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We investigated the influence of a hydrogenated disordered carbon (a-C:H) layer on the 
nucleation of diamond. Substrates c-Si( 1(0), SiAION, and highly oriented pyrolytic graphite 
{oool} were used in this study. The substrate surfaces were characterized with Auger electron 
spectroscopy (AES) while diamond growth was followed with Raman spectroscopy and 
scanning electron microscopy (SEM). It was found that on silicon and SiAION substrates the 
presence of the a-C:H layer enabled diamond to grow readily without any polishing treatment. 
Moreover, more continuous diamond films could be grown when the substrate was polished with 
diamond powder prior to the deposition of the a-C:H layer. This important result suggests that 
the nucleation of diamond occurs readily on disordered carbon surfaces, and that the formation of 
this type oflayer is indeed one step in the diamond nucleation mechanism. Altogether, the data 
refute the argument that silicon defects playa direct role in the nucleation process. Auger spectra 
revealed that for short deposition times and untreated silicon surfaces, the deposited layer 
corresponds to an amorphous carbon layer. In these cases, the subsequent diamond nucleation 
was found to be limited. However, when the diamond nucleation density was found to be high; i.e., 
after lengthy deposits of a-C:H or after diamond polishing, the Auger spectra suggested 
diamondlike carbon layers. 

I. INTRODUCTION 

Although diamond has been shown to nucleate on a wide 
variety of materials,I-3 the substrate's surface was, in most 
cases, treated to enhance nucleation density. Diamond pow
der and other types of abrasive polishing,4 as well as ultra
sonic polishing with a diamond powder suspension5

,6 have 
been shown to enhance nucleation density by several orders 
of magnitude. Two fundamentally different suggestions 
have been made to account for this effect.7 It has been in
ferred from the nucleation and growth theory in metallic 
alloys that highly disordered surface material or microscop
ic defects in the polished surface could create sites that are 
preferred for the nucleation of diamond. On the other hand, 
residues (e.g., diamond fragments) from the polishing pow
der left adherent to, or imbedded in, the polished surface 
supply the nucleation sites for subsequent diamond 
growth.8

,9 Corroborating this latter assumption, Dubray et 
al.1O related diamond nucleation enhancement to the pres
ence of, what was identified as, amorphous carbon (a-C) left 
inside the scratches after diamond or graphite powder po
lishing. 

Amorphous carbon layers can be modeled either as a ran
dom network of sp2 and sp3 bonds or as crystallites of graph
ite interlinked by an sp3 bonded random network (see Ref. 
11 for a review). One obvious suggestion should be that any 
sp3 sites, or at least any cluster of sp3 sites present on the 
surface of a carbon layer or revealed by atomic hydrogen 
etching during the early stages of diamond deposition, could 

become a nucleation site for diamond crystallites. A large 
number of disordered carbon materials have been reported 
and their structural classification is not easy. Glassy and 
microcrystalline carbon are often related to graphite since 
they contain approximately 100% of sp2 sites. II These mate
rials are essentially metallic. Deposited a-C or a-C:H differ 
from glassy carbon in being truly amorphous and semicon
ducting. II Evaporated a-C films contain about 1 %-10% of 
sp3 sites, while a-C:H may comprise 30%-60% of hydrogen 
with perhaps 70% of sp3 sites. Ion beam deposition methods 
are able to raise the proportion of sp3 sites in both a-C and a
C:H films. 

We report here an inv~stigation of the influence on dia
mond nucleation of the deposition of an hydrogenated amor
phous carbon (a-C:H) layer on the substrate surface. Sub
strates of c-Si (100), SiAION and highly oriented pyrolytic 
graphite {oool} have been used in this study. SiAIONII-14 is 
a solid solution of silicon oxynitride and alumina. The me
chanical properties of this material make it a good candidate 
for cutting tools that work at high velocity and high tem
perature. 

II. EXPERIMENTAL DETAILS 

The substrates were: silicon (100) from Virginia Semi
conductors Inc., highly oriented pyrolytic graphite, and 
SiAION from Kennametal, Inc. The surface preparation 
and coating procedures were as follows: (a) ultrasonic 
cleaning in acetone and deionized water, (b) ultrasonic 
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FIG. 1. Yarbrough's experiment (Refs. 7 and 10): the silicon wafer is pol
ished with diamond powder in one direction, over a limited area. It is then 
polished with c-BN powder in a perpendicular direction. This enables us to 
have on the same sample areas that are: diamond and c-BN polished, dia
mond polished, c-BN polished, or unpolished. 

