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�Z. Gačević,1,a) S. Fernández-Garrido,1,b) J. M. Rebled,2,c) S. Estradé,2,3 F. Peiró,2 and
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We report on properties of high quality �60 nm thick InAlN layers nearly in-plane lattice-matched to

GaN, grown on c-plane GaN-on-sapphire templates by plasma-assisted molecular beam epitaxy.

Excellent crystalline quality and low surface roughness are confirmed by X-ray diffraction,

transmission electron microscopy, and atomic force microscopy. High annular dark field observations

reveal a periodic in-plane indium content variation (8 nm period), whereas optical measurements

evidence certain residual absorption below the band-gap. The indium fluctuation is estimated to be

6 1.2% around the nominal 17% indium content via plasmon energy oscillations assessed by

electron energy loss spectroscopy with sub-nanometric spatial resolution. VC 2011 American Institute
of Physics. [doi:10.1063/1.3614434]

The III-nitrides combine unique properties, such as

direct band gap, tuneable from near infra-red (0.7 eV, InN)

to near ultra-violet (6.2 eV, AlN) range, with high excitonic

binding energy. This makes them attractive materials for

research and perfect candidates for high efficiency light emit-

ters.1 Their huge potential, however, has been significantly

constrained by the high in-plane lattice mismatch between

the three binaries (InN, GaN, and AlN) that inevitably leads

to defect formation at heterostructures’ interfaces, affecting

detrimentally their (opto)electronic properties. The InAlN

ternary compound, with approximately 17% of indium,

grows in-plane lattice-matched (LM) to GaN, offering thus

potential for strain-free heterostructures that could revolu-

tionize several fields, such as high electron mobility transis-

tors (HEMTs), near infra-red devices based on intersubband

transitions as well as resonant cavity based optoelectronic

devices. Due to high miscibility gap between InN and AlN

binaries, early theoretical calculations based on strictly regu-

lar solution model predicted high mixing instability and

strong spinodal decomposition of InAlN material.2 Despite

the expectations, high quality InAlN based devices, grown

mainly by metal organic vapor phase epitaxy (MOVPE),

have been demonstrated.3–6 Reports concerning molecular

beam epitaxy (MBE) growth are very scarce and have been

mainly focused on HEMTs.7–14

Difficulties to fabricate high quality LM InAlN/GaN

heterostructures concern the following issues: high crystal-

line quality and good homogeneity of InAlN layers as well

as flat and abrupt heterostructure interfaces. In general, MBE

growth technique facilitates the formation of exceptionally

flat and abrupt interfaces and, thus, offers potential for

further improvements. In this work, we give valuable insight

into properties of high quality InAlN layers grown by MBE,

relevant for the fabrication of LM InAlN/GaN distributed

Bragg reflectors (DBRs) and other devices based on strain-

free heterostructures.

The samples under study were grown in a RIBER Com-

pact 21 MBE system equipped with a radio-frequency

plasma nitrogen source and standard Knudsen cells for Ga,

Al, and In. Approximately 4 lm thick GaN templates, grown

on c-plane sapphire by MOVPE were used as substrates. Pre-

vious to InAlN growth, a �100 nm thick GaN buffer layer

was grown under intermediate Ga-rich conditions to bury

possible impurities and to provide a flat surface.15 InAlN

layers were grown at 535 �C on the boundary between

In-droplets and N-rich growth regimes (i.e., under effective

III-N stoichiometry), yielding layers free of droplets with

typically 17% 6 2% indium content.12,14 Growth times were

set to 20 6 2 min, which resulted in layers 50-60 nm thick.

Let us note that these values correspond to the thickness of

one InAlN semi-period, inserted into a DBR targeted for

blue/green applications, respectively.13,14

The crystal quality of the samples was assessed by

X-ray diffraction (XRD) scans and reciprocal space maps

around the [0002] and [10�15] Bragg reflections using an

X’Pert PRO PANalytical diffractometer. Figure 1(a) shows

the x/2h and x-rocking scans around [0002] Bragg reflection

of a 58 nm thick In0.17Al0.83N layer. Only peaks correspond-

ing to the InAlN epilayer, GaN template, and sapphire (omit-

ted here for clarity) are observed, showing thus no trace of

InN-AlN phase separation. The full width at half maximum

(FWHM) of the x-rocking curves of the InAlN epilayers and

the GaN templates are found to be equal �0.1�/0.1�, around

both the symmetric [0002] and the asymmetric [10�15] reflec-

tions, suggesting that the crystal quality of the InAlN layer

may be limited by that of the underneath GaN template. In

addition, the same value of 0.1� around the symmetric

[0002] reflection has been reported for �500 nm thick
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MOVPE InAlN layers grown on a GaN template.16

Reciprocal space mapping (RSM) around the asymmetric

[10�15] reflection (Figure 1(b)) confirms that all the samples

(with 17% 6 2% indium content) have grown with the

in-plane lattice constant accommodated to the underneath

GaN substrate. The in-plane strain in the accommodated

layers is found to be within 6 4 � 10�3 range, as estimated

by the linear III-nitride elasticity theory.

Figure 2 (left) features typical InAlN surface morphol-

ogy, as measured by tapping-mode Digital Instruments

MMAFM-2 atomic force microscopy (AFM). Flat surface

with atomic steps is observed, with root mean square (RMS)

surface roughness of �0.6 nm, over 2.5 � 2.5 lm2 scan area.

