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Abstract 

There is currently a considerable diversity of quantitative measures available for 

summarizing the results in single-case studies. Given that the interpretation of some of 

them is difficult due to the lack of established benchmarks, the current paper proposes 

an approach for obtaining further numerical evidence on the importance of the results, 

complementing the substantive criteria, visual analysis, and primary summary 

measures. This additional evidence consists of obtaining the statistical significance of 

the outcome when referred to the corresponding sampling distribution. This sampling 

distribution is formed by the values of the outcomes (expressed as data nonoverlap, R-

squared, etc.) in case the intervention is ineffective. The approach proposed here is 

intended to offer the outcome’s probability of being as extreme when there is no 

treatment effect without the need for some assumptions that cannot be checked with 

guarantees. Following this approach, researchers would compare their outcomes to 

reference values rather than constructing the sampling distributions themselves. The 

integration of single-case studies is problematic, when different metrics are used across 

primary studies and not all raw data are available. Via the approach for assigning p 

values it is possible to combine the results of similar studies regardless of the primary 

effect size indicator. The alternatives for combining probabilities are discussed in the 

context of single-case studies pointing out two potentially useful methods – one based 

on a weighted average and the other on the binomial test.  
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The present study deals with a proposal for offering additional numerical evidence on 

the relevance of single-case study results. This numerical evidence is intended to 

complement professionals’ substantive criteria, visual inspection, and the effect sizes 

computed and also to serve as a basis for posterior quantitative integrations of 

individual studies. In the following, the main features of single-case designs are 

discussed briefly, while for more detail Barlow, Nock, and Hersen (2009) should be 

consulted. Afterwards, the issues related to the interpretation of the quantitative 

information available from these designs are commented in order to provide the 

rationale for the current proposal.  

Single-case designs refer to data collection strategies in which measurements are 

obtained across time from a single unit – an individual or a group (e.g., family, 

institution) considered as a whole (Onghena & Edgington, 2005). The aim is to assess 

the effect of a systematic intervention on a behavior of interest while the unit serves as 

its own control. The utility of single-case designs can be tracked in areas as diverse a 

clinical psychology (Barlow & Hersen, 1973; Blampied, 2000), special education 

(Horner et al., 2005; Mastropieri & Scruggs, 1985), neuropsychological rehabilitation 

(Evans, Emslie, & Wilson, 1998; Perdices & Tate, 2010), and developmental 

psychology (e.g., Reynhout & Carter, 2006). This type of designs is especially flexible 

for adjusting to client’s context and to professional’s objectives (Greenwald, 1976). The 

longitudinal study of the unit of interest favors an improved understanding of the 

behavioral process (Fahmie & Hanley, 2008), whereas another positive feature of 

continuous measurement and assessment is the possibility to interrupt timely any 

harmful condition (Johnston & Pennypacker, 2009).     

The type of control used in idiographic studies differs from nomothetic studies, 

provided that measurement time is especially relevant (Mace & Kratochwill, 1986). 
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Particularly important for establishing internal validity (i.e., ruling out alternative 

explanations of behavioral change) are reversibility –the behavior shifts back to baseline 

levels when the intervention is withdrawn– and replication of the results observed 

(Sidman, 1960). In that sense, the simplest design structure AB, an initial evaluation 

followed by an intervention, is not sufficient for demonstrating experimental control 

(Wampold & Furlong, 1981). One of the alternatives for converting this pre-

experimental AB design to an experimental one is replicating the AB sequence intra-

subject (across behaviors or settings) or inter-subjects (across participants) through 

multiple-baseline designs. This kind of design is especially useful when the behavior 

studied is not reversible (e.g., learning of skills, internalization of therapist’s cognitive 

schemes). For behaviors that can return to initial (baseline levels), the replication of the 

AB sequence can be done in the context of an ABAB design, which can also be 

conceptualized as intra-subject replication. It has the methodological and ethical 

advantages, as compared to ABA or BAB, of starting with a baseline phase and ending 

with an intervention. Moreover, for demonstrating reversibility alternating treatment 

designs can be used when the behavior is susceptible to rapid changes. In these cases it 

is important that the data pattern match the phases’ alternation. Due to the fact that a 

single unit is studied, the generalization of the results is also subjected to replication; 

both direct and systematic replications are called for (Sidman, 1960). In that way, 

specific knowledge can be accumulated taking into account the characteristics of the 

participant, the behavior of interest, the setting, and the concrete intervention applied. 

Individual studies integration ought to be based on the similarities among the studies in 

these features.   

Currently there is a great variety of techniques proposed for quantifying the 

magnitude of effect in single-case data. However, not all of these procedures are 
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accompanied by unquestionable interpretative benchmarks in order to judge the 

relevance of the results obtained. Among the procedures related to visual analysis, for 

the Percent of nonoverlapping data there are guidelines offered by the authors (Scruggs 

& Mastropieri, 1998), but these have not been explained sufficiently. A modification of 

this index – the Percentage of nonoverlapping corrected data – yields greater values 

(Manolov & Solanas, 2009) and thus the same criterion cannot be applied. For other 

nonoverlap indices such as the Improvement rate difference (IRD; Parker, Vannest, & 

Brown, 2009), the Nonoverlap of all pairs (NAP; Parker & Vannest, 2009) and the 

Percentage of data points exceeding the median (PEM; Ma, 2006) there are no 

benchmarks, but confidence intervals can be constructed, as illustrated by Parker and 

Vannest (2009), to check whether the chance level value is included. For the NAP, a 

value of .5 (or 50 in terms of percentages) represents the probability that a score drawn 

at random from a treatment phase will exceed that of a score drawn at random from a 

baseline phase (Parker & Vannest, 2009) and this is a correct chance level reference. In 

the case of PEM, the reference value is also 50, which is obtained when half of the 

intervention phase measurements are above and half below the baseline phase median. 

For IRD, the authors also point at 50 as the value representing chance level 

improvement, given that half of the scores overlap (Parker et al., 2009). Nonetheless, a 

simulation study has shown that the expected value in data with no treatment effect is 

not 50 and it decreases systematically with the increase of series length (Manolov, 

Solanas, Sierra, & Evans, 2011).Thus, a better reference is needed for IRD. Another 

proposal based on data overlap – tau-U – allows assessing the quantification of the 

magnitude of the effect through p values (Parker, Vannest, Davis, & Sauber, 2011).  

In the case of regression-based procedures for analyzing single-case data (e.g., 

Allison & Gorman, 1993; Center, Skiba, & Casey, 1985-1986; White, Rusch, Kazdin, & 



 7 

Hartmann, 1989), two types of statistical criteria for judging the results are available. 

On one hand, it is possible to use the statistical significance of the regression 

coefficients. The validity of these p values is doubtful in case of serially dependent 

residuals due to the fact that ordinary least squares underestimate standard errors 

(Chaterjee & Price, 1977), which has also been shown in regression models considering 

the relationship between measurements and time (Manolov, Arnau, Solanas, & Bono, 

2010). On the other hand, the R
2
 values representing the fit of the model to the data can 

be interpreted as effect size. However, the appropriateness of Cohen’s (1992) guidelines 

for effect sizes expressed as a coefficient of determination has been questioned in the 

context of N=1 data where greater effects are usually found (Matyas & Greenwood, 

1990; Parker et al., 2005). 

Given the importance of replication for external validity, it is critical to integrate the 

results of similar studies. However, which is the best option for this integration is a 

question yet to be answered. In that sense, meta-analyses are important for summarizing 

the empirical support of psychological interventions (Beretvas & Chung, 2008; Jenson, 

Clark, Kircher, & Kristjansson, 2007; Shadish, Rindskopf, & Hedges, 2008), especially 

in the context of the recent call for establishing the evidence base for professional 

practice (APA Presidential Task Force on Evidence-Based Practice, 2006; Wampold, 

Goodheart, & Levant, 2007) aiming to increase the applicability of research findings to 

the real context and to improve the way everyday psychological work is done (Kazdin, 

2008).    

