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Abstract

A number of statistical tests for detecting population growth are described. We compared the 

statistical power of these tests with that of others available in the literature. The tests 

evaluated fall into three categories: those tests based on the distribution of the mutation 

frequencies, on the haplotype distribution and on the mismatch distribution. We found that, 

for an extensive variety of cases, the most powerful tests for detecting population growth are 

Fu's FS test and the newly developed R2 test. The behavior of the R2 test is superior for small 

sample sizes while FS is better for large sample sizes. We also show that some popular 

statistics based on the mismatch distribution are very conservative.  
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Introduction

Comparison of DNA sequences within and between species is a powerful approach to 

determine the evolutionary forces acting in specific gene regions, but also to determine 

relevant aspects of the evolutionary history of the species (for reviews, Takahata 1996; Rogers 

1997, Harpending et al. 1998; Jorde, Bamshad, and Rogers 1998; Cann 2001). The coalescent 

theory (Kingman 1982a, 1982b; Hudson 1990; Donnelly and Tavaré 1995; Fu 1999) is the 

most powerful theoretical approach to interpreting DNA sequence data. The coalescent is a 

population genetic model focused primarily on the neutral evolution of gene trees; this model 

provides the framework for the development of statistical tests and also provides very efficient 

computer simulations methods.

Tajima (1989b), Slatkin and Hudson (1991) and Rogers and Harpending (1992) 

pioneered the study of the effect of some demographic events on DNA sequence data. They 

have shown that a relatively recent demographic event, such as a population growth, causes 

most of the coalescent events to occur before the expansion and, consequently, samples of 

these populations have gene genealogies stretched near the external nodes and compressed 

near the root (i.e., star genealogies). Thus, population size changes can leave a particular 

footprint that may eventually be detected in DNA sequence data. This theoretical framework 

prompted the development of statistical tests for detecting population expansion.

The analysis of the distribution of pairwise differences, or mismatch distribution, 

(Slatkin and Hudson 1991; Rogers and Harpending 1992) provides a method for inferring 

such demographic events. These authors have shown that, for non-recombining DNA regions, 

constant size populations presented mismatch distributions with shapes with very little 

resemblance to that expected in growing populations. This prompted the development of some 

statistical tests for detecting expansion processes (Harpending et al. 1993; Harpending 1994; 

Eller and Harpending 1996; Rogers et al. 1996). One of the most frequently used tests is the 
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raggedness statistic rg (Harpending et al. 1993). Although the distribution of the rg statistic is 

unknown, its confidence intervals could be obtained by computer simulations based on the 

coalescent algorithm. However, because methods based on the mismatch distribution use little 

information accumulated in the data (Felsenstein 1992), tests based on the mismatch 

distribution should be very conservative.  

In recent years, a number of authors have developed several methods of statistical 

inference and statistical tests using different approaches (e.g., Griffiths and Tavaré 1994; 

Rogers 1995; Bertorelle and Slatkin 1995; Aris-Brosou and Excoffier 1996; Fu 1996, 1997; 

Kuhner, Yamato, and Felsenstein 1998; Weiss and Von Haeseler 1998; Galtier, Depaulis, and 

Barton 2000; Furlong and Brookfield 2001). More recently, specific methods for detecting 

population expansions have also been developed for the analysis of microsatellite data (e.g., 

Reich and Goldstein 1998; Kimmel et al. 1998; Reich, Feldman, and Goldstein 1999; 

Beaumont 1999; King, Kimmel, and Chakraborty 2000).

