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Introduction

The motivation of this work comes from the reading of the chapters:

• Com entendre el comportament no predictible dels sistemes deterministes ( C. Simó).

• Caos espaciotemporal en ecosistemes ( R.V. Solé).

• Buscant l’ordre ocult dels sistemes biològics ( J. Bascompte).

of the book ”Order and Chaos in ecology”[1], devoted to explain how the knowledge of
the phenomenon known as ”deterministic chaos” has made a qualitative change in the
way scientists of this area look at the problems in ecology.

From the point of view of biologists, that are interested in studying biological phe-
nomena and be able to make predictions, the use of mathematical models has been a
source of progress. Once one has a mathematical complex model which tries to describe
the evolution of certain species, of an epidemic, the beats a beetle or the waves of human
brain, dynamical systems help to simplify the study of such phenomena, mainly because
its tools are designed to make predictions about the past and the future of the system.

It is known that, after simulating these mathematical models, and using the Dynamical
Systems techniques which allow to reconstruct the attractors of the system just using real
data, one has found in lots of these models the existence of deterministic Chaos. Therefore,
a natural question has arised in the scientific (biological, ecological) community: Once a
mathematical model shows to present deterministic Chaos, is this Chaos really present
in nature, that is, does Chaos really exist in the real phenomenon modeled? Or it is just
a consequence of the errors due to the modelization of the phenomenon, and the errors
coming from the me measurements of the parameters and the numerical approximations
needed to work with the system?

This is the starting point of the chapters of the book we have focused in. Answering
the question is a difficult task. Nevertheless, we will briefly explain in this work how
modern techniques, like the reconstruction of the attractors of a system from real data
using delay plots, show clearly, an evidence: it is not true the quite extended in the past
idea that nature tends to simple equilibrium states, like fixed points or periodic orbits.
This discovery made a revolutionary change in the way scientists looked at nature realising
that often they have to deal with impredictibility.

This fact makes even more interesting the mathematical approach to deterministic
Chaos, a fascinating area in itself, and it is with this perspective that we will make a
systematic study of attractors from a mathematical point of view. Attractors are the
most important sets from an a ecological point of view: there are sets were the dynamics
of the system ends in a natural way and therefore, they are the sets were, with highest
probability, the orbits of our system and therefore the real phenomena, will stay.

As we will restrict ourselves to a mathematical study, we will assume from now on
that the models we are using are correct models, and our main goal will be to find and
study their attractor sets. To do it, we will use mainly numerical tools, that is, we will
try to reproduce these sets using accurate numerical simulations, and we will study their
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properties. We will use techniques like the Poincaré map and graph analysis which will
help us to simplify a little the study of these sets, that can be, in general, quite complex.

We will mainly work in a classical model: the trophic chain model of three species,
but we will also give some issues about another model: the classical epidemic model
SEIR. Both models depend on several parameters. We will fix several parameters into
realistic values and vary one of them that will be very significant in the model. In fact,
we will see that, varying slightly this parameter, the system undergoes very different
dynamical behaviours. It will undergo several bifurcations (infinitely many!) and even
chaotic behavior in some cases. Besides the reconstruction of the attractor of the system,
we will also reconstruct a bifurcation cascade, a fascinating phenomenon which occurs in
systems showing chaotic behaviour. Notably, this chaotic behaviour was first observed in
(apparently) very simple models such as the logistic family. We will give a brief description
of the dynamics of this family in section 3.

The work is organized in the following way. First, in Section 1, we will present the
two ecological models. Later, in Section 2, we will introduce, in an informal way, some
concepts and Theorems of Dynamical Systems, as well of some numerical methods (some
of them very recent and quite sophisticated), necessary to follow the numerical approach
done in the work.

Section 3 is devoted to present the tools used to understand deterministic chaos. This
section contains the basic definitions like chaotic system, symbolic dynamics, and strange
attractors. All the concepts and results are given and applied to classical one-dimensional
dynamical system: the logistic map.

