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Abstract. 
 
Alteration and contamination processes modify the chemical composition of ceramic 
artefacts. This is not restricted solely to the affected elements, but also affects general 
concentrations. This is due to the compositional nature of chemical data, enclosed by 
the restriction of unit sum. Since it is impossible to know prior to data treatment 
whether the original compositions have been changed by such processes, the 
methodological approach used in provenance studies must be robust enough to handle 
materials that might have been altered or contaminated. The ability of the logratio 
transformation proposed by Aitchinson to handle compositional data is studied and 
compared with that of present data treatments. The logratio transformation appears to 
offer the most robust approach. 
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Introduction. 
 
 The two main principles of provenance studies through chemical 
characterisation were formally established in the 70s: On the one hand, the equation 
which models all sources of variation (Bieber et al., 1976): 

varT=varN+varS+varA,  (1) 
where varT is the total variance in the determination of concentration of one particular 
element for one individual, varN the natural variance, varS the sampling variance, and 
varA the analytical variance (vid. Beier & Mommsen, 1994); and on the other hand, 
the provenance postulate: "...namely that there exist differences in chemical 
composition between different natural sources that exceed, in some recognisable way, 
the differences observed within a given source." (Weigand et al., 1977, 24). Both 
principles are related and both point to compositional variability as being the basic 
principle in chemical characterisation. 
 
 As used in (1), the term 'natural' simplifies a more complex reality. In addition 
to the differences that exist between two raw materials of different origin, there are 
three distinct stages in pottery fabrication that must be taken into consideration as 
each can introduce variability through the particular technological processes involved. 
In the first stage, there is the selection of one or more raw materials, which contain the 
information of provenance (which is not necessarily the same as that of the the 
pottery, if trade in raw materials have occurred). In the second stage, there exists the 
variability introduced by the potter during the preparation of one or more pastes, 
depending on the particular use the pottery is to be put to (Steponaitis, 1984; Cuomo 
di Caprio, 1985; Arnold, 1992). Finally, the paste can be diversified during firing, 
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resulting in different transformations which affect mineralogy (Maggetti, 1981), 
chemical composition (Widemann et al., 1975; Kilikoglou et al., 1988), as well as 
physical properties including microstructure and colour (Picon, 1973; Tite & Maniatis, 
1975; Dufournier, 1982; Béarat et al., 1989). As a result of these changes a paste may 
then result in the production of one or more fabrics (adapted from Whitbread, 1989, 
127). Therefore, in case studies the relation between the paste and the derived fabrics 
should be satisfactorily explained by a model of transformation during firing, which 
can then be verified by experimental work (Buxeda et al., 1995). In addition to these 
three stages, there exists another source of variability, which is the subject of this 
paper. This final source of variability refers to unintentional alteration and 
contamination processes that take place during the phases of manufacture, use, burial, 
excavation, conservation and analysis. 
 
 It was at the end of the 60s and the beginning of the 70s, when the processes of 
alteration and contamination of pottery were first taken into consideration (Freeth, 
1967; Millet, 1967; Matson, 1971; Sayre et al., 1971; Duma, 1972). In subsequent 
years, there has been a not unexpected increase in research in this field, and 
considerable advances have been made (Béarat, 1990; Picon, 1991). Surprisingly, the 
effects of alteration and contamination processes on chemical composition have not 
received the same level of attention. Studies almost exclusively focus on the variations 
observed in the elements directly affected by these processes. As far as we know, only 
Picon (1986) has proposed a general correction of the elemental concentrations 
determined as well as recently pointing out the implications of the ‘residual distances’ 
that exist when we compare one individual with a previously established reference 
group (Picon, 1992; Morel & Picon, 1995). 
 
 The main purpose of this paper is the theoretical study of the implications that 
alteration and contamination processes have on elemental concentrations, and their 
effect on the treatment of the chemical data. 
 
The perturbation problem. 

 
 Alteration and contamination processes modify the original composition 
according to the properties of compositional data. The operation introduced by 
Aitchinson (1986, 42-43 and 123-125) 

x1=u1°x0=C(x0 1u1 1,...,x0 Du1 D)  (2) 
is defined as perturbation. During that operation, the D-parts compositional vector x0, 
which we can identify with the original compositional vector of a ceramic artefact, is 
operated by the D-parts perturbing vector u1 of positive elements. The result is the 
perturbed compositional vector x1. C represents the constraining operator which 
transforms each D-parts vector in one vector with unit sum. A generalisation of (2), 
for the processes that involve a sequence of compositions generated by independent 
successive perturbations, is possible according to the rules of the ° operator 
(Aitchinson, 1992):  

xn=u°x   (x=x0;u=(un°...°u1)   (n=1,2,...)).  (3) 
Thus, taking expression (3) as a starting point, we are able to develop a theory of 
alteration processes which can deal with more than one perturbation operation. 
 
 The values of the components of the perturbing vector will be in the range 
0<uj<1 when the perturbation implies a drop in the concentration of the xj component 
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of the compositional vector, or uj>1 if it implies an increment. Finally, the value will 
be uj=1 if it does not imply any change. Thus, 1 is the neutral element for the 
perturbation. Then, the operation of perturbation of one compositional vector by one 
perturbing vector with all its components uj=1 (j=1,...,D), is the identity perturbation. 
 
 Now, taking (2) and (3) together, we can develop these expressions to 
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j j
j
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j j
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Note that in these developments the constant 100 has been introduced in order to 
express the data in percentage values. 
 
 According to (5), we can verify that in fact the perturbation operation in 
compositional data establishes two types of perturbation. The first, which we shall call 
direct, comes from the fact that one component xj is multiplied by one component uj, 
as is established in (2). The second, which we shall call indirect, comes from the fact 
that one component xj is divided by the value k defined in (4) and is a perturbation 
imposed by the constraining operator. Thus, the possible sources of variation in the D 
components of x0 are actually the direct and indirect perturbations present in all the 
perturbation operations. 
 
 The value k, as expressed in (4), is the result of the sum of the D components 
of the original compositional vector x0 plus those terms ((xjuj)-xj) (j=1,...,D) which  
are not cancelled when being operated by the neutral element (i.e. uj≠1). Therefore, 
the fact that k deviates from 100 depends only on those components of the perturbing 
vector other than the neutral element. Moreover, it is clear that 100 is the neutral 
element of the indirect operation because it cancels the indirect operation. 
Nevertheless, it is possible for k to assume the value of 100, if there are two or more 
terms ((xjuj)-xj) with uj≠1 producing equal perturbations but in opposite directions. At 
the same time, a discrepancy appears between the expected value from the direct 
perturbation operation and the observed value which arises from the final indirect 
operation. In this sense, the value determined by the chemical analysis is an 
overestimation of that value resulting from the direct perturbation if k<100 and, on the 
contrary, it is an underestimation if k>100.  
 
 It is clear from the above that the validity of a methodology able to deal with 
perturbed data depends on its ability to avoid the effects of the indirect operations, 
because the latter become a source of spurious error propagation with no connection 
to the natural processes, but rather to the constraining operator of the compositional 
data. At the same time, having proved its ability to cancel the indirect operations, it 
would be desirable for such a methodology to facilitate the identification of the effects 
of the direct operations, in order that they might be recognised and taken into 
consideration. 
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Traditional data treatments. 
 
 Traditional data treatments use the data in one of two ways. The raw data can 
be either used in their original values or by taking their logarithms; or some scholars 
normalise the subcompositions in such a way that the sum of the determined 
components is 100. The main reason for doing this is to achieve a better 
intercomparability of the elemental concentrations of the same component in two 
different compositional vectors. This is a common way of working on 
subcompositions that include the most of major and minor elements. However, it is 
not used at all by those who determine almost exclusively trace elements. 
 
