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ABSTRACT 

The current study proposes a new procedure for separately estimating slope 

change and level change between two adjacent phases in single-case designs. 

The procedure eliminates baseline trend from the whole data series prior to 

assessing treatment effectiveness. The steps necessary to obtain the estimates 

are presented in detail, explained, and illustrated. A simulation study is carried 

out to explore the bias and precision of the estimators and compare them to an 

analytical procedure matching the data simulation model. The experimental 

conditions include two data generation models, several degrees of serial 

dependence, trend, level and/or slope change. The results suggest that the level 

and slope change estimates provided by the procedure are unbiased for all 

levels of serial dependence tested and trend is effectively controlled for. The 

efficiency of the slope change estimator is acceptable, whereas the variance of 

the level change estimator may be problematic for highly negatively 

autocorrelated data series. 

 

Key words:  single-case designs, level change, slope change, autocorrelation, 

trend  

 



In recent years it has become widely accepted that psychological studies based 

on single-case designs need to provide scientific evidence on the interventions 

applied, which would allow subsequent N = 1 studies to have a solid 

foundation (Jenson, Clark, Kircher, & Kristjansson, 2007; Olive & Smith, 

2005; Parker & Brossart, 2006; Parker & Hagan-Burke, 2007; Schlosser & 

Sigafoos, 2008; Shadish, Rindskopf, & Hedges, 2008). The evidence on the 

effectiveness of intervention techniques can be accumulated integrating 

individual studies in a quantitative way, for instance, considering different 

levels of analysis and incorporating study characteristics as effect moderators 

(van den Noortgate & Onghena, 2003; 2008).  

The availability of useful summary measures is essential for quantifying 

the results of an individual study and also for conducting meta-analyses (Busk 

& Serlin, 1992; Cohen, 1990; 1994; Kirk, 1996; Kromrey & Foster-Johnson, 

1996; Rosnow & Rosenthal, 1989; Wilkinson & Task Force on Statistical 

Inference, 1999). A “useful” effect size index needs to meet the following 

criteria: 1) to represent correctly the true data characteristics; 2) to offer 

valuable and easily interpretable information; and 3) to be easily applicable by 

researchers with scarce statistical expertise. Regression-based techniques (e.g., 

Allison & Gorman, 1993; Center, Skiba, & Casey, 1985-1986; Gorsuch, 1983; 

White, Rusch, Kazdin, & Hartmann, 1989) have been found to perform 

unsatisfactorily with respect to criterion 1 (Beretvas & Chung, 2008b; 

Brossart, Parker, Olson, & Mahadevan, 2006; Manolov & Solanas, 2008; 

Parker & Brossart, 2003), while also being deficient regarding criterion 2, due 



to the large effect size estimates yielded (Campbell, 2004; Scruggs & 

Mastropieri, 1998). Interpretability is also problematic for ITSE (Gottman, 

1981) and ITSACORR (Crosbie, 1993), since the meaningfulness of their 

results is compromised by conceptual and computational issues (Huitema, 

2004; Huitema, McKean, & Laraway, 2007). As regards criterion 3, the 

procedures based on visual analysis (i.e., Ma, 2006; Parker, Hagan-Burke, & 

Vannest, 2007; Scruggs, Mastropieri, & Casto, 1987) can be easily applied 

even by hand calculation. Although the percentages yielded by these 

techniques are also readily interpretable (criterion 2), trend and autocorrelation 

have been shown to jeopardize the completion of criterion 1 (Manolov, 

Solanas, & Leiva, in press).  

In the following section a new procedure for assessing treatment 

effectiveness is proposed, taking into consideration the need for separate 

quantification of slope change and level change in order to represent more 

fully the information contained in single-case studies (Beretvas & Chung, 

2008a). The procedure is designed to yield meaningful results (criterion 2) 

expressed in terms of the behavioral measurement units used in each 

individual study. Subsequently, the interpretation of the estimates produced by 

the procedure is discussed and illustrated with an example. In order to meet 

criterion 3 different software solutions are proposed to researchers and 

practitioners. Monte Carlo simulation is used to evaluate how well the 

estimates represent known data parameters, that is, to obtain information about 

the degree of achievement of criterion 1.  



 

A procedure for estimating slope and level change (SLC) 

 

Rationale 

The objective of the proposed procedure is to estimate slope and level change 

(being present either of them or both) eliminating baseline data linear trend 

whenever it is present. After a potential phase A trend is removed, it can be 

logically assumed that the level of behavior in that phase presents zero slope. 

It is conjectured that the procedure may also deal with positive serial 

dependence, since the presence of large positive autocorrelation in data can be 

represented by an upward or a downward trend. In contrast, when 

measurements are negatively autocorrelated, data present greater variability 

rather than trend. The slope and level change estimates obtained for the 

detrended data express the shifts in terms of the measurement units. For 

instance, if the frequency of behavior is measured, a slope change of 3 would 

mean that at each measurement time during phase B the experimental unit 

produces an average of three behaviors more than in the previous observation 

point. A level change of 3 would imply that with the introduction of the 

intervention (i.e., with the change in phase) the experimental unit produces an 

average of 3 behaviors more in the treatment phase than in the baseline phase. 