In Section 5 we analyse the obtained results and make some conclusions. Is in this
chapter were we will make the mathematical-numerical machinery to work in order to
understand all the phenomena of the system. All the results presented in this section have
been obtained by myself. To this end I have written all the codes necessary to obtain the
numerical simulations presented and the graphics: Taylor method to numerically integrate
the 3-dimensional Ordinary Differential Equations of the models, Newthon method and
numerical differentiation to built the Poincaré map and its derivative and its fixed points,
a numerical approximation of the first period-doubling bifurcations, and delay plots to
show the dynamics of the systems. It is also in this section were we will find the strange
attractors, we reproduce the results of the book and compute new ones.

We devote the last section to present the arguments the authors use to justify that
the observed Chaos is also present in the real phenomenon in nature.
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1 The biological problem

In this section we will explain the problems we are going to study. They are two classic
ecological problems: the Three-species Food chain model, which models a trophic
chain, and the SEIR model, a model about the progress of an epidemic. We have
obtained both models from [1]

1.1 The three-species food chain model

The first model deals with the ”trophic chain of three species”. We consider three species
X, Y , Z, where Z is a predator for Y and that Y is a predator for a prey X. This model
is used to model the evolution of three different species connected by a food chain, or also
to models three groups of species with the same preys and predators. The flow of the
model is:

Ẋ = R0X(1− X

K0

)− C1F1(X)Y

Ẏ = F1(X)Y − F2(Y )Z −D1Y

Ż = C2F2(Y )Z −D2Z

where ˙ = d
dT

and Fi(U) = AiU
Bi+U

representing the functional response.

The constant R0 is the ”intrinsic growth rate”, K0 is the ”carrying capacity” of species
X. The constants C−11 , C2 are conversion rates of prey to predator for species Y and
Z respectively, and D1 and D2 are constant death rates. Ai and Bi parametrize the
functional response; Bi is the prey population level where the predation rate per unit
prey is half its maximum value.

Let us observe that is C1 = 0 the X variable follows, independently of the other
variables, the logistic model.

We normalize the system using the non-dimensional variables:

x = X/K0

y = C1Y/K0

z = C1Z/(C2K0)

t = R0T

Denoting by ′ the derivative respect to the new time t we obtain the system:

x′ = x(1− x)− f1(x)y
y′ = f1(x)y − f2(y)z − d1y
z′ = f2(y)z − d2z

(1)

with:
fi(u) =

aiu

1 + biu
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One can find the relations between the old and the new parameters in [3]. The values
of the parameters are taken from real experiments and are given by:

a1 = 5, a2 = 0.1, b2 = 2, d1 = 0.4, d2 = 0.01 (2)

The parameter b1 will have an important role in this study. We will see that varying b1
the system will encounter several bifurcations and also chaotic behaviour. For this model
the parameter b1 varies in:

b1 ∈ [2, 6.2]. (3)

In this work we will make a numerical study of the dynamical system defined by system
(1). We are interested in the attractors of the system when one varies the parameter b1. We
will see that, for certain values of this parameter, the model (1) has strange attractors,
that are objects with complex (fractal) geometry (see the formal definition of strange
attractor in section 2.4.1). We will justify that this chaotic behaviour is not exists not
only in the mathematical model we consider. Moreover we will see that this attractor
and the chaotic behaviour generated in it corresponds to the real behavior of the species
obtained by experiments.

1.2 The SEIR model

In this section we will present the SEIR model, which studies the progress of an epidemic in
a large population, comprising many different individuals in various fields. The population
diversity must be reduced to a few key characteristics which are relevant to the infection
under consideration. For example, for many important infections there is a significant
period of time during which the individual has been infected but is not yet infectious
himself. During this latent period the individual is in compartment E (for exposed). It
makes sense to divide the population into those who are susceptible (S) to the disease,
those who are exposed (E), infected (I) and those who have recovered (R).

The model the authors consider is taken form [8]:

Ṡ = µ− β(t)SI − µS
Ė = β(t)SI − (µ+ α)E

İ = αE − (µ+ γ)I

Ṙ = µR− γI

 (4)

with the restriction S+E+ I+R = 1, and then S+E+ I+R is a first integral of the
system, which comes from the fact that S,E, I, R are proportions of the total population,
which is normalized to be 1, and it neglects the birth-death processes.