 The compositional vectors in chemical characterisation have no D random 
dimensions, but rather the D dimensions are the number of elements in the Periodical 
System that occur naturally. However, in practice the analytical determinations are 
never performed for all the D components, but for a subcomposition S (S<D) that is 
imposed by either the technical possibilities, the theoretical assumptions, or both 
factors together. Therefore, (5) can be written as 

xSubc n

S Sx u

k

x u

k = (
( )

,...,
( )

).
100 1001 1   (6) 

It is important to consider that, in (6), k has the same meaning given by (4). Thus, the 
elemental concentrations of the determined subcomposition are affected by the direct 
perturbations which depend on the components uj (j=1,...,S), but they are also affected 
by the indirect perturbations that are dependent on all the components uj (j=1,...,D). 
Expression (6) actually forms the basis for those data treatments conducted on the raw 
data. 
 
 However, in the case where the subcomposition is normalised we start from 
another basis: 
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Due to the constraining operator, imposed during normalisation, a second indirect 
operation is performed by a new value which is similar to the value k defined in (4). 
This new value is formed only from the values of the S components of the determined 
subcomposition: 
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Thus, the resulting expression can be written as 
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where c corresponds to 
c=(x1u1)+...+(xSuS).  (8) 

Expressions (7) and (8) allow us to confirm the intuitive idea that the normalisation of 
the subcompositions produces new values that are independent of the undetermined 
components and, more importantly, that are independent of those undetermined 
components of the perturbing vector. In spite of this corrective effect, other problems 
exist in using the normalised subcompositions, because the normalisation finally 
multiplies each component of the determined subcomposition by a scale factor 
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a
c

=
100

,   (9) 

where c has the meaning defined by (8). 
 
 These developments clearly show that working with the elemental 
concentration of the determined subcompositions, either with the raw data, or with the 
normalised subcompositions, implies several serious problems, mainly because the 
determined concentrations depend, through the indirect operation, on the value k 
defined by (4) for the raw data, or on the scale factor a defined by (9) for the 
normalised subcompositions. 
 
 On top of these problems, two other objections need to be raised. First, intra-
vector ratios are maintained for those components directly operated by the same value 
in the perturbing vector, but not necessarily for the inter-vector ratios. Expressed as 
the product of the original ratio multiplied by a new ratio due to the perturbation, the 
inter-vector ratio between compositional vectors A and B becomes 
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in the raw data case, and 
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in the normalised subcomposition case, exhibiting their dependence to k (4) and to a 
(9), which can differ for each compositional vector. 
 
 Secondly, during the definition of compositional groups it is necessary to 
estimate the distribution function parameters. If we assume, for example, that this 
function fits a normal multivariate function, the parameters mean, variance and 
covariance will be estimated. Therefore, as it easily demonstrated, the value k (4) for 
raw data, or the scale factor a (9) for normalised data, will be used in a recurrent way 
in every step of these calculations. Thus the estimation of these parameters represents 
a serious source of error propagation. 
 
 It has been shown so far that the traditional methods of chemical data 
treatment cannot handle perturbations. This inability is especially important because it 
is an axiom that all the compositional vectors of the ceramic individuals analysed are 
possibly perturbed but those perturbations are unknown before the chemical data have 
been studied. Then, the methodology employed should be robust enough to deal with 
perturbed data, and situations where the data are not perturbed must be seen as 
particular cases in the general theory, as being operated by the identity perturbation. 
 
Aitchinson’s proposals for using ratios. 
 
 Besides the perturbation, another major problem of traditional data treatment 
methods arises from the absence of an interpretable covariance structure and from the 
difficulties involved in parametric modelling (Aitchinson, 1986, 52 onwards). To 
tackle these problems Aitchinson (1986, 1989, 1990, 1992) has proposed the use of 
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ratios. In fact, the logarithms of these ratios are used in order to achieve the desired 
symmetry (Aitchinson, 1992). 
 
 Aitchinson’s proposals are based on the use of the symmetric centred logratio 
transformation according to 

x z
x

x
∈ → = ∈S Rd D

g
log(

( )
)   (10) 

where Sd is the d-dimensional simplex (d=D-1) and g(x) is the geometric mean of all 
the x D components, and on the use of the asymmetric logratio transformation 
according to 

x y
x∈ → = ∈−S
x

Rd D

D

dlog( )   (11) 

where x-D=(x1,...,xd). 
 
 The impact of these proposals on archaeometry has, however, been limited 
and, additionally, they have always been related, sometimes in a critical sense, to the 
symmetric centred logratio transformation (10) (Baxter, 1989, 1991, 1992, 1993, 
1994; Leese et al., 1989; Tangri & Wright, 1993; Neff, 1994; Hoard et al., 1995). In 
contrast, our efforts have been directed to the study and use of the asymmetric logratio 
transformation (11) because, as we shall see, the disadvantages arising from 
asymmetry can be kept under control (Buxeda, 1995a, 1995b; Buxeda & Cau, 1995a; 
Buxeda & Gurt, 1995; Buxeda et al., 1995). 
 
 Based on the preceding discussion, the centred logratio transformation can be 
expressed as follows: 
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Developing the denominator and simplifying the initial expression, this expression can 
be written as: 
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So, in (12) we can observe that the centred logratio transformation removes the 
indirect perturbation, and it does not imply any arbitrary change of scale as 
normalisation would. Nevertheless, a new indirect operation, in the second term of the 
sum of logarithms for each component, arises, imposed by the use of ratios, and 
involves all the determined components of the perturbing vector. 
 
 In contrast, the logratio transformation gives more simple equations. The 
initial equation being 
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after simplifying the expression we obtain 
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As can be seen, in this transformation once the indirect perturbation imposed by the 
compositional nature of the data has been removed, another indirect operation 
imposed by the use of ratios appears. Unlike the centred logratio transformation, here 
the second term in the sum of logarithms in each component is only affected in the 
indirect operation by the Sth component used as divisor. 
 
 The main implication of these various indirect operations in the two 
transformations can be seen in the inter-vector ratios. In the case of the intra-vector 
ratios, two components directly operated by the same value do not change the ratio. In 
the case of two components of two different compositional vectors A and B the inter-
vector centred logratio transformed data ratios are the result of 
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where j=1,...,S. In the case of logratio transformed data, the inter-vector ratios are the 
result of 
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where j=1,...,S-1. It must be noticed that in (14) as in (15) the subtraction on the left-
hand side of the sum corresponds to the ratio between the original compositional 
vectors before the perturbation operation, while the subtraction on the right-hand side 
of the sum expresses the contribution of the direct and indirect operations. Thus it is 
clear that inter-vector ratios are only dependent on the perturbing vectors and hence 
not on the result of the calculation of k (4) or a (9) using both the perturbing and the 
compositional vectors. Furthermore, recovering the original inter-vector ratios 
depends, in the case of the symmetric transformation, on the equality of the values of 
the components of the perturbing vector used in the direct operation, and on the 
equality of the geometric mean of all the values of the components of the perturbing 
vector corresponding to the determined subcomposition. But, in the asymmetric 
transformation the conditions are less severe, because, once the equality in the direct 
operation has been proved, the equality in the indirect operation will only depend on 
the values of the Sth component of the perturbing vectors. 
 

An important implication is that the inter-vector ratios (14) and (15) 
correspond to the form used in the calculation of the Euclidean distance (Aitchinson, 
1992), which is 
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for the centred logratio and for the logratio transformed data, respectively. 
 
 Moreover, the parameters of mean, variance and covariance that are estimated 
present the same advantages as the inter-vector ratios with respect to the raw and 
normalised data. Nevertheless, as can be easily seen the logratio transformation is 
more robust on the spurious error propagation induced by the indirect perturbations. In 



 9 

the case of the asymmetric transformation, the calculation of the mean, variance and 
covariance statistics will be: 
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where (j=1,...,S-1), and 
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where (j=1,...,S-2) and (l=j+1,...,S-1). 
 
