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We perform a three-dimensional study of steady state viscous fingers that develop in linear channels.
By means of a three-dimensional lattice-Boltzmann scheme that mimics the full macroscopic
equations of motion of the fluid momentum and order parameter, we study the effect of the thickness
of the channel in two cases. First, for total displacement of the fluids in the channel thickness
direction, we find that the steady state finger is effectively two-dimensional and that previous
two-dimensional results can be recovered by taking into account the effect of a curved meniscus
across the channel thickness as a contribution to surface stresses. Second, when a thin film develops
in the channel thickness direction, the finger narrows with increasing channel aspect ratio in
agreement with experimental results. The effect of the thin film renders the problem
three-dimensional and results deviate from the two-dimensional prediction. © 2007 American
Institute of Physics. �DOI: 10.1063/1.2801513�

I. INTRODUCTION

Interfacial instabilities in three-dimensional channels
give rise to a rich phenomenology in systems that range from
nano- and microscales1 to macrometric channels,2–4 and from
which a number of practical applications can be drawn.

For instance, controlled drop breakup in microchannels
has proved useful in the fabrication of low polydispersity
microemulsions5 and in the enhancement of microreaction
processes.6,7 In the latter, three-dimensional effects are cru-
cial, as they are responsible of a vortex flow structure within
the droplet8 that enhances the mixing process of the reac-
tants.

A widely studied interfacial instability in channels is that
of fingering, which occurs whenever a low viscosity �or high
density� fluid drives a high viscosity �or low density� one.
The instability, first studied by Saffman and Taylor,9 leads to
interface dynamics where fingerlike structures emerge and
compete. The problem has a steady state solution, composed
by a single finger of constant velocity U and occupies a
fraction � of the width of the channel.

Experimentally, finger growth has been studied mainly
in Hele-Shaw cells. These consist of a pair of plates of length
L and width W separated by a thickness b. For such systems,
it has been pointed out10 that the stationary finger is deter-
mined by a single control parameter: a modified capillary
number defined as 1/B=12Ca/�2. For a fluid with viscosity
� and surface tension �, the capillary number, i.e., Ca

=�U /�, measures the competition between driving forces,
such as viscous stresses and gravity, and restoring forces,
such as surface tension. 1 /B also includes the degree of
asymmetry of the cell, given by the aspect ratio �=b /W. If
1 /B is the only control parameter of the system, all experi-
mental data, i.e., all finger widths, should be described by a
single curve when plotted as a function of this parameter.
Contrary to this view, experiments show that there exists a
family of curves � versus 1/B for different aspect ratios.11,12

This fact suggests that a three-dimensional effect, given by
the interplay between the dynamics in the channel-thickness
and in the channel width, is determinant for the steady state
solution.

Theoretically, fluid flow in a channel at small velocities
pertains to the lubrication regime, in which the flow occurs
mainly along the direction of L given that it is much larger
than both W and b. Hele-Shaw flows are a limiting case in
lubrication theory, where b is much smaller than W. Owing
to the smallness of b, the problem is rendered effectively
two-dimensional by averaging all fields over the thickness of
the channel. Averaging the equations of motion also reduces
the interface from a surface to a line, often called the leading
interface. In views of the averaged model, three-dimensional
effects enter as perturbative corrections to the boundary con-
ditions that hold at the leading interface in terms of Ca and �,
particularly to the Gibbs-Thomson condition, which relates
the pressure drop across the interface to the interface curva-
ture and surface tension.
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problem has been made since the pioneering work of Saff-
man and Taylor,9 who solved the problem of a stationary
finger in the absence of surface tension in two dimensions.
McLean and Saffman13 included the effect of surface tension
and were the first to obtain a � versus 1/B prediction by
solving the two-dimensional model numerically. According
to their results, � is a monotonically decreasing function of
1/B that saturates to �→1/2 as 1/B→�. The prediction of
McLean and Saffman is unique in 1/B, so the role of the
aspect ratio is precluded from their theory.

