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The electrical and electroluminescence (EL) properties at room and high temperatures of oxide/

nitride/oxide (ONO)-based light emitting capacitors are studied. The ONO multidielectric layer is

enriched with silicon by means of ion implantation. The exceeding silicon distribution follows a

Gaussian profile with a maximum of 19%, centered close to the lower oxide/nitride interface. The

electrical measurements performed at room and high temperatures allowed to unambiguously

identify variable range hopping (VRH) as the dominant electrical conduction mechanism at low

voltages, whereas at moderate and high voltages, a hybrid conduction formed by means of

variable range hopping and space charge-limited current enhanced by Poole-Frenkel effect

predominates. The EL spectra at different temperatures are also recorded, and the correlation

between charge transport mechanisms and EL properties is discussed. VC 2012 American Institute
of Physics. [http://dx.doi.org/10.1063/1.4742054]

I. INTRODUCTION

Over the past years, intensive investigations have been

devoted to the development of efficient silicon-based opti-

cally active materials that would permit the photonics and

electronics integration in the same chip.1–10 Silicon-rich sili-

con nitride (SRSN) and silicon-rich silicon oxide (SRSO)

materials have mostly been considered due to their good

emission properties (under optical and electrical excitation)

and compatibility with the mainstream complementary metal

oxide semiconductor (CMOS) technology.1–8 Much effort

has been dedicated to improve the electroluminescence (EL)

intensity as well as the efficiency of the light-emitting devi-

ces.1–4 Published works span from those centering the atten-

tion on the material optimization in terms of the different

fabrication processes,6,7 to those that mostly focus on the

electrical and EL properties.8–10 Efficient light-emitting

devices have already been demonstrated using either SRSN

or SRSO films.2,4

In former papers, we have reported the development of

metal-nitride-oxide-semiconductor light-emitting devices

that we called MNOSLEDs.9,10 A typical structure of metal-

oxide-semiconductor field effect transistor (MOSFET),

where the gate oxide was substituted by an oxide/nitride

(ON, bi-layer) or oxide/nitride/oxide (ONO, tri-layer) gate

stack was used. The photometric analysis conducted in these

layers represented a proof of concept for the development of

silicon-based solid state lighting.9 Until that time, no report

on the use of silicon ONO-structure in electroluminescent

devices had previously been published.

Two well defined bands in the EL spectra were reported

in those papers: one in the near-infrared, attributed to exci-

tonic recombination in silicon nanocrystals (Si-ncs) embed-

ded in the tunnel SiO2 layer and the other in the blue-green,

ascribed to Si-related defects in Si3N4 film. Moreover, a pre-

liminary analysis of the charge transport mechanism as well

as a correlation with the electroluminescent properties was

accomplished. However, neither study of the electrical con-

duction nor EL dependence with temperature was reported in

Ref. 9 or in Ref. 10 for the ONO-based devices to firmly con-

firm the proposed assertions. To gain more in-depth into the

physics of these mechanisms, in this paper we present a

detailed study of the charge transport and electroluminescent

mechanisms as a function of temperature. The MNOSLEDs

studied are driven as capacitors (light-emitting capacitors),

which are simpler devices than transistors from the techno-

logical and electrical viewpoint. They are based on ONO

multidielectric stack. Details of the device structure as well

as of the experimental measurements are given in Sec. II.

The experimental results and the analysis of the electrical

and electro-optical properties are discussed in Sec. III.

II. EXPERIMENTAL DETAILS

The ONO multidielectric structures were fabricated by

plasma-enhanced chemical vapor deposition (PECVD) tech-

nique on B-doped p-type h100i Si wafer. The layer thick-

nesses were measured with a Gaertner L117 ellipsometer

(incident He-Ne laser wavelength of 632.8 nm). The results

achieved for the ONO stack are (4.2 6 1.6)nm (top SiO2),

(29.1 6 3.4)nm (Si3N4), and (7.4 6 2.2)nm (bottom SiO2),

respectively. A silicon excess of 19% was introduced by

means of ion implantation at 30 KeV and a Si dose of

4 � 1016 atoms/cm2, after transport of ions in matter (TRIM)