cleaning in acetone and deionized water, followed by the 
deposition of an a-C:H layer, (c) diamond polishing, ultra
sonic cleaning in acetone and deionized water, (d) diamond 
polishing, ultrasonic cleaning in acetone and deionized wa
ter followed by the deposition of an a-C:H layer. Polishing 
was carried out with 0.5!lm diamond powder. One sample 
was prepared following Yarbrough's experimene· 1O (Fig. 
1) polishing with cubic boron nitride powder (0.5-1 !lm, 
Borazon, General Electric, Whorthington OH). Coatings of 
a-C:H were deposited in a dc plasma reactor using a 5% 
methanelhydrogen mixture at 50 mTorr and a low substrate 
temperature (100-200 ·C). The estimated thickness ranged 
from 10 to 30 nm for deposition times varying from 5 to 15 
min. The diamond films were deposited using a tubular mi
crowave plasma reactor (Toshiba mod. TMG-132 F/U2). 
The microwave power source has a variable power in the 
range 0.1-1.5 kW and operates at a frequency of 2450 ± 20 
MHz. The substrate surface temperature was monitored 
with an optical pyrometer during the deposition. All the dia
mond films were deposited during 3 h using a 100 sccm gas 
flow of 1 % of methane in hydrogen at a fixed pressure of 90 
Torr. The temperature varied across the surface of the sam
ples from 850 to 925 ·C. 

The number of nuclei as well as morphology of the films 
were investigated with a scanning electron microscope mod
el ISI-SX-040. Raman spectra were measured on an ISA 
Jobin-Yvon Ramanor U-lOOO spectrometer. Excitation was 
by means of the 514.5 nm line of an argon ion laser with an 
output power in the range of 100-500 m W. This instrument 
is equipped with a microprobe whose spot size is in the range 
of a few micrometers. AES measurements were carried out 
with a PHI spectrometer (CMA modelI5-25G) set up for 
measurements in the first derivative mode with a 2 V p-p mod
ulation voltage. The electron beam energy was 3 ke V and the 
sample current was about 1 !lA. The pressure in the analysis 
chamber was in the range of 6-8 X 10 - 9 Torr. 
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III. RESULTS AND DISCUSSION 

A. Effects of surface treatments on diamond 
nucleation 

The SEM photomicrographs of Fig. 2 indicate that the 
deposition of a 30 nm a-C:H layer yielded a good nucleation 
density ( 107

/ cm2
) on silicon surfaces that were not polished, 

and a higher nucleation density on silicon surfaces that were 
first polished with diamond powder. Comparatively, unpro
cessed silicon wafers did not show any nucleation at all. The 
fact that one can achieve a high nucleation density after de
positing an a-C:H layer on top of the diamond polished sili
con surface is the main result of this paper. It leads to the 
important conclusion that the surface left after polishing 
with diamond powder does not have any intrinsic properties 
that enhance the nucleation such as defects in the silicon or 
the presence of diamond residue. It is the creation of a sur
face with disordered carbon that is critical, and its formation 
is indeed one step in the diamond nucleation mechanism. 

Sample 4, referred to as Yarbrough's experiment, further 
confirms these conclusions. We observed on an equivalent 
sample that was not coated with an a-C:H layer,1O that very 
few diamond crystals had nucleated on the c-BN polished 
area and that the diamond nucleation density was greatly 
reduced on the area that was polished with diamond and 
subsequently polished with c-BN powder. These results were 
compared to an area that was polished with diamond only. 
One can see on Fig. 3, that in the area that was polished with 
c-BN and subsequently covered with an a-C:H layer, the 
diamond nucleation density is high. More importantly, in 
the c-BN polished area, crystals do not follow the polishing 
direction and appear to be randomly distributed on the sur
face. In the area that was polished with both diamond and c
BN, the a-C:H layer has eliminated the preferential nuclea
tion of diamond along diamond powder scratches. 1O This 
result indicates that the surface relief does not influence the 
reaction strongly. According to the size of the diamond crys
tals, all the nucleation events occurred approximately at the 
same time. It is therefore unlikely that, in the present case, 
delayed nucleation occurred in the c-BN polished area as 
Bachmann et al. 15 reported in their comparative study of the 
diamond nucleation efficiency of different abrasive powders. 
Similar results were found on the SiAION substrates (Fig. 
4) and further indicate that the disordered carbon plays an 
important role in the nucleation of diamond. 16 

Conversely, this nucleation enhancement due to a-C:H is 
not observed on graphite. This is demonstrated on Fig. 5. 
Some of our previous experiments on the same graphite sub
strates polished with diamond or boron nitride powder with
out any a-C:H overlayer lead to a continuous diamond film. 
In the present case, diamond crystals were only found in the 
form of clusters that vaguely followed the scratches left after 
polishing with diamond powder. This suggests that the 
structure of the carbon layer differs from the above experi
ments and was deposited more or less in the form of graphite, 
and not as an a-C:H layer, on the graphite substrate. 

