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Abstract. Majolica pottery was the most characteristic tableware produced in Spain during the Medieval 

and Renaissance periods. A study of the three main production centers in the historical region of Aragon 

during Middle Ages and Renaissance was conducted on a set of 71 samples. The samples were analyzed by 

instrumental neutron activation analysis (INAA), and the resulting data were interpreted using an array of 

multivariate statistical procedures. Our results show a clear discrimination among different production 

centers allowing a reliable provenance attribution of ceramic sherds from the Aragonese workshops. 

 

Majolica, Neutron Activation Analysis (NAA), Provenance, Multivariate Statistics, Spain 
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Tin-lead glazed pottery, also known as Majolica, is an earthenware pottery characterized by a creamy light-

buff colored ceramic body and an opaque white tin-lead glaze covering the entire outer surface of the 

vessel. The most characteristic feature of majolica pottery lies in the metallic-oxide decorations that are 

applied on top of the opaque white glaze coat. The opaque white glaze is composed of sand (e.g., quartz) 

and lead, which serves as a flux to decrease the temperature needed for melting SiO2. The glaze is opacified 

with particles of tin oxide (SnO2) and also by the action of extant quartz and feldspar inclusions. These 

inclusions, and the bubbles that result from the firing process, absorb, scatter, and/or reflect incident light, 

thereby giving the transparent glaze a white appearance. Due to this opacity, decoration is normally applied 

to the outer surfaces of the glaze coat [1, 2]. 

 

The antecedents of majolica are found in the early glazed proto-earthenware ceramics of the Middle East, 

probably in ninth century AD Iraq, although opacified glazed pottery making traditions existed in 

Mesopotamia as early as the fifth century BC [3, 4]. The technological knowledge of those original 

productions, which are likely coarse imitations of Chinese porcelain, was transferred to the Iberian 

Peninsula by Arabians. From there, majolica technology became widespread throughout the entire Iberian 

Peninsula during the Middle Ages, even in the New Christian kingdoms and principalities of the North and 

Northeast. Although an earlier tin-lead glazed earthenware existed, primarily in the Islamic Al-Andalus, the 

thirteenth century generally is considered the starting point for majolica production in the Iberian Peninsula 

[5]. Majolica pottery from the Late Medieval Age usually was decorated with black and green motifs over a 

white background, and this is the most common decoration used by Teruel’s craftsmen in their majolica 

productions at that time, called also Mudejar style. Interestingly, majolica production in Teruel became one 

of the city’s main activity, accordingly to historical documentation and archaeological remains [2, 6]. 

Furthermore, majolica from Teruel achieved a high degree of quality during fourteenth century, being an 
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important product in the Aragon Kingdom markets, positioned in the eastern part of the Iberian Peninsula 

[7].  

 

By the sixteenth century, Spanish majolica production flourished as Italian-influenced decorative styles 

diffused into the Iberian Peninsula. Aragonese majolica also was influenced by the new Italian-influenced 

decorative trends and styles. Consequently, black and especially green motifs—colors associated with 

Islamic ceramic traditions—were progressively replaced by blue patterns, sometimes mixed with other 

colors, such as yellow. In contrast, however, Aragonese pottery producers combined traditional Mudejar 

motifs, with the new Renaissance influences. This fusion of decorative elements resulted in a distinctive 

ceramic product. From the sixteenth century until the end of the eighteenth century, the town of Muel and 

Villafeliche afterwards, became the main production centers in the region of Aragon along with Teruel. 

Although lusterware production was very important during fifteenth and sixteenth centuries in Muel, 

majolica decorated with blue on white motifs made in Muel and Villafeliche achieved a relevant impact on 

Renaissance Spain [8].  

 

In this paper, we summarize the results from compositional analysis of 71 majolica sherds obtained from 

the three primary production centers located in the Aragon region of present-day Central Spain: Teruel, 

Muel, and Villafeliche (Figure 1). Ceramics produced at these sites achieved a high importance during the 

Middle Ages and the Renaissance in the former Aragon Kingdom (Table 1).  