µ = 0.02, α = 35.842, γ = 100

and others varying β0 and β1.
β(t) = β0(1 + β1cos(2πt)) is the contact rate of the infection, and is modeled by a

periodic function to emphasize that is seasonally varying in time ( with period 1 year).
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We will make also a numerical study of the dynamical system defined by (4). We will
find the attractors of the system for certain values of the parameters.
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2 Some basic Concepts of Dynamical Systems

The main goal of the work was perform a accurate numerical method to obtain the
asymptotic behaviour of the orbits of the models considered. Nevertheless, as these sys-
tems present chaotic behaviour, it is very difficult to understand the numerical results
without a deep knowledge of some concepts of dynamical systems.

Here we aim to give a list of these concepts adapted to our problem in an heuristic
way:

2.1 Dynamical Systems

A smooth continuous Dynamical System is the tuple (M,φ(t, x),R) where M is a
manifold, and φ(t, x) is a flow defined by an autonomous vector field X:

d

dt
φ(t, x) = X(φ(t, x)), φ(0, x) = x.

The orbit of a point x is given by {φ(t, x), t ∈ R} and we assume that the solutions are
defined for any time. This is true, for instance, if M is compact.

A discrete smooth Dynamical System is the tuple (M, f,Z) where M is a mani-
fold, and f : M →M is a difeomorphism. In this case the orbit of a point x is given by
{fn(x), n ∈ Z} or by {fn(x), n ∈ N} in case f is not invertible.

2.2 Invariant objects

One of the first steps in the study of a Dynamical System is to find the invariant objects.

The simplest invariant objects in a continuous Dynamical System are fixed points:

• A point x is a fixed point of the vector field X if φ(t, x) = x and therefore X(x) = 0.

• A point x is a fixed point of the map f if f(x) = x.

Other simple invariant object in Dynamical Systems are periodic orbits

• The orbit of a point x is a periodic orbit if there exists T ∈ R such that φ(T, x) = x.
T is called the period of the orbit.

• A point x is a periodic point of the map f if there exists an N ∈ Z such that
fN(x) = x.

There is general definition for an invariant set of a Dynamical System.

• The set S is said to be invariant for the flow φ (f for the map), if x ∈ S implies
φ(t, x) ∈ S, ∀t ∈ R (fn(x) ∈ S, ∀n ∈ Z).
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2.3 The Poincare Map

When a continuous dynamical system has a periodic orbit γ there is a natural way to
associate a discrete Dynamical System to study the behaviour around γ: The Poincaré
Map. This map was defined and studied in the subject of Ordinari Differential Equations.

Let γ be a periodic orbit of a Dynamical System (M,φ), and Σ a transversal section
to γ, then the Poincaré Map is defined as:

P : Σ → Σ

y → P (y) = φ(τ(y), y)

where τ(y) is the minimum time t such that the flow φ(t, y) ∈ Σ. Clearly x∗ = γ ∩Σ is a
fixed point of P .

The Poincaré map has the advantage of reducing the dimension of the system. This
makes it very convenient in numerical simulations.

2.4 ω and α limit sets

Another interesting sets for the study of Dynamical Systems are the ω and α-limit sets.
These sets capture the long term behaviour of an orbit.

Given a continuous Dynamical System (M,φ), a point x and an orbit γ = {φ(t, x)t ∈
R} through x, we call a point y an ω-limit point of γ if there exists a sequence tn in R
so that

tn ↗ +∞
lim
n→∞

φ(tn, x) = y
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Analogously we call y an α -limit point if there exists a sequence tn in R so that

tn ↘ −∞
lim
n→∞

φ(tn, x) = y

The set of all ω-limit points (α-limit points) for a given orbit γ is called ω-limit set
(α-limit set) for γ and denoted limω γ (limα γ). Alternatively the limit sets can be defined
as:

lim
ω
γ :=

⋂
s≥0

{φ(t, x) : t ≥ s}

and

lim
α
γ :=

⋂
s≤0

{φ(t, x) : t ≤ s}

The ω and α limit sets are invariant sets.

2.4.1 Attractors

Among the ω-limit sets, the most interesting ones are the attractors. On one hand
they are the only ones you see on simulations. On the other hand the attractors are sets
where the solutions of our systems end asymptotically, and as our systems model real
phenomena, one of the most important goals is to be able to predict future states of the
system, and they are very good candidates to describe the future behaviour of the system.

