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Abstract: We present an analysis of factors influencing carrier transport 

and electroluminescence (EL) at 1.5 µm from erbium-doped silicon-rich 

silica (SiOx) layers. The effects of both the active layer thickness and the Si-

excess content on the electrical excitation of erbium are studied. We 

demonstrate that when the thickness is decreased from a few hundred to 

tens of nanometers the conductivity is greatly enhanced. Carrier transport is 

well described in all cases by a Poole-Frenkel mechanism, while the 

thickness-dependent current density suggests an evolution of both density 

and distribution of trapping states induced by Si nanoinclusions. We ascribe 

this observation to stress-induced effects prevailing in thin films, which 

inhibit the agglomeration of Si atoms, resulting in a high density of sub-nm 

Si inclusions that induce traps much shallower than those generated by Si 

nanoclusters (Si-ncs) formed in thicker films. There is no direct correlation 

between high conductivity and optimized EL intensity at 1.5 µm. Our 

results suggest that the main excitation mechanism governing the EL signal 

is impact excitation, which gradually becomes more efficient as film 

thickness increases, thanks to the increased segregation of Si-ncs, which in 

turn allows more efficient injection of hot electrons into the oxide matrix. 

Optimization of the EL signal is thus found to be a compromise between 

conductivity and both number and degree of segregation of Si-ncs, all of 

which are governed by a combination of excess Si content and sample 

thickness. This material study has strong implications for many electrically-

driven devices using Si-ncs or Si-excess mediated EL. 

©2012 Optical Society of America 
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1. Introduction 

Owing to its exceptional properties, combined to abundance on Earth, silicon is naturally 

widely used in numerous man-made structures and devices. Its preeminence in the 

microelectronic industry, along with its poor optical properties resulting from its indirect band 

gap, restricted it for a while to being primarily an “electronic” material. However, seminal 

work from Canham on luminescent porous silicon [1] shook the general belief that silicon is 

not the appropriate choice for photonic applications. Since then, nanostructured silicon has 

emerged as a credible optoelectronic material showing a wealth of promising applications. 

Among the highlights of the field can be counted the observation of optical gain [2], as well 

as electroluminescence [3,4], from silicon nanocrystals both being important steps toward the 

fabrication of an electrically-driven silicon laser. Quantum-cutting using Si-ncs [5], Si-

multilayer [6] or Si-ncs sensitized erbium [7] also holds promise for increasing the efficiency 

of current photovoltaic solar cells. Finally, optical memory effects in silicon nanocrystals 

have also been reported [8], and more recently memristive effects have been demonstrated 

[9], paving the way to realize an all silicon memristor. In addition, Si-ncs have also been 

shown to be efficient sensitizers for light-emitters such as rare-earth ions (erbium, 

neodymium,..) [10,11]. In these systems, Si-ncs act as antennas that increase by ~10
4
 the 

effective absorption cross-section of the emitter under optical or electrical excitation 

[10,12,13]. Gathering all these discoveries, one can easily envision a fully Si-based micro-

optoelectronic circuit in which logic and memory operations are operated by Si-based 

memristors and/or transistors, light is emitted and detected by Si-ncs based devices [14], and 

guided and amplified in Si-based waveguides. Such ‘all-silicon’ optical circuitry would be 

compatible for full integration on conventional CMOS chips at a low effective cost. 

This picture is as yet far from being a reality, and many optimization steps are needed. 

Most of these Si-nc-based devices require (i) fine control of the Si-ncs size, structure and 

#167472 - $15.00 USD Received 27 Apr 2012; revised 6 Jul 2012; accepted 12 Jul 2012; published 17 Sep 2012
(C) 2012 OSA 24 September 2012 / Vol. 20,  No. 20 / OPTICS EXPRESS  22492



separation over the whole active layer (ii) a better understanding of what governs the 

electrical transport of carriers and (iii) scalability to fit in nanometer-scale devices. 

Concerning potential CMOS-compatible electrically-driven photonic sources, SiOx:Er could 

be implemented as optical interconnects operating at telecommunication wavelength (1.5 

µm). Numerous excellent works on SiOx:Er exist in the literature, but they are, in most cases, 

based on photoluminescence results [15–20]. The few reports of electroluminescence from 

SiOx:Er demonstrate that Si excess in SiO2 is absolutely needed to i) enhance the electrical 

conduction and injection of carriers and ii) allow efficient excitation of Er
3+

 ions [21,22]. 