 Here we report the development of new statistical tests for detecting past population 

growth. We performed an extensive analysis of their statistical power against different 

alternative hypotheses, and we compared their relative performance with respect to others 

published in the literature. Although some authors (Braverman et al. 1995; Simonsen, 

Churchill, and Aquadro 1995; Fu 1996, 1997) have also investigated the power of some 

statistical tests against population growth and genetic hitchhiking (which leave similar 

footprints in DNA sequences) at present there is no exhaustive comparative analysis. The 

major population growth model investigated was the sudden (instantaneous) growth, although 

we also studied the power under the logistic model of population growth. The power of these 

tests was evaluated using random data sets generated by computer simulations based on the 

coalescent (Hudson 1990). 
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Materials and Methods

We analyzed the performance of 17 statistical tests to distinguish specific models of 

population growth from the null hypothesis of a constant size population under the neutral 

model. Thus, we determined the power of these tests to reject the null hypothesis when the 

alternative hypothesis is really true. On the basis of the sequence information used, the test 

statistics evaluated have been classified into three major classes, namely classes I, II and III 

(see below). We developed several new statistical tests based on high-order moments (within 

classes I and III) since the distortion of the gene tree caused by the population growth would 

suggest that these types of tests could be more powerful than other tests available in the 

literature.

Class I statistics

Class I statistics use information of the mutation (segregating site) frequency. These 

statistics could be appropriate to distinguish population growth from constant size populations 

because the former generates an excess of mutations in external branches of the genealogy 

(i.e., recent mutations), and therefore an excess of singletons (substitutions present in only one 

sampled sequence) (Tajima 1989a, 1989b; Slatkin and Hudson 1991).

We studied the following test statistics: Tajima's D, and Fu and Li's D*, F*, D (named 

DF) and F statistics (Tajima 1989a; Fu and Li 1993; see also Simonsen, Churchill, and 

Aquadro 1995). These tests are based on the difference between two alternative estimates of 

the mutational parameter θ = 2Nu, where N is the effective number of gene copies in the 

population (the number of females in the population for mtDNA regions, or double the 

population size for an autosomal region) and u is the mutation rate. Tajima's D and Fu and Li's 

D* and F* statistics use information from only intraspecific data, while Fu and Li's DF and F 
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statistics use information from the number of recent mutations; the latter, therefore, requires 

the presence of an outgroup in order to be computed.

We developed a number of tests based on the difference between the number of singleton 

mutations and the average number of nucleotide differences. The R2 statistic is defined as
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where n is the sample size, k is the average number of nucleotide differences between two 

sequences, and Ui is the number of singleton mutations in sequence i. The rationale of this test 

is that the expected numbers of singletons on a genealogy branch after a recent severe 

population growth event is k/2; consequently, lower values of R2 are expected under this 

demographic scenario. The R2 statistic will be computed in the next version of the DnaSP 

(Rozas and Rozas 1999) software.

We also built two R2 related tests namely, R3 and R4. These statistics differ from the R2 

test in the power exponent values; in R3 and R4, the exponent values of 2 and 1/2 (eq. 1) are 

replaced by 3 and 1/3, and by 4 and 1/4, respectively. 

We have constructed three additional test statistics (R2E, R3E and R4E) that use 

information on the number of mutations in external branches; thus, an outgroup will be 

required for their estimation. The R2E test is defined as
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where Vi is the number of external mutations in sequence i. The R3E and R4E tests differ from 

the R2E test in the power values; the exponent values of 2 and 1/2 of equation 2 are replaced by 

3 and 1/3, and by 4 and 1/4, respectively. 
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We have also developed two other tests (Ch and Che) based on the difference between 

the number of singleton (and also for recent) mutations and their expected value:

Ch=
(U −m )2 S
m ( S−m )

                                            (3)

where,                                m=
nk

n−1

U is the total number of singleton mutations and S is the total number of segregating sites. The 

Che test is constructed in the same way but using information on the external mutations.

Class II statistics

In class II, we include statistical tests that use information from the haplotype 

distribution. We have only studied Fu's FS test statistic (Fu 1997) within this class. This 

statistic, which is based on the Ewens' sampling distribution (Ewens 1972), has low values 

with the excess singleton mutations caused by the expansion.

