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N = 1 effect size indices 

 



ABSTRACT 

Effect size indices are indispensable for carrying out meta-analyses and can 

also be seen as an alternative for making decisions about the effectiveness of a 

treatment in an individual applied study. The desirable features of the 

procedures for quantifying the magnitude of intervention effect include 

educational/clinical meaningfulness, calculus easiness, insensitivity to 

autocorrelation, low false alarm and low miss rates.  

Three effect size indices related to visual analysis are compared according to 

the aforementioned criteria. The comparison is made by means of data sets 

with known parameters: degree of serial dependence, presence or absence of 

general trend, changes in level and/or in slope. The percent of nonoverlapping 

data showed the highest discrimination between data sets with and without 

intervention effect. In cases when autocorrelation or trend is present, the 

percentage of data points exceeding the median may be a better option to 

quantify the effectiveness of a psychological treatment.  
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Single-case designs present problems for both data analysis of the specific 

study and quantitative integration of different studies. Replicating across 

subjects and settings in order to obtain evidence on the strength of the 

intervention is useful only when there are summary measures available to be 

used in meta-analyses. 

The difficulties in single-case designs analysis are related to the scarce 

number of observations usually available (Huitema, 1985) and to the serial 

dependence between the measurements obtained from the same experimental 

unit (Busk & Marascuilo, 1988; Matyas & Greenwood, 1991; 1997; Parker, 

2006). Whether being statistically significant or not, autocorrelation has been 

alleged to affect the analytical techniques employed (Busk & Marascuilo, 

1988; Sharpley & Alavosius, 1988; Suen, 1987; Suen & Ary, 1987). Scientific 

evidence points out that serial dependence alters the performance of 

procedures as diverse as ANOVA (Toothaker, Banz, Noble, Camp, & Davis, 

1983), the split-middle method (Crosbie, 1987) and randomization tests 

(Gorman & Allison, 1997; Sierra, Solanas, & Quera, 2005). On the other hand, 

for determining the effectiveness of a treatment in an individual study it is not 

sufficient to obtain a p-value, due to the disadvantages of this indicator (Cohen 

1990; 1994; Kirk, 1996; Rosnow & Rosenthal, 1989; Wilkinson & The Task 

Force on Statistical Inference, 1999). Clinical, educational and social 

researchers need more meaningful information than the one provided by the 

statistical significance. Visual analysis, as an alternative, is more subjective 

and does not allow quantification.  Moreover, it has been found to be distorted 



by the presence of serial dependence (Jones, Weinrott, & Vaught, 1978; 

Matyas & Greenwood, 1990). An objective measurement that can be used to 

quantify the relationship between the treatment and the behavior of interest is 

effect size.  

In contrast with p-values, effect size indices are useful for documenting 

results for posterior meta-analysis and power analysis (Parker & Hagan-Burke, 

2007b). Among the advantages of effect size, the following have been stated: 

a) it is not systematically affected by sample size (Parker & Brossart, 2003); b) 

it uses on the strength of association between the independent and the 

dependent variables, instead of centering on the null hypothesis (Kromrey & 

Foster-Johnson, 1996); c) it allows treatments’ comparison (Parker & Hagan-

Burke, 2007b); and d) it is possible to construct confidence intervals about the 

effect size (Kirk, 1996). 

The most widely known effect size indices based on standardized mean 

differences (e.g., Cohen’s d; Hedges’ g; Glass’ Δ) and measurements of 

association (e.g., η
2
; ω

2
; R

2
) were not developed for single-case designs but 

rather for designs involving groups’ comparison and, thus, focus only on the 

average levels of behavior in the different conditions. Nonetheless, there are 

also procedures conceptualized for N = 1 designs – some of them based on 

regression analysis and others closely related to visual analysis. It is possible 

to convert some effect size indices into others (Friedman, 1982), allowing the 

comparison between meta-analyses using different measures. The 

bibliographic search we performed suggests that visually-based indices are 



applied more often (e.g., Bellini, Peters, Benner, & Hopf, 2007; Mathur, 

Kavale, Quinn, Forness, & Rutherfod, 1998; Scruggs & Mastropieri, 1994; 

Scruggs, Mastropieri, Forness, & Kavale, 1988) than regression-based 

methods (Allison, Faith, & Franklin, 1995; Skiba, Casey, & Center, 1986) in 

meta-analyses. This could be due to the advantages of visual indices, such as 

calculus easiness and increased interpretability from clinical and educational 

perspective.    