 The development of the expression for the inter-vector ratios, and for the 
statistics mean, variance and covariance, allows us, using Aitchinson’s proposals, to 
express the values of any perturbed compositional vector as the sum of the original 
value plus the corresponding value from the perturbing vectors. Furthermore, dealing 
with the asymmetric transformation, the indirect operation is only dependent on the 
value of the Sth component of the perturbing vector. Therefore, provided that this 
value assumes the neutral element for all the individuals analysed, the spurious error 
propagation due to the indirect operations will be eliminated and we can recover the 
original unknown values, except for the presence of direct perturbation. This spurious 
error propagation for the centred logratio or logratio transformed data will depend 
only on the addition of the effect of the perturbing vector. On the contrary, for raw 
data and normalised subcompositions the indirect operation comes from the result of 
the different element xjuj, according to (4) or (9) respectively, and the effect of the 
indirect operations will be directly proportional to the xi values. 
 

The ability of logratio transformation to emphasise the presence of 
perturbation, allowing it to be identified, as well as its ability to identify which 
elements are more suitable for use as divisors in (13), in order to cancel the indirect 
perturbations, will now be exemplified using an archaeological case study of Hispanic 
Terra Sigillata kiln material, which presents heavily perturbated data.  
 
 
The Abella workshop: an example of perturbed data. 
 
 The Abella workshop (Navès, Solsonès) is situated in what is now Catalonia 
(Spain), in the north-east of the Iberian Peninsula. It constituted the first known 
workshop of Hispanic Terra Sigillata (Samian Ware). Discovered in 1912, a partial 
excavation was undertaken by Serra i Vilaró (Serra, 1925) during the first years of this 
century. As a result of this excavation, three kilns were discovered that belonged  to a 
production centre of Terra Sigillata and common pottery. Moreover, some elements of 
the kiln were recovered, such as the gas extraction tubes used in irradiation kilns to 
isolate the firing chamber in order to achieve the completely oxidising atmosphere 
needed to produce the red Terra Sigillata (Picon, 1973). A new survey led to the 
discovery of a fourth kiln and a great variety of archaeological materials (Gurt et al., 
1987; Gurt, 1993a; Casas et al., 1989; Buxeda, 1995a). The survey was conducted in a 
number of areas (Figure 1) which correspond to the four kilns (U2, F1, F2 and B) and 
to a futher four sectors (E, Q2, G and A). The chronology of the workshop was 



 10 

estimated as being the second half of the 2nd century - first half of the 3rd century 
AD, thanks to the results provided by the Roman villa of La Rectoria, ca. 500 m away 
from the workshop, where the Abella products were found in a clear stratigraphical 
sequence. Also, a 14C dating exists for the UE 7 stratigraphical unit (Gurt, 1993b; 
Buxeda, 1995a). 
 
Sampling and analytical methods. 
 
 The sampling, conducted in order to define the Abella reference group, 
included 108 individuals (Table 1), representing the Terra Sigillata, the moulds, the 
gas extraction tubes and the fine common pottery. All but one individual came from 
deposition contexts in the areas surveyed in Abella. Only one individual came from 
the La Rectoria site. However, the deposition context of 18 of the 107 individuals 
from the Abella site is unknown, because of earlier excavations. 
 
 Ten grams of each individual were taken and powdered in a Spex Mixer (Mod. 
8000) tungsten carbide cell mill, after the outer surfaces had been mechanically 
removed. The chemical compositions of the 108 individuals were determined at the 
Scientific-Technical Services of the University of Barcelona with X-ray Fluorescence 
(XRF), using a Phillips PW 1400 spectrometer, with two excitation sources: Rh and 
Au. The quantification of the concentrations was obtained using a calibration line 
performed with 40 International Geological Standards. The elements determined were: 
Fe2O3 (as total Fe), Al2O3, MnO, P2O5, TiO2, MgO, CaO, Na2O, K2O, SiO2, Ba, Rb, 
Mo, Th, Nb, Pb, Zr, Y, Sr, Sn, Ce, Co, Ga, V, Zn, W, Cu and Ni. The loss on ignition 
(LOI) was measured by firing 0.5 g, of dried powder, at 1000°C for 1 h. Moreover, X-
ray Diffraction analysis (XRD) was carried out for the 108 individuals included in the 
study, using the same powders prepared for XRF analysis. Measurements were 
performed at the Scientific-Technical Services of the University of Barcelona using a 
Siemens D-500 diffractometer working with the Cu K-α radiation (λ=1.5406Å), and 
monochromator graphite in the diffracted beam, at 1.2 kW (40kV, 30 mA). Spectra 
were taken from 4 to 70°2Θ, at 1°2Θ/min (step size=0.05°2Θ; time=3 s). Individual 
25 was chosen for a thermodiffractometric experiment, using the Siemens D-500 
diffractometer equipped with a high temperature chamber and a Positional Sensitive 
Detector (PSD). Several spectra were taken at room temperature, 600, 700, 750, 800, 
850, 900, 950, 1000, 1050 and 1100°C. A rate of 100º C/h was employed, and the 
temperature was kept for 1 h before the spectra were recorded. Individuals 1, 3, 6, 11, 
13, 18, 24, 25, 26, 28, 29, 31, 32, 46 and 55 were chosen for the study of the 
microstructure and sintering state presented in its as-received-state (ARS). The 
observations were made on fresh fracture using a scanning electron microscopy 
(SEM) Phillips-SEM 515 (Laboratory of Archaeometry, NCSR “Demokritos”, Aghia 
Paraskevi, Greece), and an SEM Stereoscan S120 (Cambridge Instruments) 
(Scientific-Technical Services, University of Barcelona). Four individuals (1, 6, 11 
and 46) were also refired in oxidising atmosphere, using a rate of 200º C/h from room 
temperature up to 850, 950, 1080 and 1100°C, maintaining the temperature for 1 h 
and with a natural cooling process. A detailed description of the analytical conditions, 
precision, accuracy, and routine is given by Buxeda (1995a). 
 
The study of elemental concentrations: the variation matrix. 
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 As established by Aitchinson (1986), the covariance structure in compositional 
data for a D-parts composition x is the group of all the covariances 

σij,kl=cov{log(xi/xk),log(xj/xl)}   (i,j,k,l=1,...,D). 
Following this definition for covariance, the variances, representing the 

relative variations between two components, are defined as 
τij=σii,jj=var{log(xi/xj)}. 

Furthermore, the covariance structure of a D-parts composition x is actually 
completely determined by the previous 1/2dD variances. Thus the DxD matrix 

T=[τij]=[var{log(xi/xj)}:i,j=1,...,D]  (19) 
which completely determines the covariance structure is called the variation matrix 
(Aitchinson, 1986, 1990). 
 
 If we develop Aitchinson’s concepts for an S-parts subcomposition applying a 
logratio transformation, it is clear that given the relation τiS=σii,SS, the values in the 
Sth column of the variation matrix are the same as those in the diagonal of the logratio 
covariance matrix calculated using the component xS as divisor: 

ΣΣΣΣ=[σij,SS]=[cov{log(xi/xS),log(xj/xS)}   (i,j=1,...,S-1)]. (20) 
It has to be pointed out that this correspondence is only partial, because the logratio 
covariance matrix (20) does not contain the variance τSS, because it contains one 
dimension less. Even so, given τSS=0, we can calculate a new value as 

τ τ.S iS
i

S

=
=
∑

1
  (21) 

which corresponds to the value tr(ΣΣΣΣ), i.e. the total variance in the logratio covariance 
matrix. 
 
 Another important concept arising from the variation matrix (19) is the total 
variation (Aitchinson, 1990), given by 

vt=(2S)-1j'Tj, 
where j is the Sx1 column vector of units. This total variation is the measure of the 
variability existing in the covariance structure for the subcompositional data matrix 
under study. The importance of the total variation concept is enhanced by the relation 
between the total variation and the trace of the logratio covariance matrix (20)  

vt=tr(ΣΣΣΣ)-S-1
j'ΣΣΣΣj, 

where j is the (S-1)x1 column of vector units, and therefore vt always assumes a lower 
value than tr(ΣΣΣΣ). The variation matrix will then allow us to measure the variability 
linked to the component used as divisor in (11), because the value 

vt/τ.S   (τ.S=tr(ΣΣΣΣ)) 
can be considered the percentage of tr(ΣΣΣΣ) explained by the total variation in the 
covariance structure, the subtraction 1-(vt/τ.S) being the variability imposed on ΣΣΣΣ by 
the component xS due to its special role in the asymmetric transformation (11). In this 
way, the variation matrix (19) will exhibit in its columns i (i=1,...,S) the diagonals of 
the S possible logratio matrices that will result when using the component in the ith 
column as the divisor. 
 