simulations.11 To lower the potential barrier height and favor

the hole injection from substrate into ONO active layers, the

maximum of Si ions profile is centered near the lower oxide/

a)Author to whom correspondence should be addressed. Electronic mail:
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nitride interface (see inset of Fig. 1(a)). Subsequently, an

annealing treatment at 1000 �C for 1 h was performed to

recover dielectric matrices from implantation induced

defects and produces a phase separation with precipitation

on Si-ncs. A semitransparent polycrystalline silicon gate

electrode of 100 nm thick was deposited by low-pressure

chemical vapor deposition (LPCVD) at 630 �C and highly

doped with POCl3 at 950 �C. The ohmic contact to the lower

surface of the silicon substrate was obtained by depositing

600 nm of aluminium and subsequently annealing it at

450 �C in forming gas. The device-to-device isolation was

achieved by means of shallow trench isolation (STI) tech-

nique and growing a thermal oxide of 400 nm thick in the

trench. The overall process sequence used follows the stand-

ard MOS procedures, which results in the final capacitor

structure, as illustrated in the inset of Fig. 1(a). The device

area is 5 � 10�5 cm2.

Light emission coming from the polysilicon region was

collected with a Seiwa 888 L microscope coupled to a probe

station and driven through an internal system of lens to the

sensitive area of detector. EL spectra were recorded with a

cryogenically cooled Princeton Instruments Spec-10-100B/

LN charge-coupled device and an Acton 2300i grating spec-

trometer. Decay EL trace was obtained with a digital GHz os-

cilloscope connected to a photomultiplier (R928) and a

photon counter (SR430) synchronously triggered by an Agi-

lent 8114 A pulse generator. Spectra were corrected with the

optical response of the system. The electrical characterization

of the devices was accomplished with a semiconductor device

analyser (Agilent B1500) and a probe station (Cascade Micro-

tech Summit 11000) with a thermal chuck system and a

Faraday cage (microchamber). All the electrical and electro-

optical measurements were conducted at room temperature

and at different temperatures ranging from 25 �C to 300 �C.

III. RESULTS AND DISCUSSION

Current-voltage characteristics I(V) were first recorded at

room temperature between �28 V (accumulation of the sub-

strate, forward bias, negative voltage applied to gate) and

þ28 V (depletion of the substrate). A typical I(V) curve is

shown in Fig. 1(a). A notable rectifying behavior is seen for

the devices, i.e., a very low driven current is seen in depletion

regime. This feature is because of the low supply of minority

carriers by the inverted substrate (electrons). It has to be also

mentioned that such a depletion effect (and thus rectifying

behavior) did not occur in the MNOSLED transistor struc-

tures10 since the minority carriers can be supplied from the

highly doped source and drain regions of the transistor. In the

accumulation regime, a good conductivity at low and high

voltages is observed. Accordingly, different conduction mech-

anisms (both electrode- and bulk-limited current models)

were studied in detail for the I(V) curves in accumulation.

Figure 1(b) shows I(V) experimental data in the accumu-

lation regime and the theoretical curves corresponding to the

mechanisms and expressions listed in Table I. An ohmic de-

pendence is observed in the inset of Fig. 1(b) for V<�3.5 V

(absolute values will be used here after). This fact could be

associated with a variable range hopping-type (VRH) conduc-

tion through the localized states related with the Si-ncs.12 The

resistivity at room temperature is about 2.4 � 1016 X.cm at

V¼ 3.5 V (F¼ 0.8 MeV/cm) which is of the same order of

magnitude as that of the typical insulators.13 Furthermore, the

Schottky emission and space charge-limited current (SCLC)

models are fitted to the expressions listed in Table I ranging

from 3.5 V up to device breakdown (see Fig. 1(b) curves (i)

and (ii), respectively). However, for this voltage range

(3.5 V–28 V), the best fit is achieved with a space charge-

limited current enhanced by Poole-Frenkel (PF) effect mecha-

nism (Fig. 1(b), curve (iii)). Therefore, in this wide voltage

range, the conduction is governed by a bulk-limited mecha-

nism involving the presence of trap levels in the gap.