• A set S is an attractor if there exist a neighbourhood U of S such that S is the
ω-limit set of all points of U .

Examples of attractors are attracting fixed points and periodic orbits, but there exist
other attractor sets of higher dimension, and also of more complicated structure: the
Strange Attractors.
The heuristic idea of strange attractor is an attractor set which has a complicated geomet-
rical structure. We will explain in more detailed what is an strange attractor in section
3.3.

2.5 Bifurcations

One of the main purposes of this work to study the attractor sets, in particular fixed
points, periodic points, and also strange attractors. To be able to study these strange
sets we first introduce the concept of bifurcation. Roughly speaking a bifurcation occurs
when small variations of the parameters give rise to a change in the qualitative dynamics
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of the system. Very often a phenomenon called cascade of bifurcations leads the system
from regular dynamics to what is called chaotic dynamics that we will explain in section
3.

But to introduce the concept of bifurcation we first need to talk about hyperbolic
points.

2.5.1 Hyperbolic points and Hartman-Grobman Theorem

• If X is a vector field, x is a critical point, and J = DX(x) is the Jacobian matrix,
then the point x is said to be an hyperbolic critical point if for any λ ∈ Spec(J)
one has that <(λ) 6= 0.

• If f is a map, x is a fixed point and J = Df(x), then the point x is said to be an
hyperbolic fixed point if for any λ ∈ Spec(J) one has that ‖(λ)‖ 6= 1.

• A periodic orbit of a continuous vector field is called hyperbolic if the corresponding
Poincaré map has a hyperbolic fixed point.

The next theorem is about the local behaviour of a Dynamical System in the neigh-
bourhood of a hyperbolic equilibrium point.

Theorem (Hartman-Grobman). Let x be a hyperbolic fixed point of a vector field X or
of a map f . Then there exists a neighbourhood U of x and neighbourhood V of 0, and an
homeomorphism h : V → U such that:

• h(0) = x

• h conjugates the flow φ of ẋ = X(x) in U with the flow of ẏ = DX(x)y, that is:

h(etDX(x)y) = φ(t, h(y))

• h conjugates the map f in U with the map J(y) = Df(x)y, that is:

h(J(y)) = f(h(y))

11



2.5.2 Non-hyperbolic points. Bifurcations

As Hartman-Grobman Theorem give us the behaviour near a hyperbolic critical point of
a flow, or near a hyperbolic fixed point of a map and also near a hyperbolic periodic orbit,
next step is to understand the behaviour near a point which is not hyperbolic.

Consider an autonomous system of ordinary differential equations

x′ = f(x, µ), x ∈ Rn, µ ∈ Rp (5)

where f is smooth.

A bifurcation occurs at parameter µ = µ0 if there are parameter values µ1 arbitrarily
close to µ0 with dynamics topologically inequivalent from those at µ0.

For example, the number or stability of equilibria or periodic orbits of f may change
with perturbations of µ from µ0. One goal of bifurcation theory is to produce parameter
space maps or bifurcation diagrams that divide the µ parameter space into regions of
topologically equivalent systems. Bifurcations occur at points that do not lie in the
interior of one of these regions.

The study of bifurcation theory is very difficult because to stablish if two vectors fields
are topologically equivalent in whole phase space it is very complicated. That’s why we
will focus on local bifurcations, which refers to properties of a vector field near a point.

If system (5) has an hyperbolic critical point x0 for µ = µ0, by the implicit function
theorem, the system will have a critical point x(µ), for µ close enough of µ0. Moreover
Df(x0, µ0) and Df(x(µ), µ) will have the same number of eigenvalues of positive and
negative real part. Therefore both vector fields are topologically equivalent. We can
conclude that if at µ = µ0 system (5) has a hyperbolic critical point, µ0 can not be a
bifurcation value. Bifurcations then occur when one or several eigenvalues of the linearised
system, have real part equal to 0. Analogue theory exist for maps around fixed points,
but the condition would be that some of the eigenvalues have to be of modulus one.