 

Regression-based effect size indices 

The regression-based procedures incorporate predictor variables in order to 

model changes in level and in slope and also try to control for extraneous 

variables such as trends. The following procedures are some of the most 

studied ones in scientific literature:  

1) Gorsuch’s (1983) trend analysis includes time as covariate and 

eliminates its influence prior to testing for change in level.   

2) White, Rusch, Kazdin, and Hartmann’s (1989) d, taking into 

consideration the correction presented in Faith, Allison, and Gorman (1997), 

compares two predicted values – the last treatment phase point according to 

baseline phase regression equation with the last treatment phase point as 

predicted by the treatment phase regression equation. The model also takes 

into account the possible relation between time and the measured behavior.  

3) Center, Skiba, and Casey’s (1985-1986) model, in contrast with the 

abovementioned procedures, can account for both changes in level and slope, 



while controlling for the presence of trend. Among the limitations of this 

procedure have been stated the attainment of more than one magnitude of 

effect index and the impossibility to obtain a negative d.  

4) Allison and Gorman’s (1993) model pretends to improve the previous 

technique, estimating trend solely from the baseline phase and allowing the 

correspondence between the type of treatment effect (i.e., reducing or 

increasing the behavior of interest) and the sign of the effect size index 

(negative or positive, respectively). A shortcoming of the model is the possible 

effect size overestimation.      

Commons drawbacks of the regression-based procedures are the 

parametric assumptions, while there is also evidence that despite of their 

conceptual appropriateness those models do not perform as well as simpler 

indices (Manolov & Solanas, 2008).    

 

Visual effect size indices 

These effect size indices are based on a criterion employed in visual analysis 

in order to decide the effectiveness of a treatment – the amount of overlap 

between the data points pertaining to baseline and treatment phases. Their 

attractiveness to applied researchers is related to calculation easiness and to 

the fact that visual inspection is still the most commonly applied single-case 

data analysis technique (Parker, Cryer, & Byrns, 2006). Some of the 

procedures proposed for using in psychological studies are:    



1) Scruggs, Mastropieri, and Casto’s (1987) percent of nonoverlapping 

data (hereinafter, PND). PND is based on the proportion of treatment phase 

measurements greater than the highest baseline phase data point. It has been 

criticized for ignoring all phase A data points except for one, a reason for 

which the following two indices were proposed.   

2) Ma’s (2006) percentage of data points exceeding the median 

(hereinafter, PEM). PEM was proposed to correct some of the potential 

drawbacks of PND, like the sensitivity to floor or ceiling effects, while 

maintaining its advantages. As its name suggests, this index computes the 

percentage of treatment measurements greater than the baseline phase median.  

3) Parker, Hagan-Burke, and Vannest’s (2007) percentage of all non-

overlapping data (hereinafter, PAND). PAND was introduced as an alternative 

to PND for larger data sets.  It takes into account all data points and counts the 

minimum number of measurements that need to be removed in order to obtain 

series with no overlap. The ratio between the remaining data points and series’ 

length is the basis of the index. The authors also suggest that the index can be 

converted into a Phi effect size index or an improvement rate difference.     

 

The objective of the present study was to extend the scientific literature (e.g., 

Parker & Hagan-Burke, 2007a) assessing the performance of the three 

measures of effect sizes for AB designs in presence of different degrees of 

autocorrelation. We aimed to explore which index discriminates better 

between the distinct data patterns, while an additional purpose was to evaluate 



the influence of series’ length, following Campbell’s (2004) suggestions. As 

the estimation and hypothesis testing of serial dependence from real data can 

be problematic (Huitema & McKean, 1991; Matyas & Greenwood, 1991), we 

decided to test the effect size procedures with data constructed with known 

parameters (i.e., serial dependence, trend, level change, slope change), a 

method that has already been applied in single-case effect size studies 

(Manolov & Solanas, 2008; Parker & Brossart, 2003).  