To confirm this assertion, before discussing the two mod-

els proposed (VRH at low voltages and SCLC enhanced by

PF effect at moderate and high voltages) in more details, an

Arrhenius plot has been done in accumulation regime for

FIG. 1. (a) Typical I(V) curve for light emitting capacitors based on Si-rich

ONO gate stack. Inset shows a cross-sectional view and bias scheme of the

devices. (b) Experimental data of I(V) curve in accumulation fitted according

to the different electrical conduction models listed in Table I. Schottky emis-

sion (dashed line), SCLC (dashed dotted line), and SCLC enhanced by PF

effect (solid line). Inset shows the ohmic behavior at low voltages regime.

TABLE I. Mechanisms of electrical conduction in insulators usually studied,

and their expected current-voltage dependences.

Type of conduction Current-voltage relation

(i) Schottky emission14 I� exp(aV1/2/kT)

(ii) SCLC15
I�V (low fields)

I�Vn (n> 1, high fields)

(iii) Space charge-limited
I�V2exp(aV1/2/kT)currents enhanced by Poole-Frenkel effect16

033114-2 Berenc�en et al. J. Appl. Phys. 112, 033114 (2012)



various driving voltages (see Fig. 2). The linear dependence

observed at moderate and high voltages suggests that the exis-

tence of a thermally activated conduction mechanism (e.g.,

Poole-Frenkel conduction), whose average activation energy

(EA) is around 0.41 eV. This value is in close agreement with

that one reported by Sze (0.64 eV) for a single stoichiometric

Si3N4 layer.13 In addition, further analysis of Fig. 2 shows that

the activation energy decreases as the driving voltage

increases. This behavior is physically acceptable as long as

we consider the existence of a trap level, whose energy barrier

for carrier excitation is gradually lowered by the electric field.

Therefore, the activation energy EA can be interpreted as the

minimum carrier energy required to surmount the potential

barrier existing between occupied and unoccupied sites.

A. Low voltages: Variable range hopping

As the conduction mechanism for silicon nitride and

other dielectrics with a significant concentration of traps is

mostly bulk-limited and thermally activated, we will con-

sider the existence of a hopping-type conduction at the Fermi

level located below the conduction band (at about 0.41 eV

within the band gap). Thus, a VRH conduction would take

place, as was originally described by Mott and Davies.17 In

such a regime, conforming to the Mott’s law the conductivity

is expected to vary with the temperature (T) according to

exp (�BT�1/4), where B¼ 2.06(a3/kNF)1/4, k is the Boltz-

mann constant in eV, NF is the density of states at Fermi

level, and a�1 is the localization length characterizing the

decay of the wave-function at a site. Consequently, Fig. 2

has been recalculated in a T�1/4 representation including the

low voltage range values and the resulting plot is depicted in

Fig. 3. The linear behavior obtained demonstrates that the

temperature dependence of the conductivity can be explained

by the Mott’s principle. The average value of the slope found

for various driving voltages was B¼ 195K1/4. Thus, if we

take a¼ 2 nm, which is the mean radius of our Si-ncs,10 we

find that NFffi 1.12 � 1018 cm�3.eV�1. Moreover, consider-

ing that the hopping distance R and the width of the defect

band x in the VRH conduction mechanism are given by

R ¼ 9

8paNFkT

� �1=4

and x ¼ 3

4pNFR3
;

respectively,17,18 we find that Rffi 8 nm at 300 K and

x¼ 0.42 eV. This latter value is in agreement with the value

of 0.41 eV of the Fermi level located below the conduction

band. Hence, the temperature dependence of the conductivity

with �exp(�BT�1/4) obtained, clearly demonstrates a pure

VRH mechanism at low voltages, which is mediated by the

localized states associated with the Si-ncs and/or traps dis-

tributed along the ONO multidielectric structure. By this

way, we also prove the initial assumption concerning to the

origin of the ohmic component. In addition, from Fig. 3, we

want to stress the fact that the VRH conduction mechanism

is also present at moderate and high voltages. Therefore,

there will be a hybrid conduction coming from VRH and

SCLC enhanced by PF effect mechanisms.

B. Moderate and high voltages: Variable range
hopping 1 space charge-limited current enhanced
by Poole-Frenkel effect

The space charge-limited current theory assumes that

the trap barrier height is constant for any applied field. How-

ever, Murgatroyd16 demonstrated that at high electric fields,

the trap barrier height is lowered due to the Poole-Frenkel

effect. This reduction in the barrier height increases the cur-

rent level higher than that predicted by the standard space

charge-limited current theory.16,19 As can be seen in Fig.