Class III statistics

Class III statistical tests use information from the distribution of the pairwise sequence 

differences (or mismatch distribution). It has been shown that population expansions leave a 

particular signature in the distribution of the pairwise sequence differences (Slatkin and 

Hudson 1991; Rogers and Harpending 1992); therefore, statistics based on the mismatch 

distribution can be used to test for demographic events. We evaluated the following statistics: 

i) the raggedness rg statistic (Harpending et al. 1993; Harpending 1994). The raggedness 

statistic, which measures the smoothness of the mismatch distribution, differs among constant 

size and growing populations: lower rg values are expected under the population growth 

model. ii) The mean absolute error (MAE) between the observed and the theoretical mismatch 

distribution (Rogers et al. 1996). iii) We also developed a new statistical test, the ku test, 

based on the fourth central moment (i.e., on the kurtosis) of the mismatch distribution. Given 
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that population expansion generates more smoothly peaked distributions, this statistic can 

distinguish between constant size and growing populations. Let d, nc and Wi be the maximum 

number of differences in the mismatch distribution, the number of pairwise comparisons (= n 

(n - 1) / 2), and the frequency of pairs of DNA sequences that differ by i mutations, 

respectively. We define: 

ku=
nc (nc+1 )q

(nc−1) (nc−2 ) (nc−3 ) s
2
−

3 (nc−1)
2

(nc−2) (nc−3)          (4)

where                                 q=∑
i=0

d

W i (i−k )4 ,

and                                     s=∑
i=0

d

W i (i−k )2 / (nc−1)

Empirical distributions

We obtained the empirical distribution of each statistical test by Monte Carlo 

simulations based on the coalescent process for a neutral infinite-sites model, assuming a 

large population size (Kingman 1982a, Kingman 1982b; Hudson 1990). We also assumed that 

there is neither intragenic recombination nor migration and that the mutation rate is 

homogeneous across the DNA region. We performed the simulations conditional on the 

number of segregating sites (S); that is, placing randomly S mutations along the tree (the so-

called fixed S method). Given that the actual value of θ is usually unknown, this method 

seems to be appropriate for testing purposes (Hudson 1993). The routine ran1 (Press et al. 

1992) was used as a random number generator. We conducted coalescent simulations for 

constant population size (null hypothesis) and for population growth (alternative hypothesis); 

the empirical distribution was estimated from 100,000 computer replicates for both the null 

and the alternative hypotheses.
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For the constant size model (null hypothesis), the samples were generated using 

conventional procedures (Hudson 1990); in this model only two parameters are required: the 

sample size and the number of segregating sites. The sudden population growth model 

(Rogers and Harpending 1992) considers a population that was formerly at equilibrium, but te 

generations before the present one, the population grew suddenly to the current size. 

Coalescent simulations under the sudden expansion model require four parameters: n, S, te 

and De, the degree of the expansion event, is:  

De = Nmax / No               (5)

where Nmax is the maximum population size (i.e., the current population size under the 

sudden expansion model) and No is the initial population size. For the simulations the te 

values were scaled in terms of Nmax generations (denoted by Te). Coalescent simulations 

under the sudden expansion model were performed by changing the time of the nodes as in

¿
T , T ≤T e

T e+
T−T e

De

, T >T e
¿

¿
T 1=¿

¿

 

where T and T1 are the coalescence times (measured in Nmax generations) under the constant 

size (i.e., the standard coalescent) and under the sudden expansion models, respectively (see 

Nordborg 2001). Under the later scenario, we generated samples using an extensive set of 

values of the parameter space.

We also conducted some coalescent simulations assuming that the population follows 

the logistic model of growth. In this model

N T=N o+ N
max

−¿N o

1+e
−r(T s−T −c )

¿

                   (6)
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were Nmax is the maximum population size, NT is the population size at time T (the time is 

measured in Nmax generations), r is the growth rate, TS is the elapsed time (measured in Nmax 

generations) from the beginning of the growth event, and c represents the reflection point of 

the growth curve (see eq. 16 in Fu, 1997). It should be noted that under this model the current 

population size could be equal or lower than the Nmax.