It has to be remarked that this average change in level is computed after 

estimating and controlling slope change. 

 



Steps required for computing SLC 

In the present paragraph the computation of the SLC estimates is explained 

verbally, whereas the mathematical expressions and an example can be found 

in Appendix I. Since SLC is designed to control general trend prior to 

assessing intervention effectiveness, an initial data correction step involves 

eliminating phase A trend from data. Trend is estimated only for the baseline 

phase, since it allows avoiding confusion between trend and potential 

intervention effects taking place in phase B (Allison & Gorman, 1993). Trend 

estimation is not carried out by means of ordinary least squares, since unstable 

estimates are expected on theoretical basis when few data points are available 

(Weisberg, 1980). Additionally, there is evidence on the inappropriate 

performance of Gorsuch’s (1983) trend analysis which uses this kind of 

estimation (Manolov & Solanas, 2008; Parker & Brossart, 2003). Instead, the 

phase A trend is estimated as the mean of the differenced phase A 

measurements. Afterwards trend is removed from both phase A and phase B, 

using a method that has been shown to be useful for dealing not only with 

trend but also with autocorrelation (Manolov & Solanas, 2009). 

The second step involves estimating slope change as the trend present in 

the phase B data, from which baseline trend has already been removed. The 

average value is assumed to represent an estimation of slope change, 

considering that the phase A trend has been previously removed and, thus, the 

baseline is supposed to have a zero slope. 



The third step consists in the estimation of level change. Firstly, the 

already estimated change in slope is removed from the treatment phase data, 

without removing the intercept. That is, the phase B slope is eliminated from 

the detrended phase B data, while maintaining potential shifts taking place at 

the first measurement time of the treatment phase. Level change is estimated 

subtracting the detrended baseline data mean from the detrended and slope-

change-controlled treatment data mean.  

The procedure described is not restricted to AB designs and can be applied 

to any combination of a baseline and treatment phase which is included in 

more complex design structures (e.g., multiple-baselines designs, ABAB 

designs).  

 

Software availability 

The example in Appendix I shows that SLC can be applied using hand 

calculations. However, for longer data series this can become tedious. 

Therefore, the procedure has been implemented in an MS-DOS executable file 

and in two well-known and widely-used statistical packages: R (version 2.9.2) 

and SAS (version 9.1).  

The slc.exe file (available from the authors) asks for series length, baseline 

phase length, and the name of the .dat file containing the data points separated 

by spaces. The estimates are printed in an output file, whose name needs to be 

specified by the user. However, this program does not permit graphing data 

and, thus, the R and SAS/IML codes were developed. 



R is a freeware language which has already been used to make automatic 

the application of other techniques for analyzing single-case data (Bulté & 

Onghena, 2008; Manolov & Solanas, 2009). For SLC, a package and a plug-in 

(available upon request and from the http://cran.r-project.org website) 

containing the R function presented in Appendix II were developed. Both the 

function and the packages compute the slope and level change estimates and 

represent graphically the original and detrended data (e.g., Figure 1). One of 

the versions of the package requires using three commands to obtain the 

results, whereas the other one is based on menus. Appendix II explains the use 

of the two packages      

 

INSERT FIGURE 1 ABOUT HERE 

 

The SAS/IML code presented in Appendix III also permits obtaining the 

slope change and level change estimates, by simply inputting the 

measurements and baseline phase length. The graph of the detrended data 

which is drawn using the code allows complementing numerical analysis with 

visual inspection.  

The diversity of possibilities mentioned above makes the application of 

SLC straightforward. In fact, the use any piece of software requires fewer 

steps than computing, for instance, the Percentage of all nonoverlapping data 

effect size estimate, as described in Schneider, Goldstein, and Parker (2008).  

 



 

Method 

 

AB series lengths  

Short data series were included in the present study, since those are more 

feasible in applied settings: a) N = 10 with nA = nB = 5; b) N = 15 with nA = 5; 

nB = 10; c) N = 15 with nA = 7; nB = 8; d) N = 20 with nA = nB = 10; e) N = 30 

with  nA = nB = 15; and f) N = 40 with nA = nB = 20, where N denotes whole  

series length and nA and nB represent the number of measurements in phase A 

and B, respectively.  