Quantitative integrations need not be restricted to meta-analyses based on effect 

sizes. An alternative but also classical approach is combining p values for obtaining 

composite significance, also referred to as compound probability (Edgington & Haller, 

1984) or probability pooler tests (Darlington & Hayes, 2000). As is the case of meta-
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analysis, individual studies can be combined using this approach if they meet certain 

criteria such as studying related problems (Jones & Fiske, 1953), being 

methodologically sound (Darlington & Hayes, 2000), and when the set of studies 

selected is either exhaustive or representative (Rosenthal, 1978). Combining 

probabilities allows also studying moderator variables and reaching more specific 

conclusions, when the studies are grouped on the basis of relevant dimensions 

(Darlington & Hayes, 2000). 

The present paper focuses on two complementary topics: 1) the additional 

assessment of intervention effectiveness in an individual single-case study and 2) the 

quantitative integration of several single-case studies using different numerical indices 

for representing the magnitude of effect. Regarding the first objective, a proposal for 

assigning statistical significance values according to the outcome’s location in the 

relevant sampling distribution is presented. For the second purpose, the possibilities for 

combining probabilities in the context of single-case data are discussed, introducing 

some modifications to the existing methods. All recommended proposals are illustrated 

via detailed examples.  

 

Additional evidence for effectiveness in individual studies 

The analysis of single-case data ought to be based on the substantive criteria (e.g., 

knowledge on the discipline, behavior, client), so that the results are interpreted in 

meaningful terms with practical significance. However, it would also be useful for the 

researcher to have a statistical criterion complementing the substantive one. Given the 

lack or inadequacy of benchmarks for most indices, the present section presents an 

approach for further assessing the relevance of a magnitude of effect value. This 

approach is based on assigning a statistical significance value to the index computed. 
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This additional numerical indicator, when combined with substantive evidence such as 

social validation and self-perceptions, may aid applied researchers to gain more 

confidence on the relevance of the magnitude of effect value obtained in their studies.  

Each magnitude of effect index has its sampling distribution and its expected value 

in the conditions of no intervention effect, that is, when the null hypothesis is true. The 

value actually obtained (i.e., the “outcome”) can be located in this sampling 

distribution. Locating the outcome in the sampling distribution can lead to converting 

the former into the proportion of values as small as and smaller than it (similar to the 

idea subjacent to percentiles) or the proportion values as large as or larger than it (i.e., a 

p value). Both types of conversion are equivalent and are related to the likelihood of 

obtaining a value as large as or larger than the outcome only by chance. Out of the two 

possibilities, throughout this paper the emphasis will be put here on p values in order to 

maintain continuity with the integrative procedures for combining probabilities 

discussed in following sections.  

It should be noted that there is not a unique sampling distribution, given that it 

depends on factors such as series length, the assumed distribution of the random 

fluctuations, and the presence or absence of potential confounding variables (e.g., serial 

dependence, trend, and heteroscedasticy). That is, in order to make a proper assessment 

of the relevance of the outcome, the correct reference distribution needs to be identified. 

In the following, we will propose a procedure, called the “maximal reference approach” 

(MRA), which can be used to locate an individual study’s outcome in an appropriate 

sampling distribution. In order to explain the rationale of the MRA we will start 

reviewing an existing approach – simulation modeling analysis (SMA; Borckardt et al., 

2008). The SMA is an analytical technique for assessing intervention effectiveness 

while controlling for autocorrelation. That is, the SMA evaluates whether the change 
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that has occurred between phases is improbable only due to random variation and serial 

dependence; random variability is represented by a normal distribution and the serial 

dependence is estimated from the series. Therefore, the reference in the SMA is a 

population in which there is no intervention effect and the data are distributed normally 

with the same autocorrelation as the one estimated. The sampling distribution is 

constructed on the basis of sampling randomly series with the same length as the 

original ones from the population described above.  

Regarding the way in which the non-effect conditions are represented in the SMA, 

several limitations ought to be pointed out. Firstly, it is supposed that the random 

fluctuations follow a normal distribution which may or may not be justified, given the 

evidence from several psychological fields (Bradley, 1977; Micceri, 1989). 

Additionally, normal variates are continuous and measurements are often discrete in 

single-case studies. Secondly, the autocorrelation present in the actually obtained data 

should be estimated precisely to be used afterwards for data generation. This has proven 

to be problematic when few measurements are available (Huitema & McKean, 1991). 

Moreover, different estimators may be appropriate for estimating positive and negative 

serial dependence, while series length is also important in order to select the proper 

estimator (Solanas, Manolov, & Sierra, 2010). Finally, it is implicitly assumed that the 

(actual) data generation process is first-order autoregressive – AR(1), which is the one 

to be followed when simulating the null hypothesis data. However, it is also possible 

that the underlining process is a first-order moving average (Harrop & Velicer, 1985), 

although there are claims for the plausibility and utility of the AR(1) model (Gottman, 

1981; Simonton, 1977).  

In case these assumptions are not met, the non-effect condition generated would not 

be an appropriate reference. In order to gain confidence on the validity of the sampling 



 11 

distribution as a reference, it may be necessary to construct not one but several sampling 

distributions. For instance, instead of assuming that the serial dependence is estimated 

precisely and using these estimates to generate null hypothesis samples, the researcher 

may specify several degrees of autocorrelation and thus obtain several sampling 

distributions. In each of these distributions a different statistical significance value will 

be associated with the outcome and a conservative (and recommended) option is to use 

the highest p value as a reference. Likewise, instead of assuming normally distributed 

random fluctuations, several models can be used leading to several sampling 

distributions and as much p values. In the end, the researcher ought to use the highest p 

value of all sampling distributions as an indicator to whether an outcome as large as the 

obtained one is likely to occur only by chance. This conservative option is especially 

useful when the researcher has no previous evidence on the degree of serial dependence 

common in his/her discipline. In case such evidence were available, an approach similar 

to the SMA (but based on literature review rather than on autocorrelation estimation in a 

single study) would be appropriate.  

The simulations described above are not likely to be easily performed by applied 

researchers. Therefore, we propose that researchers compare their outcomes to 

previously identified reference values in the MRA. According to the MRA, the index 

values corresponding to several key p values (e.g., .90, .80, .70, .60, .50, .40, .30, .20, 

.10, .05, and .01) can be identified for a great variety of conditions (i.e., using diverse 

sampling distributions) including different data generation processes, various degrees of 

serial dependence, different random variable distributions, data with and without trend, 

etc. If these p values are tabulated, then a researcher can compare his/her outcome to the 

reference values from the table, according to the study’s phase lengths, in order to know 
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in what range of probability is such an outcome expected at random without the need 

for simulations.  

As illustrations of the MRA consider Tables 1, 2, and 3 in which the sampling 

distributions correspond to three different procedures, respectively, the Slope and level 

change (SLC; Solanas, Manolov, & Onghena, 2010), the NAP (Parker & Vannest, 

2009), and the Allison and Gorman (1993) model. The tables include five combinations 

of phase lengths (n = nA + nB) for the two phases being compared. In Table 1, note that 

the SLC quantifies es slope and level change in the original measurement unit (e.g., 

frequency of the behavior of interest) after controlling for linear trend. Thus, it is 

expected that the indicators are equal to zero, whereas greater values become increasing 

less likely under the hypothesis of no intervention effect. In the case of the SLC, the fact 

that the level change indicator is less efficient (Solanas, Manolov, & Onghena, 2010) is 

reflected in the broader ranges of values farther away from zero for ineffective 

interventions. In Tables 2 and 3, it can be verified that the reference values for a 

constant probability become larger for φ1 > 0, which is indicative of the NAP and the 

Allison and Gorman (1993) model being distorted by autocorrelation. For all three 

procedures represented in the tables, longer series are associated with lower reference 

values, a result similar to the relationship between degrees of freedom and critical 

values for parametric tests like t or F.  