The relevance of three-dimensional effects was first sug-
gested by Park and Homsy,14 who pointed out that a thin film
of fluid in the channel-thickness direction would contribute
to the pressure drop at the leading interface. Using perturba-
tion methods for slightly curved leading interfaces �small ��,
they found that for low Ca, the pressure drop varies as Ca2/3,
a result that matched the early prediction of Bretherton15 for
capillary tubes.

Sarkar and Jasnow16 used the modified pressure drop to
solve the steady state finger. Their results agreed better with
experiments but were restricted to low values of Ca. It was
shown by Tabeling and Libchaber11 that corrections to the
pressure drop can be used to reduce three-dimensional ex-
perimental data to the two-dimensional results of McLean
and Saffman. A modified pressure drop can be accounted for
as an effective surface tension. Using the correction of Park
and Homsy, Tabeling, and Libchaber were able to reduce
their data to McLean and Saffman results for moderately low
values of 1 /B, where fitting parameters were used to esti-
mate the correction terms. In an experimental study,12 Tabel-
ing, Zocchi, and Libchaber observed that, contrary to the
McLean-Saffman prediction, the finger width can go below
the one-half limit for sufficiently high 1/B and sufficiently
large �.

Reinelt extended the expansion of the pressure drop up
to O�1� in Ca and included the effect of larger aspect ratios.17

Computation of the steady state finger yielded solutions that
better agreed with experiments for O�1� values of Ca. For
small �, Reinelt observed a better agreement between numer-
ics and experiments. However, for relatively large �, this
agreement is lost.

Higher Ca values have only been explored in the case of
flat leading interfaces by Halpern and Gaver.18 Their numeri-
cal results are consistent with results found by Reinelt and
Saffman19 for Ca O�1� and �=0, and show that the pressure
drop is insensitive to the capillary number for Ca�20.

As an alternative to the sharp interface model, a number
of mesoscopic approaches have gained importance in inter-
face dynamics. These are based on order parameter evolution
equations of the Cahn-Hilliard type. Being mesoscopic in
nature, fluids are separated by diffuse regions instead of
sharp interfaces, where the interface boundary conditions
arise naturally. All mesoscopic models that address the vis-
cous fingering problem so far are two-dimensional. For fluids
of arbitrary viscosities and densities, Folch et al.20,21 used a
set of coupled evolution equations for the velocity potential
and order parameter that describes accurately the early stages
of destabilization of the leading interface, and approaches
McLean and Saffman results as the viscosity of the displac-

ing fluid is made negligible. The strict one-sided situation,
where one of the fluids is inviscid, was studied by
Hernández-Machado et al.22 They used a single evolution
equation for the concentration that includes dynamic effects
in the form of chemical potential gradients and described the
steady state finger correctly.

In a preceding paper,23 we have shown that a detailed
three-dimensional description of fluid-flow in a channel can
be done by means of a mesoscopic model, which we imple-
ment numerically via a lattice-Boltzmann algorithm. The
model considers a fluid-fluid interface in contact with solid
boundaries. In contrast to classic approaches, it allows for
slip at the contact line by means of a diffusive mechanism
inherent to the mesoscopic nature of the interface. This cir-
cumvents the complications of contact line dynamics in the
classic formulation, associated with the viscous dissipation
singularity.24 In Ref. 23, we focused on the case of a flat
leading interface. We showed that depending on the velocity
of the contact lines, which we control by modifying the dif-
fusion strength, the interface can either advance as a menis-
cus or develop as a finger. In the latter case, a thin film of
displaced fluid is left adhered to the walls of the channel.

In this paper we extend our lattice-Boltzmann simula-
tions to the case of a nonflat leading interface, where a vis-
cous finger is expected to appear. Our aim is to provide a
detailed description of the mechanisms that affect the steady
finger and that cause deviations from two-dimensional re-
sults. To do so, we study fingers that form in the meniscus
and thin film regimes separately. We cover values of Ca up to
O�10� and explore various aspect ratios.