 

Method 

 

Design selection 

The study focused on AB designs with several series’ lengths (N) and 

phase lengths (nA and nB), short enough to be feasible in applied settings 

where the temporal cost has to be taken into consideration. We chose the 

following values in order to cover a range of possible “short series”:   

a) N = 10; nA = nB = 5. 

b) N = 15; nA = 5; nB = 10.  

c) N = 15; nA = 7; nB = 8.  

d) N = 20; nA = 5; nB = 15.  

e) N = 20, nA = nB = 10.  

f) N = 30, nA = nB = 15. 

 

Data generation 



For each series’ length we generated data sets with different patterns, defined 

by the presence or absence of general trend, change in level and/or in slope. 

The statistical model used was suggested by Huitema and McKean (2000; 

2007):   

yt = β0 + β1 * Tt +  β2 * Dt + β3 * SCt + εt, where: 

yt: the value of the dependent variable at moment t; 

β0: intercept; 

β1: coefficient associated with general trend; 

β2: coefficient associated with level change; 

β3: coefficient associated with slope change;  

Tt: value of the time variable at moment t (takes values from 1 to N); 

Dt: dummy variable for level change. For phase A it was set to 0 and for 

phase B to 1; 

SCt: value of the slope change variable, computed as [Tt – (nA + 1)] * Dt, 

so that it is equal to 0 for phase A, and takes values from 0 to (nB − 1) for 

phase B; 

εt: error term;  

The error term (εt) was generated following a first-order autoregressive 

model: εt = φ1* εt–1 + ut. The values of serial dependence (φ1) ranged from      

–.9 to .9 in steps of .1. The ut term represents white noise at moment t 

generated following N (0, 1) and ε1 = u1.   

The value of the intercept parameter β0 was set to zero as it does not affect 

effect size calculation. In order to ensure the adequacy of the comparison 



between experimental conditions, we chose the values of β1, β2, and β3 so that 

they produce comparable mean differences between the two phases. We chose 

to set first the β2 parameter, as the level change is maintained constant 

throughout the whole intervention phase. Afterwards, we set the values of β1 

and β3 leading to the same difference 
B Ay y . Those steps were initially 

carried out for the shortest series (i.e., nA = nB = 5) in order to explore if longer 

series imply better discrimination of data patterns. We tested several values for 

β2 (from .1 to .6 in steps of .1) for all experimental conditions seeking its most 

appropriate value. We found that for β2 = .1 the values of PND were all too 

low, while for β2 = .6 PEM was close to reaching its maximum value. To 

avoid the floor and ceiling effects (see Figure 1), which make impossible 

patterns discrimination, we decided to set β2 to .3.     

 

INSERT FIGURE 1 ABOUT HERE 

 

The use of β2 ≠ 0 implies that 
2B Ay y    if the other parameters are set to 

zero. The value of β3 that leads to the same mean difference can be found 

through the following expression:  
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while the appropriate value of β1 is obtained as:  
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We could verify that the β1 and β3 values are appropriate for producing 

mean differences equal to the value of β2 even for the most extreme levels of 

serial dependence (−.9 and .9), whenever nA = nB = 5. In total there were eight 

data patterns studied, defined by the presence and combination of trend, level 

change, and slope change (i.e., β1, β2, and β3 being equal to or different from 

zero).   

Finally, in order to guarantee suitable simulated data, the 50 values 

previous to each simulated data series were eliminated in order to reduce 

artificial effects (Greenwood & Matyas, 1990) and to avoid dependence 

between successive data series (Huitema, McKean, & McKnight, 1999).  