 

Our goal is to obtain a more precise understanding of majolica pottery produced in Aragon. By identifying 

compositional reference groups for majolica production within the Aragon, we aspire to identify the 

provenance of majolica that was traded from these sites to outside areas, such as the Valencian, Basque 

Country, and Catalan markets.  
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Although many works have sought to deepen the knowledge, description, and understanding of Medieval 

and Renaissance Aragonese ceramic productions, most research has been undertaken by art historians or 

traditional archaeologists. Scientific studies based on the material components of the ceramics themselves 

are relatively scarce but include thin section petrography [9] and chemical characterization of the paste and 

glazes [2, 10-16]. Consequently, the present knowledge about tin-lead glazed pottery from Aragon 

workshops remains uneven and limited. 

 

EXPERIMENTAL 

 

All of the specimens were sampled from extant museum collections of the Museu de la Ceràmica in 

Barcelona. (For a more detailed description, pictures and drawings, see [2] –available online at 

http://www.tesisenxarxa.net/TDX-0205107-115739/). Our sampling strategy was strictly focused on kiln-

related materials to maximize the probability that the materials included in this study were a product of 

their respective workshops and production centers. For consistency, we focused on ceramics from 

archaeologically and historically-documented majolica kiln dumps.  

 

In the present study, 10 g of each collected sample was powdered using a Spex Mixer (mod. 8000) tungsten 

carbide cell for 12 min. Prior to grinding, glazes and exterior surfaces were mechanically removed by 

means of a tungsten carbide abrading tool, leaving only the inner part of the ceramic for analysis. This step 

served to minimize contamination of the ceramic matrix by glaze and soil. Powdered specimens were 

stored in polyethylene vials for transport to the laboratory.  
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Chemical analyses were conducted by neutron activation analysis (NAA) at the University of Missouri 

Research Reactor’s Archaeometry Laboratory (MURR). Prior to weighing, the powdered pottery samples 

were oven-dried at 100ºC for at least 24 h. Approximately 150 mg of sample was weighed in small 

polyvials used for short irradiations. At the same time, 200 mg of each sample was weighed into high-

purity quartz vials used for long irradiations. Along with the majolica samples, reference standards of 

SRM-1633a (coal fly) and SRM-688 (basalt rock) were prepared, as well as quality control samples of 

SRM-278 (obsidian rock) and Ohio Red Clay ([for analytical conditions see 17]).  

 

At MURR, INAA of pottery consists of two irradiations and a total of three gamma counts. Short 

irradiations involve a pair of samples being transported through a pneumatic tube system into the reactor 

core for a 5 s neutron irradiation using a thermal flux of 8x1013 n cm-2 s-1. After 25 min of decay, the 

samples are counted for 720 s using a high-resolution germanium detector. This count yields data for nine 

short-life elements: Al, Ba, Ca, Dy, K, Mn, Na, Ti, and V. For the long irradiation, bundles of 50 or 100 of 

the encapsulated quartz vials are irradiated for 24 h at a flux of 5x1013 n cm-2 s-1. Following the long 

irradiation, samples decay for seven days, and then are counted for 1800 s (known as “middle count”) on a 

high-resolution germanium detector coupled to an automatic sample changer. This middle count yields 

determination of seven medium half-life elements: As, La, Lu, Nd, Sm, U, and Yb. After additional two-

week decay, a second count for 9000 s is carried out on each sample. This final measurement allows 

quantification of 17 long-life elements: Ce, Co, Cr, Cs, Eu, Fe, Hf, Ni, Rb, Sb, Sc, Sr, Ta, Tb, Th, Zn and 

Zr [17].  

 

Statistical analysis of the data followed Aitchison’s approach and Buxeda’s observations on compositional 

data [18-21]. The statistical procedure consists of the use of ratios of base-10 logarithms of ratios obtained 

by dividing all the components, in this case the chemical elements, by the element that introduces the 
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lowest chemical variability to the entire set of specimens. The use of logarithms compensates for 

differences in magnitudes between major elements, such as Al and Fe, and trace elements, such as the 

lanthanide and rare earth elements (e.g. La, Ce, Sm, etc.). Additionally, log-transformed data can 

sometimes highlight possible perturbations in the chemical data as a result of diagenesis, contamination, or 

other alteration processes [20].  

 

Data were examined using an array of multivariate statistical procedures. The application of multivariate 

statistical techniques to NAA data facilitates identification of compositional groups. The similarity between 

specimens, and subsequently to their hypothetical provenance according to the provenance postulate [22], 

was examined using Principal Components Analysis (PCA), whereas Canonical Discriminant Analysis 

(CDA) was performed to assess the archaeological classifications and the chemical groups shown by PCA.  

