
Visual inspection remains the most frequently applied method for detecting treatment effects in single-case
designs. The advantages and limitations of visual inference are here discussed in relation to other procedures
for assessing intervention effectiveness. The first part of the paper reviews previous research on visual analysis,
paying special attention to the validation of visual analysts’ decisions, inter-judge agreement, and false alarm
and omission rates. The most relevant factors affecting visual inspection (i.e., effect size, autocorrelation, data
variability, and analysts’ expertise) are highlighted and incorporated into an empirical simulation study with the
aim of providing further evidence about the reliability of visual analysis. Our results concur with previous
studies that have reported the relationship between serial dependence and increased Type I rates. Participants
with greater experience appeared to be more conservative and used more consistent criteria when assessing
graphed data. Nonetheless, the decisions made by both professionals and students did not match sufficiently the
simulated data features, and we also found low intra-judge agreement, thus suggesting that visual inspection
should be complemented by other methods when assessing treatment effectiveness.
Keywords: visual inspection, single-case designs, autocorrelation, expertise.

La inspección visual sigue siendo el método más utilizado para detectar tratamientos efectivos en diseños de
caso único. El presente trabajo comenta las ventajas y limitaciones de la inferencia visual en relación con otros
procedimientos empleados para evaluar la efectividad de las intervenciones. La primera parte del manuscrito
revisa investigaciones previas sobre el análisis visual, enfocando la validación de las decisiones de los analistas
visuales, la concordancia entre jueces y las tasas de falsas alarmas y omisión. Se hace énfasis en los factores
que más afectan a la inspección visual (i.e., tamaño del efecto, autocorrelación, variabilidad en los datos y
experiencia de los analistas) y éstos se incluyen en un estudio de simulación que pretende aportar evidencias
sobre la calidad del análisis visual. Nuestros resultados coinciden con estudios previos sobre la relación entre
la dependencia serial y un incremento en las tasas de error Tipo I. Los participantes con mayor experiencia
parecen ser más conservadores y utilizan criterios más consistentes al evaluar datos gráficos. No obstante,
tanto las decisiones de los profesionales y como las de los estudiantes no se corresponden lo suficiente con
los datos simulados. Además, se encontró una baja consistencia intra-jueces, sugiriendo que la inspección
visual se debería complementar por otros métodos a la hora de evaluar la efectividad de los tratamientos.
Palabras clave: inspección visual, diseños de caso único, autocorrelación, experiencia.
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The data obtained from single-case studies have been and
still are mostly analysed by means of visual inspection, which
is generally employed alone and seldom complemented by
some sort of statistical analysis (Kratochwill & Brody, 1978;
Parker & Brossart, 2003; Parker, Hagan-Burke, & Vannest,
2007). The more frequent application of visual analysis in
comparison to statistical tests can be explained by the
advantages of the former and the limitations of the latter.
Graphic displays have a compact and detailed data-reporting
format, allow decisions to be made over the course of a study,
and enable different analysts to judge for themselves whether
an intervention is effective (Richards, Taylor, & Ramasamy,
1997). It has been claimed that no existing statistical technique
can simultaneously handle data variability, trend magnitude
and direction, cycles, delayed responses, and level changes
(Parker, Cryer, & Byrns, 2006; Parker & Hagan-Burke, 2007c).
Moreover, there is evidence for the deficient performance, in
terms of Type I and/or Type II errors, of statistical techniques
as diverse as ANOVA (Toothaker, Banz, Noble, Camp, &
Davis, 1983), time-series analysis (Greenwood & Matyas,
1990), the split-middle method (Crosbie, 1987), and
randomization tests (Ferron & Ware, 1995; Sierra, Solanas,
& Quera, 2005). Additionally, statistical significance tests
have been said to impose limitations on researchers (Michael,
1974) and assign only secondary importance to the more
relevant clinical significance (Hugdahl & Ŏst, 1981). The
use of effect sizes instead of p-values is not trouble-free either,
as there are currently no established guidelines for their
interpretation in single-case designs (Parker & Brossart, 2006).  