 

Data generation models 

For each combination of nA and nB data were generated according to the 

model proposed by Huitema and McKean (2000):  yt = β0 + β1 ∙ Tt +  β2 ∙ LCt 

+ β3 ∙ SCt + εt, where yt is the value of the dependent variable at moment t, β0 

is the intercept (set to zero), β1, β2, and β3 are the coefficients associated with 

trend, level change, and, slope change respectively, Tt is the value of the time 

variable at moment t (taking values from 1 to N), LCt is a dummy variable for 

level change (equal to 0 for phase A and  to 1 for phase B), SCt is a dummy 

variable for slope change being equal to 0 for phase A, and taking values from 

0 to (nB − 1) for phase B, and εt is the error term. This data generation and 

variables specification method has been previously used in studies related to 



simulating single-case behavioral data (Beretvas & Chung, 2008b; Huitema & 

McKean, 2007; McKnight, McKean, & Huitema, 2000). 

The beta parameters related to trend, level and slope change were set to 1 

and 10 to represent a small and a large effect, respectively. The aim of these 

parameter values was to explore the impact of effect size on the bias and 

variance of the estimators. It has to be adverted that a permanent level change 

of one behavior implies a smaller effect than a progressive slope change of 

one behavior per measurement time.  

The error term (εt) was generated following two different models which 

are assumed to represent adequately the greater part of behavioral data 

(Harrop & Velicer, 1985): a) the first-order autoregressive model εt = φ1 ∙ εt–1 

+ ut, with φ1 ranging from –.9 to .9 in steps of .1; and b) the first-order moving 

average model εt =  ut − θ1 ∙ ut-1 (as presented in McCleary and Hay, 1980) 

with 19 values of θ1: −.9(.1).9, leading to autocorrelation ranging from .4972 

to −.4972.  

For both models the random variable ut was generated following three 

different distributions (exponential, normal, and uniform) with mean equal to 

zero and standard deviation equal to 1, 2, and 3, constituting a total of nine 

different ut distributions. These conditions permit studying the effect of 

skewness, kurtosis, and data variability on the performance of the procedure 

proposed.    

 

Data analysis 



For each experimental condition defined by the combination of εt model, ut 

distribution, and β1, β2, and β3 values the mean and variance of the two 

estimators was computed on the basis of 100,000 samples. The SLC level and 

slope change estimates were compared to simultaneous multiple regression 

(SMR; Huitema & McKean, 2000) coefficient estimates in terms of bias and 

variance. The bias of the estimators was obtained as the difference between 

the simulation parameters and the estimates for slope and level change. The 

variance of the estimators was computed as an indicator of the efficiency and a 

comparison was performed between SLC and SMR. The SMR procedure can 

be considered a gold standard, since it matches perfectly the data generation 

model used. 

 

Simulation 

The specific steps that were implemented in the FORTRAN programs (one for 

each of the six series’ length) were the following ones:  

1)  Systematic selection of each of the 19 values of φ1 or θ1 autoregressive 

or moving average models, respectively. 

2)  Systematic selection of the (β1, β2, and β3) parameters for data generation, 

leading to 8 different data patterns – absence of effect or trend; presence 

of trend; level change; slope change; trend and level change; trend and 

slope change; combined level and slope change; trend and combined 

level and slope change. 

3)  100,000 iterations of steps 4 through 11. 



4)  Generate the ut term according to an exponential, a normal, or a uniform 

distribution with different values of the standard deviation parameter. 

5)  Establish ε1 = u1. 

6)  Obtain the error term εt out of the random variable ut using the AR(1) 

model εt = φ1 ∙  εt–1 + ut or the MA(1) model εt =  ut − θ1 ∙ ut-1. 

7)  Obtain the time array Tt = 1, 2, …, N.  

8)  Obtain the dummy treatment variable array LCt, where LCt = 0 for phase 

A and LCt = 1 for phase B. 

9) Obtain the slope change array according to: SCt = [Tt – (nA + 1)] ∙ LCt. 

10) Obtain the yt array containing measurements (i.e., dependent variable): yt 

= β0 + β1 ∙ Tt + β2 ∙ LCt + β3 ∙ SCt + εt.  

11) Apply SLC and SMR.  

12) Obtain the mean and variance of the slope change and level change 

estimates the 100,000 replications of each experimental condition.  

13) Compute the bias of the estimates.   

For data generation NAG libraries nag_rand_neg_exp, nag_rand_normal, 

and nag_rand_uniform were used. In order to guarantee suitable simulated 

data, the 50 values previous to each simulated data series were eliminated in 

order to reduce artificial effects (Greenwood & Matyas, 1990) and to avoid 

dependence between successive data series (Huitema, McKean, & McKnight, 

1999). 

 

Results 



 

Detection of treatment effects 

Both SLC and SMR proved to be unbiased, that is, null estimates were 

obtained when the simulation parameter beta was zero. Complementarily, 

when β2 = 1 (or 10) or β3 = 1 (or to 10), the estimates were equal to one or ten, 

respectively. In fact, the estimators’ bias and variance for small and large 

effect differed only at the third decimal level and in the results presented in 

following sections are applicable to both cases. Thus, SLC detects both level 

and slope changes, whenever either of them or both are present. Moreover, 

when the intervention is ineffective, the estimates are equal to zero, indicating 

that the change in phase is not associated with an alteration in the behavior of 

interest. The size (0, 1, or 10) of either type of treatment effect does not alter 

the variance of the estimates of SLC and SMR. This implies that the 

importance of the variability decreases for greater effects as the relative 

efficiency of the procedure increases for stronger interventions. For instance, 

for first-order autoregressive series with normal unitary error, 15 

measurements in each phase, level change of 1, and φ1 = .3, the coefficient of 

variation of the SLC level change estimate is 1.241/1 = 124.1%. For the same 

case and a level change of 10, the coefficient of variation is 1.245/10 = 

12.45%, according to the results obtained. 