 

Analysis 

Prior to presenting in detail the steps needed to compute the three effect size 

indices included in the present study, an example of a fictitious data set is 

presented. Consider a psychological study applying the Parent Child 

Interaction Therapy (for an in-depth description see Borrego, Anhalt, Terao, 

Vargas, & Urquiza, 2006) in which the number of praises a parent directs to a 

child is registered five days prior to treatment introduction and five days 

during intervention. The data gathered using the AB design structure (4, 5, 3, 

6, and 3 praises during baseline and 7, 5, 8, 9, and 7 praises during treatment 

phase) can be represented graphically as shown on Figure 2. In following 



section, each of the procedures is applied to the data set presented in order to 

illustrate their calculus. 

 

INSERT FIGURE 2 ABOUT HERE 

 

We calculated the effect size for each experimental condition using the 

following indices: 

Percent of nonoverlapping data: 

1) Identify the highest measurement in phase A. In the example it is 6 

praises corresponding to baseline day 4. 

2)  Calculate the number of phase B data points that exceed the value 

identified in the previous step. The measurements corresponding to days 

6, 7, 9, and 10 are greater than 6, so there are 4 values exceeding phase 

A’s highest value.  

3) Divide the value obtained in step 2 by the number of observations in 

phase B. The number of phase B observations is 5 and the result of the 

division is 4/5 = 0.8. 

4)  Multiply the value obtained in step 3 by 100 in order to convert the 

proportion into a percentage. The percentage obtained for the example is 

0.8*100 = 80%. 

Percentage of all non-overlapping data: 

1) Identify the highest measurement in phase A. As obtained above this 

value is 6. 



2) Calculate the minimal number of data points to be eliminated in order to 

have no inter-phase overlap. If the measurement corresponding to day 7 

(i.e., 5 praises) is eliminated, then phase A and phase B would not 

overlap – all phase B data points would be greater than the phase A 

measurements.  

3) Divide the value obtained in step 2 by the total number of observations. 

A single value to be eliminated means that the correct division is 1/10 = 

0.1. 

4) Multiply the value obtained in step 3 by 100. The value obtained is 

0.1*100 = 10%. 

5) Subtract the value obtained in step 4 from 100. The percentage of all 

data non-overlapping data is equal to 100 – 10 = 90%. 

Percentage of data points exceeding the median:  

1) Calculate the median of phase A. In the example, the sorted baseline 

measurements are 3, 3, 4, 5, and 6 and, therefore, the phase A median is 

equal to 4. 

2) Calculate the number of phase B data points that exceed the value 

identified in the previous step. All data points from the treatment phase 

are greater than 4, so the value obtained is 5 (equal to nB).  

3) Divide the value obtained in step 2 by the number of observations in 

phase B. The division to be made is 5/5 = 1. 



4)  Multiply the value obtained in step 3 by 100 in order to convert the 

proportion into a percentage. In the example presented, the percentage of 

data points exceeding the median obtained is, thus, 1*100 = 100%. 

 

Simulation 

The specific steps that were implemented in the Fortran programs (one for 

each of the six series’ length) were the following ones:  

1)  Systematic selection of each of the 19 degrees of serial dependence. 

2)  Systematic selection of the (β1, β2, and β3) parameters for data generation, 

leading to 8 different data patterns – autoregressive model (i.e., no effect 

or trend); trend; level change; slope change; trend and level change; 

trend and slope change; level and slope change; trend, level and slope 

change. 

3)  100,000 iterations of steps 4 through 15. 

4)  Generate an array with 50+N data following a normal distribution with 

mean zero and unitary standard deviation by means of NAGfl90 

mathematical-statistical libraries (specifically external subroutines 

nag_rand_seed_set and nag_rand_normal).  

5)  Eliminate the first 50 numbers. 

6)  Assign the following N numbers to array ut. 

7)  Establish ε1 = u1. 

8)  Obtain the array of εt using the equation εt = φ1* εt–1. 

9)  Obtain the time array Tt = 1, 2, …, N.  



10) Obtain the dummy treatment variable array Dt, where Dt = 0 for phase A 

and Dt = 1 for phase B. 

11) Obtain the slope change array according to Huitema and McKean’s 

(2007) expression: SCt = [Tt – (nA + 1)]*Dt used for data generation. 