The simplest bifurcation of critical point is when only one eigenvalue is equal to 0.
This bifurcations can occur in one-dimensional vector fields depending on one parameter.
That is, n = p = 1 in (5). The generic cases depending on the other terms in the Taylor
expansion of f , are Saddle-Node, Transcritical, and Pitchfork.

The easiest model for the Saddle-Node is the differential equation:

ẋ = µ− x2

In this case two critical points exists for µ > 0, one stable and one unstable. They collapse
in a non-hyperbolic critical point when µ = 0 and there are no critical points for µ < 0.

The easiest model for the Transcritical is the differential equation:

ẋ = xµ− x2

In this case two critical points exists for any µ, one stable and one unstable. At µ = 0
they interchange their stability.
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The easiest model for the Pitchfork is the differential equation:

ẋ = xµ− x3

In this case three critical points exists for µ > 0, one unstable and two stable. They
collapse in a non-hyperbolic critical point when µ = 0 and there is only one stable critical
point for µ < 0.

We will not study this bifurcations in our two models (1) and (4). Instead we will find
the Hopf Bifurcation, a bifurcation which occurs in vector fields (5) with n ≥ 2 p ≥ 1.
[2]

Consider system (5) with a parameter value µ0 and equilibrium x(µ0) at whichDf( , µ0)
has a simple pair of pure imaginary eigenvalues, ±iω, ω > 0, and no other eigenvalues
with zero real part. The implicit function theorem guarantees (since Df( , µ0) is invert-
ible) that for each µ near µ0 there will be an equilibrium x(µ) near x(µ0) which varies
smoothly with µ. Nonetheless, the dimension of stable and unstable manifolds of x(µ)
do change if the eigenvalues of Df(x(µ), µ) cross the imaginary axis at µ0. This quali-
tative change in the local flow near x(µ) must be marked by some other local changes
in the phase portraits not involving fixed points. The normal form theorem gives us

the required information about how the generic problem differs from the system (5). By
smooth changes of coordinates, the Taylor series of degree 3 for the general problem can
be brought to the following form:

ẋ = (dµ+ a(x2 + y2))x− (ω + cµ+ b(x2 + y2))y,
ẏ = (ω + cµ+ b(x2 + y2))x+ (dµ+ a(x2 + y2))y,

(6)

which is expressed in polar coordinates as

ṙ = (dµ+ ar2)r,

θ̇ = (ω + cµ+ br2).
(7)

Since the first equation in (7) is uncoupled, we see that there is a periodic orbit of (6)

which is r =
√
−dµ
a

if −dµ
a

> 0, obtained from the non-zero solution of ṙ = 0 in (7). If

a 6= 0, d 6= 0 and −dµ
a

> 0 this solution exists. The content of Hopf bifurcation theorem
is that the qualitative properties of (6) near the origin remain unchanged if higher-order
terms are added to the system:

13



Theorem (Hopf). Supose that the system ẋ = f(x, µ), x ∈ Rn, µ ∈ R has an equilibrium
(x0, µ0) at which the following properties are satisfied:

• Dxf(x0, µ0) has a simple pure imaginary eigenvalues and no other eigenvalues with
zero real part. Then there exists a smooth curve of equilibria (x(µ), µ) with x(µ0) =
x0 and the eigenvalues λ(µ), λ̄(µ) of Dxf(x(µ), µ) which are imaginary at µ = µ0

vary smoothly with µ.

• If moreover
d

dµ
(<(λ(µ))|µ=µ0 = d 6= 0,

Then there is a unique three-dimensional center manifold passing through (x0, µ0) in Rn×
R and a smooth system of coordinates (preserving the planes µ = const.) for which the
Taylor expansion of degree 3 of the center manifold is given by (6). If a 6= 0, there
is a surface of periodic solutions in the center manifold which has quadratic tangency
with the eigenspace of λ(µ0), λ̄(µ0) agreeing to second order with the paraboloid µ =
−(a/d)(x2 + y2). If a < 0, then these periodic solutions are stable limit cycles, while if
a > 0, the periodic solutions are repelling.

In the case of a map xn+1 = f(xn, µ), the simplest bifurcation of a fixed point occurs
at µ = µ∗, when there is a fixed point x∗ = f(x∗, µ∗) such that one eigenvalue λ∗ of
Df(x∗, µ∗) is |λ∗| = 1. The generic bifurcations for maps are Saddle-Node and Period-
doubling. The Saddle-Node occurs when λ∗ = 1, and the Period-doubling λ∗ = −1.