However, statistical techniques may be needed when a
stable baseline does not exist and when results must serve
as objective documentation (Kazdin, 1982). Regarding this
latter aspect, Busk and Serlin (1992) point out that the use
of visual analysis alone does not enable the quantitative
integration of results from different studies, as meta-analyses
require the computation of effect sizes. The calculation of
these summary measures from N = 1 data has been strongly
influenced by visual inspection. Recent research on single-
case designs has centred on developing effect size indices
related to the criteria used by visual analysts, such as the
amount of data overlap (Ma, 2006; Parker & Hagan-Burke,
2007a; 2007b; Parker et al., 2007). 

The objective of the present study is to provide an overview
of visual inspection as a means of assessing treatment
effectiveness in single-case data, emphasising the factors that
appear to influence the performance of visual analysts.
Correspondingly, the first part of the paper consists of a review
of previous research on the topic. Since an additional goal is to
extend the available evidence, an empirical study including the
most important factors affecting visual analysis is also presented. 

Previous research on visual inference

Prior to discussing the evidence obtained by previous
research it should be noted that the variety of studies

included in this review also implies a miscellany of
methodologies (e.g., real data vs. simulated data, different
validation criteria used), which may contribute to discrepant
results and conclusions. 

Type I and Type II errors. The proportion of cases in
which visual analysts detect a nonexistent effect (i.e., commit
a Type I error) or miss an existing effect (i.e., a Type II
error) can be used as an indicator of their performance.
Visual inspection has been argued to be an adequate tool
for identifying strong interventions, as it is assumed to detect
only large changes in the behaviour measured (Baer, 1977;
Barlow & Hersen, 2008). This conservativeness has been
seen as an advantage over statistical techniques (Parsonson
& Baer, 1986) and has been supported by evidence for high
Type II error (i.e., miss) rates (Jones, Weinrott, & Vaught,
1978; Ottenbacher, 1990b). However, more recent studies
suggest that Type I errors (i.e., false alarms) can also be
excessively frequent (Fisch, 2001; Normand & Bailey, 2006).
Moreover, Type I error rates can be inflated according to
the number of times a decision is made in response-guided
experimentation (Allison, Franklin, & Heshka, 1992). 

Inter-rater agreement. When testing the consistency
between different visual analysts who are presented with
the same graphs, several studies concur that the average
concordance tends to be low (e.g., Brossart, Parker, Olsson,
& Mahadevan, 2006; DeProspero & Cohen, 1979;
Ottenbacher, 1990b; Park, Marascuilo, & Gaylord-Ross,
1990). This poor performance has been attributed to the
differences between real-life practice and the settings used
in validity studies (Brossart et al., 2006; Parsonson & Baer,
1992). Intra-judge consistency also needs to be explored
as it seems to have been overshadowed by the desire to
study inter-judge agreement.

The validation of visual inspection. Attempts to validate
visual analysis have compared techniques such as the split-
middle method (Ottenbacher, 1990b; Richards et al., 1997),
time-series analysis (Jones et al., 1978), and randomization
tests (Park et al., 1990), and generally report low agreement
between the techniques. However, there is clearly no single
process called statistical analysis that might provide a
definitive validation criterion (Brossart et al., 2006).
Moreover, there seems to be a consensus that visual and
statistical analyses should be complementary rather than
competing methods (e.g., Barlow & Hersen, 2008; Busk
& Marascuilo, 1992; DeProspero & Cohen, 1979; Jones,
Vaught, & Weinrott, 1977; Morley & Adams, 1991).
Accordingly, recent research has focused on exploring
techniques that can enhance visual analysis (Parker &
Brossart, 2003), and attempts have also been made to
combine it with quantitative methods in order to control
Type I error rates (Ferron & Jones, 2006). 

Apart from using some statistical test to assess the quality
of visual analysis a different and probably more appropriate
approach consists in constructing data sets and graphs, so
that the actual data features are known (Parsonson & Baer,
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1992). This strategy implies comparing visual analysts’
answers with the correct answers as determined by data
characteristics (i.e., presence or absence of intervention
effects and extraneous variables). A study of this kind carried
out by Normand and Bailey (2006) found low decision
accuracy. Additionally, and as we shall see below, knowing
the underlying data characteristics enables investigators to
explore their relevance in the decision-making process taking
place in visual inspection. 