Recent promising results were obtained under alternative current excitation scheme [23,24]. 

However, no net optical gain has yet been reported for electrically-driven SiOx:Er devices, 

and the state-of-the-art highest fraction of electrically excited Er
3+

 ions is 20% [25]. 

Nevertheless, two recent simulation works showed that (i) it is theoretically possible to 

achieve modal gain via pulsed electrical excitation of waveguide-confined devices [26], and 

(ii) light can be efficiently coupled from electrically-pumped SiOx:Er into silicon waveguides 

[27]. Such results are promising for future all-silicon optical-circuitry and highlight the need 

to better understand the physics of carrier transport and erbium excitation in fabricated 

devices. 

In this paper we investigate the thickness-dependence of electrical transport of carriers 

and emission from nanocluster-sensitized erbium by means of studies of electrically-driven 

LEDs. Emphasis is first put on the Si-nc-assisted injection of carriers and material conduction 

properties. We demonstrate that the thickness of the active layer affects the structural 

properties of Si-ncs, altering the efficiency of carrier transport without significantly 

modifying the underlying physical mechanism (Poole-Frenkel). Our study probes the 

electrical effects of thickness-induced structural modifications of Si-ncs, due to film stress, 

and gives microscopic details of the transport of carriers between Si excess-based 

nanostructures. In a second strand, the sensitization of Er
3+

 by Si-ncs is investigated, again as 

a function of thickness and Si excess, to gain more insight into both the interplay between 

conductivity and Er emission, and the excitation mechanism of Er in this system. We show 

that when active layer thickness is reduced from hundreds to tens of nanometers, the 

normalized Er
3+

 emission signal per unit thickness is strongly reduced, although the 

conductivity is enhanced and the threshold voltage is lowered. This latter statement 

demonstrates that the Er
3+

 excitation is not directly correlated to the conductivity. Based on 

this work on LEDs, our conclusions can be applied to all kinds of electrically-driven devices 

(transistors, photovoltaics, nanocluster memories…) based on Si-ncs that require device 

dimensions of a few tens of nanometers. 

2. Device processing and electrical characteristics 

All LED devices were defined by photolithographically-etched SiO2, delimiting a square-

shaped through the sputtered active SiOx:Er layers of various thicknesses to the p-type (100) 

Si substrate. The composition of the active layer was found to be unchanged when the film 

thickness was varied; further details of the deposition, as well as structural and compositional 

investigations, can be found elsewhere [28]. The deposition temperature was maintained at 

500°C, corresponding to the optimum luminescent properties determined in a previous study 

[29]. A thin layer of Indium Tin Oxide (ITO) was then deposited on the whole surface and 

aluminum contacts were deposited as empty-square shapes to allow the emitted light to be 

transmitted through the top of the device (Fig. 1). All samples were annealed at 900°C in pure 

N2 for 1h. 
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Fig. 1. Schematic cross-section view of the light emitting diode with an SiOx:Er active layer 

analyzed in this work. 

We first examine the electrical characteristics of LEDs for different thicknesses of the 

active layer, ranging from 20 nm to 170 nm. We measured the variation of the current density 

(J) as a function of the applied voltage (V) for each active layer thickness (dal), as displayed in 

Fig. 2(a). An important parameter for device applications is the threshold voltage (Vth), which 

needs to be as low as a few volts to be integrated in existing CMOS devices. Vth is arbitrarily 

defined here as the voltage required for deflecting the I-V curve, thus allowing a significant 

current to start flowing through the active layer. Vth monotonically increases with the 

thickness with values ranging from 5 V (20 nm) to 25 V (170 nm). 