 The variation matrix from Abella (Table 2), adapted in accordance with 
Aitchinson’s proposal, exhibits in its columns the diagonals of all the possible logratio 
covariance matrices, and the values τ.i (i=1,...,S) (21) corresponding to the traces of 
these logratio covariance matrices (Mo, Pb, Sn and Cu are not included due to 
undeterminations and analytical imprecision; Co, W and LOI will be considered 
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separately). The total variation is 1.07713. Two groups of elements can be observed. 
On the one hand, there are some components that, when used as divisors impose a low 
variability on the transformed data without greatly exceeding the total variation of the 
covariance structure. The use of SiO2, Y, Fe2O3 and Al2O3 as divisors keeps vt/τ.i 
higher than 90%, and therefore they impose a variability below 10%. On the contrary, 
P2O5, CaO, Ba, K2O, Sr and Na2O give vt/τ.i values below 50%, i.e. they impose a 
variability over 50%. These latter values reflect major relative variations between the 
components used as divisor and the other components determined, which is 
unexpected in a monogenic sample such as that from Abella. So, the variance matrix 
shows a covariance structure with a clear influence of these components, indicating 
their responsibility for most of the existing variability. 
 
 When SiO2 is used as divisor in the transformation (11), because it is the 
component which imposes least variability, the logratio covariance matrix trace is 
1.150966 (value of τ.SiO2). However, the sum of the relative variations of the previous 
six components (P2O5, CaO, Ba, K2O, Sr and Na2O) with SiO2 has a value of 
0.898434, i.e. 78.06% of the total variability in the logratio covariance matrix. If we 
observe, for example, the histograms of the values ln(Na2O/SiO2), ln(K2O/SiO2) and 
ln(Sr/SiO2) (Figure 2), we see that some important asymmetries are present. These 
asymmetries are unexpected as we assume a normal multivariate distribution function, 
where a normal univariate must be observed for all the marginal. These asymmetries 
are at the origin of the high value of the corresponding variances. Furthermore, the 
highest values in all the variation matrix are observed in relative variations with Na2O, 
τSr Na2O and τK2O Na2O, because the individuals involved in these asymmetries are either 
the same in opposite directions, or different in the same direction (Figure 2). Finally, it 
is important to notice that two values appear markedly lower in the column of Sr, 
τCaO Sr and τBa Sr. 
 
 These results show that the variation matrix is a powerful tool for 
quantification of the total variation in the compositional data matrix, and also for the 
identification of the origin of this variability. Certain aspects of this variability can be 
studied and controlled. 
 
 The variability imposed by the component used as divisor in (11) is not the 
only distortion that this transformation can introduce because of its special role. A 
second problem arises in the form of distortion of the general behaviour of the 
components in the covariance structure, a distortion which is due to the relations 
existing between these components and the component used as divisor. A measure of 
this distortion can be established with a correlation coefficient rv,τ. between the τji 
(j=1,...,i-1,i+1,...,S) values in the ith column and the τ.j (j=1,...,i-1,i+1,...,S) values of 
the totals of the other columns, 1 being the value for no distortion. In the case of 
Abella, the highest correlation is exhibited by the component SiO2, while the lowest is 
exhibited by the component Sr. In Figure 3 we can clearly see that the relative 
variations of all the components with SiO2 are in good agreement with the relative 
variations of each component with all the others. On the contrary, the election of Sr as 
divisor imposes almost 82% of the variability on the logratio covariance matrix, and it 
also implies a distortion when reproducing the relative variations. 
 
 The result of the data treatment can be summarised in the dendrogram of the 
cluster analysis (Figure 4) performed using the components Fe2O3, Al2O3, MnO, P2O5, 
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TiO2, MgO, CaO, Na2O, K2O, SiO2, Ba, Rb, Zr, Sr and V, logratio transformed using 
SiO2 as divisor. The cluster analysis has been performed, running the program Clustan 
(Wishart, 1987), using the mean squared Euclidean distance in order to emphasise the 
effect of those variables that, after the transformation, present a higher contribution to 
the variability. The centroid agglomerative algorithm was used because the few 
reversals do not imply any major transgression of the monotone invariance (Sneath & 
Sokal, 1973, 278) and, on the contrary, this algorithm has an interesting geometric 
reflection (Sneath & Sokal, 1973, 234). The value of the cophenetic correlation 
coefficient is 0.84, which reflects a high hierarchy within the data. 
 
 If we centre our attention on what now appears to be more important aspects, 
we can see a complex structure in the data with 79 out of 108 individuals placed in 4 
groups (GA, GB, GC and GE). Table 3 shows the mean and standard deviations for 
the transformed data in each group, while Table 4 shows the mean and standard 
deviations for those groups but expressed in normalised subcompositions. In Table 3, 
we can see that the values ln(Na2O/SiO2) are clearly higher for the group GE, while 
the values ln(K2O/SiO2) are much lower. This explains the high value τK2O Na2O, 
produced by the two asymmetries in opposite directions but affecting the same 
individuals, roughly those in the group GE. In relation to the components, CaO, Ba 
and Sr, we observe that the values ln(CaO/SiO2), ln(Ba/SiO2) and ln(Sr/SiO2) are 
markedly higher for group GA, where those individuals involved in the asymmetries 
exhibited by these three components are grouped. Finally, groups GB and GC 
represent those individuals not involved in any of these important relative variations. 
The differences between both groups are less significant, as is reflected in the 
dendrogram (Figure 4). 
 
 The component P2O5, which also makes a major contribution to the 
compositional variability, exhibits its special behaviour because of individual 14 
(extreme right in the dendrogram) which presents a value of 2.20% in normalised 
subcompositions while all other values are below 0.37%. 
 
The interpretation of the existing structure. 
 
 Almost all the individuals exhibit an XRD pattern that can be related to one of 
the four categories of associations of crystalline phases proposed in Figure 5, 
according to the observed mineralogical changes. This evolution is supported by the 
high temperature experiment conducted on individual 25 (Figure 6), which 
exemplifies mineralogical category C1 in Figure 5, and by the results from SEM on 
the individuals ARS and the experiments of refiring (Buxeda, 1995a; Buxeda & Cau, 
1995a). The equivalent firing temperatures were estimated from the data obtained by 
XRD and SEM, and can be divided into four groups: below 800-850º C for C1 (low 
fired), around 950º C for C2 (well fired) (crystallisation of gehlenite, pyroxene and 
plagioclase), between 1000 and 1050º C for C3 (overfired) (decomposition of illite-
muscovite and gehlenite, further development of pyroxene and plagioclase) and over 
1100-1150º C for C4 (severely overfired) (partial decomposition of quartz, 
crystallisation of leucite) (Maggetti, 1981; Maniatis et al., 1981). It is also important 
to notice that these results are in good agreement with such indications as the matrix 
colour (C1, brown or orange depending on the crystallisation of hematite; C2, light 
orange; C3, yellowish; C4, greenish), and the deformation of some individuals in 
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category C4, because of the collapse due to the advanced liquid phase produced 
during firing (Picon, 1973). 
 