Effect size. As expected, greater agreement between
visual analysts has been found for larger changes in level
between baseline and treatment phases (Gibson &
Ottenbacher, 1988; James, Smith, & Milne, 1996; Knapp,
1983; Morales Ortiz, 1992). These findings are consistent
with the idea that visual analysts tend to omit small
intervention effects (Parsonson & Baer, 1986). 

Autocorrelation. For the precise estimation of
autocorrelation from real data, long data series are required
(Huitema & McKean, 1991) and an alternative is to generate
data with known values of the autoregressive parameter
(Fisher, Kelley, & lomas, 2003). There have been divergent
reports about the importance (Matyas & Greenwood, 1990a;
1990b) or lack of importance of serial dependence
(Ottenbacher, 1986; 1990a) for visual inference, although
both original and replication studies seem to support the
former (James et al., 1996; Morales Ortiz, 1992; Rojahn
& Schulze, 1985).

Data variability. The influence of data variability on
visual inference has been studied from different perspectives.
On the one hand, evidence regarding within-phase variability
suggests that lower degrees of dispersion favour visual
analysts’ decisions (DeProspero & Cohen, 1979). On the
other hand, changes in variability between phases have been
found to correlate only minimally with inter-rater agreement
(Gibson & Ottenbacher, 1988; Ottenbacher, 1986). Finally,
data with greater variability across the whole data series
are related to higher Type I error rates (Matyas &
Greenwood, 1990b; Morales Ortiz, 1992).

Expertise. The area of expertise of the applied
psychologist inspecting graphed data has also been shown
to be relevant. Experts in visual analysis tend to use the
magnitude of effect as a criterion, whereas the type of effect
and the amount of variability in the data are usually taken
into account by trainees in statistical analysis (Furlong &
Wampold, 1982; Wampold & Furlong, 1981). Greater inter-
rater reliability has been found among professionals with
a statistical background (regardless of whether they have
experience in single-case designs) in comparison to single-
case design analysts (Harbst, Ottenbacher, & Harris, 1991).
On the other hand, having more experience of visual analysis
does not necessarily imply a better performance (Knapp,
1983; Richards et al., 1997). Training may lead to more
conservative judgments (James et al., 1996), or encourage
analysts to rely solely on the criterion in which they have
been trained (Skiba, Deno, Marston, & Casey, 1989).  

An empirical study of factors affecting visual inference

Estimating the magnitude of effect, the degree of
autocorrelation and variability from real data can be
troublesome and depends on the procedure employed. Thus,
in the present study, data with known parameters were
generated by means of Monte Carlo methods in order to
assess the accuracy of visual analysts’ decisions; in other
words, the correct answers (i.e., existence and magnitude of
effect) are determined by these parameters. This makes it
unnecessary to use any statistical technique as a gold standard
for assessing visual inspection, as comparison between tools
from different domains is not advisable, especially when
there is no “known truth” (Parsonson & Baer, 1992). 

Method

Data generation. AB designs with 20 observation points
(10 in each phase) were generated according to the following
model: yt = μ + δ + φ1� yt–1 + εt, where yt is the data point
at moment t, μ is the mean of the process (set to 25), and δ
is the level change (set to zero for phase A). The aim was to
generate increments in the response rate in phase B, represented
by four values of d, the standardised mean difference (.0, .6,
1.2, and 1.8); the last three are referred to as “small”,
“intermediate” and “large” throughout this article. These labels
have no relation to Cohen’s (1988) benchmarks, whose
appropriateness for single-case designs has been questioned
due to the lack of correspondence with the effect sizes typically
found in this kind of data (Parker et al., 2005). The expression
for calculating the effect size d was presented by Cohen (1988)
as d = (μB − μA) / σ. In the current study, this expression
can be rewritten as d = (μA + δ − μA) / σ, as phase B has
the phase A mean μA increased by δ, and so d = δ / σ. Hence,
the level change to incorporate in the data generation formula
depended on the desired effect size and on the standard
deviation of the series: δ = d · σ. Since we intended to study
the importance of level change while controlling data variability,
autocorrelation also had to be controlled as it too affects data
variability. In summary, the δ needed for a specific data series
was obtained as a function of the effect size chosen, data
variability, and the degree of serial dependence, the objective
being to enable comparability of experimental conditions. The
relationship between the factors is represented by the following
expression, adapted from Kendall and Ord (1990): 