 

Although sample preparation was conducted under great care to minimize the analytical error, the potential 

for contamination exists nonetheless and a conservative approach to data interpretation is warranted. For 

example, cobalt had to be removed from consideration during the statistical treatment because the tungsten 

carbide cell used to grind the samples exhibits traces of Co in its chemical composition (cobalt is a known 

binder in tungsten alloys). Additionally, Ni concentrations were below detection limits for many of the 

samples and subsequently were removed from consideration.  

 

Conversely, given that most of the specimens had also been previously analyzed by X-ray diffraction [2], it 

has been possible to observe that a relevant number of the analyzed majolica sherds from Muel and 

Villafeliche exhibited a double process of alteration and contamination (Table 3). This process occurs with 

the leaching of potassium and, sometimes, rubidium, from the matrix, with a subsequent enrichment of 

sodium because of analcime crystallization [2, 23, 24]. Because these alteration and contamination 
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processes affect those components in the matrix composition, without any possibility of calculating a 

satisfactory correction, Na, K, and Rb were removed from consideration during the statistical analysis. 

 

RESULTS AND DISCUSSION 

 

The variability of each chemical component was first taken into account in this study and assessed by 

calculating the variation matrix using the S-plus software [25], which provides information about those 

components that introduce higher variability to the data set. As has been pointed out by Buxeda [20], the 

variation matrix gives a measure of the variability in the covariance structure, i.e. the total variation (vt). 

Therefore, when the component i is used as divisor in the logratio transformation, since vt/τ.i is actually the 

trace of the logratio transformed covariance matrix (τ.i = tr(ΣΣΣΣi)), and this value is always higher than that of 

total variation, vt/τ.i can be considered the percentage of tr(ΣΣΣΣ) explained by the total variation in the logratio 

transformed covariance matrix. The subtraction 1-(vt/τ.i) being the variability imposed on ΣΣΣΣi by the 

component xi due to its special role in this asymmetric logratio transformation. The higher this value is, the 

higher is the variability that such component introduces in the covariance structure. Consequently, the 

elements As and Sb were removed due to their high variability (vt/τi < 0.35), which is presumably provided 

by possible contamination processes during burial, such is the case of As. In addition, Sb is known to be a 

contaminant of Sn, an important component of majolica glazes. Therefore, higher Sb concentrations are 

likely diffused into the clay matrix. As mentioned above, Rb, K, and Na were removed because they are 

involved in the previously cited alteration, consequently exhibiting high chemical variability too. In 

addition, Tb was also removed from consideration due to poor analytical precision. Following the exclusion 

of these elements, a base-10 logratio transformation was applied to the following subcomposition: La, Lu, 



9 

 

 

 

 

Nd, U, Yb, Ce, Cr, Cs, Eu, Fe, Hf, Sc, Sr, Ta, Th, Zn, Zr, Al, Ba, Ca, Dy, Mn, Ti and V, using Sm as 

divisor because it introduces the lowest variability to the data set (vt/τi = 0.997) (Table 2). 

 

The results are summarized in the Figures 2 and 3, and Table 3. An examination of a bivariate plot using as 

axis the two first principal components calculated using the latter subcomposition, and accounting for 75% 

of the variance, facilitated the identification of five discrete chemical reference groups from the primary 

production centers of Aragon: Villafeliche, Muel-1, Muel-2, Teruel-1 and Teruel-2 (Figure 2). A closer 

examination of the PCA results allows identifying two superstructures, clearly linked to the nature of the 

pastes used for making the ceramics. On one side, the chemical groups of Villafeliche, Muel 1 and Muel 2 

are placed, comprising those ceramics that exhibit buff pastes. Chemically, buff paste ceramics show 

relevant differences especially on their Ca amounts, twice higher than red pastes (Table 3). According to 

Molera et al. [26], Ca-rich ceramics fired in oxidizing conditions usually show creamy colors, which are 

related to the decomposition of calcite, a significant development of pyroxenes, and to the low presence of 

iron oxides. In addition, the Villafeliche chemical group also exhibits discriminating values on its Sr and U 

components, allowing a clear gap on the graphical representation between the different groups. On the 

other side, ceramics made of red pastes occur on the right side of the plot, loaded by Fe and Cs. Red pastes 

group comprises both chemical groups found among the productions of Teruel, which its productions are 

characterized by intense red pastes low in Ca (Table 3). Lastly, sample MJ0018 which is archaeologically 

linked to Teruel productions, is not clearly assigned to any of the previous groups. 