 If we exclude the few individuals that must be considered as particular cases, 
comparison between the chemical and the mineralogical data shows a significant 
degree of correspondence for 89 out of the 108 individuals retained. In Table 5 we 
have grouped the individuals, according to their deposition contexts in the site, in 
three categories: for the individuals coming from the kilns (areas U2, F1, F2 and B in 
Figure 1), from outside the kilns (areas E and Q2), and for those individuals of 
unknown deposition context. Thus, we can see that 4 out of 8 individuals of the 
chemical group GC are classified in mineralogical category C1, with the kilns as their 
deposition context. For the other 4 individuals of the chemical group GC we do not 
know the deposition context, but it is worth noting that 2 of them are classified in 
mineralogical category C1 and the other 2 are classified in mineralogical category C2. 
The correspondence between these data is still clearer for the individuals of the 
chemical group GA, in which 31 out of the 35 individuals are classified in 
mineralogical category C2 and come from the deposition contexts outside the kilns. 
The other 4 individuals grouped in GA also come from the same deposition context, 
but they are classified in mineralogical categories C1 (3 individuals) and C3 (1 
individual), which are the mineralogical categories next to C2. In the case of the 
chemical group GB, 21 out of 23 individuals are classified in mineralogical category 
C3. Nevertheless, no relation is observed in this case between chemical group GB and 
a specific deposition context. Only 2 individuals of the chemical group GB are 
classified in mineralogical category C2, but they come from deposition contexts 
outside the kilns. Finally, 12 out of 13 individuals of the chemical group GE are 
classified in mineralogical category C4. As in the previous chemical group, no relation 
is observed between chemical group GE and a specific deposition context. 
 
 It can then be clearly observed that the structure in several chemical groups, 
provoked by the existence of several asymmetries involving certain individuals, is 
linked to the firing temperature (to the physical, mineralogical and chemical 
characteristics developed by the firing) and to the deposition context. The reason for 
this is the presence of selective alteration and contamination processes. In this sense, 
the values ln(CaO/SiO2), ln(Ba/SiO2) and ln(Sr/SiO2) reflect the perturbation 
operating on the components CaO, Ba and Sr (Figure 7). In the case of ln(CaO/SiO2), 
these values are related to the crystallisation of secondary calcite (for example, 
Heimann & Maggetti, 1981; Maggetti et al., 1984; Picon, 1985a),  which would imply 
a partial enrichment with allochthonous Ca2+. Notwithstanding, the phenomenon of 
secondary calcite is a very complex problem which needs the concurrence of more 
than one analytical technique for its identification, and especially for its interpretation 
in terms of enrichment with allochthonous calcium. In the case of Abella, the data 
support such an interpretation (vid., Buxeda & Cau, 1995a). In relation with the values 
ln(Ba/SiO2) and ln(Sr/SiO2), contaminations of Ba and Sr have also been reported (for 
example, Bieber, 1977; Olin et al., 1978; Freestone et al., 1985; Picon, 1985b; Picon, 
1987; Schmitt, 1989; Béarat, 1990; Picon, 1991). In the case of Abella, the data 
suggest the existence of a certain association between the contamination of calcium, 
barium and strontium, especially affecting those individuals in mineralogical 
categories C1 and C2, that are buried in the deposition contexts E/Q2. 
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 In Figure 8 we can observe the asymmetries detected in mineralogical category 
C4. In this fabric we can observe the effect of two different, possibly partially related, 
processes that cause the contamination of sodium and the lixiviation of potassium, 
perhaps because of the alteration of the glassy phase (for example, Picon, 1976; 
Segebade & Lutz, 1980; Lemoine et al., 1981; Schmitt, 1989; Picon, 1991). This 
lixiviation is not observed in all the individuals in category C4, but, what has to be 
taken into consideration is that all the individuals in this category present, with 
different intensities, peaks of leucite, a potash feldspatoid (Figure 5 and Figure 6). 
This firing phase could act as a way of fixing the potassium, preventing its lixiviation. 
On the contrary, what is made clear is the contamination of sodium for all the 
individuals. In this case, this contamination of sodium is directly related to the 
crystallisation of a sodium zeolite, analcime (Figure 5), which is clearly a secondary 
phase (for example, Maggetti, 1981; Heimann & Maggetti, 1981; Walter, 1988). This 
process is also possibly favoured by the alteration of the glassy phase. The analcime 
was semiquantified on the basis of the intensity in counts per second (CPS) of its peak 
5.59Å. The diagram analcime-ln(Na2O/SiO2) shows the relation between the presence 
of analcime and the sodium content. 
 
 Moreover, it should be pointed out that individual 14, which can be classified 
in mineralogical category C2 and which has markedly the highest observed variability 
in P2O5, is the only individual from the La Rectoria site. In contrast to the production 
site of Abella, La Rectoria was an inhabited Roman villa that was used as a cemetery 
during the Medieval Ages. This may have given rise to the relation between this 
contamination and the organic matter on the site. However, none of our data directly 
support this identification, that is the phase where the phosphorous is fixed, or the 
mechanism of its formation (Buxeda, 1995a). 
 
 Finally, cobalt and tungsten, not considered in the previous discussion, are 
typical examples of alterations and contaminations produced in the laboratory. Here, 
the use of a tungsten carbide cell mill is the cause of these contaminations. If we 
recalculate the variation matrix including these two components, we obtain a value 
vt/τ.Co of 50.53%, where the contribution of the total variation to the logratio 
covariance matrix is as low as 50%. In the case of tungsten, the value vt/τ.W is 
significantly lower, 9.41%. These results were expected because cobalt is a minor 
element in the composition of the cell, while tungsten is a major one. Furthermore, it 
is important to notice that the lowest value in the column of W is τCo W, this reflects 
the relationship between both components in the composition of the cell and the 
parallel occurrence in this contamination (for a similar problem see Attas et al., 1984). 
 
The distribution function. 
 

The Abella case shows that the perturbing vector is a function of three wide 
groups of variables (Buxeda, 1995a): 
 

u=f(F,E,t), 
 
where F is the fabric (which includes the chemistry, the mineralogy, the structural 
characteristics, etc. for the individuals, and which is the result of the transformations 
during firing of the initial paste), E is the environment (i.e. any environment in which 
the ceramic was placed during use, burial, etc.; it includes chemistry, pH, temperature, 
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etc.), and t is time (the duration of the contact between the ceramic and a special 
environment with stable or changing conditions). In the present example, the variables 
‘association of crystalline phases obtained by XRD’ and ‘deposition context in the 
site’ operate as simply two very rough estimates of fabric and environment, 
respectively. 
 
 If the component used as divisor is always directly operated by the neutral 
element, the use of logratio transformed data retains the effect of the perturbations 
within the components directly perturbed. It also allows the original ratios (i.e. the 
original distances) to be recovered between those components of different individuals 
directly operated by the neutral element. With this procedure, we avoid the estimation 
of the values of the components of the perturbing vector u (Aitchinson, 1986), which 
in practice is almost impossible (Woronow & Love, 1990). This control over indirect 
operations is important in defining the reference group when estimating mean (16), 
variance (17) and covariance (18), because the effect of the perturbations is kept 
within the directly perturbed components. Therefore, when we define the distribution 
function, if this is a normal multivariate, as 
 

NS-1(µµµµ,ΣΣΣΣ), 
 
where we consider only the subcomposition of the S elements as always being directly 
operated by the neutral element, we recover the original distribution function for this 
subcomposition. 
 
Final implications: loss on ignition and tempering. 
 
 The data treatment derived from transformation (11) allows us to control a 
difficult problem, the loss on ignition (LOI) value. The LOI value incorporates several 
terms: the volatile elements (Cogswell et al., 1996) and, especially, certain elements 
such as hydrogen, oxygen and carbon that are usually not determined and that are 
related to the organic matter, the compositional water of primary phases and anions 
such as CO3

2-, which are present in the original paste. This process, which is not a 
perturbation operation as defined in this paper, can actually be modelled as a 
perturbation induced by firing temperature during the transformation process from 
paste to fabric. Therefore, the logratio transformation also allows us to control the 
effect of this paste-to-fabric change, and the diversification of compositions with the 
apparent dilution effect for the determined concentrations (Kilikoglou et al., 1988). 
 