Figure 6 shows the Raman spectra of sample 2b, 3b, and 
8b and demonstrates that the quality of the diamond was not 
altered by the presence of the a-C:H layer. Table I summar-
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FIG. 2. SEM photomicrograph of 
diamond deposits after various sur
face preparation: (a,b) Si wafer on 
which an a-C:H layer had been de
posited for 5 min, (c,d) Si wafer on 
which an a-C:H layer had been de
posited for 15 min. (a,c) feature the 
sides of the samples that were not 
diamond polished, while (b,d) fea
ture the sides that were polished 
(sample 2,3) prior to the a-C:H de
posit. 

FIG. 3. SEM photomicrograph of 
sample 4 (referenced as Yarbrough's 
experiment): (a,b,c) Si wafer on 
which an a-C:H layer had been de
posited for 15 min. Domains were re
spectively polished with c-BN (a), 
diamond (b) and diamond followed 
by c-BN (c). (d,e,f) same as the 
above, except that the substrate was 
not coated with an a-C:H film. 
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izes the diamond nucleation densities of all the samples. The 
diamond nucleation density tends to increase with the depo
sition time of the a-C:H layer. One can explain this result by 
considering that the number of nucleation centers imbedded 
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FIG. 4. SEM photomicrograph of 
diamond deposits: (a,b) SiAlON 
sample on which an a-C:H layer was 
first deposited for 5 min, (c,d) refer
ence SiAlON sample without any a
C:H layer. (a,c) feature the sides of 
the samples that were not polished 
with diamond powder, while (b,d) 
feature the sides that were polished. 

in the a-C:H layers increases with the layer thickness and 
consequently with the deposition time. Nucleation centers 
are then activated by etching processes during the first stages 
of the reaction. Neither the morphology, nor the size of the 

FIG. 5. SEM photomicrograph of 
diamond deposits: (a,b) graphite 
sample on which an a-C:H layer was 
deposited for 5 min, (c,d) reference 
graphite sample without any a-C:H 
layer. (a,c) feature the sides of the 
samples that were not polished with 
diamond powder, while (b,d) fea
ture the sides that were polished. 
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FIG. 6. Raman spectra of samples: (2b) c-Si substrate polished with dia
mond powder, on which an a-C:H layer was deposited for 5 min, and on 
which diamond was subsequently grown. (3b) idem as the above, but the a

C:H layer was deposited for 15 min. (8b) {()()() I} Graphite substrate, pol
ished with diamond powder, on which an a·C:H layer was deposited for 5 
min, and diamond was subsequently grown. 

diamond crystals seem to be influenced by the presence of 
the a-C:H layer. The difference between the morphology of 
diamond crystals deposited on graphite samples and the 
ones deposited on silicon and SiAION samples can be attrib-

uted to the local change in growth conditions induced by 
etching at the graphite surface. The high degree of renuclea
tion exhibited by graphite samples is typical of high hydro
carbon concentrations, and it is believed that atomic hydro
gen etching of the surface changes the hydrocarbon to 
hydrogen ratio. This phenomenon cannot be attributed to a
C:H deposits since it is observed on diamond polished graph
ite as well [Fig. 5 (d)]. 

Although these first results indicate that a-C:H can be a 
precursor to diamond growth, they do not prove that dia
mond grows readily on amorphous carbon. The observa
tions indicate that the formation of such a layer can be one 
step that leads to diamond nucleation. They are compatible 
with results found by Walrafen et al.,17 who measured a 
succession of Raman spectra during diamond growth and 
found that diamond-like carbon can be found prior to dia
mond growth. In the second part of this section, we will 
investigate further the nature of the deposited a-C:H layer. 

B. Physico-chemical investigation of surface 
preparation 

Several techniques can be used to determine the structure 
of a disordered carbon film (see Refs. 11 and 18 for a re
view). The bulk properties of the film can be investigated 
with nuclear magnetic resonance (NMR) or x-ray near edge 
structure (XANES), II whereas AES can be used to investi
gate the surface properties. Each allotropic form of carbon 
yields a different AES spectrum and while it is not always 
possible to determine the structural properties of a disor
dered carbon film such as the sp2/sp3 ratio, it can be easily 
distinguished from any other stable or unstable form of car
bon. Moreover, the volume probed by this surface analysis 
technique can be as low as a few nanometers in depth, and a 
few micrometers in diameter. 

