for the case of
a single mode. We are interested in the effect of the wetting
properties on the emerging patterns. We consider four equi-
librium contact angles, namely, �E=25°, �E=60°, �E=75°,
and �E=90°. For each contact angle, we consider domains of
a size comparable to the most unstable wavelength predicted
by the linear stability analysis.

1. Vertical substrates

We start by considering vertical substrates. For each
equilibrium contact angle we perform runs at different Ca.
After the destabilization of the contact line, we observe a
transient in which a single pattern emerges. Eventually, the
pattern acquires a steady shape and propagates with constant
velocity.

In Fig. 10 we show the evolution of contact line profiles
for �E=25° and �E=90° at different capillary numbers. The
evolution of the interface for angles in between is similar.
Runs �a�–�c� in the figure correspond to �E=90° and increas-
ing Ca. They exhibit a finger pattern that propagates at con-
stant velocity. Wider patterns are obtained for runs �d�–�f�,
which correspond to �E=25° and increasing Ca. Of these,

runs �d� and �e� evolve toward a steady finger at long times,
while run �f� saturates to a steady length. This corresponds to
the sawtooth shape reported in previous studies.7,8,13

Table II summarizes Ca values for each of these runs. It
is clear from the data that the pattern is not entirely deter-
mined by Ca, as both wide and thin patterns are observed for
the same range in Ca. To characterize these patterns we mea-
sure their length L defined as the distance between the mini-
mum �base� and maximum �tip� x-coordinates of the contact
line. From Fig. 10, L is strongly affected by the wetting
properties of the fluid. In Fig. 11 we show plots of L as a
function of time for runs �a�–�f�. For runs �a�–�c�, the time
variation of L is larger than for runs �d�–�f�. In fact, for run
�f�, L is constant over time, meaning that the sawtooth pat-
tern saturates to a given length in the nonlinear regime. To

quantify this effect we measure the growth rate L̇, which we
summarize in Table II. For both equilibrium contact angles,
the growth rate decreases as Ca increases.

Figure 12 shows three-dimensional plots of the free sur-

face when the L̇ has reached a constant value. We observe
that larger patterns are obtained when the difference between
the size of the capillary ridge at the tip and the base is also
large. From lubrication theory, the local velocity is expected

to be u�hmax�y�2 and hence L̇�tc /xc���, with �
= �hmax�yA�2−hmax�yB�2� /hc

2. Here, subscripts A and B stand
for the positions of the tip and the base of the pattern �see

Fig. 1�, Fig. 13 shows a plot of L̇�tc /xc� as a function of �.
The growth rate follows a single curve when plotted as a
function of this quantity, regardless of the capillary number
and equilibrium contact angle. Below a threshold value, �0

TABLE II. Simulation parameters and pattern growth rate for vertical sub-
strates.

Run �E�deg� Ca L̇�tc /xc�

�a� 90 0.21 0.82

�b� 90 0.41 0.45

�c� 90 0.83 0.14

�d� 25 0.41 0.12

�e� 25 0.83 0.04

�f� 25 1.65 0.00

FIG. 10. Interface profiles at different
contact angles and capillary numbers.
Parameters for each run are summa-
rized in Table II.

FIG. 11. Pattern length as a function of time. Letter keys correspond to
parameters shown in Table II. �a�–�c� �E=90° and increasing Ca; �d�–�f�
�D=25° and increasing Ca.
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=0.33�0.09, the growth rate vanishes, meaning that the am-
plitude of the pattern saturates while there is still a finite
difference of the ridge thickness between its tip and its base.
This effect is a consequence of the balance between surface
tension, which tends to flatten the contact line and the un-
even mass distribution caused by the instability.

2. Inclined substrates

We now study the effect of the inclination angle in the
shape of the pattern. We consider �E=90° and Ca=0.41 and
perform simulations at �=90°, �=60°, and �=45°. Figure
14 shows the evolution of the contact line as � is varied. The
effect of decreasing � is to decrease the growth rate and to

increase the width of the pattern. The relevant effect of � is
to flatten the free surface, a situation that is also attained by
increasing substrate wettability. Hence, the inclination angle
and substrate wettability have similar effects. Indeed, the pat-
tern growth rate in these runs falls in the same curve when
plotted against �, as shown in Fig. 13.

B. Finger dynamics

In the following we investigate whether the same finger
solution is always observed regardless of the initial state of
the system. We first examine the evolution of various initial
conditions composed of a single mode. Next we consider the
evolution of a multiple mode perturbation, where the most
unstable mode is expected to dominate the dynamics accord-
ing to linear stability results. Finally, we examine the effect
of the system size. To compare results in this section to the
single finger solution parameters values are fixed according
to run �d� in Table II, which corresponds to a finger in the
hydrophobic regime.

1. Effect of initial conditions

We consider a system of size W��max, where �max is
the most unstable wavelength according to the linear stability
analysis. Initial conditions are fixed as �i� a single-mode per-
turbation with �=W, �ii� a parabolic perturbation, and �iii�–
�v� a fingerlike perturbation with initial finger widths �
=0.45, �=0.63, and �=0.80, respectively, where � is mea-
sured in units of the system size. The evolution of the contact
line is depicted in Fig. 15. Run �i� shows the evolution of the
�=W perturbation, which grows and saturates to the finger
pattern. The next four cases ��ii�–�v�� show all the same type

(a) (b) (c)

(d) (e) (f)

FIG. 12. �Color online� Interface profiles at different contact angles and
capillary numbers. Parameters for each run are summarized in Table II.