Coalescent simulations under the logistic model of growth were generated changing 

the times of the nodes according to the population size. These times are given by

( )1

1 T

x

c o

T N dx
N

= ∫                          (7)

where T and T1 are the coalescence times (measured in Nmax generations) of each node under 

the constant size and under the demographic models, respectively, NC is the current population 

size (i.e., T = 0) which can be obtained from equation 6, and N(x) is the population size at 

time x (eq. 6). Therefore, we will compare two empirical distributions (under the null and the 

alternative hypotheses) with the same population size (Nc) at the sampling time.

Critical values and the power of the tests

We determined the critical values of each statistical test from its empirical distribution. 

The power of each test, or the probability of rejecting the null hypothesis (constant size 

population) when the alternative hypothesis (population growth) is true, was estimated as the 

proportion of computer replicates generated under the alternative hypothesis for which the 

null hypothesis was rejected. For the analysis, we fixed a significance level of α = 0.05. Since 

the critical region for all alternative hypotheses would consist of only one side of the 

distribution, we conducted one-tailed tests. Specifically, all analyzed statistics, except Ch, 

Che and ku, had lower values under the population growth model.
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Given that under the null hypothesis the empirical distribution of some statistics 

presented a reduced number of points (e.g., the distribution of D* statistic; see Results), the 

actual probability of rejecting the null hypothesis when it is true (i.e. the size of the test) could 

be lower than the nominal significance level of 0.05.
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Results

Sudden population growth model

We studied the power of 17 statistical tests under different values of n, S, De and Te. 

Although we have examined the power for a wide range of the parameter space, we will show 

only the most relevant cases (additional results and figures are available from the authors). 

The parameters fixed for illustrating the power were n = 10 and n = 50, S = 10 and S = 50, De 

= 10 and De = 100, and Te = 0.1 (time for the maximum power; see below). These values give 

a clear view of the statistical power under some realistic cases: for small and big sample sizes, 

for a low and high number of mutations, and for reasonable population growth parameters. In 

all cases, the parameter sets were chosen to avoid saturation of the power curves.

The power analysis of the tests R3, R4, R3E, and R4E show a similar power than the R2 

and will not be presented here. Nevertheless, for some specific set of parameters the R4 and 

R4E tests presented a slightly higher power than R2. Generally, results of the statistical power 

of all statistical tests that use interspecific data presented a similar power than its equivalent 

statistic using intraspecific information (Figures not shown). 

Figure 1 shows the effect of Te -the time elapsed since the expansion event- on the 

statistical power of different statistical tests. It can be observed that R2 and Fu’s FS are the 

most powerful tests: the R2 test is the most powerful for small sample sizes while the behavior 

of Fu’s FS is better for large samples. The power of Tajima’s D and Fu and Li’s F* is lower 

than R2 and FS. The results also indicate that some commonly used tests based on the 

mismatch distribution, rg and MAE, are among the least powerful. All statistical tests show a 

peak in the statistical power at intermediate values of Te (Te ∼0.1); thus, it is unlikely to detect 

a population expansion when Te is too small or too large. This result agrees with that obtained 

by Simonsen, Churchill, and Aquadro (1995) and Fu (1997). 
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The results of the effect of De on the power to reject the constant size model are 

depicted in figure 2. All statistical tests, except class III, increase the power to reject the 

constant size model with increasing De; therefore, large samples will be needed to detect 

small population growth events. Again, tests based on the mismatch distribution are very 

insensitive in detecting population growths. The most powerful statistics are the R2 and the FS. 

Tajima’s D, Fu and Li’s F* and D* and Ch have comparatively less power.

Figures 3 and 4 show the effect of the sample size and the number of segregating sites 

on the power to reject the neutral constant size model under specific alternative hypotheses. It 

should be expected that both variables have a major effect on the statistical power, the larger 

the values of n or S, the more the power of the tests. However, the effect on the power is 

different for different statistics: for small sample sizes (and a small number of segregating 

sites) the R2 statistical test is the most powerful (Fig. 3a and 4a), while for larger sample sizes 

FS is the most powerful one. Moreover, for small sample sizes the power of DF and F is better 

than the counterpart tests without outgroup, although they are not as powerful as R2 and FS 

(figure not shown). The results also indicate that statistical tests based on the mismatch 

distribution, the rg and the MAE, are among the least powerful. In fact, in some cases, the 

power decreases as the sample size increases.