LEDs comprising a sub-oxide thin film as an active layer often exhibit Poole-Frenkel (PF) 

conductivity when submitted to an external electric field. Electrons trapped in localized states 

have a probability to be thermally promoted to the conduction band. When an external 

electric field is applied, the potential barrier is lowered and the emission probability is greatly 

enhanced. This electric-field enhanced thermionic emission is described by the following 

relation between the current density and the applied voltage [30]: 

 
3

0

1
exp

al B r al

V e V
J

d k T d

  
 ∝ ⋅  
    πε ε

 (1) 

where kB is Boltzmann’s constant, T is the temperature (K), e is the electron charge, εr and εo 

respectively stand for the relative and vacuum permittivity. Equation (1) can 

straightforwardly be rearranged to: 

 
3

1
2

0

1
ln

B r

J e
E

E k T

   ∝ ⋅ ⋅  
    πε ε

 (2) 

where E = V/dal stands for the electric field. Following Eq. (2), any LED displaying PF 

conduction would show a linear behavior if ln(J/E) is plotted as a function of E
1/2

. The inset 

of Fig. 2(a) displays this PF representation for the thinnest and thickest layers studied (20 nm 

and 170 nm, respectively) as well as their corresponding fits using Eq. (2). 

We find that all fabricated devices are well described by a PF conduction mechanism, 

similar to an earlier study on similar samples [22]. The dynamic permittivity εr, used here as a 

free fit parameter, is shown to be εr = 3.0 ± 0.2 for all layers, indicating that there is no 

significant change in the composition when the thickness is increased. Such a result is 

consistent with our previous analysis of the composition profiles as a function of thickness 

[28]. We also report in Fig. 2(b) the values of the maximum voltage reached before 
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breakdown (Vmax) against the thickness and the corresponding values of maximum current 

density reached before breakdown (Jmax exp). 

 

Fig. 2. (a) Current density versus applied voltage for SiOx:Er layers of different thicknesses, 

ranging from 20 nm to 170 nm. Inset: Poole-Frenkel representation of conduction for layers of 

20 nm and 170 nm. (b) Values of breakdown voltage and the corresponding maximum current 

density as a function of thickness. 

Analysis of Figs. 2(a) and 2(b) suggests that thickness has a triple influence on the 

electrical properties of these layers through modification of three parameters: J, Vth and Vmax. 

#167472 - $15.00 USD Received 27 Apr 2012; revised 6 Jul 2012; accepted 12 Jul 2012; published 17 Sep 2012
(C) 2012 OSA 24 September 2012 / Vol. 20,  No. 20 / OPTICS EXPRESS  22495



However, the conduction mechanism is still unchanged, and is well described by the PF 

model for all values of thickness. Interestingly, the thinnest samples present the double 

advantage of showing both high J and low Vth and appear, at this stage, as the most suitable 

for highly efficient LEDs. As the same composition and the same transport mechanism 

prevail in all samples, the observed thickness-dependence of J and Vth somehow result either 

from the thickness itself or from a thickness-dependent arrangement of atoms inside the layer 

[28]. To investigate the likelihood of one or the other phenomenon, we use the relation 

describing the variation of J vs. dal in PF mechanism (Eq. (1)). 

Using the measured values of Vmax and the corresponding thickness value dal, Eq. (1) 

allows us to calculate the expected current density, Jcalc. Figure 3 compares the thickness 

evolution of Jmax calc to that of the measured current density (Jmax exp) shown in Fig. 2(b). Note 

that Eq. (1) does not allow the calculation of exact and absolute values. So, for the sake of 

comparison and a clear identification of the influence of the thickness on the current 

variation, we have normalized Jmax calc to J0, defined as the Jmax exp value for the thickest 

sample at 170 nm, for which the stress (or thinness-limiting effects) can be considered to be 

negligible. 

0 50 100 150 200
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10
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10
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10
3

 Calculated J
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J
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x
/J

0
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Fig. 3. Comparative evolutions of experimental and calculated values of the maximal current 

density flowing through active layers of LEDs of different thicknesses. 

As depicted in Fig. 3, both Jmax calc and Jmax exp increase when the thickness is reduced. 

However, while Jmax exp rises by 4 orders of magnitude when the thickness is decreased from 

170 nm to 20 nm, Jmax calc increases by less than one order of magnitude. According to this 

calculation the thickness decrease cannot explain itself the 4-order increase of current density. 

Consequently, this thickness dependence of Jmax exp is more likely to be the result of a change 

in the atomic arrangement within the active layers [28]. 