The easiest model for Saddle-Node bifurcation is the map:

f(x, µ) = x2 + x− µ

The bifurcation occurs when for certain value of parameter µ, f ′(x∗, µ∗) = 1. Again, as
in the ODE case, two fixed points exists for µ > 0, one stable and one unstable, and they
collapse in a non-hyperbolic fixed point when µ = 0 and there are no fixed points for
µ < 0.

A one-dimensional model for Period-doubling bifurcation is the map:

f(x, µ) = µ− x2, µ > −1

4

This map undergoes a Saddle-Node bifurcation at µ = −1
4
, where two fixed points

x1 =
−1 +

√
1 + 4µ

2
, x2 =

−1−
√

1 + 4µ

2
,

x2 is stable and x1 unstable, appear.
At µ = 3

4
the eigenvalue of the stable fix point x2 becomes −1. For a slightly bigger

values of µ, x2 loses its stability, and a period-2 stable orbit, appears.
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2.6 Transition to chaos

Another phenomenon we will find in our models, is the Period-doubling Cascade.
This occurs when there is a sequence µn such that for any µn there is a period-doubling
bifurcation in the following way: at µ1 a stable 2-periodic orbit appears. Then this 2-
periodic orbit loses their stability at µ2, and a stable 4-periodic orbit appears. Then at
µ3 this 4-periodic orbit loses its stability and a new stable 8-periodic orbit appears and
so on. Consequently at each µn a stable 2n-periodic orbit is born.

Very often there is a scaling behaviour in the cascade of bifurcations. Feigenbaum
noted that the ratios of parameter distance between two successive period-doubling ap-
proach a constant as the periods increase to infinity. Moreover, this constant is universal
in the sense that it applies to a variety of dynamical systems. Specifically,

lim
n→∞

µn−1 − µn−2
µn − µn−1

= 4.669201609 (8)

In many dynamical systems this cascade of bifurcations leads the system to a chaotic
behaviour, and some times to the existence of an strange attractor. Next section is devoted
to understand this concepts.
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3 Chaos and Symbolic Dynamics

In this section we will show working with a classical example, the tools used to show that
a system has chaotic behaviour. We will follow [4] and work with the quadratic family:

Fµ(x) = µx(1− x), µ > 1 (9)

We will list some known properties about this map:

• It has two fixed points p = 0 and pµ = µ−1
µ

.

• 0 < pµ < 1

• If x < 0 or x > 1 then F n
µ (x)→ −∞ as n→∞. Therefore the interesting dynamics

occurs in the interval I = [0, 1].

• If 1 < µ < 3:

1. Fµ has an attracting fixed point at pµ and a repelling fixed at 0.

2. If 0 < x < 1 then F n
µ (x)→ pµ as n→∞-

Hence for 1 < µ < 3, Fµ has only two fixed points and all other points in I are
asymptotic to pµ. Thus the dynamics of Fµ are completely understood for µ in this range.

When µ passes through 3, the dynamics of Fµ becomes slightly more complicated: a
new periodic point of period 2 is born. This is the beginning successive period doubling
bifurcations as µ increases between 3 and 4, and this is an example of the bifurcation
cascade we explained in the previous section. In fact for this concrete model the Feigen-
baum conjecture is proved.

In the subject of Dynaimcal Systems I made a program to compute the first period-
doubling bifurcation cascade, and to check the Feigenbaum assymptotic value. In the
next table we write the obtained results. The parameter µ is the interval [a1, a2] at the
bifurcations,