 

Distortion due to trend 



According to the results obtained, it can be stated that SLC controls effectively 

for general trend, since it does not distort the estimates obtained. Whenever 

the intervention is not effective, the presence of trend in the desired direction 

does not lead to erroneously inferring treatment effectiveness. Additionally, 

when treatment is effective, its effect is not overestimated due to the presence 

of trend. The level and slope change estimates of SMR are also not affected by 

trend, whose magnitude is estimated precisely, without bias. The presence or 

absence of trend does not alter the variance of the estimates of SLC and SMR. 

 

Distortion due to autocorrelation 

The presence of autocorrelation in data is not associated with biased estimates. 

In contrast, serial dependence is relevant for the variance of the estimates 

obtained. The variance of the estimators is greater for higher degrees of 

negative and to a lesser extent for positive autocorrelation (see Tables 1 and 2 

for SLC and Tables 3 and 4 for SMR). Another finding common to SLC and 

SMR and both data generation processes is the greater variability of the level 

change estimator in comparison to the slope change estimator.  

 

INSERT TABLES 1, 2, 3, AND 4 ABOUT HERE 

 

Regarding variability, SLC and SMR differ to a greater degree in the case of 

the level change estimate where the sign of the serial dependence becomes 

especially relevant. Negative autocorrelation distorts more the SLC estimator 



and positive one has greater impact on the SMR estimator for both 

autoregressive (Figure 2) and moving average (Figure 3) processes. Apart 

from the greater distortion in relative terms (comparing sequentially related to 

independent data), SMR also shows greater absolute estimator variability for 

φ1 ≥ .3 in AR(1) processes and for φ1 ≥ 0.275 for nA = nB = 5  data generated 

using a MA(1) process.     

 

INSERT FIGURES 2 AND 3 ABOUT HERE 

 

Influence of series length 

Although both estimators are unbiased for all series lengths, it is important to 

have as much measurements as possible. That is so, due to the fact that the 

efficiency of the estimators of both SMR and SLC improves for longer series, 

as Tables 1 to 4 show. The increase of N is associated with especially 

important reduction of variance for the slope change estimator.  

 

Influence of error model and random variable distribution 

The difference between AR(1) and MA(1) data is mainly in the variance of the 

estimators, which is somewhat greater in the case of the latter. Generating the 

random variable ut following an exponential, a normal, or a uniform 

distribution does not seem to affect the performance of SLC or SMR in terms 

of bias or variance.  

 



 

Discussion 

 

The present investigation proposes a new procedure for estimating slope 

change and level change, in that order, after controlling for linear baseline 

phase trend. The estimates obtained are expressed in terms of the measurement 

units used to quantify the dependent variable, rather than in terms of 

standardized mean difference (d) or association (R
2
). The performance of the 

procedure proposed is assessed in the context of two-phase data series 

representing a wide set of experimental conditions including autocorrelation, 

trend, and two different types of treatment effect. Considering the potential 

usefulness of SLC it was implemented in both free and commercial software 

requiring few inputs to produce the magnitude of change estimates.   

The results suggest that the procedure proposed is practically unbiased 

both for first-order autoregressive and moving average processes and 

regardless of the distributional shape of the random variable; its initial data 

correction step controls effectively for linear trend. In the case of unbiased 

estimators, variance is an important indicator of their efficiency and the SLC 

estimators are generally more efficient for positively autocorrelated data and 

less efficient for φ1 ≤ .0. When comparing both procedures it has to be kept in 

mind that SMR implies a perfectly specified regression model corresponding 

exactly to the data parameters. It has to be highlighted that the least favorable 

conditions for SLC are defined by a) high negative serial dependence; and b) 



immediate and permanent changes in the response rate with the introduction of 

the intervention. Regarding point “a”, evidence suggests that high negative 

autocorrelation is not frequent in behavioral data (Matyas & Greenwood, 

1997; Parker, 2006). On a substantive basis, it is also more logical to expect an 

individual or a group to show consistent behavior over time (i.e., positive 

autocorrelation). As far as point “b” is concerned, in psychological studies an 

abrupt and sustained (level) change in the behavior is less likely to occur than 

a progressive change representing a gradual improvement of the individual or 

group treated. Another point to be remarked is that the relevance of the 

estimators’ variability is subjected to the magnitude of the intervention effect. 