 

INSERT TABLES 1, 2, AND 3 ABOUT HERE 

 

It should be noted that the reference values are presented separately for different 

degrees of serial dependence (φ1). In a case a researcher has evidence that in his/her 

discipline the degree of a serial dependence is say .3, then the outcome of the study 
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ought to be compared to the reference value for φ1 = .3. However, if there is no such 

evidence the reference value for φ1 = .3 is likely to be incorrect for all those cases in 

which the actual autocorrelation is below or above φ1 = .3. Given that positive 

autocorrelation is generally associated with overestimating the treatment effect, the p 

value for φ1 = .3 would be too liberal if the serial dependence in the series is actually 

say .6. In order to prevent from assigning an excessively low p value based on an 

assumption (φ1 = .3) difficult to check with guarantees, a conservative approach can be 

used – the outcome could be compared to the greatest of the tabulated reference values. 

However, this approach is actually more conservative only for procedures sensitive to 

autocorrelation. The similarity among the reference values for the SLC entails that the 

procedure is rather unaffected and thus the loss of power is only slight. In any case, the 

reader should not lose sight of the fact that the approach is conservative in the sense that 

the greatest reference value for different disturbance distributions is used.       

For constructing Tables 1, 2, and 3, two-phase data sets were generated using 

Huitema and McKean’s (2000) model yt = β0 + β1 ∙ Tt + β2 ∙ LCt + β3 ∙ SCt + εt, which 

allows simulating data with trend, level change, and slope change. Trend is specified via 

the dummy variable Tt (with values from 1 to n representing linearity) and its slope was 

defined by the β1 coefficient, here set to 0. Level change is specified using the dummy 

variable LCt taking the value of 0 for the first phase and 1 for the second one, whereas 

SCt is used for slope change (set to zero for phase A and to 0, 1, 2, … nB−1 for phase 

B). The effect size parameters for both level change (β2) and slope change (β3) are set to 

zero, given that the null hypothesis (i.e., lack of intervention effect) is represented in the 

data. The average level (β0) is also zero. Therefore, the data generation model is actually 

reduced to yt = β1 ∙ Tt + εt. In order to take into account another possible confounding 

variable – serial dependence – the error term is defined as εt = φ1 ∙ εt–1 + ut, which 
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represents a first-order autoregressive data generation process, that is, each error term is 

a function of the previous error term plus a random variable. The degrees of serial 

dependence (i.e., the degrees of autocorrelation between adjacent values) included were 

–.3, 0, .3, and .6, as they cover the values expected in real data (Parker, 2006). 

Nonetheless, the final MRA tables should include a broader range (e.g., from –.9 to .9 in 

steps of .1), which would also make possible assigning more accurate p values to the 

outcomes in case the typical autocorrelation is known in a specific field. It is also 

possible to generate data with different degrees of autocorrelation in the two phases and 

arising from different data generation processes. Random fluctuations (or disturbances) 

are represented via the ut term and in this study negative exponential, normal, and 

uniform distributions with zero mean and unity standard deviation were used. The 

disturbance is usually represented to be distributed normally in a variety of single-case 

simulation studies (e.g., Ferron & Ware, 1995; Huitema & McKean, 1991, 2007) and 

this distribution was also used here. However, there have been several calls regarding 

the need to consider other types of distributions (Bradley, 1977; Micceri, 1989; 

Sawilowsky & Blair, 1992). We included another symmetric distribution, the uniform, 

which is platykurtic compared to the normal. Additionally, a skewed distribution like 

the negative exponential was also included. In this way, a greater range of possible 

disturbances was included instead of assuming necessarily the normal distribution. 

When specifying the distribution of the disturbance, it is also possible to set different 

values for the scale parameter for each phase, which would lead to generating 

heteroscedastic data. For instance, if the disturbance in the baseline data population (uA) 

follows a normal distribution with mean zero and unity standard deviation, 

heterogeneity of variance can be simulated specifying the uB distribution (i.e., 

disturbance for the treatment data population) as N(0, 2). Heterogeneity of variance was 
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not considered for constructing Tables 1, 2, and 3 but it may have to be specified in case 

there is evidence of this data feature in the concrete psychological field. The simulation 

was carried out via programming in Fortran and for generating negative exponential, 

normal, and uniform disturbance the mathematical statistical NAG libraries 

(http://www.nag.com/numeric/fl/FLdescription.asp) nag_rand_neg_exp, nag_rand_ 

normal, and nag_rand_uniform, respectively, were used. The data controls suggested by 

Greenwood and Matyas (1990) and Huitema, McKean, and McKnight (1999) were 

followed. 

In order to construct the sampling distributions (one for each combination of n, φ1, 

and ut), 100,000 samples were drawn and for each sample the techniques (SLC, NAP, 

the Allison and Gorman model) were computed. This amount of iterations was chosen 

to guarantee sufficient estimation accuracy (Robey & Barcikowski, 1992). Thus for 

each condition there were 100,000 values forming the sampling distribution in absence 

of intervention effect for each indicator for a specific series length, degree of serial 

dependence, random variable distribution, and trend (zero or nonzero). The values were 

sorted in ascending order and, for instance, the one that is 90,000
th

 in that order 

represents percentile 90 and thus a p value of .10. This approach is consistent with 

directional hypothesis tests in which an increment in the behavior of interest is 

expected. In case decrease in the behavior is intended, the values in the sampling 

distribution can be sorted in descending order to obtain the correct statistical 

significance.  

It should be noted that the ranges in Tables 1, 2, and 3 were constructed representing 

the maximum p values across all three ut distributions. If the outcome is greater than the 

appropriate reference, then there is evidence that such a value will not be commonly 
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found in data with no intervention effect, where “commonly” is defined by the user via 

the nominal alpha (α) chosen a priori.  

Such tables could serve as additional numerical evidence to assess the relevance of 

the findings and as a complement to educational, social, clinical, etc. criteria. It should 

be noted that no clear cut-off points or compulsory benchmarks are suggested here, as 

Tables 1, 2, and 3 are only an illustration of the information that the MRA could 

provide. Additionally, the p value assigned to the outcome would be a more precise 

piece of evidence if several references are available, for instance, .90, .80, .70, .60, .50, 

.40, .30, .20, .10, .05, and .01. 

Finally, Tables 1, 2, and 3 illustrate that the MRA can be applied to both regression-

based and nonoverlap indices, as well as to other quantitative techniques such as the 

SLC. Therefore, reference values can also be obtained for other procedures beyond the 

ones included in the tables if they are commonly used or are considered potentially 

useful (e.g., Parker et al.’s [2009] IRD, Parker et al.’s [2011] Tau-U, Maggin et al.’s 

[2011] generalized least squares effect size, McKnight, McKean, and Huitema’s [2000] 

double bootstrap method).  

It should be mentioned that in the current paper, the emphasis is put heavily on a 

comparison between two phases – a baseline (A) and a treatment condition (B). 

However, this does not necessarily imply focusing solely on a pre-experimental AB 

design. In that sense, we agree with the comments by Kromrey and Foster-Johnson 

(1996) and Schlosser, Lee, and Wendt (2008) that when a more complex design 

structure is used, a comparison and a quantification of behavioral change can be 

computed for each change in phase. For instance, in an ABAB design, there are three 

directly meaningful comparisons: between the initial baseline and the first treatment 

phase, between the first B phase and the withdrawal phase, and between the withdrawal 
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and the re-introduction of the treatment. Accordingly, for a multiple baseline design 

(regardless of whether it is across participants, behaviors, or settings) the comparison 

ought to be performed for each baseline (Busse, Kratochwill, & Elliott, 1995). This 

discussion concurs also with the claim that comparisons should only be made between 

adjacent phases (Gast & Spriggs, 2009). Therefore, a single study involving either of 

these more complex design structures would report more than one effect size and there 

would be one probability assigned to each outcome.   

If the researcher is willing to combine the two-phase comparisons within an ABAB 

or a multiple-baseline design into a single effect it is crucial that such pooling should 

take place only when for each comparison the difference is in the direction expected. 

For instance, the three comparisons in the ABAB design are to be combined only when 

the actual data pattern matches the expected one (e.g., a child with autism whose self-

injurious behavior is greater during baseline and withdrawal than during the initial 

intervention and the reintroduction of the intervention). If experimental control is not 

demonstrated, that is, if the behavior does not change as a function of the change in 

phase, it would not be meaningful to combine the two-phase comparisons. More detail 

will be given when discussing the meta-analytical application of the proposal, given that 

providing a single indicator out of several comparisons is itself a quantitative 

integration. 