a1=3.000000000000000 a2=3.000000000000001 periodo=2
a1=3.449489742783178 a2=3.449489742783179 periodo=4
a1=3.544090359551922 a2=3.544090359551923 periodo=8
a1=3.564407266095432 a2=3.564407266095433 periodo=16
a1=3.568759419543827 a2=3.568759419543827 periodo=32
a1=3.569691609801397 a2=3.569691609801398 periodo=64
a1=3.569891259378118 a2=3.569891259378119 periodo=128
a1=3.569934080000018 a2=3.569934080000018 periodo=256
a1=3.569943176048403 a2=3.569943176048404 periodo=512
a1=3.569945137342181 a2=3.569945137342182 periodo=1024
a1=3.569945557391250 a2=3.569945557391251 periodo=2048
a1=3.569945651200004 a2=3.569945651200005 periodo=4096
a1=3.569945674137600 a2=3.569945674137601 periodo=8192
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a1=3.569945675202558 a2=3.569945675202558 periodo=16384
a1=3.569945675366397 a2=3.569945675366398 periodo=32768
a1=3.569945675402441 a2=3.569945675402442 periodo=65536

Next table shows the quotiens µn−1−µn−2

µn−µn−1
as they approach the Feigenbaum constant.

Constante Feigenbaum=4.656251017651319 Bifurcación periodo=16
Constante Feigenbaum=4.668242235577268 Bifurcación periodo=32
Constante Feigenbaum=4.668739469280134 Bifurcación periodo=64
Constante Feigenbaum=4.669132150837923 Bifurcación periodo=128
Constante Feigenbaum=4.662463268002508 Bifurcación periodo=256
Constante Feigenbaum=4.707607093391581 Bifurcación periodo=512
Constante Feigenbaum=4.637779656959092 Bifurcación periodo=1024
Constante Feigenbaum=4.669201579940650 Bifurcación periodo=2048
Constante Feigenbaum=4.477717195291651 Bifurcación periodo=4096
Constante Feigenbaum=4.089737763397038 Bifurcación periodo=8192
Constante Feigenbaum=21.538500512078038 Bifurcación periodo=16384
Constante Feigenbaum=6.500020328894406 Bifurcación periodo=32768
Constante Feigenbaum=4.545525109654527 Bifurcación periodo=65536

Now we focus on the dynamics when µ > 4.
As before, all the interesting dynamics occur in the interval I. Note that, since µ > 4

certain points of I leave I after one iteration of Fµ. We denote this set by A0, which is
an open interval centered at 1/2. All the other points in I remain in I after an iteration
of the map.

Inductively, one can define

An = {x ∈ I, F n
µ (x) ∈ A0}

That is
An = {x ∈ I, F i

µ(x) ∈ I, F n+1
µ (x) /∈ I}

so that An consists in all the points which leave I at the n + 1 iteration of the map.
Therefore, the only points which never escape from I are

Λ = I − ∪n≥0An

.
Since A0 is an open interval centered at 1/2, then I − A0 = I0 ∪ I1, where I0 and I1

are two closed intervals and Fµ maps them to I. Now, if we consider I − (A0 ∪ A1) =
I00 ∪ I01 ∪ I10 ∪ I11 is the union of four closed intervals.

In general we have:

• 00 An is the union of 2n disjoint open intervals

• I − A0 ∪ · · · ∪ An is the union of 2n+1 closed intervals.

• F n+1
µ maps each of the closed intervals to I, therefore the graph of F n+1

µ has exactly
2n bumps in I and therefore has 2n fixed points. This implies that Pern(Fµ) = 2n
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• One can see that that Λ is a Cantor set, that is: it is closed, totally disconnected
(does not contains intervals) and perfect (every point is an acumulation point of
points in the set).

• Λ is a hyperbolic set, that is, for every x ∈ Λ one has that |F ′µ(x)| > 1.

It is clear that the structure of Λ is more complicated for µ > 4.

3.1 Symbolic dynamics

Symbolic dynamics is a tool used to detecd chaos in a dynamical system. We will show
how it works in this unidimensional map. First we introduce an abstract dynamical system
which will reflect the behaviour of the orbits in a chaotic system.

Consider the space

Σ2 = {s = (s0 s1 s2 . . . ), sj = 0, 1}

it is called the sequence space on the two symbols 0 and 1.
We can define a distance in the space as:

d(s, t) =
∑
i≥0

|si − ti|
2i

which makes Σ2 a metric space. Clearly, the distance between two sequences is smaller
than (1/2)nif the firts n entries are the same in both sequences. Then, two sequences are
close provided their first few entries agree. We know define the most important ingredient
in symbolic dynamics, the Shift map on Σ2:

σ : Σ2 → Σ2

given by
σ(s0 s1 s2 . . . ) = (s1 s2 s3 . . . )

The shift simply “forgets” the first entry of a sequence and shift the other one place to
the left. Then, studying this simple map one can see:

• σ is continuous

• Let us note that the sequences formed by repeating a word of legh n is a n- perioid
point for σ, therefore

Pern(σ) = 2n

• Per(σ) is dense in Σ2.