For large effects, which seem to be typical for N = 1 studies (Campbell, 2004; 

Matyas & Greenwood, 1990; Parker et al., 2005), a variability of two 

behavioral units, such as the one observed for the level change estimator for 

most levels of serial dependence, may not be crucial for determining treatment 

effectiveness. Taking into account these considerations, it can be stated that 

SLC will perform well for the majority of applied studies, where positive 

autocorrelation, slope changes, and/or sizeable level changes are likely to be 

present.   

The results of estimators’ greater variance for φ1 values diverging from 0 

can be explained considering the fact that the error term (and consequently the 

data series) variability increases when the degree of (negative and positive) 

autocorrelation is higher. These relationship can be explained through the 

following steps for the AR(1) processes. The data generation model for the 



error term is εt = φ1∙εt–1 + ut, which implies that Var(εt) = φ1
2
∙Var(εt-1) + 

Var(ut). Since the variability of the series at each measurement time is 

constant Var(εt) = φ1
2
∙Var(εt) + Var(ut) and thus Var(εt) − φ1

2
∙Var(εt) = Var(ut). 

Therefore, Var(εt)·(1−φ1
2
) = Var(ut) and Var(εt) = Var(ut)/ (1−φ1

2
). Thus, the 

greater the absolute value of the autocorrelation parameter, the greater the 

variance of the error term. An additional implication of this expression is that 

a greater variability of the ut term would have resulted in more variable series. 

In both cases this increased data variability entails lower reliability in the 

estimation of the behavioral change.  

Apart from the greater variance observed for φ1 ≠ 0, the results suggest 

that the level change estimates vary to a considerably greater degree than the 

slope change estimates in both SLC and SMR. The fact that this finding is 

common to both procedures implies that it is not a consequence of the 

stepwise nature of SLC in which the level change is estimated after controlling 

for a potential slope change.  

Although testing the performance of SMR was not the main aim of the 

present study, the results obtained suggested that it can be useful for 

estimating behavioral change. However, our preliminary results on the 

statistical significance of the regression coefficients  suggest that conventional 

5% alpha does not permit using p values as a reliable criterion for assessing 

the existence of level changes as small as one behavior. Additionally, 

autocorrelation was also shown to be problematic, as negative one makes more 

difficult the rejection of the null hypothesis and positive one makes SMR too 



liberal, doubling the probability of committing a Type I error. Until more 

evidence is available on statistical decision making with SMR, the assessment 

of treatment effectiveness can be done using solely the regression coefficients.  

In summary, SLC can readily be applied to single-case data presenting 

trend and/or positive autocorrelation, since it is not affected by these data 

features providing unbiased estimates. The procedure can be complemented by 

the visual inspection of the graphed original and detrended data in order to 

enhance the assessment of treatment effectiveness.  In fact, the technique only 

quantifies the amount of slope and level change in measurement units and, 

thus, allows the decision on the relevance of the changes to be made according 

to practitioner’s substantive criteria, considering the behavior of interest, the 

particular client and setting, etc.   

A specific drawback of the procedure proposed is that it is conceived for 

correcting linear trend in data and, therefore, its performance might not be 

optimal when behavioral data present curvilinear trends. Further research is 

needed in order to explore whether the data correction present in SLC can 

attenuate the effect of nonlinear trends. Future efforts may also focus on 

estimating the sampling distribution of the slope and level change estimators, 

due to its utility for obtaining statistical significance and confidence intervals. 

The transformation of the SLC estimates into common effect size metrics is 

another issue to be tackled in the subsequent investigations.  
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Appendix I 

 

Formulae for computing SLC 

Equation (1): Differencing  

1t t tA A A    

where At represents the original phase A measurement at time t and ΔAt 

represents the differenced phase A data.  

Equation (2): Obtaining the phase A trend estimate A as the mean of the 

differenced phase A measurements  

1

1

( 1)
An

A t A

t

A n 




   

where nA is the number of observations in the baseline phase. 

Equation (3): Obtaining the detrended phase A data ( iA ) 

·t AtA A t   

Equation (4): Obtaining the detrended phase B data ( iB ) 

·t AtB B t   

Equation (5): Differencing the detrended phase B data 

1t t tB B B    

Equation (6): obtaining the phase B slope estimate SC as the mean of the 

differenced phase B measurements 



1

1

( 1)
A B

A

n n

t B

t n

SC B n
 

 

   

where nB is the number of observations in the treatment phase.  

Equation (7): Eliminating phase B slope from the detrended phase B data, 

maintaining potential level changes at time t= nA+1. 

 ·( 1)t tB B SC t    

Equation (8): Estimating level change subtracting the detrended baseline data 

mean from the detrended and slope-change-controlled treatment data mean 

1 1

A B A

A

n n n

t tB A

t n t

LC B A B n A n


  

      

 

An illustrative example 

In order to illustrate the application of SLC, consider the fictitious data set 

consisting of the following measurements: 1, 2, 3, 4, and 5 for phase A and 7, 

9, 11, 13, and 15 for phase B.  

