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Some problems involved in the interpretation of Hall-effect measurements in polycrystalline 
semiconductors have not been resolved, especially when the contribution of the boundaries is 
appreciable. Using the Herring theory of transport properties in inhomogeneous semiconductors, 
we present an alternative interpretation to that previously proposed. This model permits the 
calculation of the Hall coefficient under general conditions. 

Extensive measurements of the Han effect in polycrys­
taHine semiconductors have been carried out. Nevertheless 
the interpretation of these measurements is not simple. 

Theoretical analysis has been done. One such is the 
model proposed by Voiger. 1 He considered a material con­
sisting oflow-resistivity grains [region (1) in Fig. 1, with re­
sistivity PI and dimension II]' separated by boundaries [re­
gion (2) with resistivity pz and dimension 'z]. For one such 
material wherep2 » PI' II » Iz, and i/iz = 1/12 [ii' i2, being 
the mean current densities in regions (1) and (2), respective­
ly], theory showed that the measured Han coefficient was 

[ ' ]'Z R = RI + I: Rz, 

where R I is the Han coefficient of the grain and R z the Han 
coefficient of the boundary region. From this result Volger 
concluded that Ii was approximately R I. 

Bubez proposed an equivalent circuit of the basic unit in 
the Volger model, and modified versions of the Bube model 
were considered by other workers. 3-5 

Volger's result has been frequently cited when it has 
been assumed that in a polycrystalline semiconductor the 
Hall coefficient is a measure of the carrier concentration in 
the grain, i.e., R = (qn.J - I. However, the conductivity mod­
els developed by Petritz,6 Seto/ and other authors,IO-I3 indi­
cate that the assumptions of the Volger model are not always 
valid. In fact, if the region (2) is the boundary between grains, 
the conditionpz > Pt will be true only for light depletion of 
the grain; in generalpz can be comparable tOPt, depending 
on the trap states density, the doping level, the grain size, and 
surface scattering effects. In addition, the consideration of 
two different current densities seems to us only justified in 
the quite simplified model ofVolger. In spite of this, no theo­
retica! work on the Hall effect not based on the Volger mod­
el, has been reported. The depletion of the grain was consid­
ered by Seto; he assumed Ii = R I' but, since the carrier 
concentration is not uniform, he calculated n I from the one­
dimensional average of the carrier concentration in the grain 

1 ill n l = - n(x) dx. 
II 0 

(1 ) 

Many authors have foHowed Seto in the application of this 
expression. 

From the earllier discussison it is clear that previous 
theoretical treatments of the problem do not consider the 
boundary contribution to the measured Hall coefficient in a 

general situation. Furthermore, we fail to know any theoreti­
cal justification for Eq. (1). 

In this letter, we propose an alternative interpretation 
that permits the calculation of R under general conditions, 
and we calculate Ii in a particular situation. 

In the Volger model two different current densities flow 
in the basic unit. It seems however more reasonable to con­
sider that the same current density flows in the grain and in 
the boundary, because of a general random arrangement of 
grains (Fig. 2). In this case, since each current line goes 
through neutral, depletion, and boundary regions, we as­
sume that the current lines are almost uniform. Upon mak­
ing this assumption we may apply the results obtained by 
Herringl4 for inhomogeneous semiconductors with small 
fluctuations in electrical properties. Actually the application 
to polycrystal.li,ne semiconductors was suggested in Her­
ring's paper. 
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FIG. I. Model for a polycrystalline semiconductor and basic unit from Ref. 
1. 

1080 J. Appl. Phys. 58 (2). 15 July 1985 0021-8979/85/141080-03$02.40 @ 1985 American Institute of Physics 1080 

Downloaded 15 Jun 2010 to 161.116.168.169. Redistribution subject to AIP license or copyright; see http://jap.aip.org/jap/copyright.jsp



FIG. 2. Grain random arrangement and basic unit with neutral. depletion. 
and boundary regions. 

The Herring fonnula for isotropic fluctuations is 

Ii - (a 2R) (2) 
- (a)2 ' 

where angular brackets denote spatial averages and 
a=p- I

• 

In order to calculate the averages for a polycrystalline 
semiconductor, we propose the following hypotheses: (a) Be­
cause of the grain depletion, the carrier concentration is 
function of coordinates according to Seto's model. This 
function depends on the partial or whole depletion of the 
grain, and on the material degeneration. 12.13 (b) The mobility 
has approximately the same value III in the whole grain and 
has a value 112 in the boundary region. III is related to the 
mobility of the monocrystalline material and 112 is related to 
the transport mechanism across the boundary, that is 
112 = (a/qn) boundary. 

As an example, we consider the application of the small 
fluctuation theory to not degenerated polycrystalline semi­
conductors, with columnar grains. The effect of the surface 
is not considered. Ii is calculated in two situations: 

(1) Partial depletion of the grain. We take as the basic 
unit the usual square geometry with average dimensions. 
There are three different regions (Fig. 2): The neutral region 
with carrier concentration no, the depletion region with car­
rierconcentrationno exp( - ¢ /kT}, where¢ = ¢B(W - X)2/ 
ai is the energy barrier (being W the width of the depletion 
region and x the distance to the boundary),9 and the bound­
ary region with carrier concentration no exp( - ¢B/kT), 
where ¢B = ¢ (x == 0) is the energy barrier height. Therefore 
the average conductivity is given by 

(a) = I~qnolll [1 + 2(~ + ~)(1TkDJ/2 e-" ¢B ) 
(/1+12)2 10 I~ ¢B) l1\kT 

+ (1 + .2@ +..!L) 2/2112 exp( _ ~)] , (3) 
10 2/0 10 III kT 
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where 10 is the neutral region dimension. The terms in brack­
ets correspond to the neutral, the depletion, and the bound­
ary regions, respectively. 