 If we recalculate the variation matrix of Table 2, taking into consideration the 
LOI, we obtain a value vt/τ.LOI of 15.41%, and values clearly lower in column LOI for 
the variances τCaO LOI, τBa LOI and τSr LOI. These results were expected because the 
alterations and contaminations affecting the enrichment in calcium, barium and 
strontium are observed in the individuals classified in mineralogical categories C1 and 
C2, which correspond to the lowest firing temperatures. The means in raw data of the 
LOI  are (in %) GC 10.31 (± 2.08), GA 8.71 (± 2.41), GB 4.15 (± 1.08), and GE 3.21 
(± 1.63), which show the dramatic effect of the indirect operations induced by LOI. 
 
 This model can also be applied to tempering. The tempering problem has been 
extensively discussed in the literature as the dilution problem imposed by the decrease 
in concentrations for the determined elements when the temper is added (Neff et al., 
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1988; Neff et al., 1989; Beier & Mommsen, 1994). If we take the raw material as a 
compositional vector and the temper as a perturbing one, the addition of temper has 
two effects: 1) through the direct operation it changes the original concentrations of 
those components operated by values other than the neutral element (all values are 
uj>1, except uj=1 when the corresponding element is not present in the temper), and 2) 
through the indirect operation being divided by k (4), due to the constraining operator 
of compositional data, which affects all the components independently of the direct 
operation. For example, quartz temper affects trace element determinations through 
the indirect operation. Thus, it is clear that what has been called an inert diluent does 
not actually exist (Neff et al., 1989). What does exist, however, are cases in which the 
direct perturbation affects only undetermined components. In this sense, we can see 
that the logratio transformation can deal with the so-called dilution problem. 
 

As an example, if we repeat the cluster analysis in Figure 4, without including 
the components ln(P2O5/SiO2), ln(CaO/SiO2), ln(Na2O/SiO2), ln(K2O/SiO2), 
ln(Ba/SiO2) and ln(Sr/SiO2) in the subcomposition used, the present structure 
disappears. Individual 14, affected by the contamination in P2O5, is also placed 
amongst the other individuals. The lower ultrametric distances reflect large reduction 
in the variability. Also, some new differences are now apparent having previously 
been obscured by the perturbations dominating the data treatment, and in particular it 
appears that individuals 108 and 109 exhibit a quite distinct chemical composition. 
The most interesting point is that individual 87, a clear outlier in Figure 4, is now 
placed among all the individuals. This fact is important if we consider that this 
individual is the only one that presents a low calcareous clay (in normalised 
subcomposition the CaO is 2.99%). This result clearly shows that using the logratio 
transformation in the appropriate way we can avoid differences such as calcium 
content, which can be changed by the potter through the addition of temper, thus 
recovering the original values in raw materials. 
 
Conclusions. 
 
 The study of chemical data from Abella kiln material has allowed us to 
identify a high compositional variability, particularly for certain components. 
Comparing chemical and mineralogical data, as well as physical properties, has made 
the interpretation of the compositional variability, insofar as it is related to alteration 
and contamination processes, possible. These processes have affected the individuals 
differently, because of the fabric and the deposition context.  
 
 The advantages of using the logratio transformation rather than the centred 
logratio are clear theoreticallu, since the asymmetric transformation is more robust 
when facing the perturbations. The logratio transformation highlights the existence of 
compositional variability, perhaps imposed by perturbation operations, through the 
variances in the variation matrix. It also allows the indirect perturbation to be avoided, 
by dividing the data in (11) with a component that is not directly perturbed, as well as 
the direct perturbation by excluding the directly perturbed components in the data 
treatment. In this way, the unknown original distances and distribution functions are 
recovered for the subcomposition of the determined components which are not 
directly perturbed. 
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 Notwithstanding, if what we face is the need to explain mathematically the 
compositional variability of the chemical characterisation, this explanation implies 
certain assumptions that cannot be demonstrated in the mathematical solution itself. 
Thus, the explanation of the compositional variability requires the identification and 
interpretation as perturbation (including alteration and contamination processes, LOI, 
tempering and technology) or as polygenic provenance (Buxeda, 1995b). Furthermore, 
the interpretation and explanation of this compositional variability requires the use of 
data other than chemical, and also the concurrence of validation archaeological data. 
 

To achieve these objectives, the logratio transformation proposed by 
Aitchinson has been found to be the most appropriate, and it is robust enough to allow 
the use of all the determined components since initially they have equal value, which 
ought to be the only assumption allowed during the data treatment (Sneath & Sokal, 
1973). 
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 Terra Sigillata Moulds Gas extraction tubes Common pottery Total 

U2 (UE 2)    103-104 2 
F1 (UE 1)  19,21-22,24-25  57-59 8 
E (UE 1)    99-102 4 
Q2 (S UE 1)    76-79 4 
Q2 (UE 1) 3,5-6,8,17,30-31,39   80-87 16 
Q2 (UE 2) 1,4,7,9-12,16,33-36   88-98 23 
F2 (UE 1) 13,18,38,41-43   60-73 20 
F2 (UE 3)    74-75 2 
B (UE 1)    105 1 
B (UE 2)    106 1 
A (UE 2)    107-110 4 
A (UE 3)    111 1 
A (UE 4)    112-114 3 
L.R. Q2  14    1 
Unknown 15,32,44-50,52-56  26-29  18 
Total 41 5 4 58 108 
 
 
 

Table 1. Sampling undertaken at Abella, according to ceramic class and deposition 
context. L.R.: La Rectoria site. Unknown: unknown deposition context. 
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Abella   Fe2O3  Al2O3  MnO  P2O5  TiO2  MgO  CaO  Na2O  K2O  SiO2  Ba 
Fe2O3   0   0.001777   0.031249   0.096188   0.004312   0.015097   0.110873   0.269304   0.110053   0.006158   0.118946  
Al2O3   0.001777   0   0.037241   0.100605   0.005031   0.017245   0.104537   0.26623   0.109725   0.006608   0.126118  
MnO   0.031249   0.037241   0   0.084481   0.031609   0.046816   0.103647   0.361184   0.11794   0.025097   0.086605  
P2O5   0.096188   0.100605   0.084481   0   0.093163   0.120994   0.15318   0.367292   0.192029   0.084002   0.135132  
TiO2   0.004312   0.005031   0.031609   0.093163   0   0.020077   0.110393   0.279858   0.116992   0.004302   0.114014  
MgO   0.015097   0.017245   0.046816   0.120994   0.020077   0   0.111939   0.274693   0.127323   0.025395   0.138286  
CaO   0.110873   0.104537   0.103647   0.15318   0.110393   0.111939   0   0.36721   0.211734   0.092566   0.141542  
Na2O   0.269304   0.26623   0.361184   0.367292   0.279858   0.274693   0.36721   0   0.590159   0.284622   0.547182  
K2O   0.110053   0.109725   0.11794   0.192029   0.116992   0.127323   0.211734   0.590159   0   0.107394   0.191148  
SiO2   0.006158   0.006608   0.025097   0.084002   0.004302   0.025395   0.092566   0.284622   0.107394   0   0.099738  
Ba   0.118946   0.126118   0.086605   0.135132   0.114014   0.138286   0.141542   0.547182   0.191148   0.099738   0  
Rb   0.030688   0.027162   0.074619   0.15225   0.03616   0.044282   0.163036   0.303896   0.082915   0.040146   0.199376  
Th   0.012658   0.010938   0.054612   0.110807   0.014986   0.030215   0.12442   0.259769   0.123354   0.018837   0.143876  
Nb   0.012109   0.010124   0.040384   0.09928   0.011124   0.022892   0.097619   0.26278   0.121254   0.010451   0.121095  
Zr   0.020827   0.020675   0.043916   0.094083   0.014245   0.04532   0.108013   0.263974   0.141494   0.010596   0.12384  
Y   0.008685   0.008969   0.028505   0.083674   0.009866   0.026737   0.090793   0.283442   0.100248   0.004799   0.100921  
Sr   0.260301   0.26399   0.218733   0.268219   0.258756   0.259267   0.141794   0.618825   0.322636   0.230112   0.130223  
Ce   0.007119   0.006499   0.036125   0.088166   0.007728   0.027889   0.110547   0.27296   0.113019   0.007053   0.11712  
Ga   0.008933   0.006156   0.049549   0.129313   0.013913   0.019902   0.134403   0.268649   0.106185   0.018263   0.165892  
V   0.020527   0.019024   0.063515   0.142524   0.028348   0.039461   0.172505   0.289321   0.120946   0.031511   0.173336  
Zn   0.023496   0.0254   0.052316   0.128366   0.030485   0.030094   0.147351   0.289227   0.114778   0.034226   0.168937  
Ni   0.003795   0.001687   0.039472   0.1073   0.007621   0.018088   0.102779   0.269974   0.110522   0.009091   0.128255  
 