1(b) (curve (iii)) at moderate and high voltages, the I(V)

curves depart from the ohmic behavior (linear) at low vol-

tages and enter in a regime where the ratio I/V2 proportion-

ally raises with the square root of the voltage. Such electrical

conduction feature in insulators is generally ascribed to

space charge-limited current enhanced by Poole-Frenkel

effect as was initially described by Murgatroyd.16 The I(V)

relationship for SCLC enhanced by PF effect mechanism is

given by the following expression:

I ¼ 9

8
le0erS

V2

d3
hexp

0:891

kT

e3V

pe0erd

� �1=2
( )

;

where h¼Nc/Nt exp(�EA/kT) is the ratio of free to trapped

electron concentration, Nc is the effective density of states in

the conduction band, Nt is the density of traps, kT is the

FIG. 2. Dependence between conductivity and temperature in an Arrhenius

plot at different driving voltages.
FIG. 3. Temperature dependence of the conductivity in a Mott’s law plot at

different driving voltages.
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thermal energy, S is the area of gate electrode, e is the elec-

tron charge, l is the drift mobility, e0 is the vacuum permit-

tivity, and er is the relative permittivity of the insulator;

while the factor 0.891 is derived from a numerical solution

of the continuity equation. Assuming a relative permittivity

of 7 and a drift mobility value of 1.25 � 10�5cm2/(V�s),

which were previously reported in similar structures,9 we

have found from fit a value of h¼ 8.62 � 10�12. Therefore,

by using the former expression relating this parameter (h)

with Nc, Nt, EA, and kT we are able to estimate the value of

density of traps (Nt) in our Si-rich ONO multidielectric struc-

tures. Taking the typical value of Ncffi 1019 cm�3 (e.g., for

Si, Nc¼ 2.8 � 1019 cm�3), EA¼ 0.41 eV and kT¼ 0.025 eV

we find Ntffi 1022 cm�3. This value is three orders of magni-

tude higher than for the Si non-implanted ONO structures

reported by Maruyama and Shirota,20 which suggests that

the Si-ions implantation increases the density of traps in the

layers irrespective of the post-annealing process. This result

demonstrates and put in perspective the fact that Si-ncs could

act as charge trapping centers. Obviously, the probability of

occupancy of the traps depends on the Fermi-Dirac distribu-

tion function.

Summarizing the results obtained in Secs. III A and III B,

we conclude that VRH is purely present at low voltages,

whereas at moderate and high voltages a hybrid conduction

formed by means of VRH and SCLC enhanced by PF

predominates.

C. EL properties and correlation with charge transport
mechanisms

Figure 4 depicts the evolution of the EL spectra as a

function of temperature. It is observed that the whole visible

range and part of the near-infrared are covered. Two peaks

are exhibited, one centered at 1.5 eV and other broad one

spanning from 2.0 eV to 3.0 eV with the maximum at 2.2 eV.

The combination gives rise to a quasi-white light emission

extending over the near-infrared region. The line-shape of

EL spectra does not change with temperature but EL inten-

sity for both peaks drops as the temperature increases, thus

suggesting an increase of non-radiative recombination. In

addition, inset of Fig. 4 shows two EL decay lifetimes

(290 ns and 8.33 ls). These values were extracted from time-

resolved EL measurements at room temperature by applying

step-like voltage pulses to the gate with a period of 1 ms

ranging from �28 V to 0 V. Moreover, both EL trace decays

were well-fitted by means of a single exponential function.

These lifetime values are in accordance with those recently

reported by us for MNOSLED transistor structures.10 As a

result, the fastest lifetime is attributed to Si-related defects or

traps present in silicon nitride matrix, likely reinforced by

Si-ion implantation, whereas the lowest component corre-

sponds to excitonic recombination due to quantum confine-

ment effects in Si-ncs embedded into SiO2 bottom layer.