Previously, we showed that the compressive stress prevailing in films thinner than ~100 

nm inhibits the agglomeration of excess Si atoms. Furthermore, this effect is inversely 

proportional to film thickness. Hence, for a given Si excess and thermal treatment, a ‘thin’ 

film (<100-150 nm) contains a high number of dispersed Si atoms that are preferentially 

arranged as defects (Silicon Oxygen-Deficient Centers - SiODC or Non-Bridging Oxygen 

Hole Centers - NBOHC) or very small agglomerates [28,31,32]. On the other hand, the same 

amount of Si excess in a ‘thick’ film (>100-150 nm) subject to the same heat treatment would 
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preferentially agglomerate in well-defined Si-ncs [28,31,32]. In thin films, this leads to a high 

number of structural defects and isolated atoms scattered throughout the layer, creating a high 

density of energy states close to the band edges. Such a quasi ‘continuum’ of shallow traps 

acting as relays for current transport [33] would enhance significantly the injection of carriers 

and lower the activation energy characterizing the thermal emission in the PF conduction 

mechanism . For thick films, in contrast, discrete Si-ncs are formed. Carriers are more deeply 

trapped in this case, requiring higher activation energy to hop from one Si-nc to another. The 

model suggested for each process is schematically illustrated in Fig. 4. 

 

Fig. 4. Schematic model explaining the different conduction properties between (a) thin films 

(<150 nm) and (b) thick films (>150 nm). Interface defects are likely to be present in both 

kinds of samples but are not displayed here for clarity. 

We note that this model is consistent with the measured progressive increase in the 

threshold voltage (Fig. 2(a)) as a function of thickness. Vth represents the minimum voltage 

needed to promote de-trapping of electrons, being linked to the charge trap potential depth. 

Thus, a low (high) Vth value indicates a shallow (deep) potential barrier that electrons must 

overcome to reach the conduction band. This phenomenon is consistent with the 

independently measured progressive agglomeration of Si excess with increasing film 

thickness [28], resulting in larger Si-ncs with higher potential energy barriers relative to the 

surrounding dielectric (SiO2). The increasing value of Vth can thus be seen as a result of the 

increasing size of Si-ncs, which induce deeper and deeper trap states. 

On the other hand, to test our assumption that there is a higher number of traps in thin 

films, one can analyze the so-called low field conductivity [34] (current before threshold) 

which is a direct indication of the charge trap density [33]. The observed progressive two-

order of magnitude lowering of Jlow-field (Fig. 2(a)) with increasing thickness confirms a 

corresponding reduction in the number of traps. 

These two kinds of conduction behavior are therefore due to the difference of excess Si 

agglomeration when the thickness is changed, which results in a four order of magnitude 

conduction difference between thinnest and thickest films. Put another way: both the number 

and the structure of Si-ncs are altered by the thickness of active layer. Such a phenomenon is 

reported for the first time here and reveals the interplay between thickness of active layer, 

microscopic structure of Si-ncs and electrical conduction properties. These latter results will 

undoubtedly have an impact on the previously mentioned applications of Si-ncs, notably on 

photovoltaics and electrically-driven devices such as memristors or LEDs. This may also 

have some repercussions on the design and nano-engineering on multiple monolayers of Si-

ncs in SiO2 [35], photoluminescence down shifter for solar cells [36] or graded-size Si 
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quantum dots [37]. We chose here to investigate further this thickness-dependence on the 

sensitization of Er
3+

 ions in such layers, which may lead to more insights on the excitation 

mechanism of these latter. 

3. Conductivity-electroluminescence correlation 

In Fig. 5, we report the variation of the EL signal at a wavelength of 1.5 µm as a function of 

the applied voltage for the indicated thicknesses. All layers contain 7 at.% excess Si. The 

erbium photoluminescence of similar SiOx:Er samples (with thicknesses ranging from 15 nm 

to 170 nm), pumped through Si-ncs (λex = 476 nm) is displayed in the upper inset, with the 

conductivities (σ = J/E) of corresponding LEDs displayed in the lower inset as a function of 

thickness. 
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Fig. 5. EL versus applied voltage for different thicknesses of SiOx:Er LEDs containing 7 at.% 

excess Si. Inset: relative evolution of Si-ncs sensitized Er PL at 1.5 µm and the conductivity 

for the same range of thicknesses. 