The paper is organized in the following manner. In Sec.
II we present the governing equations of the system which
we solve numerically by means of a lattice-Boltzmann algo-
rithm, presented in the preceding paper.23 Results are pre-
sented in Sec. III. In Sec. III A we describe the simulation
strategy and parameter steering procedure. As a validation
test, in Sec. III B we compute the dispersion relation of the
interface in the two-dimensional limit and compare it to the
analytic prediction of the Saffman-Taylor problem. Section
III C is devoted to the study of stationary viscous fingers; in
Sec III C 1 we focus on fingers pertaining to the meniscus
regime in the channel thickness, which we found to be effec-
tively two-dimensional, while in Sec. III C 2 fingers in the
thin film regime are studied. We find that fingers in the thin
film regime are three-dimensional and cannot be described
by the two-dimensional theory in general. A discussion of
our results where we compare with previous experiments is
presented in Sec. IV. In Sec. V we present the conclusions of
this work.

II. GOVERNING EQUATIONS

We consider the motion of two viscous fluids, whose
dynamics are governed by the Navier-Stokes equations,

���tv + v�� · v�� = − �P − � � 	 + ��2v + �g . �1�

Here, v is the fluid velocity, P is the pressure, � is the den-
sity, � is the fluid viscosity, and g is the acceleration of
gravity. The extra term, i.e., ��	, is mesoscopic and ac-
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counts for interfacial forces. Here, ��r , t� is an order param-
eter and 	��� is the chemical potential. � has the property of
being uniform in the volume of each phase and nonuniform
in an interfacial region of typical size 
. In the present case,
volume values are chosen as �= ±1 for the displacing and
the displaced fluids, respectively, so the interface is located
at �=0. The size of the interface is set to 
=0.57.

The dynamics of � obey a convection-diffusion equa-
tion,

�t� + v · �� = M�2	 , �2�

where M is a mobility coefficient. In equilibrium, the pres-
sure and chemical potential minimize a free energy func-
tional, from which explicit expressions P��� and 	��� can be
derived. For further details, the reader is referred to Ref. 23.

We work on a linear channel, composed by two solid
plates of width W and length L parallel to the xy plane,
separated by a distance b, as depicted in Fig. 1. There exist
two principal directions in the system: a lateral direction,
parallel to the xy plane, and a transverse one parallel to the
xz plane. We will denote these by subscripts “�” and “�,”
respectively.

The impenetrability and stick boundary conditions at the
walls are enforced by setting v�x ,y ,z=0�=v�x ,y ,z=b�=0
and �v�x ,y ,z=0�=�v�x ,y ,z=b�=0. At both ends of the
channel, in the x direction the flow is homogeneous. Hence,
�x�v�x=0,y ,z�=�x�v�x=L ,y ,z�=0, and �x�v�x=0,y ,z�
=�x�v�x=L ,y ,z�=0. Periodic boundary conditions are im-
posed in the y direction.

As for the fluid-fluid boundary, the Gibbs-Thomson re-
lation is recovered by integrating Eq. �1� across the interfa-
cial region,

�P = �� 1

R�

+
1

R�

� , �3�

where � is the surface tension and R� is the radius of curva-
ture of the interface in the direction �.

We now briefly review the classic treatment of the prob-
lem. First, v� is assumed to be much smaller than v�, which
in turn is expected to be parabolic in z. As a result, Eq. �1� is
recast in the form of an average velocity field that holds in
the volume of each fluid, called Darcy’s law,

�v�	 = −
b2

12�
��P − �g�� , �4�

where triangular brackets denote an average over the channel
thickness. Under these conditions, R� is expected to be much
larger than R�. Hence, in the two-dimensional theory, the
Gibbs-Thomson relation is simplified to �P=� /R�.