As a limitation of the approach presented here it should be highlighted that it is not 

readily applicable to alternating treatments designs (ATD), due to the fact that their 

initial quantitative analysis is also problematic. For instance, if the individual phases are 

short, numerical summaries would not be reliable – a mean would be unlikely a 

representative value of the average level and trend could hardly be estimated. In this 

sense, for ATD visual inspection becomes especially important for assessing whether 
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the behavior changes as expected according to phases’ alternation. The same kind of 

whole pattern assessment is actually useful for all single-case design structures.   

 

Additional evidence for effectiveness in individual studies: Example 

As an illustration of the MRA, suppose a hypothetical study in which the insomnia of a 

patient diagnosed with depression is treated with a selective serotonin reuptake inhibitor 

(SSRI) antidepressant. The fictitious two-phase data (nA = 5 and nB = 5) are graphed in 

Figure 1 and represent the hours of sleep per day before and after the intervention. In 

order to quantify the amount of change in the behavior between the two phases suppose 

that the SLC is applied, yielding a slope change quantification of 0 and a level change 

quantification of 2.7 (i.e., an average of almost 3 hours of sleep more with the SSRI, 

after controlling for a potential phase A trend). Also suppose that the author chooses a 

5% nominal significance for testing the effect sizes.  

 

INSERT FIGURE 1 ABOUT HERE 

 

An initial step consistent with the SMA would be to estimate the degree of serial 

dependence in data. In the present case, a modified estimator referred to as r1
+
 by 

Huitema and McKean (1991) was used, given that in general it shows better 

performance in terms of mean square error and bias when only five measurements are 

available (Solanas, Manolov, & Sierra, 2010). The autocorrelation estimated is −.100 

for phase A and .165 for phase B. To illustrate the application of the SMA 99,999 

samples were simulated with these values for five-measurement phases, a normal 

random variable, and no intervention effect. In each of these samples the SLC was 

applied and thus two sampling distributions were obtained, for level and slope change, 

http://en.wikipedia.org/wiki/Selective_serotonin_reuptake_inhibitor
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respectively, each with 100,000 values. These 100,000 values include the 99,999 

outcomes from the simulated samples and the outcome for the example data, following 

Noreen’s (1989) comments on statistical validity. The p value associated with slope 

change is approximately .50 (the outcome is the 49,871
st
 greatest value in its set), 

whereas the p value associated with level change is approximately .024 (the outcome is 

the 97,643
rd

 greatest value in its set). Considering this latter value it can be stated that 

there is evidence that the difference in the average amount of hours of sleep between 

phase A and phase B is not likely to be due solely to random fluctuations.  

However, we should not lose sight of the fact that these results are conditional on 

meeting the assumptions for simulating data. In order to obtain a p value that is not 

subjected to such assumptions and does not require simulation, the MRA can be 

followed, that is, the researcher can use a table with reference values for the quantitative 

index applied and their associated probability under conditions with lack of effect. In 

the running example, given that the SLC is used to provide summary measures, the 

appropriate table with reference values would be Table 1. In order to assign a p value to 

the estimates, a researcher first has to look at the section with the corresponding phase 

lengths (i.e., nA = nB = 5). For slope change (SC = 0), it does not matter what the degree 

of autocorrelation is, since the associated p value is always .50. If the researcher has no 

basis for assuming any specific φ1, then a conservative approach would be to compare 

the level change (LC = 2.7) to the highest reference value in each row. 2.7 is smaller 

than all references for p = .01 and so the p value assigned should be greater. In fact, 2.7 

is greater than the highest reference for p = .05, which is 2.55, and thus, the level 

change quantification can be assigned a p value of .05. This means that such a large 

level change is not likely in case of lack of intervention effect. Hence, following the 

MRA, the same conclusion can be reached as the one expressed above on the basis of 
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the approach related to the SMA. However, there is a greater degree of confidence that 

the result is not conditioned on restrictive assumptions, that is, the conclusion is 

founded on a broader set of conditions. 

 

Quantitative integration of N=1 studies using different metrics 

Integrating results from individual single-case studies is apparently straightforward if 

the raw data from all relevant studies are available. The researcher carrying out the 

quantitative synthesis would be able to choose the summary index, apply it to all the 

raw data series, and integrate index’s values meta-analytically. In this specific case, the 

use of different summary measures in the primary studies would not be a problem. In 

that sense, applied researchers are encouraged to publish their raw data in their scientific 

reports for further analysis. However, the access to raw data is not always trouble-free. 

Specifically, a recent single-case designs review (Shadish & Sullivan, 2011) shows that 

even the use of “un-graph” techniques for retrieving the original data is not automatic or 

perfect. Moreover, this review suggests that reaching the original authors with data 

requests may be problematic. An additional issue is that there are no guarantees that all 

past studies include raw data. The proposal for integration presented here is potentially 

useful for those cases in which the systematic review is intended to include a) only 

studies with raw data available; b) only studies for which raw data cannot be obtained, 

but there is a summary index (i.e., an effect size) computed or a p value is available 

(e.g., via a randomization test); and c) both types of studies.  

 

Meta-analysis using effect sizes vs. combining probabilities 

Although Rosenthal (1978) advised using effect sizes and composite p values, such 

practice has been deemed redundant, given that both can be used to test the same 
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hypothesis that in every study the average effect is zero (Hedges, Cooper, & Bushman, 

1992). Against combining probabilities it has been stated that the meta-analytical 

pooling gives information about the magnitude of effect (Hedges et al., 1992) and about 

the homogeneity of effects across studies (Becker, 1987). It should also be taken into 

account that indicators such as effect sizes, confidence intervals around point estimates 

(Cumming, 2008; 2011), and the probability of replication prep (Killeen, 2005) are 

currently more supported by journals than p values (Rosnow & Rosenthal, 2009). This 

preference for effect sizes instead of p values is due to the fact that no single value such 

as .05 is sanctified for distinguishing between “statistically significant” and “statistically 

nonsignificant” results and emphasis is put on the strength of association between the 

variables. However, the interpretation of effect size measures is not trouble-free, given 

that the numerical values should still be translated into substantive terms (Cortina & 

Landis, 2011). In that sense, the rigid use of benchmarks, like the ones provided by 

Cohen (1992), is also flawed (Thompson, 2001) and each value should be interpreted 

when there is already evidence on the typical effect sizes in each field (Grissom & Kim, 

2012).  

Combined significance is useful when effect sizes are not reported or there is not an 

established effect size measure for some data analytic procedure (Rosnow & Rosenthal, 

2009) and when the effect size parameters differ across studies (Becker, 1987). A 

related favorable condition for combining p values arises due to the great proliferation 

of analytical techniques (some of which are expressed in different metrics) and the lack 

of consensus on which technique to use in order to summarize the results of an N=1 

study – a situation which hinders carrying out meta-analyses (Beretvas & Chung, 2008). 

In the current proposal p values are only used to add further evidence and as a common 

metric for the sake of integration. Therefore, using a composite p value does not imply 
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that practical significance is left aside, as it might be argued (Kirk, 1996), nor is focus 

only placed on the likelihood of the observed differences between phases under the null 

hypothesis (Hallahan & Rosenthal, 1996). Instead, for each individual study the 

quantification of the strength of relationship between intervention and behavioral 

change (e.g., expressed as amount of data overlap or as a quantification of slope and 

level change) is still available.  

 

Reporting requirements for combining probabilities 

Following the MRA, the outcome is not assigned an individual exact p value, which 

would entail having tabulated each and every possible outcome and its location in the 

sampling distribution. Instead, the outcome is compared to the reference values 

associated with several key p values to explore whether the outcome is more or less 

likely when there is no intervention effect. In cases in which exact probabilities are not 

available (e.g., a study only reports that p < .05), Edgington (1972a) suggests a 

conservative solution which allows combining probabilities. This solution consists in 

taking the upper limit of the probability given by a table as the probability itself, hence 

if the information available is that p < .05, then p = .05 should be the value used when 

integrating studies. Accordingly, when a statistical table is used and the outcome has a 

probability between .05 and .10, then p = .10 should be used. The use of tables was of 

course more common in the past, but it might be important to be able to also integrate 

results obtained farther away in time. Following Edgington’s (1972a) proposal and the 

MRA, it is possible to combine the probabilities and carry out a statistical test on the 

compound p, as it will be shown in the following section.  