11) Obtain the yt array containing measurements (i.e., dependent variable) 

following Huitema & McKean’s (2007) model: yt = β0 + β1*Tt + β2*Dt + 

β3*SCt + εt.  

13) Calculate PND. 

14) Calculate PAND. 

15) Calculate PEM. 

16) Average the obtained percentages from the 100,000 replications of each 

experimental condition.   

 

Results 

 

This section is organized according to the objectives of the study: to explore 

the effect of autocorrelation, to compare data patterns discrimination, and to 

assess the importance of series’ length.  

 

Autocorrelation effect 

In order to quantify the degree to which autocorrelation introduces distortion 

in the effect size estimates, we divided the estimates obtained for φ1 ≠ 0 by the 

one obtained for φ1 = 0. We performed those calculi for the case of no effect 



or trend simulated to avoid confounding variables. If the ratio obtained is 

equal to 1, then there is no influence of serial dependence. Ratios lower than 1 

imply an underestimation of the effect size associated with autocorrelation, 

while values greater than 1 entail overestimation. As Table 1 shows, PEM 

yields practically the same values regardless of the degree of serial 

dependence. For PND and PAND greater negative or positive autocorrelation 

is generally associated with higher effect size estimates, being PND the more 

affected of the two indices. Figure 2 shows and example of those findings.  

 

INSERT TABLE 1 ABOUT HERE 

INSERT FIGURE 3 ABOUT HERE 

 

When there was treatment effect simulated in data, PEM proved to be 

sensitive to the presence of autocorrelation – positive as well as negative serial 

dependence leads to lower effect size estimates (see Figure 3 for an example). 

For PND and PAND, the type of relationship between autocorrelation and 

effect size depends on the type of effect in data. When the intervention 

involves a level change, positive and negative φ1 overestimate effect size. 

When the treatment effect is expressed as slope change, it would be 

underestimated if PND or PAND are used. Figure 4 is an illustration of these 

tendencies.      

 

INSERT FIGURES 4 AND 5 ABOUT HERE 



 

Data pattern discrimination 

The comparison of data patterns discrimination was carried out by 

constructing graphs combining the three procedures for computing the 

magnitude of effect with the six series’ lengths. In each of these 3 * 6 = 18 

graphs we put data patterns in the abscissa and the effect size index (i.e., 

percentage) in the ordinate, superimposing several autocorrelation levels. 

We consider that an effect size index should detect (i.e., yield highest 

effect size estimates) powerful treatments, like the ones represented by 

changes in slope and in level in the same direction. The indices would also 

have to respond with high estimates to the occasions when either a change in 

level or a change in slope is present. On the other hand, when the intervention 

is not effective the effect size index ought to yield low (ideally zero) 

percentages. Additionally, a perfect index would not be sensitive to a general 

trend, which has no relation to the introduction of a psychological treatment.  

The visual inspection carried out following those criteria suggests that 

PND and PEM approximate the ideal discrimination pattern. Nonetheless, 

there is one relevant discrepancy between those two indices due to the essence 

of their calculus – PND yields smaller effect size estimates than PEM. PAND 

seems to be more deficient, as it yields more similar estimates for data sets 

with and without treatment effects. An example of those findings can be seen 

in Figure 5, which is constructed for φ1 = .3, as it represents a level of serial 

dependence likely to be found in behavioral data (Parker, 2006), although the 



abovementioned tendencies are common to all φ1 values studied. All of the 

indices tested share a common drawback – they are affected by the presence of 

trend in data which leads to overestimating effect size. As expected, complex 

patterns are associated with greater effect size estimates for all indices.  

 

INSERT FIGURE 6 ABOUT HERE 

 

Complementing the analyses performed, we divided the effect size 

estimates for series with effect and/or trend present by the estimate for data 

with no effect or trend simulated. These calculi were carried out for each of 

the three indices and for all series’ lengths. Ratios equal to 1 suggest that there 

are the same estimates obtained in presence and in absence of effect. Values 

greater than 1 imply that the effect or the extraneous variable are associated 

with greater effect size estimates than white noise data. As Table 2 shows, 

PND is the procedure that differentiates the most between presence and 

absence of intervention effect. However, it is also the procedure most affected 

by trend. PAND distinguishes less between data patterns, except for data 

series with nA = 5 and nB = 15 where its performance is practically equivalent 

to PEM’s.    