Corrections to this expression arise whenever 1 /R� is
not negligible. For such cases, Libchaber and Tabeling11

have proposed that thin film effects can be accounted for by
defining an effective surface tension

�* = ��1 +
R�

R�

� ,

so the two-dimensional form of the Gibbs-Thomson condi-
tion is recovered. For this purpose, they used the estimation
of Park and Homsy14 of the pressure drop for Ca→0 and
slightly curved leading interfaces ��→0�:

�P = �� 

4R�

+
3.80

b/2
Ca2/3� . �5�

As a result, their experimental results collapsed to the
McLean-Saffman curve when using the corresponding defi-
nition of the control parameter; i.e., 1 /B*= �� /�*�1/B.

We solve Eqs. �1� and �2� numerically by means of a
lattice-Boltzmann algorithm. For further details of the
method, the reader is referred to the preceding paper.23

III. RESULTS

A. Simulation parameters and setup

The traditional description of the viscous fingering prob-
lem corresponds to situations in which the relevant forces at
play are viscous stresses and capillarity. For the particular
case of fingering in a Hele-Shaw cell, these forces are ex-
pressed in terms of a modified capillary number10 1 /B
=12�W /b�2���U+��gb2 /12� /�, where �� and �� are the
respective differences in viscosity and density between the
fluids.

To ensure that capillarity and viscous forces dominate
the dynamics of the fluids, inertia must be small compared to
both of these forces. We enforce this situation by neglecting
the convective term in Eq. �1�. As for compressibility, we
consider low Mach number flows, which we achieve by
keeping U�cs. For our scheme, it suffices to set U�0.01.

Our goal is to explore the viscous fingering problem for
a wide range in 1/B. Due to computation resource limita-
tions, � is restricted to at most O�10� for the majority of runs.
To achieve high values of 1 /B, say O�103�, Ca must then be
O�10�. Our strategy is to keep the interface velocity and the
viscosity in ranges of U=O�10−2� and �=O�10−1�. Hence,
Ca can be tuned by means of the surface tension.

The channel is implemented as follows. We set a rectan-
gular simulation box of dimensions Nx�Ny �Nz. Due to the
flow symmetry, we simulate only one fourth of the real chan-
nel by setting boundary conditions as follows: �y�vy�x ,y
=0,z�=�y�vy�x ,y=W /2 ,z�=0, �y�vy�x ,y=0,z�=�y�vy�x ,y
=W /2 ,z�=0, �z�vz�x ,y ,z=0�=�z�vz�x ,y ,z=0�=0.

FIG. 1. �Color online� Schematic representation of the system. Dashed lines
indicate projections of the fluid-fluid interface in the xy and xz planes. The
leading interface corresponds to the xy projection.
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B. Linear stability in the two-dimensional limit

We first verify the linear stability of the interface; i.e.,
the behavior of an initially flat interface that has been sub-
jected to a small perturbation. We study fluids of equal vis-
cosities, so the instability is gravitationally driven. This is
done by fixing the body force term in Eq. �1� as �g
= �8� /b2�Uexp��+1� /2, where Uexp is the maximum ex-
pected velocity for a Poiseuille flow. The modified capillary
number reduces to 1/B=W2��g /�, In this case, the linear
stability analysis of the interface evolution of the averaged
equations yields the dispersion relation

��k� =
b2

24�
k���g − �k2� , �6�

where � is the exponential growth rate of a sinusoidal per-
turbation to the flat interface solution. The perturbation is
characterized by its wavelength; i.e., �=2 /k. By consider-
ing dimensionless frequencies ��=� / �U /2W�B1/2 and wave
numbers k�=WB1/2k, the dispersion relation becomes univer-
sal: ���k��=k��1−k�2�.

We prepare a base flow corresponding to a flat interface
in the xy plane that propagates at constant velocity. The in-
terface in the xz plane is nearly flat throughout the simula-
tion, so the system is effectively two-dimensional. Once the
base flow is fully developed, the interface is shifted accord-
ing to a single-mode perturbation of wavelength �=W and
an initial small amplitude. We follow the evolution of the
amplitude A�t�, which is measured as A�t�=xtip�t�− x̄�t�,
where xtip and x̄�t� are the interface tip and mean interface
positions, respectively. The growth rate � is extracted as a
linear fit of log10(A�t�) versus t.