 

In order to assess the robustness of the groups identified by PCA, a Canonical Discriminant Analysis was 

performed over the following subcomposition: La, Lu, Nd, U, Yb, Ce, Cr, Cs, Eu, Fe, Hf, Sc, Sr, Ta, Th, 

Zn, Zr, Al, Ba, Ca, Dy, Mn, Ti and V, using Sm as divisor. Interpretation of the graphical scatter plot of the 

two first discriminant factors allows confirming the strength of the five groups proposed by PCA. 
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Furthermore, the same separation between buff pastes and red pastes is also evidenced by CDA. Finally, 

MJ0018 does not match any of the Aragonese reference groups, thus remaining as unassigned (Figure 3).  

 

Chemically, the Teruel subgroups exhibit subtle differences between themselves, such as higher amounts of 

Hf, Zr and Mn in sherds of Teruel 1, whereas Teruel 2 shows higher values of U, Cs, K and Ba. In addition, 

subgroups of Muel also exhibit little chemical differences. Whereas Muel 1 has slightly higher Cs, Fe, Al, 

Sc and Sr amounts, Muel 2 shows higher concentrations of Hf and, especially, Zr, which may be related to 

a richer sandy phase in their pastes (Table 3). These relatively slight chemical differences among groups 

from the same producing town might be related to different clay beds exploited by the potters, or even to 

different recipes or clay preparations according to different potting traditions by group of potters in each 

town. 

 

Finally, the provenance of sample MJ0018 remains ambiguous. Interestingly, the red color of the paste of 

this sample is not as intense as in the rest of the ceramics from Teruel, which could be related to a higher 

Ca content than the rest (9.3% against 6%) (Table 3). Additionally, the archaeological record of this 

ceramic suggests a production date of the eighteenth century, whereas the rest of the materials collected 

from Teruel were made in the fourteenth century. Therefore, it seems plausible that a technological change 

occurred during the Renaissance in Teruel, resulting in a different paste recipe or different clay sources 

used by eighteenth century Teruel’s potters, as proposed historically [7], which could be reflected in the 

chemical composition of the newer ceramics, slightly different than the fourteenth century productions. The 

reasons for these changes in pastes may respond to an intention of obtaining creamier or pinker paste colors 

for their ceramics. Using creamier pastes instead of reddish would had diminish the quantity of tin oxide 

and other components used for opacifying the glaze coating of the ceramics, thus saving important amounts 

of this historically expensive material.  
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CONCLUSIONS 

The present study provides evidences for a reliable characterization and further archaeometrical studies on 

Aragonese majolica. The study of a representative sample of majolica pottery from the three primary 

production centers from Aragon reveals a clear structure that allows the chemical differentiation of each 

majolica production center. Besides, two different compositional groups were identified in the centers of 

Teruel and Muel. These chemical differences within the same producing town might be related to different 

traditions of paste preparation or recipes, possibly corresponding to different groups of potters. Conversely, 

potters from Villafeliche seem to have used diachronically the same clay material or recipe for their tin-

lead glazed ceramics. Finally, this study proves that chemical compositions of the five identified 

productions of the three towns are very homogeneous. Consequently, for Medieval and Renaissance pre-

industrial tin-lead glazed pottery production, it should be considered that most of the clays and some other 

raw materials were provided by the potter’s guilds to their union members. Therefore, chemical groups can 

account for “several” workshops of the same city with just slight chemical differences. As a consequence, 

diversity of production among workshops in a given production centre may only be traced by their 

technological differences or similarities. 
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Figure 1.  Map of Eastern Iberian Peninsula showing sites discussed in the text and major 

physiographic features 
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Figure 2. Bivariate Biplot derived from PCA of the variance-covariance matrix of the 

Aragonese ceramics data. Ellipses represent 90% confidence level for membership in the 

groups 
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Figure 3. Bivariate Biplot derived from CDA of the Aragonese ceramics data. Ellipses 

represent 90% confidence level for membership in the groups 
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Sites Centuries Green & Black Blue on white Blue & Green Total
Teruel 14th 29 - - 29
Teruel 18th - 1 - 1
Muel 16 th -17 th - 16 10 26
Villafeliche 17th-18th

- 15 - 15
Total 30 31 10 71  

 