The EL signal increases with the thickness, reaches an optimum at 120 nm and then 

strongly decreases for thicker layers (170 nm). As expected, EL at 1.5 µm begins when the 

current starts to flow through the active layer. But on the other hand, and counter-intuitively, 

the optimum thickness for electroluminescence (120 nm) does not correspond to the thickness 

of highest conductivity (20 nm). The optimum excitation of Er
3+

 ions is thus not only a matter 

of high density of current flowing through the SiOx:Er layer. There is therefore no direct 

correlation between highest conductivity and optimum EL, unlike what is usually thought. In 

order to understand this paradox, the results displayed in the inset of Fig. 5 are helpful. The 

upper plot depicts the 1.5 µm photoluminescence intensity of Er
3+

 in SiOx when pumped 

through Si-ncs, i.e. with a non-resonant wavelength (476 nm), normalized to both the 

thickness and the Er concentration. It shows a clear gradual and systematic increase of the 

Er
3+

 PL emission when thickness is increased from ~15 nm to ~170 nm. This phenomenon is 

due to a combination of inhibited formation of Si-based sensitizers and thickness-related 

optical effects (interferences, changes to the local density of optical states) [28]. The second 

plot in the inset shows that the conductivity is reduced in the meantime by almost four orders 
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of magnitude over the same thickness range. We can thus see that the EL signal at 1.5 µm is a 

difficult compromise between a good formation of Si-ncs to efficiently sensitize the Er
3+

 ions 

and a sufficiently high conductivity and low onset voltage to allow current to flow through 

the device. Note that these latter results are not sufficient to unambiguously draw conclusions 

about the physical mechanism governing the excitation of Er
3+

 ions. Recent studies, however, 

tend to show that impact excitation is the dominant excitation mechanism of Er
3+

 ions in SiOx 

[24,38]. In this view, one can consider that the formation of larger Si-ncs in thick films (i.e. 

deep traps), would favor the creation of relatively hot electrons between clusters, producing 

Er
3+

 emission by impact excitation. On the other hand, in the case of a much more 

homogeneous distribution, the trap depth is too small to generate hot electrons, and hence 

Er
3+

 excitation (and emission) is correspondingly feeble. Note that, between these two 

extremes, the number of Si-ncs gradually changes. Thus, EL maximization is found when an 

appropriate balance is reached between a significant number of sensitizers (Si-ncs) and a 

sufficient trap-depth to produce hot electrons. This optimization is reached here at 120 nm. 

A further interesting observation is that the EL signal is dramatically reduced for the 170 

nm thick film. For this thickness, the onset voltage is very high (>50 V). Such high voltages, 

favors the injection of high-energy hot electrons [39,40], which is known to induce dielectric 

breakdown. 

4. Trade-off between sample thickness and Si excess to optimize devices 

In the previously mentioned simulation by Miller et al. [26], a 10 nm Er:Si-ncs layer (in SiO2) 

slot waveguide sandwiched between two Si layers is proposed to obtain modal gain under a 

pulsed injection scheme. The study shows that modal gain can be enhanced from <1 dB/cm to 

2-3 dB/cm when the thickness of active layer is increased from 10 nm to 50 nm. However, the 

thickness dependence is not taken into account in this simulation work, which may lead to 

significant deviation from the obtained simulation results. As pointed out in the introduction, 

any targeted application is likely to require a specific thickness (and geometry) of active layer 

for integration purposes. To reach this objective, one has to overcome the thickness-induced 

effects that result in the weak EL signals recorded in the few tens-of-nm-thick films. As 

previously explained, the low Er
3+

 emission in such thin films is mainly due to the limited 

number of large Si-ncs sensitizers (i.e. sufficient trap-depth to produce hot electrons) because 

of the thickness-induced inhibition of Si-ncs formation. To enhance the density of sensitizers 

in thin films, a simple solution is to increase the Si excess leading to the formation of more 

Si-ncs [28]. To study this, a set of samples with a Si excess of 18 at.% was tested. The EL 

signal was recorded as function of applied voltage for films with thicknesses between 15nm 

and 95nm (Fig. 6). The optimum EL signal is reached for ~40nm thick sample, with intensity 

twice as high as that for a similar thickness film with 7 at.% of Si excess. Such a shift of the 

optimum EL towards low thicknesses supports our assertion concerning the lack of sensitizers 

for Er
3+

 in thin films: when the Si excess is increased, the EL intensity is enhanced through a 

higher number of Si-ncs. Furthermore, it also demonstrates that device and sample 

optimization must properly take into account the active layer thickness. Existing literature 

reports on the determination of optimum Si excess for SiOx:Er are therefore only valid for the 

thickness used by the authors (~110 nm) [41]. 
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Fig. 6. Electroluminescence signal at 1.5 µm (normalized to film thickness) versus applied 

voltage for different thicknesses of SiOx:Er layers containing 18 at.% Si-excess. Inset: scheme 

of the combined influences of conductivity and Er3+ coupling on the resulting EL signal. 