Figure 2 shows a comparison between the universal dis-
persion relation and our results. To quantify the degree of
accuracy of these results, we fit our data to the general form
ak��b−ck�2�. We find a most unstable mode at kmax� 
0.56
and a first unstable mode at k0�
0.96, both 4% below the
exact result.

C. Viscous fingers

In a preceding study,23 we have shown that it is possible
to control the generation of a thin film in the channel by
adjusting the diffusivity of the order parameter. Although for
usual experimental conditions this is not a relevant parameter
�it might be relevant in nanochannels�, it gives the possibility
of elucidating the role of a thin film in viscous fingers. Dif-
fusivity is accounted for by a Péclet number, i.e., Pe
=Ub /D, where D is the diffusion coefficient. By combining
the effects of Pe and Ca, one can either suppress or induce
the formation of a thin film. In particular, a small value of the
product Ca Pe results in the suppression of thin films, while
the contrary is obtained for high Ca Pe. Results from the
preceding work give a penetration threshold of Ca Pe

10−1.

The strategy is to first study fingers for which Ca Pe
�10−1, and then extend this simulation to Ca Pe�10−1.

1. Meniscus regime

We first study fingers for which no film of displaced
fluid develops in the xz plane of the channel. We carry out
simulations with modified capillary numbers in the range
100�1/B�6000. We have studied different geometries,
ranging from �=0.17 to �=0.04. The aspect ratio is de-
creased by decreasing the channel thickness. We summarize
the simulation parameters in Table I.

For each run, we observe the usual phenomenology for
the leading interface. During the early stages of interface
evolution, the amplitude of the perturbation grows until a
finger emerges and widens. This stage is followed by a re-
laxation of the interface shape, until a Saffman-Taylor finger
develops. The finger propagates with a steady velocity U,
leaving behind a growing region where the finger has flat
sides. In this region a constant finger width �W can be de-
fined. As for the channel thickness, we observe that the ini-
tially flat interface rapidly relaxes to a meniscus, which also
has a steady shape. In Fig. 3 we show a three-dimensional
plot of the interface for run �a� in Table I at two different
times. In the plot we show both the contact lines and the
leading interface; both contact lines follow the leading inter-
face.

FIG. 2. Dispersion relation for the linear stability of the interface. Simula-
tion parameters �in simulation units� are �=0.046, �=0.1, b=11.0 for all
runs; �+� ��g=3.3�10−6 and ��� ��g=6.6�10−6.

TABLE I. Control parameters and finger width for runs in of the meniscus
regime.

Run � Ca Ca Pe 1/B �

�a� 0.17 0.11 0.08 99 0.709

�b� 0.17 0.22 0.16 198 0.675

�c� 0.17 0.45 0.19 290 0.640

�d� 0.06 0.11 0.04 522 0.558

�e� 0.06 0.19 0.02 1045 0.525

�f� 0.06 0.23 0.03 1672 0.523

�g� 0.06 0.48 0.11 2090 0.529

�h� 0.06 0.68 0.21 3136 0.518

�i� 0.04 0.74 0.26 4175 0.521

�j� 0.05 0.76 0.27 6012 0.519
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To check for consistency in the steady state solution we
use the semiempirical interface profile obtained by Pitts,25

which reproduces experimental results accurately for a wide
range of finger widths. The equation for the interface shape
reads

cos�y�/2�� = exp�x�/2�� , �7�

where x� and y� measure the distance from the finger tip in
units of half the channel width. The natural scalings in this
equation are x� /2� and y� /2�. Consequently, all profiles
should collapse into a single curve if these scalings are used.
Figure 4 shows plot of interface profiles corresponding to
runs of Table I. As expected, all interface profiles fall in the
same universal curve within error. In addition, our collapse is
in fair agreement with Eq. �7�.