Table 1. Specimen classification according to their origin, main decorations, and 

chronology 
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V. Matrix As La Lu Nd Sm V. Matrix* As La Lu Nd Sm
τ.i 16.5932 1.6493 1.9289 1.6621 1.6033 τ.i - 0.717 0.930 0.752 0.693

vt/τ.i 0.0941 0.9465 0.8093 0.9392 0.9736 vt/τ.i - 0.942 0.726 0.898 0.974

r v,τ 0.6235 0.9991 0.9862 0.9977 0.9989 r v,τ - 0.998 0.940 0.992 0.997

U Yb Ce Cr Cs U Yb Ce Cr Cs
τ.i 5.2474 1.7431 1.6140 1.8942 6.6096 τ.i - 0.788 0.706 0.893 4.481

vt/τ.i 0.2975 0.8955 0.9672 0.8241 0.2362 vt/τ.i - 0.858 0.957 0.756 0.151

r v,τ 0.9015 0.9967 0.9989 0.9813 0.7604 r v,τ - 0.985 0.995 0.931 0.911

Eu Fe Hf Rb Sb Eu Fe Hf Rb Sb
τ.i 1.6070 1.9987 2.5327 3.1594 4.6838 τ.i 0.703 1.001 1.414 - -

vt/τ.i 0.9714 0.7810 0.6164 0.4941 0.3333 vt/τ.i 0.961 0.675 0.478 - -

r v,τ 0.9995 0.9550 0.9712 0.9201 0.8040 r v,τ 0.997 0.864 0.916 - -

Sc Sr Ta Tb Th Sc Sr Ta Tb Th
τ.i 1.7284 5.8008 1.9955 1.8197 1.6383 τ.i 0.776 3.929 0.983 - 0.710

vt/τ.i 0.9032 0.2691 0.7823 0.8579 0.9528 vt/τ.i 0.871 0.172 0.687 - 0.951

r v,τ 0.9887 0.8836 0.9669 0.9955 0.9969 r v,τ 0.961 0.723 0.879 - 0.996

Zn Zr Al Ba Ca Zn Zr Al Ba Ca
τ.i 2.1912 2.5809 2.0367 2.5531 3.9484 τ.i 1.154 1.441 1.005 1.465 2.590

vt/τ.i 0.7124 0.6048 0.7665 0.6114 0.3954 vt/τ.i 0.585 0.469 0.672 0.461 0.261

r v,τ 0.9901 0.9686 0.9593 0.9669 0.8632 r v,τ 0.959 0.884 0.857 0.848 0.605

Dy K Mn Na Ti Dy K Mn Na Ti
τ.i 1.7447 2.2896 3.7725 4.1444 1.8439 τ.i 0.800 - 2.507 - 0.880

vt/τ.i 0.8947 0.6818 0.4138 0.3767 0.8466 vt/τ.i 0.844 - 0.269 - 0.768

r v,τ 0.9937 0.9747 0.8517 0.9262 0.9979 r v,τ 0.977 - 0.922 - 0.992

V V
τ.i 2.1699 τ.i 1.107

vt/τ.i 0.7194 vt/τ.i 0.610

r v,τ 0.9764 r v,τ 0.912

vt 1.5610 vt 0.676  

 

Table 2. Compositional variation matrix from the majolica production centers from 
Aragon. In each column i (i = 1, ..., S) are the variances after a logratio transformation 
using the component xi as divisor, vt = total variation, τi = total sum of variances in 
column i, vt/τi =percentage of variance in the logratio covariance matrix using the 
component xi as divisor due to the total variation, rvτ=correlation between the values τij (i 
≠ j) and the corresponding values τi ( j = 1, ..., i −1, i +1, S). a: variation matrix calculated 
without using As, Sb, Tb, Rb, K, and Na 
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Elements Mean σ Mean σ Mean σ Mean σ Mean σ composition
As (ppm) 84.90 174.01 17.94 2.00 28.39 10.16 16.65 1.61 10.13 5.52 15.28