We have also plotted the EL spectra as a function of the

driving current, as can be seen in Fig. 5. It has to be noticed

that both EL peaks increase with the driving current and

there are not remarkable spectral changes. This fact suggests

that all luminescence species (defects and Si-ncs) are being

simultaneously excited. Moreover, the inset of Fig. 5 shows

a power law between the integrated EL intensity and the

driving current, whose dependence is linear (C¼ 1). This

observed linearity between the integrated EL and the driving

current in combination with the absence of EL spectral

changes suggests a univocal correlation between the injected

carriers and the excited ones (i.e., Si-related defects in Si3N4

matrix and Si-ncs embedded into SiO2, respectively).

The precedent results allow correlating the charge trans-

port with the EL properties of our devices. Indeed, since the

threshold voltage to get EL is around 11 V, the EL emission

takes place in the range 11 V–28 V, where the electrical con-

duction is fully dominated by VRH and SCLC enhanced by

PF effect mechanisms. Thus, electrons flow from the gate

electrode through the traps present in the ONO multidielec-

tric structures via VRH conduction and simultaneously, the

trap filling process starts. This former phenomenon occurs in

the voltage range from 3.5 V to 11 V before the EL emission

begins. Therefore, when the electric field is strong enough

(F> 3 MeV/cm (V> 11 V)) to induce the lowering of the

trap barrier height, the EL emission at 2.2 eV takes place.

This emission band is correlated with the PF-type ionization

of the Si-related traps in Si3N4 matrix.9,10 Meanwhile, the

FIG. 4. Typical EL spectra for Si-rich ONO-based light emitting capacitors

and their evolution as a function of the temperature. The inset shows both

EL lifetimes at room temperature corresponding to Si-related defects or traps

in Si3N4 (s1¼ 290 ns) and excitonic recombination onto Si-ncs in SiO2

(s2¼ 8.33 ls), respectively.

FIG. 5. EL spectra at different driving currents. Inset shows linear depend-

ence between integrated EL intensity and driving current.

033114-4 Berenc�en et al. J. Appl. Phys. 112, 033114 (2012)



emission peak at 1.5 eV appears due to the excitonic recom-

bination, thanks to the holes injected from the substrate into

the Si-ncs embedded in the bottom layer of SiO2,10,21 which

are recombined with the electrons injected from the gate

electrode (i.e., bipolar injection).

The most distinctive difference observed between Si-

rich ONO-based light emitting capacitors presented here and

MNOSLEDs transistor structures previously studied lies on

the electrical properties due to presence of the drain and

source currents in the MNOSLEDS. As a consequence, the

integrated EL intensity is higher in the transistors than the

capacitors although the two EL bands are equally exhibited

on both devices in accumulation regime. Nevertheless, the

advantage of using MNOS capacitors instead of MNOS tran-

sistors rests on its simple structure and simple fabrication

process, as well as its simplicity of analysis from the electri-

cal and EL properties viewpoint.

IV. CONCLUSION

In summary, we have studied and correlated the charge

transport and electroluminescence properties of Si-rich

ONO-based light emitting capacitors from their temperature

dependence. Two electrical mechanisms govern the conduc-

tion in the devices. In particular, they are variable range hop-

ping at low voltages and variable range hopping with space

charge-limited currents enhanced by Poole-Frenkel effect at

moderate and high voltages, respectively. With the conduc-

tion model (VRH) at low voltages we found that the electri-

cal conduction takes place at the Fermi level located at

around 0.42 eV within the band gap, whose density of states

is about 1.18 � 1018 cm�3.eV�1. Whereas at moderate and

high voltages, from the SCLC enhanced by PF effect con-

duction model, we found that the density of the traps (Nt) is

about 1022 cm�3. In addition, two EL peaks at 1.5 eV and

2.2 eV were simultaneously observed in the VRH with

SCLC enhanced by PF effect conduction mechanism and

correlated with the two different lifetimes noticed in the

time-resolved EL measurements. Furthermore, each lifetime

(290 ns and 8.33 ls) was ascribed to a PF ionization of the

Si-related traps in Si3N4 and to an electron-hole recombina-

tion in the Si-ncs embedded in SiO2 bottom layer, respec-

tively. Therefore, the predominant EL excitation mechanism

proceeds through the VRH and SCLC enhanced by PF effect

at moderate and high voltages in which holes and electrons

recombine in the Si-ncs embedded in SiO2 bottom layer,

simultaneously with the Si-related trap EL emission in the

Si3N4 layer.
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