t.i   1.173099   1.175741   1.627614   2.831046   1.212981   1.462012   2.90088   6.990552   3.331852   1.150966   3.271582  
vt/t.i   0.918192   0.916128   0.661784   0.380471   0.888002   0.736745   0.371311   0.154084   0.323283   0.935848   0.329238  
r v,t.   0.991806   0.989418   0.968463   0.957692   0.995791   0.9897   0.798091   0.90853   0.944167   0.999027   0.727872  
 
 
    Rb  Th  Nb  Zr  Y  Sr  Ce  Ga  V  Zn  Ni 
Fe2O3   0.030688   0.012658   0.012109   0.020827   0.008685   0.260301   0.007119   0.008933   0.020527   0.023496   0.003795  
Al2O3   0.027162   0.010938   0.010124   0.020675   0.008969   0.26399   0.006499   0.006156   0.019024   0.0254   0.001687  
MnO   0.074619   0.054612   0.040384   0.043916   0.028505   0.218733   0.036125   0.049549   0.063515   0.052316   0.039472  
P2O5   0.15225   0.110807   0.09928   0.094083   0.083674   0.268219   0.088166   0.129313   0.142524   0.128366   0.1073  
TiO2   0.03616   0.014986   0.011124   0.014245   0.009866   0.258756   0.007728   0.013913   0.028348   0.030485   0.007621  
MgO   0.044282   0.030215   0.022892   0.04532   0.026737   0.259267   0.027889   0.019902   0.039461   0.030094   0.018088  
CaO   0.163036   0.12442   0.097619   0.108013   0.090793   0.141794   0.110547   0.134403   0.172505   0.147351   0.102779  
Na2O   0.303896   0.259769   0.26278   0.263974   0.283442   0.618825   0.27296   0.268649   0.289321   0.289227   0.269974  
K2O   0.082915   0.123354   0.121254   0.141494   0.100248   0.322636   0.113019   0.106185   0.120946   0.114778   0.110522  
SiO2   0.040146   0.018837   0.010451   0.010596   0.004799   0.230112   0.007053   0.018263   0.031511   0.034226   0.009091  
Ba   0.199376   0.143876   0.121095   0.12384   0.100921   0.130223   0.11712   0.165892   0.173336   0.168937   0.128255  
Rb   0   0.034246   0.038567   0.058399   0.042275   0.351945   0.034814   0.017424   0.033881   0.039155   0.029029  
Th   0.034246   0   0.018625   0.028486   0.018618   0.287623   0.013528   0.016522   0.035417   0.037933   0.014477  
Nb   0.038567   0.018625   0   0.016773   0.012399   0.246847   0.012527   0.018861   0.03694   0.038627   0.010766  
Zr   0.058399   0.028486   0.016773   0   0.013085   0.274872   0.015733   0.035152   0.05048   0.053652   0.022668  
Y   0.042275   0.018618   0.012399   0.013085   0   0.230144   0.008944   0.019886   0.034345   0.033292   0.0102  
Sr   0.351945   0.287623   0.246847   0.274872   0.230144   0   0.258924   0.316327   0.346695   0.329734   0.260841  
Ce   0.034814   0.013528   0.012527   0.015733   0.008944   0.258924   0   0.016072   0.029205   0.033955   0.00861  
Ga   0.017424   0.016522   0.018861   0.035152   0.019886   0.316327   0.016072   0   0.013294   0.022282   0.006949  
V   0.033881   0.035417   0.03694   0.05048   0.034345   0.346695   0.029205   0.013294   0   0.031463   0.018448  
Zn   0.039155   0.037933   0.038627   0.053652   0.033292   0.329734   0.033955   0.022282   0.031463   0   0.025609  
Ni   0.029029   0.014477   0.010766   0.022668   0.0102   0.260841   0.00861   0.006949   0.018448   0.025609   0  
 
t.i   1.834265   1.409945   1.260044   1.456282   1.169827   5.876807   1.226536   1.403927   1.731186   1.690377   1.206183  
vt/t.i   0.587227   0.763952   0.854835   0.739644   0.92076   0.183285   0.878188   0.767226   0.622192   0.637213   0.893007  
r v,t.   0.947039   0.978674   0.994628   0.98701   0.998922   0.606868   0.994236   0.960733   0.957708   0.968623   0.989902  
 
St.i   47.3937  
 
vt   1.07713  
 
 

Table 2. Compositional variation matrix from Abella. In each column i (i=1,...,S) are 
the variances after a logratio transformation using the component xi as divisor. 
vt=total variation. τ.i=total sum of variances in column i. vt/τ.i=percentage of variance 
in the logratio covariance matrix using the component xi as divisor due to the total 
variation. rv,τ.=correlation between the values τij (i≠j) and the corresponding values τ.j 
(j=1,...,i-1,i+1,...,S). Στ.i=sum of the τ.i values. 
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 GA (n=35) GB (n=23) GC (n=8) GD (n=3) GE (n=13) 

Ln(Fe2O3/SiO2) -2.0918   ±0.0316 -2.0028   ±0.0338 -2.0227   ±0.0208 -2.1327   ±0.0079 -1.9981   ±0.0512 
Ln(Al2O3/SiO2) -0.9677   ±0.0519 -0.8665   ±0.0304 -0.9065   ±0.0108 -1.0791   ±0.0167 -0.8590   ±0.0411 
Ln(MnO/SiO2) -6.3676   ±0.0896 -6.4723   ±0.0903 -6.1586   ±0.1651 -6.3574   ±0.0713 -6.4462   ±0.1121 
Ln(P2O5/SiO2) -5.5165   ±0.1078 -5.5990   ±0.0979 -5.5658   ±0.0938 -5.5793   ±0.0351 -5.6899   ±0.0927 
Ln(TiO2/SiO2) -4.2993   ±0.0390 -4.2332   ±0.0583 -4.2816   ±0.0322 -4.2889   ±0.0817 -4.2261   ±0.0658 
Ln(MgO/SiO2) -2.8025   ±0.0798 -2.7143   ±0.0601 -2.8811   ±0.0679 -2.9800   ±0.0810 -2.6552   ±0.0394 
Ln(CaO/SiO2) -0.8210   ±0.1518 -1.1846   ±0.1349 -1.1255   ±0.1498 -0.9154   ±0.0295 -1.0277   ±0.1453 
Ln(Na2O/SiO2) -4.9234   ±0.2587 -4.8612   ±0.1999 -5.2303   ±0.1769 -4.4443   ±0.0982 -3.7066   ±0.4156 
Ln(K2O/SiO2) -2.5774   ±0.1183 -2.4616   ±0.0664 -2.4001   ±0.0229 -2.6678   ±0.0159 -2.9313   ±0.5107 
Ln(Ba/SiO2) -6.0893   ±0.1657 -6.5900   ±0.1070 -6.2902   ±0.0713 -6.4899   ±0.1333 -6.7175   ±0.1858 
Ln(Rb/SiO2) -8.0803   ±0.1114 -7.8372   ±0.0680 -7.9144   ±0.0484 -8.1880   ±0.0116 -7.7426   ±0.1853 
Ln(Th/SiO2) -10.429   ±0.1258 -10.312   ±0.0763 -10.389   ±0.0969 -10.461   ±0.0950 -10.306   ±0.0844 
Ln(Nb/SiO2) -10.170   ±0.1042 -10.139   ±0.0641 -10.239   ±0.0748 -10.314   ±0.0831 -10.070   ±0.1559 
Ln(Zr/SiO2) -8.3199   ±0.0867 -8.3414   ±0.0361 -8.3875   ±0.0323 -8.2271   ±0.0362 -8.2819   ±0.0535 
Ln(Y/SiO2) -9.8011   ±0.0827 -9.8008   ±0.0452 -9.7980   ±0.0351 -9.7524   ±0.0232 -9.8249   ±0.0434 
Ln(Sr/SiO2) -6.0136   ±0.2467 -6.9041   ±0.1116 -6.7826   ±0.0921 -6.5811   ±0.0752 -6.8927   ±0.1841 
Ln(Ce/SiO2) -8.8812   ±0.0833 -8.8096   ±0.0584 -8.8288   ±0.0755 -8.9021   ±0.1116 -8.8322   ±0.0677 
Ln(Ga/SiO2) -10.076   ±0.0718 -9.8578   ±0.0492 -9.8856   ±0.0521 -10.145   ±0.0343 -9.8324   ±0.1001 
Ln(V/SiO2) -8.5207   ±0.0982 -8.2844   ±0.1162 -8.1445   ±0.1088 -8.7168   ±0.0403 -8.2842   ±0.1131 
Ln(Zn/SiO2) -8.4279   ±0.0799 -8.2288   ±0.0727 -8.1844   ±0.1483 -8.4230   ±0.0299 -8.2104   ±0.1269 
Ln(Ni/SiO2) -9.2569   ±0.0909 -9.1576   ±0.0400 -9.1872   ±0.0363 -9.4142   ±0.0324 -9.1526   ±0.0564 
 