Evidently, (~R ) is obtained from the expression for 
(a) by substituting III and 112 for Il~ and Il~ . (a) becomes 
q(n) with III =1l2 = 1. 

For reasonable values of parameters (for example, 
12 = 2 nm, II> 10 nm, 1l2/J.t1 < 1 and ¢B > 3 kT), the third 
term is not appreciable. This result is valid also with J.tJ/ 
J.t2 = 1, therefore, the average conductivity can be expressed 
as 

(4) 

and 

(5) 

where Hall factor is taken r = 1 and (n) is the average car­
rier concentration in the grain. From Eqs. (2), (4), and (5) we 
find 

Ii = (q(n»)-I. (6) 

The conclusion from this calculation is that, when the 
contribution of boundaries can be expected to be insignifi­
cant, Herring's theory gives a similar expression to that 
usually applied (numerical values of (n) and n I are very 
close). This result supports the theory proposed here. 

(2) Whole depletion of the grain and ID > IdlD being the 
Debye length). In this situation, because of the little band 
bending, the carrier concentration n is approximately uni­
form. 12 Then the average conductivity is given by 

(a) = nqnJ.t1 [1 +J.t2(212 + n)], (7) 
(II + 12)2 J.tl II Ii 

and from Eq. (2) 

1 + ,u~ (2/2 + Ii) 
Ii __ l_(1+il.)2 J.t~ II I~ (8) 

- qn II ( ,u2(2/2 1~)]2 1+- -+-
, J.tl II Ii 

This case has been proposed as an example for which 
the contribution of the boundaries is expected to be signifi­
cant. Evidently, the problem cannot be solved in terms of the 
Volger model and the derived result that Ii = R I is not appli­
cable to this situation. 

According to Eq. (8), the Hall coefficient measures a 
reduced carrier concentration because of the inhomogeneity 
in mobility. The corrective factor can be very important 
especially for small grain sizes. 

In conclusion, we have proposed a model for applying 
Herring's theory to polycrystalline semicond~ctors. For the 
case where P2 > PI and 11> 12 , the result R = R I , about 
which there is a general agreement, is obtained from the 
model. Furthermore, theory gives a theoretical justification 
for calculating R I from the spatial average of the carrier 
concentration. For the cases where the above conditions are 
not valid, theory permits a calculation of Ii taking into ac­
count the contribution of the boundaries. This contribution 
will be important for small size and hard depletion of the 
grains. Two examples have been considered in support of 
these conclusions. 

Garcia-Cuenca. Morenza. and Codina 1081 

Downloaded 15 Jun 2010 to 161.116.168.169. Redistribution subject to AIP license or copyright; see http://jap.aip.org/jap/copyright.jsp



The authors acknowledge the collaboration of the Insti­
tut d'Estudis Catalans. This work has been partially fi­
nanced by the C.A.I.C.Y.T., Ministerio de Educaci6n y 
Ciencia (project 3967/79 and 1106/81). 

IJ. Volger, Phys. Rev. 79, 1023 (1950). 
2R. H. Bube, Appl. Phys. Lett. 13, 136 (1968). 
3J. Heleskivi and T. Salo, J. Appl. Phys. 43, 740 (1972). 
4A. K. Ghosh, A. Rose, H. P. Maruska, D. J. Eustace, and T. Feng, Appl. 
Phys. Lett. 37, 544 (1980). 

'J. W. Orton and M. J. Powell, Rep. Prog. Phys. 43, 81 (1980). 

1082 J. Appl. Phys., Vol. 58, No.2. 15 July 1985 

OR. L. Pet ritz, Phys. Rev. 104, 1508 (1956). 
7A. Waxman, V. E. Henrrich, F. V. Shallcross, H. Borkan, and P. K. 
Weimer, J. Appl. Phys. 36, 168 (1965). 

8J. I. Kaminis. J. Appl. Phys. 42, 4357 (1971). 
9J. Y. W. Seto, J. Appl. Phys. 46,5247 (1975). 
lOG. Baccarani. B. Ricco, and G. Spadini, J. Appl. Phys. 49, 5585 (1978). 
lIe. H. Seager and T. G. Castner, J. App1. Phys. 49, 3879 (1978). 
12J. W. Orton, B. J. Goldsmith. J. A. Chapman, and M. J. Powell, J. Appl. 

Phys.53, 1602 (1982j. 
13M. V. Garcia-Cuenca, J. L. Morenza, and J. Esteve, J. Appl. Phys. 56, 

1738 (1984). 
14e. Herring, J. Appl. Phys. 11, 1939 (1960). 

Garcia-Cuenca. Morenza. and Codina 1062 

Downloaded 15 Jun 2010 to 161.116.168.169. Redistribution subject to AIP license or copyright; see http://jap.aip.org/jap/copyright.jsp