Note that the conductivity for these high Si excess layers also shows a four order of 

magnitude decrease when the thickness is increased from 15nm to 95nm. The optimum EL 

signal thus results from a trade-off between layer conductivity (i.e. number of Si-ncs) and 

Er
3+

 excitation, as drawn on the inset to Fig. 6, both parameters being governed by the excess 

Si content and layer thickness. 

5. Impact of structural factors on external quantum efficiency 

To reinforce this study of the structural factors influencing the behavior of the devices, we 

can estimate the external quantum efficiency (EQE) which represents the number of emitted 

photons per injected electron Eq. (3): 

 
emitted
photons EL

injected injection
electrons

n
Ie

EQE A
n h I

 
= = ⋅ ⋅  

 ν
 (3) 

where IEL is the EL intensity detected around 1.5µm, h is Planck’s constant, ν is the frequency 

of emission, Iinjection is the injected current and e is the elementary charge on the electron. In 

the geometry of the setup, only a fraction of the emitted photons is effectively collected by 

the detection system, and the term A is thus a correction factor that takes into account the 

collection geometry. For an absolute calculation of the EQE, all emitted photons emitted 

should be included (i.e. including photons emitted in the visible range). However, as this 

work aims at optimizing EQE at 1.5 µm, we only calculate the 1.5µm EQE, which represents 

the number of “useful” photons emitted per injected electron. The resulting values given here 

are therefore lower than the total EQE. 
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The evolution of EQE with layer thickness for both values of Si excess (7 and 18 at.%) is 

shown in Fig. 7. For 7 at.% of Si excess, the value of EQE increases from 0.005% at 20 nm to 

> 0.2% at 170 nm, i.e. a 40-fold enhancement, whereas for 18 at.% an optimum EQE of about 

0.02% is reached around 30-40 nm, but it falls below 10
-3%

 for thinner and thicker samples. 
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Fig. 7. External quantum efficiency for different thicknesses of SiOx:Er LEDs containing 7 

at.% and 18 at.% excess Si. 

The values of EQE are thus not uniquely governed by the thickness, but are also 

dependent on the excess Si content. The key parameter lies in the degree of agglomeration of 

excess Si, inasmuch as it plays a major role for both the transport of carriers and the 

sensitization of Er
3+

. Such an agglomeration can be tailored by varying both Si excess [31] 

and thickness [28]. In this view, the rapid increase of EQE during the first stage of thickness 

increase (from 20 nm to ~100 nm) for 7 at% reflects the enhanced formation of Si-ncs 

sensitizers. On the other hand, the highest value of EQE is surprisingly achieved at 170 nm, 

for which the EL signal is low (cf. Fig. 5) and the current density is the lowest (Fig. 2(b) and 

Fig. 3). The obtained relatively high EQE value (about 0.2%) reflects efficient sensitization of 

Er
3+

 ions. Thus, even if there are fewer electrons injected in this ‘thick’ active layer (low 

conductivity), a sizeable fraction of them is effectively ‘useful’ for impact excitation of Er
3+

 

ions. This is a further indication that generation of hot electrons yields to more efficient 

excitation of Er
3+

 ions. Besides, for this thick layer and annealing conditions, almost all Si-

excess atoms are agglomerated within well-defined Si-ncs [28,31] separated with regions of 

stoichiometric SiO2, hence avoiding any scattering from defects in the electron path toward 

Er
3+

 ions. The resulting low EL, despite the good sensitization of Er
3+

 ions, is the direct 

consequence of the low current density. Concerning the higher Si excess, the corresponding 

layers show an optimum EQE at 30-40nm thickness, for which an optimum density of Si-

based sensitizers is formed within the active layer. For higher values of the thickness, the high 

#167472 - $15.00 USD Received 27 Apr 2012; revised 6 Jul 2012; accepted 12 Jul 2012; published 17 Sep 2012
(C) 2012 OSA 24 September 2012 / Vol. 20,  No. 20 / OPTICS EXPRESS  22501



Si excess is detrimental to the sensitization of Er
3+

 ions probably because of the creation of 

too much defects and scattering centers. 