 
 
 

Table 3. Means and one standard deviation for the 5 defined groups, for the logratio 
data transformed SiO2 as divisor. 
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 GA (n=35) GB (n=23) GC (n=8) GD (n=3) GE (n=13) 

Fe2O3 % 5.83      ±0.17 6.60      ±0.28 6.49      ±0.26 5.88      ±0.02 6.47      ±0.38 
Al2O3 % 17.95     ±0.47 20.54     ±0.71 19.80     ±0.55 16.87     ±0.15 20.19     ±0.98 
MnO % 0.08      ±0.008 0.08      ±0.007 0.10      ±0.019 0.09      ±0.006 0.08      ±0.008 
P2O5 % 0.19      ±0.02 0.18      ±0.02 0.19      ±0.02 0.19      ±0.01 0.16      ±0.01 
TiO2 % 0.64      ±0.03 0.71      ±0.05 0.68      ±0.03 0.68      ±0.05 0.70      ±0.05 
MgO % 2.87      ±0.23 3.24      ±0.17 2.75      ±0.18 2.53      ±0.20 3.35      ±0.13 
CaO % 20.90     ±2.34 15.04     ±1.84 16.02     ±2.02 19.88     ±0.45 17.17     ±2.29 
Na2O % 0.35      ±0.08 0.38      ±0.08 0.26      ±0.04 0.58      ±0.05 1.27      ±0.54 
K2O % 3.61      ±0.43 4.18      ±0.31 4.45      ±0.17 3.44      ±0.08 2.81      ±1.13 
SiO2 % 47.26     ±1.96 48.85     ±0.83 49.02     ±1.03 49.64     ±0.44 47.62     ±0.91 
Ba ppm 1089      ±209 675       ±73 912       ±77 758       ±102 587       ±137 
Rb ppm 147       ±17 193       ±13 179       ±9 138       ±1 210       ±35 
Th ppm 14        ±2 16        ±1 15        ±2 14        ±1 16        ±1 
Nb ppm 18        ±2 19        ±1 17        ±2 17        ±1 20        ±3 
Zr ppm 115       ±9 116       ±4 112       ±5 133       ±3 121       ±5 
Y ppm 26        ±2 27        ±1 27        ±1 29        ±6 26        ±1 
Sr ppm 1187      ±295 493       ±51 557       ±48 690       ±57 490       ±89 
Ce ppm 66        ±5 73        ±4 72        ±6 68        ±8 69        ±4 
Ga ppm 20        ±1 26        ±1 25        ±1 19        ±1 26        ±2 
V ppm 95        ±9 124       ±15 143       ±15 81        ±4 121       ±14 
Zn ppm 104       ±9 131       ±10 138       ±21 109       ±3 130       ±16 
Ni ppm 45        ±3 52        ±2 50        ±2 40        ±1 50        ±3 
 
 
 

Table 4. Means and one standard deviation for the 5 defined groups, for normalised 
subcompositions. 
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          C1 (n=12)           C2 (n=43)          C3 (n=22)          C4 (n=12) 
 C A B E ou C A B E ou C A B E ou C A B E ou 
Kilns 4       2  4   12      6  
E/Q2  3   3  31   3  1 3      1  
Unknown 2     2    1   6      5  

 
 

Table 5. Number of individuals in each category of association of crystalline phases 
by XRD (C1, C2, C3 and C4), according to the chemical group in which they were 
classified (C for GC, A for GA, B for GB and E for GE; ou=outlier) and to the 
deposition context (kilns, sectors E/Q2 or unknown). 
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Figure 1. Area where the workshop of Abella was found. The surveyed areas are 
labelled. The kilns were found in the areas U2, F1, F2 and B. 
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Figure 2. From top to bottom, histograms of the values ln(Na2O/SiO2), ln(K2O/SiO2) 
and ln(Sr/SiO2), showing major asymmetries. Each square corresponds to one 
individual. 
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Figure 3. Bivariate graphics with the values τ.j on the x axis and the values τji on the y 
axis (j=1,...,i-1,i+1,...,S). Left-hand side ith=xSiO2, right-hand side ith=xSr. 
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Figure 4. 
Dendrogram 
resulting from 
the cluster 
analysis using 
the squared 
mean Euclidean 
distance and the 
centroid 
agglomerative 
algorithm on 
the 
subcomposition 
Fe2O3, Al2O3, 
MnO, P2O5, 
TiO2, MgO, 
CaO, Na2O, 
K2O, SiO2, Ba, 
Rb, Zr, Sr and 
V, using SiO2 
as divisor in the 
logratio 
transformation. 
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Figure 5. Typical XRD patterns for the four categories of association of crystalline 
phases as detected by XRD. From top to bottom: C1 (represented by individual 25 in 
its as-received-state (ASR)), C2 (represented by individual 36 ARS), C3 (represented 
by individual 18 ARS), and C4 (represented by individual 13 ARS). Q: quartz; I-M: 
illite-muscovite; H: hematite; KF: potassium-feldspars; C: calcite; G: gehlenite; D: 
pyroxenes; P: plagioclase; L: leucite; An: analcime. Area of spectra: from 5 to 45°2Θ. 
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Figure 6. High temperature XRD experiment conducted on individual 25. 
Diffractograms were taken at room temperature (RT), 600, 700, 750, 800, 850, 900, 
950, 1000, 1050 and 1100º C. Q: quartz; I-M: illite-muscovite; H: hematite; KF: 
potassium-feldspars; C: calcite; CaO: lime; G: gehlenite; D: pyroxenes; P: 
plagioclase; L: leucite. 
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Figure 7. Bivariate graphics with a two-way classification on x axis corresponding to 
the categories of association of crystalline phases by XRD and the deposition contexts 
(K: kilns; Un: unknown). From top to bottom, on y axis, ln(CaO/SiO2), ln(Ba/SiO2) 
and ln(Sr/SiO2).  
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Figure 8. Bivariate graphics with a two-way classification on x axis corresponding to 
the categories of association of crystalline phases by XRD and the deposition contexts 
(K: kilns; Un: unknown). Top and middle, on y axis, ln(K2O/SiO2) and 
ln(Na2O/SiO2). Bottom: bivariate graphic analcime-ln(Na2O/SiO2). 
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