2σ2
ε 2∑(n – k)φk

1
δ = d � √——[1 + ——————],

n                 n

where k is the number of lags, n is the phase length (10, in
the present study), φ1 is the lag-one autocorrelation coefficient,
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yt-1 is the data point at the moment previous to moment t,
and εt is the error term generated from a normal distribution
with mean equal to zero and standard deviation σε. 

The degrees of autocorrelation studied included both
negative (−.8 and −.4) and positive values (.4 and .8), as
well as independent series (φ1 = .0). The level of serial
dependence simulated was the same for the entire series (i.e.,
no distinction between phases was made). It should be noted
that specifying negative autocorrelation is likely to produce
data sets with greater variability, such as an alternation of
high and low data points, while positive serial dependence
may lead to upward or downward trends. Both of these data
features are supposed to have an impact on the decisions made
by visual analysts. It is likely that both the lack of stability
and the presence of trends (i.e., φ1 = |.8|) lead to constructing
clinically undesirable baselines. However, such cases represent
a small subset of the large number of samples generated.  

In the present study the influence of whole-series variability
was explored. The levels of variability studied were represented
by a coefficient of variation (CV) of 50% and 150%,
respectively. As CV = 100 (σε / μ), the two values of the standard
deviation of the error term were σε = (CV · μ)/100 = (50 · 25)
/ 100 = 12.5 and σε = (CV · μ)/100 = (150 · 25) / 100 = 37.5. 

The simultaneous manipulation of the variables relevant
to visual analysis may lead to confounding the specific effect
of individual factors on the performance of visual analysts
(Parsonson & Baer, 1992). In contrast, due to the simulation
procedure followed in the present study, it was possible to
study the influence of effect size, autocorrelation, and data
variability separately. This is an innovative feature of the
study, as previous simulation studies (e.g., Fisher et al., 2003;
Matyas & Greenwood, 1990b) have, generally, manipulated
level changes, variability, and autocorrelation simultaneously. 

Participants

The 57 participants were divided into two sub-groups in
order to study the influence of the level of expertise. An
intentional sample of 24 psychologists with professional
experience in visual analysis and single-case designs in
academic and clinical contexts was selected by contacting
all available experts. The other sub-group comprised a
relatively similar number (33) of psychology undergraduates
who had already passed courses such as Applied and
experimental designs and Behaviour therapy and modification,
which include visual analysis as part of their contents. 

Instrument

Two questionnaires consisting of 60 graphs each were
used in the present study. The first 40 graphs were all
different from each other, while the last 20 were replications
of half of the previously presented graphs and were
incorporated to allow the calculation of an intra-judge
agreement index. The two types of questionnaires differed
only in terms of the effect size used to construct the graphs.
Questionnaire type A included null and small effects, and
type B intermediate and large effects. The order of the graphs
was the same for all exemplars of the same type of
questionnaire. This order was random with respect to the
values of d, φ1, and CV. The statement accompanying each
questionnaire was as follows: “For each graph, indicate
whether the treatment has an effect on the response rate or
not. If you answer affirmatively, mark the magnitude and
type of effect”. This statement was intended to avoid
dichotomous (presence/absence of treatment effect) answers
and to permit participants to use their own criteria when
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Figure 1. A graph belonging to a type B questionnaire. 



making decisions, as suggested by Brossart et al. (2006).
Figure 1 illustrates the format common to all graphs. The
graphs constructed followed the guidelines for graphic
representation summarised by Franklin, Gorman, Beasley,
and Allison (1997). The questionnaires also included
questions about the criteria used by the analysts in their
decision-making processes. 