    

 INSERT TABLE 2 ABOUT HERE 

 

Series’ length effect 



In order to explore the variation of the performance of the indices as one of the 

phases (or both) becomes longer, we divided the effect size estimates obtained 

for the longer designs with the ones obtained for the shortest one (nA = nB = 

5). Ratios equal to 1 suggest that phase length does not influence the 

performance of the procedures. Values greater or smaller than 1 imply higher 

or lower effect size estimates, respectively, in comparison to 10-measurements 

data sets. According to Table 3, increasing series’ length leads to a better 

differentiation between the data patterns. As the example in Figure 6 shows 

the improvement is expressed basically as lower false alarm rates (i.e., lower 

percentages for the case of absence of treatment effect) and as higher 

sensitivity to synergic slope and level changes. Those results highlight the 

importance of having more measurements of the experimental unit in order to 

obtain a more precise image of the evolution of its behavior. In accordance 

with the data simulation method followed, in longer series changes in slope 

yielded higher effect size estimates than changes in level. 

 

INSERT TABLE 3 ABOUT HERE 

INSERT FIGURE 7 ABOUT HERE 

 

The performance of PAND improves for designs with unbalanced phase 

lengths. As Figure 7 illustrates for such designs the distinction between data 

patterns is more pronounced, implying lower effect size estimates for white 

noise and trend. On the contrary, for PND the presence of trend is more 



problematic for designs with unequal phase lengths. PEM is the procedure less 

affected by the amount of data points in the series.  

 

INSERT FIGURE 8 ABOUT HERE 

 

Discussion 

 

In the current investigation we pretended to continue the search of the most 

appropriate procedure for quantifying treatment effectiveness and 

summarizing results from single-case designs. The performance of the effect 

size indices was tested by means of data patterns generated to represent the 

likely features of real data (i.e., few observations per phase, serially dependent 

measurements). Among the desirable features those indices can be stated: a) to 

detect changes in behavior due to the introduction of an intervention – low 

miss (Type II error) rates; and b) to produce low, ideally null, effect size 

estimates in absence of treatment effect – low false alarm (Type I error) rates; 

c) to be insensitive to extraneous variables such as general trend; and d) to 

remain unaffected by autocorrelation.   

Taking the first two criteria into consideration simultaneously we can point 

to PND as the best performer as it produces lowest effect size estimates in 

presence of solely white noise. Moreover, among the three procedures tested, 

it presents the highest relative differentiation between effective and ineffective 

interventions. PEM also shows a good patterns’ discrimination, being more 



sensitive but less specific than PND. PAND is the index that performs less 

satisfactorily in the cases when baseline and treatment phases have 

approximately the same number of observations. A positive characteristic of 

all three indices studied is the discrimination between data patterns even when 

series consist of only ten data points.  

As regards autocorrelation, PEM is the less affected procedure in absence 

of effect and is conservatively biased by both positive and negative serial 

dependence in presence of treatment effect. Applied researchers should keep 

in mind that both overestimation and underestimation of an existing treatment 

effect are possible when PND and PAND are used, depending on the degree of 

autocorrelation and on the type of effect (change in slope or in level). Out of 

those two indices PND is the one whose effect size estimates are more 

distorted by serial dependence.  

A shortcoming of the indices is the finding of the distorting impact of 

trend in data, which makes necessary the visual inspection prior to applying 

any of the three procedures. PAND was the least affected index, while PND 

was the most affected one.       

In conclusion, what recommendation can be given to applied researchers? 