 

Methods for combining probabilities 



 23 

In this section several methods will be discussed considering their strengths and 

potential limitations for application in single-case studies. It is necessary to stress that in 

order to carry out the statistical tests on the combined probability the individual studies 

must be independent (Jones & Fiske, 1953), given that lack of independence may lead 

to inflating Type I errors (Strube, 1985). The lack of statistical dependency between the 

measurements may be specifically important to be checked in the case of multiple 

baselines across behaviors and across settings.  

The most frequently used method for combining probabilities is the Stouffer method 

(Hedges et al., 1992; Noble, 2006) consisting in converting the p values from the n 

studies to integrate into Zs. The test statistic is computed as 
1

n

i

i

Z n


  and is referred 

to a standard normal distribution. Rosenthal (1978) recommended using this method in 

most cases. Group designs simulations suggest that this method is more powerful than 

adding ts and than the mean Z when less than five studies are being integrated (Strube & 

Miller, 1986). According to Rice (1990), adding Zs is appropriate for testing consensus, 

with the null hypothesis stating that the average p value is greater than or equal to .50. 

However, it needs to be considered whether this null hypothesis provides interesting 

information and sufficient evidence on the relevance of the effects in the studies being 

integrated. Moreover, in the context of N=1 studies, the assumption implicit in the 

conversion (i.e., that the index used for quantification is distributed normally) is 

questionable.     

The Fisher method, consisting in adding the logarithms of the p values, is also 

considered a standard due to its simplicity and wide acceptance (Mathew, Sinha, & 

Zhou, 1993). The test statistic is expressed as 
1

2 log
n

e i

i

p


   and is referred to a chi-

square distribution with degrees of freedom equal to twice the number of studies 
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integrated. This method has been claimed to give more information than the binomial 

test (Jones & Fiske, 1953) and to be potentially more powerful (Rosenthal, 1978). As a 

limitation, it should be stated that the test favors the alternative hypothesis (small p 

values) due to the use of logarithms (Rice, 1990; Whitlock, 2005). This characteristic is 

related to the fact that the test does not actually assess whether the group of data sets 

collectively supports or refutes a common null hypothesis; it rather tests whether there 

is at least one significant component (Rice, 1990). 

It is also possible to add directly p values using 
1

!

n
n

i

i

p n


 
 
 
  to estimate the overall 

probability of a sum of ps as small as the one obtained (Edgington, 1972a). Its author 

suggests that it is more effective than adding logs, but the greater power also suggested 

by Rosenthal (1978) was not found in a simulation study (Strube & Miller, 1986). A 

small amount of studies are recommended to be integrated in order to avoid that the sum 

of probabilities exceed 1, which would lead to conservative results (Rosenthal, 1978).  

The mean of the added p values can be tested for significance using  .5 12p n  as 

a test statistic and referring to the standard normal distribution (Edgington, 1972b). One 

of the test’s bases is the assumption that under the null hypothesis each p value has the 

same probability of reaching any value between zero and one and thus their expected 

value and variance can be modeled by a uniform distribution. The simplicity of the 

method has been highlighted (Rosenthal, 1978) and it has shown acceptable power with 

as few as two studies being integrated (Strube & Miller, 1986).  

The binomial test has been deemed both quick (Rosenthal, 1978) and simple 

(Darlington & Hayes, 2000). The main advantage is that it allows using studies which 

report only information on whether the p value was above or below .05 (Rosenthal, 

1978). In the case of N=1 studies, this translates into the possibility to follow the MRA 
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and use tables like Tables 1, 2, and 3. Due to this possibility, in the following paragraph 

the application of the binomial test will be further explained.  

The test consists in comparing each p value associated with the outcome to the 

nominal level α predetermined by the researcher. Following the discussion by 

Darlington and Hayes (2000), all outcome p values lower than α are counted as 

“successes” (versus “failures” in case of greater values) in the terms commonly used 

when working with the binomial distribution. After that the probability of obtaining as 

many successes, denoted by s, is referred to a binomial distribution with n (the number 

of trials), which is equal to the number of independent individual studies, and π (the 

probability of success in each trial), which is equal to α. The probability of obtaining s 

or more successes can be calculated directly from  1 .
n

n xx

x s

n

x
 





 
 

 
  

Rosenthal (1978) presents “positive results” for the binomial test as those with p 

lower than .50, which is similar to the null hypothesis of the Stouffer method (Rice, 

1990). Suppose that the result of one study’s statistical test is a p value of .49, and in 

another study the p value is .01. Both these results would then be labeled as “positive 

results” according to this approach and thus would be treated as equivalent. This would 

imply a great loss of information. However, in the binomial test the nominal 

significance need not be always specified as α = .50. Actually, one of the main 

advantages of the binomial test is that the researcher has the possibility to choose any α 

for distinguishing between “positive” and “negative” results and for testing whether the 

amount of positive results can reasonably be explained only by chance. 

 

Combining weighted vs. unweighted probabilities 

It has been stated that one of the possible sources of invalidity when integrating results 

is weighting equally studies with different sample sizes (Noble, 2006). However, 
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weighting is not only restricted to sample size (Rosenthal, 1978), as possible weights 

include other factors that may influence the reliability and validity of the results (Noble, 

2006). Weighting gives more information and proved to be more powerful when 

combining studies with different sample sizes (Whitlock, 2005), but none of the 

methods commented above – adding logs, Zs, or probabilities – includes weighting 

explicitly. In that sense, it has been claimed that p values are already weighted indirectly 

by sample size, as obtaining the p value associated with the test statistic depends both 

on the effect size and the sample size (Hedges et al., 1992, for the Stouffer method). 

However, Darlington and Hayes (2000) claimed that in the case of the Stouffer method 

the weight is actually the square root of n and so it is not proportional to the sample 

size.  

In accordance with the validity statements mentioned above, we consider that 

weighting is important and it is already inherent to the meta-analytical combination of 

effect sizes. Although a minimal requirement would be to use series length (the single-

case equivalent of sample size) as a weight, it should be considered that the ideal weight 

is the inverse of the standard error of the effect size measure, that is, the Fisher 

information (Whitlock, 2005). In the current proposal we follow this recommendation 

and thus propose to use the inverse of the standard error of the summary index used 

when combining the p values assigned to them. Therefore, the weighted combination of 

p values proposed here matches closely the approach followed in the meta-analytical 

integration of studies’ findings (Cumming, 2011; Hedges & Olkin, 1985, but see Hunter 

& Schmidt, 2004, for a different perspective on weighting) and so there is continuity 

between the integrative approaches. In the current proposal, the standard error of an 

index can be estimated as the standard deviation of its sampling distribution. However, 

the different indices are expressed in different metrics and, thus, the comparison 
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between standard errors cannot be made directly. In order to express the variability of 

the indices’ distributions in the same metric, the coefficient of variation (CV) can be 

used, provided that it is a nonndimensional measure of dispersion. Hence, the inverse of 

each index’s standard error should not be used as a weighting factor, given that it would 

lead to weights expressed in different metrics, since the indices themselves are not 

directly comparable. Instead the inverse of the CV is proposed as for weighting 

purposes.     

The MRA tables would need to include the CV as computed out of the standard 

deviation and the average value of the index in the sampling distribution constructed to 

obtain the p value associated with the outcome. The weights obtained via the CV could 

then be used to compute a weighted mean of the p values as illustrated later. The 

weighted mean would probably be a more accurate summary representation of the 

global effect and can be compared to a predefined reference value, but given that its 

sampling distribution is unknown no further statistical test can be carried out. The use of 

Edgington’s (1972b) test with the weighted values is not justified, but in any case it 

would only permit a comparison with p = .50, which might not be sufficiently 

informative for applied researchers.   