Graphs were not contextualised, despite recommendations
(Parsonson & Baer, 1992; Brossart et al., 2006), as we did
not want the professionals’ psychological area of specialisation
to interfere with their decisions. For instance, if some of the
clinicians treat people presenting auto-aggressive behaviour
and others work with children with attention deficit
hyperactivity disorder and the context of the graph is the
former, then different judgements might be obtained due merely
to previous experience (or lack of it) in the specific field.  

Procedure

The students answered the questionnaire during class in
the presence of one of the authors so that any doubts they
might have could be addressed. There was no time limit
imposed and the students needed an average of 19 minutes
to respond to the instrument (17 to type A and 16 to type
B). Each of the professionals was contacted individually
and they received the same explanations as those given to
students. Thirteen people responded to questionnaire type
A and 11 to questionnaire type B, and these were returned
by the established deadline. Each sub-group of participants
answered only one type of questionnaire in order to avoid
fatigue, since the total number of graphs was 120, which
could jeopardise the answers to the last graphs.   

Data analyses

The following indices were computed for each participant
using the first 40 graphs of each questionnaire: a) Magnitude
– calculated as the proportion of correct detections of the
magnitude of the effect regardless of its direction; b) Type

– calculated as the proportion of correct detections of effect
direction regardless of its magnitude; c) Sensitivity –
calculated as the proportion of graphs with d ≠ 0 to which
an “effect exists” answer is given by a participant; d)
Specificity – calculated as the proportion of graphs with d
= 0 to which an “effect does not exist” answer is given by
a participant; e) Accuracy – calculated once through Cohen’s
(1960) κ with respect to the detection of presence versus
absence of effect (using the same data as the Sensitivity
and Specificity indices) and then once more with respect
to the detection of the magnitude of the effect. In contrast
with the previous indices, kappa is able to control for
agreement due to chance.  

Intra-judge consistency was also assessed using the last
20 items of the questionnaires and the ones they replicated.
The calculation was as follows: 1) assign ranks 1, 2, 3,
and 4 to participant answers “no effect”, “small effect”,
“intermediate effect”, and “large effect”, respectively; 2)
repeat the ranking procedure for both copies of each graph;
3) compute Spearman’s rank order correlation, for each
participant, between the ranks corresponding to the two
copies of the same graph. Hence, the Consistency index
ranged from −1 to 1.  

Results

Performance of visual analysts

Participants’ accuracy in distinguishing between presence
and absence of treatment effect, as computed from Table
1, was low for both sub-groups (with kappa values of .101
for students and .104 for professionals, respectively). As
expected, the accuracy in discerning the magnitude of effect,
as computed from Table 2, was even lower: κ = .034 for
students and κ = .095 for professionals. 

The Mann-Whitney U test was used to explore
differences in the indices (Consistency, Magnitude, and
Type) between the two types of questionnaires and between
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Table 1
Presence vs. absence of treatment effect: agreement between participants’ responses and known truth

Participants’ response 
Data characteristics

Presence of effect Absence of effect

Students – total responses = 1302
Effect detected 54.15% 16.05%
No effect detected 20.05% 9.75%

Professionals – total responses = 944
Effect detected 47.03% 14.30%
No effect detected 25.85% 12.82%

Note. Each cell represents the percentage of graphs for which the particular crossing between participant decisions and the correct answer
occurred. The main diagonal should include 75% and 25%, since three-fourths of the graphs were constructed with intervention effect (d ≠ 0).    