This value is only slightly higher than the typical �0.4 nm

RMS roughness of the underneath GaN template and similar

to �0.7 nm value, reported for �100 nm thick InAlN layers

grown by MOVPE.16

High-resolution transmission electron microscopy

(HRTEM) examinations, performed in a JEOL J2010F

(S)TEM operating at 200 keV and coupled with a Gatan Imag-

ing Filter spectrometer, confirmed that InAlN crystallizes in

hexagonal wurtzite phase (Fig. 3(a)). No cubic inclusions

were observed. In addition, no crystallographic defects forma-

tion was found in the layer. The fast Fourier transformation

(FFT) of the HRTEM image of the InAlN/GaN interface (Fig.

3(b)) confirms that InAlN layer grows in-plane accommodated

to the GaN substrate, with the expected epitaxial relationship

(0001)[11-20]InAlNjj(0001)[11-20]GaN. High angle annular

dark field (HAADF) observations (Fig. 3(c)) revealed periodic

contrast modulations with �8 nm period. This contrast modu-

lation is attributed to indium content fluctuation that originates

from spinodal decomposition of the material. To further inves-

tigate this point, the samples were characterized by electron

energy loss spectroscopy (EELS). This technique allows for

Plasmon energy monitoring with exceptionally high spatial re-

solution (Fig. 3(d)). The Plasmon peak energy is found to

oscillate around 20.32 eV, with �0.12 eV peak-to-valley am-

plitude. Bearing in mind that InN and AlN plasmon energies

are 15.7 and 21.1 eV, respectively,17,18 the indium content

fluctuation can be roughly estimated within linear Vegard law

approximation: dEpðInxAl1�xNÞ=dx ¼ EpðInNÞ � EpðAlNÞ,
yielding 6 1.2% value.

Let us recall that the InAlN/GaN combination exhibits

relatively low refractive index contrast (� 7.2%)16 that in the

case of DBRs provokes significant penetration depth of the

incident light into the structure, making it very sensitive to

the presence of residual absorption which is detrimental for

reflectivity.14 To gain some insight into optical properties,

the samples have been characterized by a JASCO V-650

spectrophotometer. The residual absorption (A) was assessed

indirectly, via reflectivity (R) and transmitivity (T) measure-

ments, (AðkÞ ¼ 1� RðkÞ � TðkÞ), performed at nearly nor-

mal incidence. Fig. 4 features absorption of a �60 nm thick

In0.17Al0.83N on GaN template and a reference GaN tem-

plate. The onset of GaN band gap absorption around 3.4 eV

screens the onset of InAlN band gap absorption, since it is

expected at much higher energies (> 4 eV).16 However, re-

sidual absorption, as high as 2% and 5% in the green and

blue spectral regions, respectively, is confirmed and attrib-

uted to InAlN epilayer. Bearing in mind the excellent crys-

talline quality (confirmed by XRD and TEM techniques) as

well as absence of regions with exceptionally high In content

(confirmed by EELS measurements), this result is somewhat

surprising and we link it to incident photon scattering on

InAlN inhomogeneities. In spectrophotometric measure-

ments, InAlN/GaN bi-layer is sandwiched between air and

sapphire. We speculate that incident photons scattered on

InAlN inhomogeneities at low angle with respect to the

FIG. 1. (Color online) (a) x/2h and x-rocking scans around [0002] Bragg

spot of a single In0.17Al0.83N layer. The scans are characterized by no trace

of phase separation and good FWHM of InAlN x-rocking curves. (b) RSM

of a single In0.15Al0.85N layer around [10�15] Bragg spot confirms in-plane
lattice accommodation to the underneath GaN pseudo-substrate.

FIG. 2. (Color online) 2.5 � 2.5 lm2 AFM images of the typical InAlN

(left) and GaN (right) surface morphology.

FIG. 3. (Color online) HRTEM image (a) and the corresponding FFT power

spectrum (b) of the InAlN/GaN interface confirm excellent crystalline qual-

ity and perfect lattice-matching of the InAlN to the underneath GaN.

HAADF image (c) reveals indium content fluctuations further confirmed by

high-resolution EELS studies (d) of InAlN Plasmon peak energy.
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interfaces remain captured inside the InAlN/GaN bi-layer

due to total reflection on high refractive index contrast inter-

faces: InAlN/air (� 2.32/1.0) and GaN/sapphire (� 2.5/1.78),

until they are absorbed by defects in the material.

In summary, we demonstrate the MBE growth of flat

InAlN layers LM to GaN with exceptionally high crystalline

quality. The fluctuation in indium content, attributed to spino-

dal decomposition, is estimated to be within the 17.0%6 1.2%

range and has been linked to the presence of residual absorp-

tion in the green/blue spectral range. We point out that surface

roughness, defect formation, and overall crystalline quality of

MBE grown InAlN layers seem to be mastered. However,

according to our evidence, their high homogeneity still remains

a challenge, being thus the last obstacle to surmount before

their exploitations in MBE grown III-nitride devices.
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FIG. 4. (Color online) Absorption measurements of a �60 nm thick

In0.17Al0.83N on GaN template. Absorption of reference GaN template is also

featured for comparison.
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