The selection rule in the viscous fingering problem is
expressed as the functional dependence of the finger width
with the modified control parameter. We compare our results
with the � versus 1/B prediction of McLean and Saffman.
We find that runs with �=0.17 show wider fingers than pre-
dicted, while runs with smaller � agree better with the two-
dimensional result. Even in the absence of a thin film, the xz
interface projection has a certain curvature. This can be ac-
counted for by defining an effective surface tension in terms
of the radii of curvature of the interface, which we are able to
measure directly. The effective surface tension then reads

�*=��1+R� /R��. The correction factor in this expression is
given by the quantity in parentheses, which increases for a
strongly curved meniscus. The rescaled control parameter
then reads 1/B*= �1/B� / �1+R� /R��. Of course, this correc-
tion should be more evident in the low 1/B region, where �
varies rapidly with the modified control parameter. In Fig. 5
we show a plot of � versus 1/B*. Points fall on the McLean-
Saffman curve for the wide range of 1/B* considered, re-
gardless of the aspect ratio.

2. Thin film regime

We now extend our simulations to fingers in the film
regime. Penetration in the xz plane occurs for high Ca Pe, so
we choose to sample 1/B at fixed D. Consequently, Ca Pe
increases with increasing 1/B. To resolve the thin film cor-
rectly, we must take into account the finite size of the inter-
face. As explained in Ref. 23, the thin film is insensitive to
the channel thickness already for b=23. We therefore choose
sufficiently thick channels. We explore a wide range of as-
pect ratios, i.e., 0.25���1.0, and modified capillary num-
bers; i.e., 800�1/B�5300.

We first explore the Ca Pe�O�1� region, close to the
penetration threshold. In Fig. 6 we show interface projec-
tions in the xy and xz planes located at z=b /2 and y=W /2,
respectively. We show two sets of interfaces, corresponding
to two different Ca Pe values: �a� Ca Pe=0.85 and �b�
Ca Pe=4.44. In Fig. 6�a�, the interface in the xz plane pre-

FIG. 3. Interface snapshots at two different times for �=0.17 �the plot is
off-scale�, 1 /B=99 and Ca Pe=0.08. The thick line parallel to the xy plane
corresponds to the leading interface, while the thick line parallel to the xz
plane corresponds to the interface projection in the center of the channel.
Thin lines correspond to the contact lines. The first snapshot corresponds to
t=0.11b /U, while the second snapshot, at t=17.74b /U, corresponds to the
steady state finger.

FIG. 4. Collapsed interface profiles in the xy plane for the meniscus regime.
Parameter values corresponding to each symbol can be consulted in Table I.
The error �small bar at the right bottom� corresponds to one lattice spacing.
The larger bar indicates the size of the diffuse interface, approximately 3
.

FIG. 5. Finger width as a function of the rescaled control parameter 1 /B* in
the meniscus regime.

FIG. 6. Interface projections in the xy and xz planes for runs with different
Ca Pe values. Plots correspond to the same simulation time. �a� Ca Pe
=0.85 and �b� Ca Pe=4.44.
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sents a penetrating structure, but a well developed film is
absent. The finger in the xy plane is not well developed ei-
ther, and it presents an anomalous tip. Conversely, in Fig.
6�b�, both interface projections describe well developed fin-
gers. It is then clear that deviations from the Saffman-Taylor
finger in the xy plane are correlated to the interface structure
in the xz plane. An interesting feature of the run correspond-
ing to Fig. 6�a� is that the xz interface structure is persistent.
This means that the length of the finger in the xz plane is
constant in time, a consequence of the slip velocity of the
contact line. The diffusion strength is not large enough to
maintain a meniscus, which on the one hand makes the slip
velocity smaller than the channel velocity. Nevertheless, as
the interface relaxes to a thin film shape, curvature devia-
tions from equilibrium increase the slip velocity, making the
contact line advance to restore the meniscus shape.