By comparing the EQE values obtained for low (7 at.%) and high (18 at.%) Si excess at a 

thickness of 30-40 nm, we noticed a two-fold enhancement of EQE when more sensitizers are 

formed (18 at.%). However, this better EQE obtained at 30-40 nm for high Si excess is still 

one order of magnitude lower than the best EQE obtained for thicker sample (170 nm) 

containing less Si excess. Such a phenomenon is likely to be due to the fact that, even for a 

high Si excess, the compressive stress still inhibits the agglomeration of Si atoms in thin 

films, thus not all Si atoms are agglomerated. The resulting isolated Si atoms or structural 

defects may act as scattering centers that reduce the overall efficiency of sensitization of Er
3+

 

ions. This is another indication that relatively large Si-ncs (with trap depth sufficient to create 

hot electrons) with surrounding near-stoichiometric oxide are needed to ensure efficient 

excitation of Er
3+

 ions. Such results show that, to increase EQE in SiOx:Er system, one has to 

ensure formation of well-defined Si-ncs in perfectly stoichiometric SiO2. A promising way to 

obtain that ideal system would be to separate Si-ncs containing layer (SiOx) from the Er-

containing layer (Er:SiO2) in multiple stacks of monolayers, similar to SiOx/SiO2 multilayers 

recently studied [35,42,43]. 

Conclusion 

We have presented a study that contributes to further understanding of both the electrical 

transport of carriers mediated by Si-ncs and the process of erbium sensitization by excess 

silicon in the case of electrical excitation. Such processes have been much less studied in this 

material than is the case for optical excitation, and yet a proper understanding of carrier 

transport and sensitization is required not only for a fuller description of the physics of the 

material, but also as a prerequisite to the development of electrically pumped devices. The 

picture we reveal is a complex one that highlights the competing effects of stress and excess 

silicon content in modulating sample conductivity and sensitization efficiency. Our results 

suggest that the mechanism of carrier transport in SiOx films depends critically on the 

distribution of excess silicon. In the case of well-defined silicon nanoclusters separated by 

regions of stoichiometric or near-stoichiometric oxide, whilst the nanoclusters are efficient 

sensitizers of erbium emission, the overall conductivity of the sample is low. In contrast, in 

films in which the excess silicon is distributed across a large number of much smaller silicon 

nanoinclusions in a largely sub-oxide matrix, film conductivity is much higher, but excitation 

of erbium ions is very inefficient due to the lack of sensitizing nanoclusters. We propose a 

model in which hot electron injection into the erbium-containing oxide or suboxide matrix is 

facilitated by the presence of discrete silicon nanoclusters separated by stoichiometric or near-

stoichiometric oxide. However, when the excess silicon in the matrix is more homogeneously 

distributed, the depth of the silicon-related traps is insufficient to allow for hot electron 

injection thanks to a decrease in the conduction band offset between the silicon 

nanoinclusions and the now more silicon-rich suboxide matrix. It is this hot electron injection 

that is responsible for impact excitation of erbium ions within the oxide, and hence larger 

well-defined silicon clusters are more efficient at generating erbium luminescence. This 

model is consistent with the observation that the electrically excitable fraction of erbium in 

SiOx is higher than the corresponding optically excited number – different populations of 

erbium ions are being excited in the two cases: in the latter it is only the small number of 

erbium ions that lie sufficiently close to the silicon nanoclusters for efficient excitation 

transfer. Our study thus suggests that the interface between silicon-rich and stoichiometric 

regions (or between Si nanoclusters and SiO2) plays a vital role in both the carrier transport 

and sensitization mechanisms. This has important implications, not only for the design of 

LEDs, lasers and optical amplifiers exploiting these materials, but also for other 

technologically important systems incorporating semiconductor nanoclusters, such as 

photovoltaics, in which efficient extraction of carriers is required. 
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