the two sub-groups. Intra-judge consistency was greater
when assessing graphs with nonexistent or small effects
for both students (mean rank for type A questionnaire 25.00
vs. mean rank for type B questionnaire 8.50, p < .001) and
professionals (mean rank for type A questionnaire 18.00
vs. rank sum for type B questionnaire 6, p < .001). For
the type A questionnaire professionals were more consistent
in their decisions (mean rank for professionals 20.85 vs.
mean rank for students 11.41, p = .0036). For the sub-group
of professionals the correct detection of the magnitude of
effect was also easier when null- and small-effect graphs
were evaluated (mean rank for type A questionnaire 15.85
vs. mean rank for type B questionnaire 8.55, p = .0114).
In contrast, the type (i.e., direction) of effect was better
detected for type B questionnaires, which represent data
sets with greater intervention effects. This finding was
common to both students (mean rank for type B
questionnaire 24.41 vs. mean rank for type A questionnaire
10.03, p < .001) and professionals (mean rank for type B
questionnaire 16.05 vs. mean rank for type A questionnaire
9.50, p = .0232). For the type B questionnaire professionals
were the better performing sub-group in terms of the Type
index (mean rank for professionals 24.27 vs. mean rank
for students 6.94, p = .033).  

Influence of the factors studied

For both levels of experience we found that positive
autocorrelation was associated with the overestimation of
treatment effects. Figures 2 and 3 illustrate the association
between positive serial dependence and lower accuracy in
detecting the absence of treatment effect. The figures also
show that negative serial dependence was associated with
more conservative and, in the case of effect absence, more
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Table 2
Magnitude of treatment effect: agreement between participants’ responses and known truth. 

Participants’ response 
Data characteristics: effect simulated

None Small Intermediate                     large

Students – total responses = 1302
No effect 9.75% 8.60% 6.53% 4.92%
Small 6.30% 6.22% 5.91% 5.22%
Intermediate 6.22% 6.37% 5.91% 7.60%
large 3.53% 4.45% 5.99% 6.45%

Professionals – total responses = 944
No effect 12.82% 10.81% 8.16% 6.89%
Small 4.24% 5.51% 6.14% 5.61%
Intermediate 7.42% 6.36% 4.45% 5.30%
large 2.65% 4.24% 4.03% 5.40%

Note. Each cell represents the percentage of graphs for which the particular crossing between participant decisions and the correct
answer occurred. The main diagonal should include 25%, since each magnitude of effect (d = .0, .6, 1.2, and 1.8) was used to construct
one-fourth of the graphs.  

Figure 2. Detecting the magnitude of the effect simulated, in
relation to autocorrelation and data variability (CV), for data
series with d = .0 (i.e. no treatment effect simulated).

Figure 3. Detecting the direction of the effect simulated, in relation
to autocorrelation and data variability (CV), for data series with
d = .0 (i.e. no treatment effect simulated). 



accurate judgments. However, when a treatment effect exists,
positive autocorrelation generally helps in detecting it,
especially in the presence of less data variability (see Figures
4 and 5 for different effect sizes). Complementarily, negative
autocorrelation undermines the correct detection of
magnitude and also the direction of the existing treatment
effect (see Figures 6 and 7 for different effect sizes). 

The figures also show the influence of data variability
on the accuracy of decisions made by participants. The lower
values of the Magnitude index for CV = 150 suggest that
greater overall data variability affects negatively the decision-
making process. Detecting the direction of treatment effects
is also troublesome in more disperse data series, although
greater CV does not always imply a lower Type index.    

As regards expertise, the main difference between
students and professionals was the greater conservativeness
of the latter, expressed in greater Specificity (.473 vs. .376)
and lower Sensitivity (.645 vs. .730). Additionally, the
professionals were more consistent in the criteria they used
when making decisions, according to their reports.     

Discussion

Visual analysts’ performance

The Accuracy indices indicate scarce correspondence
between the answers given by participants and the correct
answers according to simulation parameters. The same
conclusions can be drawn from inspection of the Magnitude
and Type indices. Moreover, intra-judge consistency was
found to be low, except in the case of professionals assessing
graphs with small or nonexistent effects. 

Type I and Type II errors

Some poor values of the Magnitude index were obtained
for both graphs with and without a simulated effect. That
is, visual inspection was not unequivocally related to
liberality or conservativeness, but rather false alarms and
omissions could prevail as a function of factors such as
autocorrelation and expertise.  
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Figure 4. Detecting the magnitude of the effect simulated, in
relation to autocorrelation and data variability (CV), for data
series with d = 0.6 (“small” treatment effect simulated). 