We next explore the range Ca Pe�O�10� for which
simulation parameters and observed finger widths are sum-
marized in Table II. In Fig. 7 we present snapshots of the
three dimensional interface at two different times for run �b�
in Table II. The first snapshot corresponds to the early stage
of the finger formation. Looking at the interface projections
in the xy plane, we see that the contact line �light line� is
close to the leading interface �dark line� and no film is
present in the xz plane. In the next snapshot the contact line
has moved away from the tip, thus giving rise to the growth
of a wetting film. The shape of the finger is in agreement
with the typical morphology found in experiments. To illus-
trate this, in Fig. 8 we compare the shape of the finger to Eq.
�7�. Within error, our profiles are consistent with Pitts shape.

Figure 9 shows the measured finger width as a function
of 1/B. The lowest aspect ratio we have considered corre-
sponds to �=0.25 �runs �a�–�d� in Table II�. We see that for
all 1 /B values considered, the finger width falls above the
McLean-Saffman prediction. We increase the aspect ratio to
�=0.35 �run �e� in Table II�. As a result, the measured finger
width decreases. Runs for which � is larger confirm this ten-
dency in a systematic way. Tests �f�–�j� in the same table
correspond to a fixed value of 1 /B with increasing �. We find
that for sufficiently large � the finger width goes below the
one-half theoretical limit of McLean and Saffman.

IV. DISCUSSION

Our results show that the finger width decreases with
increasing aspect ratio. To maintain 1/B fixed while varying
the aspect ratio of the channel, one has to vary Ca accord-
ingly. As a consequence, the film thickness and the capillary
pressure are altered. If we increase the aspect ratio �as in the
high 1/B region in Fig. 9�, then Ca must decrease to keep
1/B fixed. As a consequence, the film thickness and the cap-
illary pressure decrease as � increases, which is consistent
with a narrower finger.

This behavior has been observed, for instance, in experi-
ments by Tabeling, Zocchi, and Libchaber,12 and addressed
in numerical calculations by Reinelt,17 where the effect of

TABLE II. Control parameters and finger width for thin film regime runs.

Run � Ca Ca Pe 1/B �

�a� 0.25 2.80 12.32 835 0.592

�b� 0.25 3.36 17.74 1002 0.589

�c� 0.25 6.61 68.61 2004 0.569

�d� 0.25 15.9 400.41 4003 0.558

�e� 0.35 8.96 1515 1403 0.549

�f� 0.49 34.7 4330 5247 0.527

�g� 0.64 50.9 3973 5247 0.517

�h� 0.78 68.5 7192 5247 0.508

�i� 1.00 91.9 8019 5247 0.493

�j� 1.00 131 156 598 5430 0.494

FIG. 7. Interface snapshots at two different times for �=0.25 �the plot is
off-scale�, 1 /B=1002 and Ca Pe=17.74. Thick lines correspond to the xy
and xz interface projections in the center of the channel. Thin lines corre-
spond to the contact lines. Times are t=0.57b /U and t=28.84b /U.

FIG. 8. Rescaled interface profiles for the thin film regime. Symbols corre-
spond to data presented in Table II. The bars in the bottom at the right
indicate the error bar and diffuse interface size as in Fig. 4.

FIG. 9. Finger width as a function of 1/B.
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the thin film was introduced perturbatively in the two-
dimensional model. Experiments suggest that, for high 1/B,
increasing the cell aspect ratio has a thinning effect on the
finger, which is what we observe in our simulations. Results
of Reinelt suggest the opposite tendency.

The aforementioned experiments were done at small �
and Ca, and at high viscosity contrast, defined as c= ��2

−�1� / ��2+�1�. As we have shown in Ref. 23, the thin film
thickens as c→1. Under these conditions, experiments show
that the finger width goes below the one-half limit even for
cells with �=0.009. This is due to the small thickness of the
film which is a consequence of the low Ca and high c values
used in experiments. In our simulations the thin film is about
t /b
0.25, much thicker than the experimental value of t /b

0.05. As a consequence, curvature effects in our simula-
tions are strong enough to keep the finger width above 1/2
even for high values of �. To achieve the experimental re-
gime, thinner film should be considered. We have considered
a cell aspect ratio of �
0.05 and c=0.9. Nevertheless, Ca is
still too large; the film is then thick enough to keep us in the
low 1/B* regime, where the finger width is still larger than
one half of the channel width. Due to computational limita-
tions we do not explore smaller �.