It should be noted that statistics D* (fig. 3a and 4b) and FS (fig. 4a) have an irregular 

behavior, as they show some atypical power drops with increasing sample size or the number 

of segregating sites. This unexpected pattern has two different explanations. In the case of Fu 

and Li's D* statistic, the power drop is caused by a marked decrease in the actual significance 

level. In fact, the D* empirical distribution has a reduced number of possible points causing 

that, for some specific values, the actual size of the test drops to 0.02. The atypical pattern of 

the FS test is due to the intrinsic structure of the statistic. In fact, the empirical distribution of 

FS (both under HO and H1 hypotheses) presents pronounced changes at specific ranges of 

values. That pattern causes marked changes in the power when these values are within the 
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rejection region (results not shown). Nevertheless, this irregular behavior is not present in 

coalescent simulations conditional on the value of θ (results not shown).

Logistic population growth model

We also conducted the analysis of power under a more realistic population growth 

scenario, the logistic population growth model. Under this model, we performed an 

explorative analysis of the most relevant cases to validate the conclusions of our work. We 

found that the assumption of the logistic population growth model does not change the major 

conclusions of the work. Even so, in comparison to the sudden growth model the maximum 

power of the tests is reached at higher values of the elapsed time; for instance, for the 

parameter sets used in Fu (1997) (r = 10, c = 1) the maximum power is at Ts ∼1.2. In general, 

as expected, i) all statistical tests have less power under the logistic than under the sudden 

growth models; nevertheless the decrease in the power is relatively uniform for all statistical 

tests; ii) the larger value of r, the more power of the tests.

Application to DNA sequence data

The present results have been applied to two published DNA data sets: the mtDNA 

variation analysis of a Turkish human population (Comas et al. 1996), and the survey of a 

human noncoding autosomal region (Alonso and Armour 2001). Comas et al. (1996) 

sequenced 360 bp of the region I of the mtDNA D-loop in 45 individuals. From the mismatch 

distribution analysis the authors suggested that the Turkish population had expanded recently. 

We determined the power of the different tests to identify which is most powerful against 

population growth. For the total data (n = 45; S = 56) and considering that De = 100 and Te = 

0.4 (scaled in terms of N generations) most tests were powerful enough, and several of them 

could reject the null hypothesis of constant size. We also determined whether the tests could 
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also reject the null hypothesis for small sample sizes. For that, we reanalyzed a subset of 10 

randomly chosen sequences from Comas et al. (1996) data. Table 1, shows the estimates of 

the power and of P-values of some statistical tests. The results clearly illustrate that the 

constant size hypothesis can be rejected by the most powerful tests (Fu's FS and R2). 

We also compared the P-values and the power of the R2 and some of the statistical 

tests used in Alonso and Armour (2001). These authors performed a nucleotide variation 

study in 100 chromosomes sampled from different African and Euroasiatic populations. 

Although the surveyed region is autosomal, the Alonso and Armour (2001) results suggested 

that recombination should be reduced. We analyzed the Japanese population (n = 20; S = 5) 

using the same values of the recombination parameter R (R = 2Nρ, where ρ is the 

recombination rate per generation) as the published ones; for that analysis we used the 

Hudson’s (1983) algorithm to generate DNA samples under the coalescent with 

recombination (results based on 10,000 replicates). For the power analysis we consider that 

De = 100 and Te = 0.1. For R = 0 (no recombination) only the FS test can reject the null 

hypothesis of constant size. However, for increasing recombination values the power of R2 

and Tajima's D tests increases while it decreases for FS and rg. In fact, for R = 10 only R2 

allows the null hypothesis to be rejected.
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Discussion

In this paper, we have examined the power of several statistical tests to determine 

which are most powerful in different population growth scenarios. The analysis has been 

performed by using a coalescent-based approach. There are other alternative approaches 