 

Combining probabilities for ABAB and multiple-baseline designs 

As discussed previously, when the single-case design chosen by the researcher is ABAB 

or multiple-baseline, the individual comparisons between adjacent phases can be 

combined in order to obtain one numerical indicator for the whole study. In this section 

we will illustrate a tentative approach for such a combination. First, we revisit the first 

example involving an SSRI drug and the hours of sleep as a dependent variable, but 

now administering the drug according to an ABAB design. If the NAP is applied to 
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each two-phase comparison, it is possible to assign a p value to each percentage 

according to the MRA (i.e., using Table 2). Afterwards, we could combine the three p 

values following the weighted mean approach described above. Thus, we do not just 

compute the average of the p values, we rather given different weights to each 

comparison according to the variability of the index for that specific comparison, which 

is related to the amount of data involved. However, there is an additional requirement. 

We advise against averaging the p values if the data pattern is not consistent with the 

expected one. In the example presented in the upper panel of Figure 2 we see that both 

after the first introduction of the SSRI and after its reintroduction we have a (tentatively 

labeled) “large” increase in the hours of sleep. Thus, for the A1B1 comparison and the 

A2B2 comparison we would have “large” NAP values and “small” p values. However, 

after the withdrawal of the SSRI we also have an increase (although not as “large”) in 

the hours of sleep, which is against the idea of a functional relationship between the 

intervention and the behavior. Hence, for the B1A2 comparison we would have a NAP 

value below what is expected by chance and a “large” p value. If we were to compute 

the weighted mean of the three p values, the “small” p values would be attenuated (here 

made larger) by the unexpected increase of hours of sleep during A2, which would 

penalize for the unexpected direction of the difference between B1 and A2. Nonetheless, 

we consider that such a “numerical correction” of the p value is not sufficient, given that 

we actually do not know whether the SSRI is the cause of the change in the dependent 

variable or it is the individual’s natural tendency toward improvement. Therefore, we 

recommend computing the weighted average only when the actual data pattern 

resembles the one represented in the lower panel of Figure 2. The same reasoning can 

be applied to multiple baseline designs. The p values for each baseline can be combined 

using the mean weighted according to the CV, but only in case all the baselines show 
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the expected pattern (i.e., an improvement in the behavior only in the moment in which 

the intervention is introduced for that specific baseline). In this way, a single a p value 

can be obtained even for studies using ABAB and multiple-baseline designs and used as 

additional evidence for judging the effect of the intervention. Such a p value (formed 

meta-analytically) can be then incorporated in quantitative integrations of several 

single-case studies on the same topic via the binomial test. The weighted mean method 

can also be applied for combining probabilities of several studies; in this case the 

weight for an ABAB or a multiple-baseline design could be the inverse of the average 

of the CVs for each two-phase comparison. Finally, this is only a tentative proposal and 

further developments are required on the optimal way in which to obtain a single 

indicator per design. It would be especially relevant to discuss how to combine two-

phase indicators computed for the same study without assuming independence between 

the comparisons.   

 

INSERT FIGURE 2 ABOUT HERE 

 

Quantitative integration of N=1 studies using different metrics: Example 

Suppose that a researcher wants to perform a quantitative integration of single-case 

studies on the effectiveness of a specific cognitive-behavior treatment on people 

diagnosed with major depression. Ten independent but closely related studies have been 

identified on the topic, none of which offers raw data. In five of these studies the 

adjusted R
2
 of Allison and Gorman’s (1993) regression model is used and in the 

remaining five the NAP (Parker & Vannest, 2009) is computed and so direct integration 

is not possible given that the indices do not provide the same information and are not 

expressed in the same scale.  
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The ten possible outcomes are provided via a simulated example in the third column 

of Table 4. For each of the studies, the researcher carrying out the quantitative 

integration compares the outcome to the corresponding sampling distribution following 

the MRA, i.e., using references as the ones presented in Tables 2 and 3. In the following 

we provide examples of how this is done for one study using the regression model and 

one using the nonoverlap index always assuming, for the sake of simplicity, that the 

data are not serially related. For the remaining studies the procedure is analogous. For 

instance, in the third study the adjusted R
2
 value is .34. Using Table 3 and considering 

the phase lengths, the p value assigned would be .50 for independent series. That is, the 

outcome is as large as the reference value for this level of probability and this is the p 

value to be used for integrating results; it logically corresponds to the one in the fourth 

column of Table 4. Accordingly, for the ninth study, the p value assigned to the 

outcome computed via the NAP can be traced back to the reference table for the NAP – 

Table 2. Given the phase lengths, it can be seen that a NAP value of 72.00 is actually 

associated with a p value of .05 (the same as in Table 4) for unrelated data. Note that in 

case the researcher had not had any information on the degree of serial dependence and 

it was actually positive, the p values thus assigned may be too liberal. Checking Tables 

2 and 3, it can be verified that the p values would have been excessively low for such 

data. For instance, NAP = 72.00 should have been assigned p = .20 instead of .05 in 

order to avoid overestimating the effect in case φ1 were as large as .6. 

 

INSERT TABLE 4 ABOUT HERE 

 

Actually, in order to construct Table 4, the p value was determined prior to 

simulating independent series with normal disturbance. The outcome value 
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corresponding to this p value was then identified. Therefore, the values in Table 4 

represent accurately the association between an outcome and its probability under non-

effect conditions, rather than being purely fictitious. The CV values included in the last 

column of Table 4 were also obtained in the corresponding sampling distributions of 

independent normal disturbance data.  

 

Weighted mean 

Suppose that the researcher wants to check whether the combined probability in the 

studies on average is lower than .25. This consensus question (Rice, 1990) can also be 

expressed as checking whether the outcomes on average are greater than 75% of the 

outcomes expected by chance. Using the MRA p values from the fourth column of 

Table 4, the unweighted average of the p values is obtained to be .297. The weighted 

mean can be computed through 
1 1

,
n n

i i i

i i

w p w
 

   where the wi elements represent the 

weights for each p value. Given that the weights represent indices’ efficiency, in the 

running example the values in the fifth column of Table 4 are needed. The weights are 

computed as the inverse of the coefficient of variation, obtaining 1.56, 1.12, .93, 1.14, 

.77, 3.13, 3.45, 3.13, 3.85, and 2.44 for the ten studies, respectively. The weights add up 

to 21.52, which is the denominator of the weighted mean. The numerator is obtained 

adding the products of each p value and its weight, a total of 5.21. Thus, the weighted 

average p value is .242; lower than the a priori specified reference of .25, indicating that 

the weighted average outcome is greater than 75% of the outcomes in absence of effect. 

This weighted p value is lower than the unweighted average of .297, as in this case the 

indices show less relative variation in the studies in which the outcome is less likely 

under the null hypothesis, as it can be seen from Table 4. Note that both the unweighted 
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and the weighted means are likely to be conservative estimates, as that the p values used 

for computing these means are not exact p values, given that the MRA is followed.  

 

Binomial test 

In order to carry out the binomial test, consider that the nominal significance chosen is 

.05 and thus the test will be carried out to obtain the probability of getting as many p 

values lower than .05 only by chance. This reference has been commonly used in 

statistical decision making and seems useful, because the range of “successful” studies 

seems sufficiently narrow as to group studies with similar effects. In the running 

example there are three positive results, that is, there are three outcomes with p values 

of .05 or less according to the MRA (see Table 4). The binomial test is carried out with 

parameter n = 10 (i.e., ten studies) and a probability of success in each trial π = α =.05. 

The test yields a statistical significance value of p = .0115, which denotes the 

probability of having 3 or more “successes” of ten studies only by chance. This result 

could be interpreted as positive evidence on the relevance of the cognitive-behavior 

treatment effect on major depression across studies. In case the focus of the study were 

then put on these three studies for which the outcome is greater than the critical value, it 

would be possible to identify certain features responsible for the positive results 

(Darlington & Hayes, 2000).  