Figure 5. Detecting the magnitude of the effect simulated, in
relation to autocorrelation and data variability (CV), for data
series with d = 1.8 (“intermediate” treatment effect simulated). 

Figure 7. Detecting the direction of the effect simulated, in relation
to autocorrelation and data variability (CV), for data series with
d = 1.2 (“intermediate” treatment effect simulated).

Figure 6. Detecting the direction of the effect simulated, in relation
to autocorrelation and data variability (CV), for data series with
d = 0.6 (“small” treatment effect simulated). 



Effect size

The fact that the Consistency index was low in the case
of d = 1.2 and 1.8 may be attributable to the difficulty of
the task, which required distinguishing between intermediate
and large treatment effects. It appears that participants found
it easier to differentiate between no effect and small effects,
although the concordance indices were not excessively high
for the type A questionnaire either. These results do not,
however, mean that greater effects are more difficult to
detect, but may be attributable to the method followed. 

Autocorrelation

Autocorrelation was shown to influence the accuracy
of the decision-making process: positive serial dependence
highlighted the simulated effects and was associated with
more frequent Type I errors, while negative autocorrelation
made it more difficult to detect effects. 

Data variability

This factor requires further investigation as its pattern
of influence is not clear enough, although there is some
evidence that greater data variability hinders visual inference.   

Expertise

Professionals tended to use more consistent criteria than
did students when making decisions about intervention
effectiveness. Greater consistency, however, does not imply
greater accuracy. Students were more sensitive to treatment
effects (committing fewer Type II errors), but they also
tended to commit more Type I errors. Hence, more
experience was associated with greater conservativeness,
as pointed out by James et al. (1996). 

Previous and current results seem to indicate that the
performance of visual analysts depends on several factors.
It is a technique that can lead to different decisions according
to the person applying it (in relation to their experience and
analytical criteria) and depending on how data are displayed
(in relation to the presence or absence of visual aids). Data
characteristics are also important, as visual analysis has been
shown to be more reliable (and especially useful) for greater
treatment effects, represented by larger effect sizes.
Nevertheless, the conservativeness of visual inspection is
not warranted when data are serially dependent, a likely
situation in single-case designs (Parker, 2006). In addition,
the low inter-judge agreement reported by previous research
and the intra-judge inconsistencies detected in the present
study suggest that visual analysis needs to be complemented
by some analytical technique that provides quantitative results
in order to enhance the decision-making process of applied
psychologists. One possibility is to incorporate visual aids,
since there is some evidence that regression or trend lines

can increase inter-rater agreement, reliability and decision
accuracy (Bailey, 1984; Fisher et al., 2003; Hagopian et al.,
1997; Hojem & Ottenbacher, 1988; Skiba et al., 1989). Thus,
it would be possible to combine the consistency of a
systematic procedure (e.g., a statistical test, an effect size
index or a visual aid) with the flexibility of visual analysis
in the context of a specific area and in accordance with the
aims and particular features of each individual case. 

The resemblance between computer-generated and real
behavioural data is always an issue in simulation studies.
However, in the case of visual analysis there does not seem
to be an optimal basis for assessing its reliability, since
statistical techniques cannot unequivocally reveal the truth.
A specific limitation of the present study is that only one
design structure (AB) was simulated, and it would be
necessary to investigate the decision-making process of visual
analysts exposed to designs with more phase changes (e.g.,
ABAB designs) as these are likely to make it easier to assess
results. In the event that all visual analysts participating in
a study are specialists in the same psychological field, an
example belonging to that area could be used to contextualise
the graphical representations. In this way, an experimental
situation resembling real-life settings could be achieved.  

Future studies might focus on factors not studied here
but which may also influence the decision-making process
of visual analysts; for instance, the presence of overall trend
or changes in trend seem to have an impact on decision
accuracy (Gibson & Ottenbacher, 1988; Matyas &
Greenwood, 1990b). Simulation studies may also specify
delayed and temporary changes in response rate, as these
are likely in behavioural data. 
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