Data correction. First, the phase A data are differenced: ΔA1 = A2 – A1 = 

2−1 = 1, ΔA2 = A3 – A2 = 3−2 = 1, ΔA3 = A4 – A3 = 4−3 = 1, ΔA4 = A5 – A4 = 

5−4 = 1. Then, the average of the differenced phase A data is used to represent 

phase A trend A  = (1+1+1+1)/(5−1) = 1. The phase A trend is removed from 

the whole data series, obtaining the detrended baseline data as 1A =A1−1·1= 

1−1 = 0, 2A =A2−1·2= 2−2 = 0, 3A =A3−1·3= 3−3 = 0, 4A =A4−1·4= 4−4 = 0, 



and 5A =A5−1·5= 5−5 = 0. The detrended treatment data are computed through 

1B =B1−1·6= 7−6 = 1, 2B =B2−1·7= 9−7 = 2, 3B =B3−1·8= 11−8 = 3, 

4B =B4−1·9= 13−9 = 4, and 5B =B5−1·10= 15−10 = 5.  

Slope change estimation. First, the detrended phase B data are differenced: 

1 2 1B B B    = 2−1 = 1, 2 3 2B B B    = 3−2 = 1, 3 4 3B B B    = 4−3 

= 1, and 4 5 4B B B    = 5−4 = 1. Then, the average of the differenced and 

previously detrended phase B data is computed and used to represent the slope 

change estimate: (1 1 1 1) (5 1) 1SC       . Hence, in the treatment 

phase the experimental unit produces an average of one behavior more in each 

successive measurement time, considering that baseline trend has been 

removed.  

Level change estimation. Phase B slope is removed from the detrended 

phase B data, without removing the intercept. The detrended slope-change-

controlled treatment data are obtained through: 1 1 ·(1 1)BB B    = 1−1·0 = 

1, 2 2 ·(2 1)BB B    = 2−1·1 = 1, 3 3 ·(3 1)BB B    = 3−1·2 = 1, 

4 4 ·(4 1)BB B    = 4−1·3 = 1, and 5 5 ·(5 1)BB B    = 5−1·4 = 1. The 

level change estimate is computed subtracting the A-detrended phase A mean 

from the detrended slope-change-controlled phase B data mean: LC B A   

= (1+1+1+1+1) / 5 −  (0+0+0+0+0) / 5 = 1−0 = 1. Therefore, after controlling 

for potential baseline trend and slope change between the two phases, the 



experimental unit produces an average of one behavior more during phase B 

than during phase A (level change).  

The data were constructed to present no random fluctuations, only general 

trend in data – on each measurement time the experimental unit increases its 

response rate by one behavior. When the treatment phase starts, there is an 

immediate and permanent change in level of one behavior: the data point at 

time 6 is 7 instead of 6, as the mere continuation of the phase A trend would 

imply. Additionally, during phase B the response rate increases by 2 behaviors 

at a time and, therefore, there is a slope change of one behavior. In summary, 

the level change and slope change parameters are known and are both equal to 

1 behavior. As it can be seem, both slope change and level change were 

precisely estimated. 



Appendix II 

 

The R code for SLC requires copy-pasting the function it in the R console. 

Afterwards, data can be input reading a file “filename.det” containing the 

measurements separated by spaces in info <- array(scan("filename.dat")) or 

writing the values directly in info <- array(c(value1,value2,value3)). Then, the 

baseline phase length is specified in n_a <- length. Finally, the expression 

results <- slcestimates(info,n_a) needs to be written in order to obtain the 

output. The same specifications need to be done after installing and loading 

the SLC_0.1.tar.gz package based on commands. 

---------------------------------------------------------------------------------------------- 
# R function for estimating slope and level change 

slcestimates <- function(info,n_a)  { 

slength <- length(info) 

n_b <- slength-n_a 

phaseA <- info[1:n_a] 

phaseB <- info[(n_a+1):slength] 

# Estimate phase A trend 

phaseAdiff <- c(1:(n_a-1)) 

for (iter in 1:(n_a-1)) 

phaseAdiff[iter] <- phaseA[iter+1] - phaseA[iter] 

trendA <- mean(phaseAdiff) 

# Remove phase A trend from the whole data series 

phaseAdet <- c(1:n_a) 

for (timeA in 1:n_a) 

phaseAdet[timeA] <- phaseA[timeA] - trendA * timeA 

phaseBdet <- c(1:n_b) 

for (timeB in 1:n_b) 

phaseBdet[timeB] <- phaseB[timeB] - trendA * (timeB+n_a) 

# Compute the slope change estimate 

phaseBdiff <- c(1:(n_b-1)) 

for (iter in 1:(n_b-1)) 

phaseBdiff[iter] <- phaseBdet[iter+1] - phaseBdet[iter] 

trendB <- mean(phaseBdiff) 

print ("Slope change estimate = "); print(trendB) 