The fact that for a given 1/B there exist different finger
widths for different aspect ratios raises doubts if 1 /B is the
only control parameter present in the system. To this end, we
compute the rescaled surface tension �*=��1+R� /R��,
where the radii of curvature are measured at the finger tip.
We then rescale the control parameter according to 1/B*

= �� /�*�1/B. In Fig. 10 we show a plot of the finger width as
a function of the rescaled control parameter. At low 1/B*,
results agree with McLean-Saffman results. We conclude that
in this region the finger is effectively two-dimensional and
that three-dimensional effects can be accounted for even at
Ca�1.

At high values of the rescaled control parameter, our
results deviate systematically from the McLean-Saffman
curve, until the finger width goes below the one-half limit of
the two-dimensional theory. This behavior is qualitatively
different from the one found for the meniscus regime, in
which the McLean-Saffman curve could be recovered at any

value of 1 /B*. Hence, we conclude that deviations from two-
dimensionality are caused by the thin film.

An important feature in the � versus 1/B* plot is that
finger width appears to be determined by 1/B* uniquely. This
suggests that 1 /B* is the only control parameter of the prob-
lem.

We have explored a region of values of the aspect ratio
between the Saffman-Taylor ��→0� and Rayleigh-Taylor
��=1� limits of the fingering instability. In both limits, the
relevant control parameter appears to be an effective modi-
fied capillary number. In addition, the interface shape is re-
markably universal, as suggested by Figs. 4 and 8.

V. CONCLUSIONS

We have carried out a detailed study of the viscous fin-
gering problem in three-dimensional channels for fluids of
different densities and viscosities. We have studied the single
finger solution for systems in which either a thin film devel-
ops across the channel thickness or a meniscus is stabilized.

For systems in which no thin film is present, the
McLean-Saffman two-dimensional results describe the de-
pendency of the finger width as a function of a rescaled
modified capillary number 1/B*, which has a correction that
depends on the curvature of the interface direction of the
channel thickness. This holds for arbitrary high values of
1 /B*, evidencing that a complete displacement across the
channel thickness renders the problem two-dimensional.

We have extended our studies to situations where a thin
film develops across the channel. We find different values of
the finger width when changing the channel aspect ratios at
fixed modified capillary number, an observation that is con-
sistent with previous experiments.12 This nonuniqueness
seems to disappear as the control parameter is corrected by
curvature effects associated to the thin film; i.e., when the
finger width is compared to 1/B*.

For low 1/B*, the finger width collapses to the McLean-
Saffman curve. However, at high 1/B*, the finger width de-
viates from this curve, and goes below the limit of 1 /2 in
units of the channel width.

Our work is done at high values of the capillary number.
Consequently, the effective capillary pressure in our simula-
tions is large enough to keep the finger above the one-half
limit of the two-dimensional theory for high values of the
channel aspect ratio. Experiments in Refs. 11 and 12 were
done in cells with �
0.03 and at Ca
10−3, a regime that
falls beyond the scope of this work for computational rea-
sons. Nonetheless, for low 1/B*, we recover the same re-
sults, indicating that the same mechanisms hold, even if the
actual aspect ratio and capillary number are not the same in
experiments and simulations.

To our knowledge, experiments of fingering in high as-
pect ratio channels have not been conducted so far. Our re-
sults could be confirmed, for instance, in microchannels,
where the aspect ratio is typically large and in which the
meniscus to thin film transition could be observed. This is
then an open question for experimentalists to confirm.

FIG. 10. Finger width as a function of the rescaled control parameter for the
thin film regime.
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