 

Assigning probabilities and publication bias 

It has been suggested that when selecting the studies to be integrated, the possibility of a 

publication bias should be taken into account (Whitlock, 2005), given that if the studies 

to combine are not a random sample (i.e., if they are not representative), then the 

validity of the results is threatened (Vevea & Woods, 2005). Rosenthal (1979) referred 
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to nonsignificant results being obtained but not published as the “file drawer problem” 

and proposed a correction. For the binomial approach, Darlington and Hayes (2000) 

illustrated how the results obtained with the available studies can be confronted with 

different amounts of unavailable studies with negative results (i.e., failures). For the 

running example, it can be verified that even if 7 “failure” studies with p values greater 

than .05 were added to the ten studies available, the probability of 3 or more positive 

results would be .0503. Thus even an omission of as many studies would not make 

results completely explicable only by chance, if we consider the result of .0503 as 

marginally significant and do not draw a strict line at .05, following Cohen’s (1990) and 

Rosnow and Rosenthal’s (1989) comments.  

However, it should be noted that the logic behind this approach for dealing with 

publication bias has been questioned (Vevea & Woods, 2005). Moreover, it is possible 

that such a calculus may not be necessary in the context of single-case studies. The file 

drawer problem essentially considers unpublished studies in which the main (or only) 

numerical focus is put on p values, something not common in N=1 studies. Indeed, 

including a p value in the report of a single-case study (although only as additional 

indicator associated with the primary effect size measure such as a percentage of 

nonoverlap) might lead to authors feeling more inclined to submit only “significant” 

results. However, in the current publication policy endorsed by scientific journals all 

outcomes are welcome and a greater amount of information is required (e.g., the 

confidence intervals about effect sizes; Wilkinson & The Task Force on Statistical 

Inference, 1999). The current proposal is well-aligned with such calls for more complete 

reporting regardless of statistical significance (Rosenthal & Rubin, 1985). In that sense, 

statistical tests have already been included associated with effect size measures (e.g., 

Maggin et al., 2011). As long as the editorial emphasis is put on effect size and the 
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accompanying numerical indicators are supplementary, publication bias is less likely 

(although still possible) and published studies may contain both low and high 

magnitude of effect index values, especially considering that it is not clear what is low 

and what is high for the variety of existing indices (Parker et al., 2005). Moreover, in 

the extreme case in which current additional evidence (p values) is not endorsed by 

journal editors, publication bias will not take place. However, the information given by 

the MRA could still be used by meta-analysts who would convert the original metric 

reported in the articles (e.g., a percentage of nonoverlap) into a p value and use it for 

integrating the studies chosen.  

 

Discussion 

The present paper proposes a numerical indicator which is potentially useful for 

interpreting an effect size index and for combining effect size indices expressed in 

different metrics in a meta-analytical style. Given that this indicator is additional, it 

should be considered supplementary to the primary assessment tools used by 

psychologists – their substantive criteria and experience, visual analysis of experimental 

unit’s progression via graphs, and quantitative analysis (e.g., a nonoverlap index, a 

regression-base procedure). On one hand, whether an intervention effect is relevant is 

more closely related to clinical, educational, social, etc. criteria. On the other hand, the 

magnitude of an outcome (e.g., whether it is “large” or “small”)  can be evaluated 

considering three different aspects: a) the bounds of the quantitative indicator, for 

instance, a nonoverlap index ranges from 0 to 100; b) the typical values for that same 

indicator in the specific psychological field, if such data are available; and c) the 

location of the outcome in a non-effect sampling distribution (i.e., via the p values of 

the current proposal). In the following, we focus on the strengths and limitations of the 

proposal.  
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Strengths and limitations of the additional evidence for effectiveness in individual 

studies 

The main idea of the proposal is to add a numerical indicator to enhance the 

interpretation of the summary index computed in a single-case study. This additional 

evidence has been presented in terms of p values. p values show several limitations, 

among which we have to mention the likelihood of flawed interpretation and the 

dichotomous decision making (Cohen, 1994), the lack of attention to Type II errors  

(Schmidt, 1996), and the unreliability of p values across replications (Cumming, 2008). 

Therefore, in the context of the current proposal p values should not be used as the sole 

indicator, but rather as a complement to the index quantifying behavioral change, that is, 

effect size measures, regardless whether these are expressed in original or standardized 

units (Cumming, 2011). Apart from the assessment of the outcome obtained in an 

individual study, the numerical indicator proposed is potentially useful for comparing 

the results across studies, even when these results are expressed in different metrics 

(e.g., based on data overlap, based on regression).  

The attainment of the p value is similar to SMA (Borckardt et al., 2008) – it is 

subjected to comparing to a suitable non-effect reference. In order to avoid depending 

on the assumptions and the problematic autocorrelation estimation, several plausible 

scenarios are represented in the MRA, which allows researchers to make a more solidly 

supported decision. Given that the greatest p value of all conditions is used, this 

approach is rather conservative. Nonetheless, with the typical single-case data series 

lengths statistical procedures tend to have low power (e.g., Ferron & Ware, 1995), so 

this feature is not unique to the MRA. Moreover, if only strong interventions are 

assigned “small” p values, it is more likely that the effects of these interventions be of 
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practical (and not only statistical) significance, as was suggested also for visual analysis 

(Parsonson & Baer, 1986).  In terms of the efforts required from the researcher, using 

the MRA involves only making a comparison to an already available maximal reference 

for the index and phase lengths used. Thus the loss of information (the exact p value is 

not known) is compensated by the ease of use this approach for applied researchers.   

 

Strengths and limitations of the quantitative integration of N=1 studies using different 

metrics 

The MRA allows combining studies whose results are summarized using different 

indices. This is important, given that the lack of a common effect size index precludes 

conducting meta-analyses of studies reporting only summary measures but not raw data. 

A compound probability approach can be followed integrating the p values assigned via 

the MRA. The MRA can actually be followed both when the raw single-case data are 

available and when there is only a summary measure (e.g., a nonoverlap index) 

computed.  

The present paper focuses specifically on two ways of combining individual studies’ 

p values. The first consists in using a weighted mean, where the weight represents the 

efficiency of the index used to obtain the outcome and gives greater numerical 

importance to studies in which the index shows less relative variability. An equivalent 

integration is performed in meta-analysis when, for instance, the standardized mean 

differences to be combined are weighted according to their standard error. This 

weighted mean has the drawback of the impossibility to test the composite p value 

statistically. It only allows a comparison with a reference p value determined by the 

researcher prior to carrying out the combination of individual studies’ results. 

Moreover, the CVs required for weighting cannot be computed for certain techniques 
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(e.g., SLC) for which the expected value under the null hypothesis is zero. However, for 

most of the procedures mentioned here this is not the case, as Table 4 illustrates.   

The second highlighted alternative for combining results is a binomial test based on 

counting the amount of studies in which the p values is below a predefined nominal α. 

This integrative approach makes possible including studies for which only a p values is 

available, for instance, the statistical significance of a regression coefficient 

representing the change in phase, or the one provided by a randomization test. Primary 

studies for which only a summary measure is reported can also be included, once this 

measure is converted into a p value following the MRA. Another advantage of this 

method is that its logic is relatively simple to understand and its use is straightforward. 

In comparison to the Stouffer method whose test is focused on a p value of .50, the 

binomial test allows specifying any reference value, given that it uses this reference as 

the probability of a positive result in each independent trial. Additionally, although the 

test is performed on p values, the original information expressed in terms of the 

magnitude of effect indices commonly used in single-case research is not lost. The 

binomial test applied jointly with the MRA is straightforward both in terms of 

conduction and interpretation, which is why we considered that it might be more 

attractive to applied researchers, who are also willing to test statistically the integrated 

result. 

 

Future research 

As discussed above, the MRA would avoid making decisions about the specific features 

of the data to be generated, given that a broad variety of conditions is reflected in the 

reference values, when these become available for the most commonly used and most 

promising procedures. As a limitation of the current study, it has to be pointed out that 
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the MRA was not illustrated with all available procedures. Instead a nonoverlap, a 

regression-based procedure, and a slope/level change technique were used in the 

examples as representative of a broader set of procedures. In case the idea subjacent to 

the MRA were considered useful by applied researchers, it would be necessary to obtain 

the reference values for a variety of techniques. These reference values would be made 

available by means of web-based tables or free software like R. 
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Table 1. Reference values obtained from 100,000 samples in absence of treatment effect for the 

slope and level change indicators of the SLC (Solanas et al., 2010). For each degree of serial 

dependence φ1 (−.3, 0, .3, and .6), the value represented is the greatest one obtained after 

exploring separately exponential, normal, and uniform random variable distributions.  