# Compute the level change estimate 

phaseBddet <- c(1:n_b) 

for (timeB in 1:n_b) 

phaseBddet[timeB] <- phaseBdet[timeB] - trendB * (timeB-1) 

level <- mean(phaseBddet) - mean(phaseAdet) 

print ("Level change estimate = "); print(level) 



# Represent graphically 

time <- c(1:slength) 

par(mfrow=c(2,1)) 

plot(time,info, xlim=c(1,slength), ylim=c((min(info)-1),(max(info)+1)), xlab="Measurement 

time", ylab="Variable of interest", font.lab=2) 

abline(v=(n_a+0.5)) 

lines(time[1:n_a],info[1:n_a]) 

lines(time[(n_a+1):slength],info[(n_a+1):slength]) 

axis(side=1, at=seq(0,slength,1),labels=TRUE, font=2) 

axis(side=2, at=seq((min(info)-1),(max(info)+1),2),labels=TRUE, font=2) 

points(time, info, pch=24, bg="black") 

title (main="Original data") 

transf <- c(phaseAdet,phaseBdet) 

plot(time,transf, xlim=c(1,slength), ylim=c((min(transf)-1),(max(transf)+1)), 

xlab="Measurement time", ylab="Variable of interest", font.lab=2) 

abline(v=(n_a+0.5)) 

lines(time[1:n_a],transf[1:n_a]) 

lines(time[(n_a+1):slength],transf[(n_a+1):slength]) 

axis(side=1, at=seq(0,slength,1),labels=TRUE, font=2) 

axis(side=2, at=seq((min(transf)-1),(max(transf)+1),2),labels=TRUE, font=2) 

points(time, transf, pch=24, bg="black") 

title (main="Detrended data") 

list(trendB,level) } 

 

# Input data 

info <- array(scan("info.dat")) 

n_a <- 3 

 

# Obtain estimates 
results <- slcestimates(info,n_a) 

 

---------------------------------------------------------------------------------------------- 

 

The plug-in needs both R and R Commander to be installed. The use of the 

plug-in also requires installing and loading SLC_0.1.zip package. The 

RcmdrPlugin.SLC_0.1.tar.gz plug-in needs also to be installed and loaded. 

Afterwards, in the R console the expression library(Rcmdr) needs to be 

written in order to open R Commander. The plug-in is loaded in R 

Commander by choosing Tools ► Load R Cmdr plug-in(s) and the SLC tab 

appears in the main menu. Using the menus, the input data file is selected and 

the length of the baseline phase (obligatorily longer than 1 measurement) is 

specified prior to executing. 



Appendix III 

 

The SAS/IML code for SLC requires copy-pasting the module in the SAS 

console. Afterwards, data should be input in the statement measurements = 

{value1 value2 value3}; between the curly brackets, separating the values by 

spaces. Then the baseline phase length is specified in n_a = length;. The slope 

change and level change estimates are obtained pasting the last three lines and 

executing the whole code. Furthermore, the detrended data is graphed.  

---------------------------------------------------------------------------------------------- 

 
proc iml; 

* Module SLC; 

start slc(series, n_a); 

* Obtain phase B length; 

n_b = ncol(series)-n_a; 

* Difference phase A; 

adiff = j(n_a-1,1,1); 

do i = 1 to (n_a-1); 

adiff[i]=series[i+1]-series[i]; 

end; 

* Estimate trend; 

aslope=sum(adiff)/(n_a-1); 

* Remove trend from phase A; 

adet = j(n_a,1,1); 

do i = 1 to n_a; 

adet[i]=series[i]-aslope#i; 

end; 

* Remove trend from phase B; 

bdet = j(n_b,1,1); 

do i = 1 to n_b; 

bdet[i]=series[i+n_a]-aslope*(i+n_a); 

end; 

* Difference phase B; 

bdiff = j(n_b-1,1,1); 

do i = 1 to (n_b-1); 

bdiff[i]=bdet[i+1]-bdet[i]; 

end; 

* Graph the detrended data; 

time_a=j(n_a,1,1); 

do i = 1 to n_a; 

time_a[i] = i; 

end; 



time_b=j(n_b,1,1); 

do i = 1 to n_b; 

time_b[i] = i+n_a; 

end; 

dims=j(4,1,1); 

dims[1] = 0; 

dims[2] = min(min(adet),min(bdet))-1; 

dims[3] = n_a + n_b + 1; 

dims[4] = max(max(adet),max(bdet))+1; 

start_pt = j(2,1,1); 

start_pt[1] = 0; 

start_pt[2] = min(min(adet),min(bdet))-1; 

num_y = max(max(adet),max(bdet)) - min(min(adet),min(bdet)) + 2; 

num_x = nrow(time_a) + nrow(time_b) + 1; 

call gstart; 

call gopen; 

call gwindow(dims); 

call gport({15 15, 85 85}); 

call gyaxis(start_pt,num_y,num_y, ,2.,1.5); 

call gxaxis(start_pt,num_x,num_x, ,2.,1.5); 

call gpoint(time_a,adet,"circle","red"); 

call gdraw(time_a,adet,1,"red"); 

call gpoint(time_b,bdet,"square","green"); 

call gdraw(time_b,bdet,1,"green"); 

call gshow; 