La (ppm) 39.79 3.22 39.13 1.53 39.99 0.99 37.98 0.85 40.03 3.37 40.93

Lu (ppm) 0.38 0.03 0.35 0.02 0.36 0.02 0.38 0.03 0.44 0.03 0.34

Nd (ppm) 33.69 3.17 34.20 1.38 34.87 1.67 32.29 1.72 32.22 2.31 35.63

Sm (ppm) 6.75 0.53 7.00 0.26 6.91 0.16 6.59 0.13 6.82 0.27 7.07

U (ppm) 2.74 0.34 3.31 0.54 3.34 0.36 3.40 0.35 6.86 1.33 3.32

Yb (ppm) 2.95 0.22 2.78 0.15 2.72 0.08 2.78 0.08 2.77 0.20 2.51

Ce (ppm) 75.17 6.24 78.60 3.21 80.11 1.93 78.18 3.35 80.90 2.48 84.42

Co (ppm) 37.23 47.92 18.74 2.37 20.52 1.46 19.77 1.86 19.91 2.81 18.64

Cr (ppm) 70.57 7.20 74.79 5.52 73.96 6.04 56.75 3.68 69.03 3.23 85.46

Cs (ppm) 13.11 0.95 18.47 1.21 8.03 0.40 6.53 0.29 7.29 0.66 9.11

Eu (ppm) 1.31 0.12 1.31 0.07 1.38 0.04 1.30 0.04 1.30 0.04 1.34

Fe (%) 3.59 0.27 3.89 0.30 3.76 0.33 2.98 0.08 2.93 0.14 4.19

Hf (ppm) 6.83 0.39 4.94 0.26 5.32 0.31 6.93 0.28 5.86 0.32 4.65

Ni (ppm) 38.28 28.60 23.61 26.32 42.47 13.45 37.57 12.19 45.97 15.71 0.00

Rb (ppm) 131.09 9.86 221.25 13.41 132.34 6.18 115.19 4.41 162.04 11.40 173.64

Rb (ppm)* - - - - - - 114.43 1.97 166.11 12.03 -

Sb (ppm) 2.66 0.16 1.67 0.09 3.53 0.11 3.40 0.18 2.29 0.71 1.75

Sc (ppm) 12.75 1.21 13.71 0.95 13.37 0.57 11.10 0.29 12.69 0.63 15.34

Sr (ppm) 250.19 36.06 257.40 50.79 370.55 43.35 312.93 32.66 636.81 43.15 383.28

Ta (ppm) 1.22 0.08 1.54 0.05 1.17 0.04 1.13 0.04 1.19 0.04 0.98

Tb (ppm) 0.91 0.10 0.92 0.09 0.85 0.05 0.89 0.07 0.84 0.06 0.82

Th (ppm) 12.21 0.89 13.41 0.38 13.27 0.31 12.40 0.32 13.65 0.50 15.26

Zn (ppm) 60.45 6.59 78.62 7.11 84.09 15.98 62.66 3.45 67.11 10.73 79.70

Zr (ppm) 165.66 15.93 125.31 18.55 145.41 21.94 170.69 12.74 163.81 14.35 118.16

Al (%) 7.57 0.58 9.52 0.52 7.89 0.29 6.51 0.20 7.43 0.46 9.99

Ba (ppm) 363.74 48.80 505.12 41.73 588.09 65.69 531.76 46.88 541.02 43.80 656.52

Ca (%) 6.32 0.67 6.88 0.90 11.24 0.55 10.69 0.29 11.96 0.70 9.30

Dy (ppm) 4.96 0.45 4.80 0.17 4.62 0.23 4.63 0.26 4.49 0.27 4.64

K (%) 2.22 0.25 3.38 0.16 2.65 0.24 2.50 0.18 2.79 0.23 3.48

K (%)* - - - - - - 2.59 0.17 2.88 0.19 -

Mn (ppm) 449.20 60.83 350.97 46.74 642.31 82.68 574.08 36.86 335.87 21.91 507.12

Na (%) 0.17 0.04 0.19 0.04 0.30 0.09 0.27 0.04 0.20 0.05 0.16

Na (%)* - - - - - - 0.25 0.04 0.18 0.03 -

Ti (%) 0.39 0.04 0.38 0.02 0.39 0.04 0.38 0.04 0.40 0.03 0.24

V (ppm) 88.61 9.02 88.33 7.65 92.44 10.25 66.26 5.89 78.75 6.62 111.10

Muel1 (n=11) Muel2 (n=15) Villafeliche (n=15)Teruel1 (n=15) Teruel2 (n=14)

 
 

Table 3. Mean and standard deviation (σ) of the different chemical groups characterized 

by INAA from 71 majolica sherds from the main production centers of Aragon. All 

values are expressed as ppm (µg/g) except those expressed as weight % in brackets. a: 

mean and standard deviation of Rb, K, and Na values of non-analcime altered ceramics 

 