   SLC-LC   SLC-SC  

Phase length p value φ1 = −.3 φ1 = 0 φ1 = .3 φ1 = .6 φ1 = −.3 φ1 = 0 φ1 = .3 φ1 = .6 

nA=5, nB=5 .50 0 0 0 0 0 0 0 0 

 .30 .87 .78 .76 .75 .26 .27 .30 .34 

 .20 1.37 1.25 1.20 1.20 .41 .44 .48 .55 

 .10 2.03 1.87 1.81 1.81 .62 .65 .72 .83 

 .05 2.55 2.35 2.30 2.33 .80 .83 .91 1.05 

 .01 3.62 3.31 3.22 3.26 1.28 1.29 1.35 1.49 

nA=5, nB=10 .50 .01 .07 .04 .03 0 0 0 0 

 .30 .84 .77 .73 .76 .20 .21 .23 .26 

 .20 1.33 1.22 1.17 1.22 .33 .34 .375 .41 

 .10 1.98 1.81 1.78 1.85 .49 .51 .55 .62 

 .05 2.47 2.29 2.25 2.35 .62 .64 .69 .79 

 .01 3.49 3.23 3.27 3.48 1.02 1.02 1.06 1.11 

nA=10, nB=10 .50 .05 .01 0 −.01 0 0 0 0 

 .30 .72 .65 .63 .69 .11 .12 .13 .16 

 .20 1.14 1.03 1.02 1.11 .18 .19 .22 .26 

 .10 1.71 1.56 1.54 1.68 .28 .29 .32 .39 

 .05 2.17 1.99 1.98 2.18 .36 .37 .41 .50 

 .01 3.13 3.05 3.08 3.41 .57 .57 .60 .72 

nA=15, nB=15 .50 .05 .01 .01 0 0 0 0 0 

 .30 .68 .61 .61 .66 .07 .08 .09 .10 

 .20 1.08 .97 .97 1.05 .12 .12 .14 .17 

 .10 1.62 1.46 1.46 1.59 .18 .19 .21 .25 

 .05 2.05 1.88 1.85 2.07 .23 .24 .26 .32 

 .01 3.01 2.91 2.91 3.19 .37 .37 .39 .45 

nA=50, nB=50 .50 .02 0 .03 .04 0 0 0 0 

 .30 .58 .56 .60 .67 .02 .02 .02 .02 

 .20 .93 .89 .93 1.07 .04 .04 .04 .04 

 .10 1.37 1.34 1.40 1.61 .05 .05 .05 .06 

 .05 1.73 1.73 1.78 2.07 .07 .07 .07 .08 

 .01 2.42 2.72 2.77 3.00 .11 .11 .11 .11 
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Table 2. Reference values obtained from 100,000 samples in absence of treatment effect for the 

NAP (Parker and Vannest, 2009). For each degree of serial dependence φ1 (−.3, 0, .3, and .6), 

the value represented is the greatest one obtained after exploring separately exponential, normal, 

and uniform random variable distributions. 

   NAP  

Phase length p value φ1 = −.3 φ1 = 0 φ1 = .3 φ1 = .6 

nA=5, nB=5 .50 52.00 52.00 52.00 48.00 

 .30 60.00 60.00 64.00 72.00 

 .20 64.00 68.00 72.00 80.00 

 .10 68.00 76.00 84.00 92.00 

 .05 76.00 84.00 92.00 100.00 

 .01 88.00 92.00 100.00 100.00 

nA=5, nB=10 .50 50.00 50.00 50.00 50.00 

 .30 56.00 58.00 62.00 68.00 

 .20 60.00 64.00 70.00 76.00 

 .10 66.00 72.00 80.00 88.00 

 .05 72.00 78.00 86.00 94.00 

 .01 80.00 88.00 96.00 100.00 

nA=10, nB=10 .50 50.00 50.00 50.00 50.00 

 .30 55.00 57.00 60.00 65.00 

 .20 59.00 61.00 67.00 72.00 

 .10 63.00 67.00 75.00 83.00 

 .05 67.00 72.00 80.00 89.00 

 .01 75.00 81.00 90.00 97.00 

nA=15, nB=15 .50 50.22 50.22 50.22 50.22 

 .30 54.22 56.00 57.78 61.78 

 .20 56.89 59.56 62.67 68.44 

 .10 60.44 64.44 68.89 76.89 

 .05 63.56 68.00 74.22 84.00 

 .01 69.33 75.11 82.67 92.89 

nA=50, nB=50 .50 50.00 50.16 50.04 50.36 

 .30 52.36 53.04 54.32 56.52 

 .20 53.80 54.96 57.04 60.24 

 .10 55.76 57.44 60.40 65.16 

 .05 57.28 59.68 63.48 69.28 

 .01 60.32 63.64 69.12 75.84 
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Table 3. Reference values obtained from 100,000 samples in absence of treatment effect for the 

Allison and Gorman (1993) model. For each degree of serial dependence φ1 (−.3, 0, .3, and .6), 

the value represented is the greatest one obtained after exploring separately exponential, normal, 

and uniform random variable distributions.  

  Allison and Gorman’s adjusted R2  

Phase length p value φ1 = −.3 φ1 = 0 φ1 = .3 φ1 = .6 

nA=5, nB=5 .50 .20 .34 .50 .65 

 .30 .44 .58 .71 .81 

 .20 .57 .70 .80 .87 

 .10 .72 .81 .87 .92 

 .05 .81 .87 .91 .95 

 .01 .92 .94 .96 .98 

nA=5, nB=10 .50 .40 .52 .62 .71 

 .30 .63 .73 .80 .85 

 .20 .73 .80 .86 .90 

 .10 .83 .88 .92 .94 

 .05 .89 .92 .95 .96 

 .01 .95 .96 .97 .98 

nA=10, nB=10 .50 .06 .15 .29 .48 

 .30 .20 .33 .49 .67 

 .20 .29 .44 .59 .75 

 .10 .43 .57 .71 .83 

 .05 .53 .67 .79 .88 

 .01 .70 .80 .87 .93 

nA=15, nB=15 .50 .03 .10 .20 .38 

 .30 .12 .23 .38 .57 

 .20 .20 .32 .48 .67 

 .10 .30 .45 .61 .77 

 .05 .40 .55 .69 .83 

 .01 .57 .69 .81 .89 

nA=50, nB=50 .50 .01 .03 .07 .16 

 .30 .04 .08 .15 .28 

 .20 .06 .12 .21 .37 

 .10 .10 .18 .30 .49 

 .05 .14 .24 .38 .58 

 .01 .24 .37 .52 .71 
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Table 4. Fictitious example representing a summary of ten individual studies with the outcome 

obtained for Allison and Gorman’s (1993) adjusted R
2
 and Parker and Vannest’s (2009) NAP 

(column three). Column four presents the smallest p value for which the outcome is as large as 

or larger than the Maximal Reference Approach (MRA) reference value. Column five contains 

the coefficient of variation of the index for the phase lengths (nA and nB) represented.  

Phase length Index used Outcome MRA p value Index CV 

nA=4, nB=10 R2 .83 .30 .64 

nA=5, nB=7 R2 .28 .60 .89 

nA=5, nB=5 R2 .34 .50 1.08 

nA=8, nB=14 R2 .90 .01 .88 

nA=20, nB=20 R2 .15 .40 1.30 

nA=7, nB=7 NAP 55.10 .40 .32 

nA=7, nB=11 NAP 70.13 .10 .29 

nA=6, nB=8 NAP 85.42 .01 .32 

nA=10, nB=10 NAP 72.00 .05 .26 

nA=4, nB=5 NAP 50.00 .60 .41 
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Figure 1. Fictitious single-case data for the insomnia example.  
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Figure 2. Fictitious single-case data, representing a data pattern illustrative of 

experimental control (lower panel) and lack of experimental control (upper panel) in the 

context of an ABAB design.  

 