(likelihood-based methods) to study a population expansion process: the maximum likelihood 

(e.g., Griffiths and Tavaré 1994; Kuhner, Yamato, and Felsenstein 1998; Weiss and Von 

Haeseler 1998) and the Bayesian approaches (see Stephens 2001). The likelihood provides a 

framework for testing hypotheses; specifically, tests based on the likelihood ratio test statistic, 

δ = -2 ln (Lo / L1), where Lo and L1 are the maximum likelihood values under the null and the 

alternative hypothesis, can be used to discriminate between constant size and population 

growth. Unfortunately, the standard χ2 approximation for the distribution of δ might be 

inadequate. The empirical distribution of δ could be generated, however, by computer 

simulation and from that distribution the critical values could also be obtained; nevertheless, 

this method is computationally very intensive. 

We have shown that tests based on the mismatch distribution have little power against 

population growth. The MAE test is the less powerful one; although rg is more powerful than 

MAE, it works less well than nearly all class I and class II tests examined. ku, the newly 

developed test of class III, although better than MAE and rg, is clearly inferior to other class I 

and class II tests.  

On the other hand, several class I and class II tests can detect population expansion 

even for small De values. We have shown that two of the surveyed tests (R2 and FS) are the 

most powerful for a variety of different conditions. These tests should therefore be chosen to 

test constant population size versus population growth. In particular, we suggest using the R2 

statistical test for small sample sizes and FS for large ones. Nevertheless, because R2 and FS 

17



statistics use different kinds of information, discrepancies between these tests could provide 

information about the action of other evolutionary processes, for example on the intragenic 

recombination (see below).

Fu (1997) studied the power of some statistics under the logistic model of population 

growth. He conducted coalescent simulations fixing theta (θ = 5, θ = 10) instead of fixing S. 

To check the behavior of R2, and other mismatch–based statistics, under these conditions we 

performed some additional simulations conditional on θ. We found that the R2 and FS are 

again the most powerful statistics (see an example in fig. 5). Interestingly, rg and MAE have 

better results fixing θ than fixed S.

Intragenic recombination

The results from the present analysis are appropriate for nonrecombining DNA regions 

(i.e. mitochondrial or Y chromosomal DNA regions). It is expected, however, that intragenic 

recombination substantially affects the power of the statistical tests surveyed (Rozas et al. 

1999; Wall 1999). Indeed, a loss of power for those tests based on the haplotype distribution 

is expected (class II tests; e.g., Fu's FS test), or for those based on the mismatch distribution 

(class III tests; e.g., rg test). The reason is that recombination, by shuffling nucleotide 

variation among DNA sequences i) increases the number of haplotypes, and ii) generates a 

much smoother mismatch distribution (Poisson-like). Consequently, class II and class III tests 

could be inadequate in detecting the signature left by a population growth on a recombining 

DNA region. Class I tests, on the contrary, should be less sensitive to intragenic 

recombination. To check our prediction, we conducted a few coalescent simulations using 

different values of the recombination parameter. Our preliminary results comparing the power 

of R2 and FS tests show that the behavior of the former is better than the FS for increasing 

levels of recombination (see also table 1). 
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Coalescent simulations conditional on the number of segregating sites

The present power analyses have been performed conducting coalescent simulations 

conditional on the number of segregating sites. Given that the actual value of θ is usually 

unknown, and that estimates of θ are usually obtained from DNA polymorphism data 

information, the method seems to be appropriate (Hudson 1993; Depaulis, Mousset, and 

Veuille 2001; Wall and Hudson 2001). However, Markovtsova, Marjoram, and Tavaré 

(2001), pointed out correctly that the power of coalescent-based tests are not independent of θ 

and, therefore, the statistical power might vary as function of θ for a given n and S. To check 

that effect on the R2 we performed a prospective analysis generating samples conditional on 

θ and S using the rejection algorithm of Tavaré et al. (1997). The results yield the same 

conclusions as Depaulis, Mousset, and Veuille (2001) and Wall and Hudson (2001) came, i.e., 

the fixed S method seems to be appropriate unless the actual value of θ is far from 

Watterson’s (1975) estimate of θ.