TABLE I. Diamond nucleation density as a function of substrate types and preparation conditions. In the a-C:H 
layer the a-C:H layer deposition time is indicated. Sample 4 was polished with both c-BN and diamond (see 
Sec. II), (BN) or (D) refer to an area that was polished only with c· BN or diamond, and (D &BN) refers to the 
area that was polished with diamond and subsequently polished with cubic boron nitride. 

No. Substrate Polished a·C:H Density of nuclei 

la Si No No 0 
Ib Si Yes No Continuous film 
2a Si No Yes (5 min) 5-20 X 104!cm2 

2b Si Yes Yes (5 min) Continuous film 
3a Si No Yes (15 min) 107/cm2 
3b Si Yes Yes (15 min) Continuous film 
4a Si Yes (BN) Yes (5 min) 3X107/cm2 

4b Si Yes (D) Yes (5 min) IOB/cm2 
4c Si Yes (D&BN) Yes (5 min) 5X 107!cm2 
5a SiAlON No No 7X 1O'/cm2 

5b SiAlON Yes No Continuous film 
6a SiAlON No Yes (5 min) 5X 106/cm2 
6b SiAlON Yes Yes (5 min) Continuous film 
7a Graphite No No 4X 1O'!cm2 

7b Graphite Yes No Continuous film 
8a Graphite No Yes (5 min) 5X 104/cm2 
8b Graphite Yes Yes (5 min) Large clusters of 

diamond crystals 
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FIG. 7. Carbon KLL Auger spectra of samples: (2a) Unpolished c-Si sub
strate on which an a-C:H layer was deposited for 5 min. (2b) same as (2a), 
but the substrate was previously polished with diamond powder. (3a) and 
(3b) are respectively identical to (2a and 2b) but the a-C:H layer was 
deposited for 15 min. 

Figure 7 presents the carbon KLL Auger spectra of sam
ples 2a, 2b, 3a and 3b. The carbon layer thicknesses were 
estimated to range between 10 and 30 nm. The presence of 
silicon and oxygen in the spectra indicated nonuniform coat
ings in most cases. Nevertheless the carbon Auger lineshapes 
reveal that for short deposition times the deposited carbon is 
amorphous in type. 19-21 For longer deposition time, and for 
diamond polished surfaces, Auger spectra are similar to dia
mondlike carbon layers. 22-24 

Figure 8 presents the Auger intensities (normalized to 
100%) measured along the surface of sample 2 and 3, reveal
ing differences between the two areas (polished and unpo
lished). The carbon Auger signal increases in the region that 
was polished with diamond powder prior to the a-C:H depo
sition. This increase in intensity is believed to be due to the 
presence of disordered carbon left after diamond polish
ing,1O on which the a-C:H layer simply piles up or deposits 
quicker. This small increase in carbon concentration yielded 
a much higher density of nuclei, which indicates that the 
structure of the layer is more important than its thickness. 

IV. CONCLUSIONS 

Altogether the results emphasize the role played by disor
dered carbon domains in the diamond nucleation process 
and leads to the following mechanism for explaining the ef
fect of diamond polishing. They confirm that the role of dia
mond powder polishing could be to deposit a disordered car
bon layer. 1O Once the sample is introduced into the reactor, 
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FIG. 8. Auger intensities (normalized to 100%, but not corrected from the 
sensitivity factors) measured on a scan along the surface's samples 2 and 3 
(a) and (b), respectively). 

atomic hydrogen, combined with the high temperature envi
ronment, will tend to etch this layer. Simultaneously, hydro
carbon species will start to deposit amorphous carbon, dia
mond-like carbon or diamond on the amorphous carbon 
layer left after polishing. This layer will also tend to react 
with the underlying silicon substrate to form silicon carbide 
which is believed to be amorphous. 25 Whenever the layer is 
thick enough to resist both the etching and the silicon car
bide transformation, we propose, in agreement with many 
workers, that diamond crystals will be able to nucleate on 
the subjacent sp3 bonded carbon (or on clusters of sp3 bond
ed carbon) that comprise the diamondlike carbon layer. 
Therefore, the nucleation may be similar to diamond homoe
pitaxy. In the case where the initial disordered carbon layer 
is too thin or if its structure is such that it yields a high 
etching rate or a high silicon carbide conversion rate, it will 
be etched away or transformed before any nucleation event 
could occur. During diamond growth, both etching (if pos
sible) and silicon carbide formation continue, and will even
tually result in a diamond/silicon carbide interface. On clean 
unpolished silicon surfaces hydrocarbons will form carbidic 
bonds with silicon wherever amorphous carbon is not pres
ent.26

•
27 
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