FIG. 13. Pattern growth rate as a function of the difference of the squared
film thickness measured at the tip and the base of the pattern.

FIG. 14. Interface profiles at different inclination angles. �a� �=90°, �b� �
=60°, and �c� �=45°.

FIG. 15. Contact line evolution for different initial conditions: �i� Sinusoidal
perturbation; �ii� parabolic perturbation; �iii�–�v� fingerlike perturbation with
finger widths �=0.45, �=0.63, and �=0.80 �in units of the width of the
system�.
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of evolution. The interface rapidly relaxes from its initial
configuration at the early times of the simulation and satu-
rates to a finger pattern, which for all cases has the same
finger width and pattern growth rate as that from the run �d�
in Table II. These results indicate that the stationary solution
is not sensitive to initial conditions.

For a perturbation composed of more than one mode we
expect that the most unstable wavelength dominates the dy-
namics, according to linear stability results. We consider a
system of width W�2�max and an initial perturbation com-
posed of four modes. Corresponding wavelengths are �=W,
�=W /2, �=W /4, and �=W /8, of which �=W /2 is ex-
pected to grow faster than the rest. The amplitude is set to a
small value �about two lattice spacings� with random devia-
tions uniformly distributed. As shown in Fig. 16, all wave-
lengths except for �=W /2 rapidly decay. The dominant
mode then grows until a two-finger solution is obtained.
Each of the fingers turns out to be identical to the single
finger solution obtained for run �d�, their length being dic-
tated by initial conditions.

2. Effect of system size

We next focus on the effect of the system size in the
observed pattern. We consider four system sizes, W=�max,
W=3�max /2, W=2�max, and W=3�max. For W=�max we fix
a two-finger initial condition, while for all other runs we fix
a single-mode perturbation of wavelength �=W. Figure
17�a� shows the evolution of the contact line for the two-
finger initial condition. Even though the amplitude of both
fingers is large, the system size allows only the growth of
one finger. After a transient in which the shorter finger de-
clines, the expected one-finger solution is thus recovered.

Figures 17�b� and 17�c� show the evolution of the contact
line for W��max. Even though a single mode was present at
the initial condition, the system evolves and additional
modes emerge. In all cases, two-finger stationary solutions
are obtained. Fingers have the same shape, width, and
growth rate as the single finger solution. Nonetheless, the
distance between fingers varies sensibly with increasing sys-
tem size. Such a dispersion in pattern spacing is in agreement
with early observations by de Bruyn,3 who reported devia-
tions of as much as 25% in his measurements. This was later
confirmed by Kondic and Diez,13 who pointed out that grow-
ing fingers interact depending on the initial conditions, thus
generating steady patterns spaced with a certain degree of
dispersion. Fingers grow whenever a sufficient amount of
mass is available, i.e., when the separation between fingers
lies in the band of unstable wavelengths given by linear sta-
bility.

VIII. DISCUSSION AND CONCLUSIONS

The flow of forced thin films on dry inclined substrates
has been investigated for different substrate wettabilities, as
well as for a wide range of inclination angles at large capil-
lary numbers. Film dynamics explored in this work range
from the hydrophilic to the superhydrophobic regimes.

Our results indicate that the stability of the contact line is
influenced by the wetting properties of the solid. Wedge
shaped fronts are generally more stable than nose-shaped
ones. However, the stability of noses and wedges remains
qualitatively the same, as all dispersion relations collapse to
a single curve. The reason for this universal behavior lies in
the fact that the main role of wetting properties is to fix the
size of the capillary ridge, which is the relevant parameter
for the stability of the front. The more hydrophobic the sub-
strates the larger the ridge size. Then, hydrophobic substrates
tend to destabilize the front. The size of the ridge can also be
controlled via the inclination angle of the substrate. Accord-
ingly, wider bands of unstable modes are observed for large
inclination angles. For inclined substrates, the normal com-
ponent of gravity stabilizes the film for completely wetting
fluids, in agreement with previous studies.13,14 This effect is
observed for partially wetting and nonwetting fluids as well.

The longtime evolution of the instability gives rise to the
growth of two types of pattern; either sawtooth shaped pat-
terns or finger shaped ones are observed. The substrate wet-
ting properties and inclination angle have a role in the deter-
mination of the type of pattern. Fingers are observed at either
hydrophobic substrates or large inclination angles, while the
opposite is found for the sawtooth pattern. A direct connec-
tion with size of the capillary ridge then follows. Hydropho-
bic substrates and large inclination angles favor the forma-
tion of large capillary ridges. In such case, surface tension is
not enough to balance the driving force given by the weight
of the ridge along the contact line. Therefore, a finger devel-
ops. On the other hand, when the substrate is hydrophilic or
the inclination angle is small, the size of the ridge becomes
small accordingly. Surface tension then balances the driving
force in the nonlinear regime, thus giving rise to a saturated
sawtooth pattern. Indeed, we find that all growth rates are

FIG. 16. Contact line evolution for a perturbation composed of four modes.

FIG. 17. Contact line evolution for different system sizes. �a� W=�max, �b�
W=3�max /2, �c� W=2�max, and �d� W=3�max.
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parametrized by the difference of the size of the ridge be-
tween the base and the tip of the pattern.

The robustness of the finger solution is studied. We have
found that for a given choice of Ca, �, and �E, the same
finger solution is obtained, regardless of the initial condition
and system size. Fingers grow whenever a sufficient mass
reservoir is available, i.e., whenever the separation between
them is comparable to the most unstable wavelength pre-
dicted by linear stability.
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