Competitive alternative hypotheses

It should be stressed that a significant result (a significant departure from the null 

hypothesis) should be interpreted cautiously: there are several putative alternative hypotheses 

to single null hypotheses. Indeed, processes other than population expansion, such as genetic 

hitchhiking (Maynard Smith and Haigh 1974), could also produce similar genealogies (i.e., 

departures of the statistical tests in the same direction). Therefore, additional analyses could 

be necessary to discriminate between some competitive alternative hypotheses. For instance, 

because genetic hitchhiking in regions undergoing recombination will affect a relatively small 

fraction of the genome (close to the advantageous mutation), surveys at different gene regions 

across the genome could provide the opportunity to discriminate between population 

expansion and genetic hitchhiking (see Galtier, Depaulis, and Barton 2000).
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To summarize, FS and R2 are the best statistical tests for detecting population growth. 

The behavior of R2 is better for small sample sizes while FS  is better for bigger sample sizes. 

Additionally, preliminary results also indicate that the behavior of R2 should be superior when 

the intragenic recombination is considered. On the other hand, some popular statistics based 

on the mismatch distribution, rg and MAE, are very conservative. 
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Table 1

Application of some statistical tests to DNA polymorphism data.

R2 FS D rg

mtDNA data (Comas et al. 1996)

n = 10; S = 21
Observed value 0.0813 -5.585 -1.271 0.0523

P-valuea 0.009 0.003 0.107 0.243

      Powerb 0.41 0.31 0.06 0.14

Autosomal data (Alonso and Armour 2001) 

n = 20; S = 5
Observed value 0.0923 -2.646 -1.140 0.147
R = 0;  P-valuea 0.063 0.042 0.139 0.528
      Powerc 0.48 0.57 0.46 0.01

R = 1;  P-valuea 0.058 0.046 0.131 0.561
      Powerc 0.50 0.58 0.47 0.01

R = 10;  P-valuea 0.050 0.099 0.095 0.741
      Powerc 0.53 0.42 0.67 0.0

a Probability of obtaining values equal or lower than the observed.

b Power values assuming the sudden expansion model with α = 0.05, De  = 100, Te  = 0.4

c Power values assuming the sudden expansion model with α = 0.05, De  = 100, Te  = 0.1
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Figure 1

Effect of the elapsed time since the expansion event on the power of statistical tests. Results 

based on 100,000 sample replicates. 

(A) n = 10, S  = 10, De  = 100

(B) n = 10, S  = 50, De  = 100

(C) n = 50, S  = 10, De  = 10

(D) n = 50, S  = 50, De  = 10
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Figure 2

Effect of the degree of the expansion on the power of statistical tests. Results based on 

100,000 sample replicates. 

(A)  n = 10, S = 10, Te  = 0.1 

(B)  n = 10, S = 50, Te  = 0.1

(C)  n = 50, S = 10, Te  = 0.1 

(D)  n = 50, S = 50, Te  = 0.1
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Figure 3

Effect of the sample size on the power of statistical tests. Results based on 100,000 sample 

replicates.

(A)  S = 10, De  = 100, Te  = 0.1 

(B)  S = 50, De  = 10, Te  = 0.1
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Figure 4

Effect of the number of segregating sites on the power of statistical tests. Results based on 

100,000 sample replicates. 

(A)  n = 10, De  = 100, Te  = 0.1

(B)  n = 50, De  = 10, Te  = 0.1
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Figure 5

Effect of the elapsed time since the expansion event on the power of statistical tests under the 

logistic model of population growth. Results based on 100,000 sample replicates, fixing the 

value of θ (θ = 10) with n = 50, r = 10, c = 1, Nmax = 20,000 and No = 1000. 
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Published correction (2006)

The equation 7 of the paper should be:

Consequently, Figure 5 should be: 

The footnotes remain the same. Present changes do not affect any of the conclusions of the  
paper.
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