* Estimate slope change; 

bslope=sum(bdiff)/(n_b-1); 

* Control slope change; 

bclear = j(n_b,1,1); 

do i = 1 to n_b; 

bclear[i]=bdet[i]-bslope*(i-1); 

end; 

* Estimate level change; 

alevel=sum(adet)/n_a; 

blevel = sum(bclear)/n_b; 

levelchange=blevel-alevel; 

* Save estimates; 

estimates = j(2,1,1); 

estimates[1] = bslope; 

estimates[2] = levelchange; 

return(estimates); 

finish slc; 

 

* Obtain estimates; 

measurements = {1 2 5 6 9}; 

n_a = 3; 

results = slc(measurements,n_a); 

print results; 

quit; 

---------------------------------------------------------------------------------------------- 

 

 



 

Figure 1. Example of the graphical output of the R function and package 

“SLC”. 
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Figure 2. φ1 ≠ 0 / φ1 = 0 ratios of the variability of the level change estimators 

of SMR and SLC for two series lengths and data generated using an AR(1) 

process, exponential error, and null beta parameters.  
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Figure 3. φ1 ≠ 0 / φ1 = 0 ratios of the variability of the level change estimators 

of SMR and SLC for two series lengths and data generated using an MA(1) 

process, normal error, and null beta parameters. 



Table 1. Variance of the SLC estimators for data series generated using an 

AR(1) model with exponential error and with null beta parameters. LC and SC 

denote the level change and slope change estimators, respectively. 

 nA = nB = 5 nA = nB = 10 nA = nB = 15 

Autocorrelation LC SC LC SC LC SC 

−.9 4.71 .30 10.44 .09 6.30 .04 

−.6 3.15 .22 2.63 .05 2.32 .02 

−.3 2.38 .23 1.73 .05 1.54 .02 

.0 2.04 .25 1.45 .05 1.30 .02 

.3 1.92 .31 1.41 .06 1.24 .03 

.6 1.95 .41 1.69 .09 1.51 .04 

.9 1.79 .52 2.36 .20 2.89 .10 

 

 

 



Table 2. Variance of the SLC estimators for data series generated using an 

MA(1) model with normal error and with null beta parameters. LC and SC 

denote the level change and slope change estimators, respectively. 

 nA = nB = 5 nA = nB = 10 nA = nB = 15 

Autocorrelation LC SC LC SC LC SC 

−.500 4.40 .31 3.14 .06 2.80 .03 

−.400 2.80 .23 2.01 .05 1.79 .02 

−.275 2.39 .23 1.72 .05 1.52 .02 

−.099 2.10 .24 1.51 .05 1.35 .02 

.000 2.03 .25 1.45 .05 1.29 .02 

.099 1.95 .26 1.40 .05 1.24 .02 

.275 1.98 .30 1.41 .06 1.24 .03 

.400 2.11 .36 1.50 .07 1.29 .03 

.500 3.03 .56 2.14 .11 1.86 .05 

 

 



Table 3. Variance of the SMR estimators for data series generated using an 

AR(1) model with exponential error and with null beta parameters. LC and SC 

denote the level change and slope change estimators, respectively. 

 nA = nB = 5 nA = nB = 10 nA = nB = 15 

Autocorrelation LC SC LC SC LC SC 

−.9 2.38 .13 1.15 .01 .49 .00 

−.6 1.65 .12 .57 .01 .32 .00 

−.3 1.56 .15 .62 .02 .38 .01 

.0 1.70 .20 .81 .02 .54 .01 

.3 1.93 .29 1.23 .04 .89 .01 

.6 2.07 .41 2.02 .09 1.80 .03 

.9 1.92 .53 2.96 .22 3.92 .12 

 

 

 



Table 4. Variance of the SMR estimators for data series generated using an 

MA(1) model with normal error and with null beta parameters. LC and SC 

denote the level change and slope change estimators, respectively. 

 nA = nB = 5 nA = nB = 10 nA = nB = 15 

Autocorrelation LC SC LC SC LC SC 

−.500 2.52 .12 .65 .01 .29 .00 

−.400 1.72 .12 .53 .01 .28 .00 

−.275 1.63 .14 .60 .01 .35 .00 

−.099 1.64 .18 .73 .02 .47 .01 

.000 1.70 .20 .82 .02 .54 .01 

.099 1.79 .23 .91 .03 .62 .01 

.275 2.05 .29 1.17 .04 .81 .01 

.400 2.45 .36 1.48 .05 1.05 .02 

.500 3.98 .60 2.51 .09 1.82 .03 

 

 

 