To begin with, they ought to keep in mind what each index represents in order 

to interpret it correctly. In this sense, we consider that the meaning of PND 

and PEM is more straightforward that the information given by PAND. In 

terms of computational accessibility, all three indices can easily be calculated, 

especially PND. We have to advert that whenever the intervention is supposed 



to reduce rather than to enhance the behavior measured, the manner of 

computation of the indices can be adjusted to the needs of the applied 

researcher. A potential advantage of PAND is the possibility to derive from it 

a conventional effect size index, like Pearson’s Phi (Parker et al., 2007). 

Nonetheless, mathematical-statistical calculations beyond the computation of 

the percentage itself may make the index less attractive to applied researchers.  

Applied researchers can be advised to use PND in data sets with no 

autocorrelation or trend, as it is the procedure that best distinguishes between 

presence and absence of intervention effect. When there is a high outlier in the 

baseline phase and the objective of the intervention is to increase the behavior 

of interest, the use of PND cannot be advised as it would lead to an 

underestimation of the treatment effect. In cases when the behavioral 

measurements present general trend or are likely to be sequentially related, 

PEM ought to be the effect size index chosen. PAND approximates PEM’s 

performance only when the baseline phase is considerably shorter than the 

treatment phase.  

In any case, professionals should not follow the same criteria for labeling 

the treatment as “effective” when using different procedures (e.g., 70%-90% 

“effective”, 50%-70% “questionable”, in Scruggs and Mastropieri, 1998). This 

is due to the fact that as some of the indices (PEM and PAND) yield 

systematically higher effect size estimates than others (PND). Whatever index 

is utilized, visual inspection should not be replaced as a source of 

supplementary information (Parker et al., 2006). 



As regards meta-analysis of single-case data, applied psychologists ought 

to be cautious when integrating information from studies using different 

number of measurement times, since these may imply different levels of 

affection by autocorrelation and general trend. That is, the effect size estimates 

obtained from studies with a specific N may not have the same precision and 

the same insensitivity to extraneous variables as the estimates obtained for 

other series and/or phase lengths. This difficulty is, however, not only 

applicable to effect size procedures based on visual analysis, but also to the 

ones based on regression or standardized mean difference (Manolov & 

Solanas, 2008).    

A limitation of the present investigation consists in the fact that only two-

phase designs were studied. However, as Busse, Kratochwill, and Elliott 

(1995) claim, the AB designs’ results can also be useful for multiple-baseline 

designs. 

Future research may center on calibrating the data generation procedure 

with the most appropriate values (i.e., β1, β2, and β3) for simulating treatment 

effects in order to improve real data modeling. In addition, it is necessary to 

obtain evidence on the performance of the effect size indices in designs 

consisting of more than two phases.  
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Tables 

Table 1. Distortion due to autocorrelation when no trend or effect is present in 

data – the values represent the ratio φ1≠0/φ1=0. 

  Effect size       Series’ length     

φ indices 5+5 5+10 7+8 5+15 10+10 15+15 

-.9 PND 1.32 1.36 1.46 1.38 1.60 1.78 

 PAND 1.05 1.09 1.06 1.13 1.05 1.05 

 PEM 1.00 1.00 1.00 1.00 1.00 1.00 

-.6 PND .97 .97 .99 .97 1.02 1.06 

 PAND 1.00 .99 1.00 .99 1.00 1.00 

 PEM 1.00 1.00 1.00 1.00 1.00 1.00 

-.3 PND .93 .93 .93 .93 .94 .97 

 PAND .99 .98 .99 .98 1.00 1.00 

 PEM 1.00 1.00 1.00 1.00 1.00 1.00 

.3 PND 1.16 1.17 1.17 1.16 1.17 1.18 

 PAND 1.02 1.04 1.02 1.05 1.01 1.01 

 PEM 1.00 1.00 1.00 1.00 1.00 1.00 

.6 PND 1.38 1.44 1.50 1.47 1.58 1.64 

 PAND 1.05 1.11 1.06 1.16 1.05 1.04 

 PEM 1.00 1.00 1.00 1.00 1.00 1.00 

.9 PND 1.61 1.76 1.94 1.83 2.27 2.86 

 PAND 1.09 1.19 1.12 1.28 1.11 1.11 

  PEM 1.00 1.00 1.00 1.00 .99 1.00 



Table 2. Detection of data patterns in comparison to the case of no effect or 

trend simulated in independent series. 

  Effect size       Series’ length     

Data pattern indices 5+5 5+10 7+8 5+15 10+10 15+15 

Slope change PND 1.45 2.12 2.01 2.82 2.67 4.89 

 PAND 1.06 1.28 1.13 1.61 1.14 1.23 

 PEM 1.21 1.42 1.35 1.57 1.44 1.60 

Level change PND 1.42 1.43 1.49 1.43 1.57 1.66 

 PAND 1.06 1.11 1.06 1.14 1.05 1.04 

 PEM 1.21 1.21 1.21 1.21 1.22 1.23 

Level & slope PND 1.95 2.66 2.69 3.35 3.60 6.23 

Change PAND 1.14 1.42 1.21 1.78 1.22 1.31 

 PEM 1.40 1.58 1.52 1.70 1.60 1.72 

Trend PND 1.43 1.67 1.77 1.94 2.27 3.59 

 PAND 1.06 1.17 1.10 1.31 1.11 1.15 

 PEM 1.21 1.30 1.31 1.39 1.42 1.60 

Trend & PND 1.95 2.93 3.07 3.75 4.58 8.71 

slope change PAND 1.14 1.48 1.26 1.92 1.30 1.45 

 PEM 1.39 1.61 1.58 1.74 1.70 1.84 

Trend & PND 1.92 2.21 2.46 2.51 3.17 4.98 

level change PAND 1.13 1.30 1.18 1.50 1.18 1.23 

 PEM 1.40 1.49 1.50 1.56 1.59 1.73 

Trend, level, & PND 2.50 3.47 3.79 4.17 5.56 9.97 

slope change PAND 1.21 1.62 1.35 2.05 1.38 1.52 

  PEM 1.56 1.73 1.71 1.82 1.80 1.90 

 



Table 3. Influence of series’ length on pattern detection for independent series 

- comparison to nA = nB = 5. 

       Data  pattern    

Series' Effect size No effect or Slope Level Level & slope   

length indices trend change change change Trend 

5+10 PND 1.00 1.47 1.00 1.37 1.17 

 PAND .76 .92 .79 .95 .84 

 PEM 1.00 1.18 1.00 1.13 1.08 

7+8 PND .75 1.04 .78 1.04 .93 

 PAND .91 .97 .91 .98 .94 

 PEM 1.00 1.12 1.00 1.09 1.09 

5+15 PND 1.00 1.95 1.00 1.72 1.36 

 PAND .64 .97 .69 1.01 .80 

 PEM 1.00 1.31 1.00 1.22 1.15 

10+10 PND .55 1.01 .60 1.01 .87 

 PAND .94 1.00 .92 1.00 .97 

 PEM 1.00 1.20 1.01 1.15 1.18 

15+15 PND .37 1.26 .43 1.19 .94 

 PAND .91 1.05 .89 1.05 .99 

  PEM 1.00 1.33 1.01 1.23 1.32 



Figures 

 

Figure 1. Influence of the simulation parameters β on the effect size indices. 

Autocorrelation = 0.3. nA = nB = 10.
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Figure 2. A fictitious example of an AB data series with nA = nB = 5. 

 



Figure 3. Autocorrelation effect on the effect size indices when no effect or 

trend are present in data.  

No effect or trend. nA = 7. nB = 8.
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Figure 4. Autocorrelation effect on PEM when treatment effects are present in 

data. 

PEM. nA = 5. nB = 15.
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Figure 5. Autocorrelation effect on PND when treatment effects are present in 

data. 

PND. nA = 5. nB = 15.
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Figure 6. Effect sizes calculated for different data patterns and moderate 

positive serial dependence in a design with equal phase lengths.  

Autocorrelation = 0.3. nA = nB = 5. 
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 Figure 7. Influence of series’ length on PND. 

PND. Autocorrelation = 0.6.
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Figure 8. Influence of phase length on PAND. 

PAND. Autocorrelation = 0.6.
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