• There exist a dense orbit for σ in Σ2.

Now we will see that the shift map is an exact model for the quadratic map Fµ when
µ > 4.
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3.2 Topological conjugacy

To see that the dynamic of our map Fµ in Λ is the “same” than the dynamics of σ in Σ2

we have to build a conjugation between the two dynamical systems.
What we will do is to “follow” the orbit of a point and label it if its iterates are in the

interval I0 or I1. This sequence of numbers will give us the itinerary of the point x:

S(x) = (s0 s1 s2 . . . ), if F j
µ(x) ∈ Isj

The itinerary of x is an infinite sequence of 0 and 1. That is, S(x) is a point in the
space Σ2. We think as S as a map from Λ to Σ2 and we have that:

Theorem. If µ > 2 +
√

5 the S : λ→ Σ2 is an homeomorphism and S ◦ Fµ = Fµ ◦ S.

As a consequence of this theorem we obtain a lot of information about Fµ in Λ:

1. The cardinality of Pern(Fµ)

2. Per(Fµ) is dense in Λ.

3. Fµ has a dense orbit in λ

Finally there is another property the map Fµ verifies: it has sensitive dependence
with respect to initial conditions

We say a map f : M →M has sensitive dependence with respect to initial conditions
if there exists ε0 > 0 such that ∀x ∈ M , ∀δ > 0, there exists k > 0, y ∈ M such that
d(x, y) < δ and d(fk(x), fk(y)) > ε0.

In fact, the dynamics of Fµ in Λ verifies the conditions of a chaotic dynamical
system:

• Periodic orbits are dense: every orbit in the space is approached arbitrarily closely
by periodic orbits

• There exists a point whose orbit is dense

• It has sensitive dependence with respect to initial conditions.

For more general dynamical systems, a useful tool to understand their dynamics,
mainly the existence of periodic orbits and transitivity property, are transitiongraphs.

Assume we have a map f : I → I I ⊂ R and a set of disjoint intervals I0, I1, .., In,
Ij ⊂ I. An arrow is drawn from Ij to Ik in a transition graph if and only if the image
f(Ij) contains the subinterval Ik.

For instance a transition map for the logistic studied in this section is given by Figure
1.

In topological dynamics of interval maps the main tool is the following straightforward
consequence of Bolzano’s Theorem:

Theorem (Fixed-Point). Let f be a continuous map of the real line, and let I = [a, b] be
an interval such that f(I) ⊃ I. Then f has a fixed point in I.
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I0 I1

Figure 1: Transition graph for the logistic map

Several consequences of this theorem can be stated using transition graphs. For in-
stance, if the graph contains Ij → Ij, the map has a fixed point in Ij. If the graph contains
a pair of intervals Ik → Il → Ik, then f 2(Ik) ⊃ Ik and then there is a two periodic point
of f in Ik. In general, if the graph contains Ii1 → Ii2 → · · · → Iin → Ii1 , the map f has a
n-periodic point in Ii1

The more spectacular result is consequence of combining these tools with Sharkovskii
Theorem.

Sharkovskii gave a scheme for ordering the natural numbers in an unusual way so
that for each natural number n, the existence of a period-n point implies the existence
of periodic orbits of all the periods higher in the ordering than n. Here is Sharkovskii’s
ordering:

3 ≺ 5 ≺ 7 ≺ 9 ≺ · · · ≺ 2 · 3 ≺ 2 · 5 ≺ · · · ≺ 22 · 3 ≺ 22 · 5 ≺ . . .

· · · ≺ 23 · 3 ≺ 23 · 5 ≺ · · · ≺ 24 · 3 ≺ 24 · 5 ≺ · · · ≺ 23 ≺ 22 ≺ 2 ≺ 1.

Theorem (Sharkovskii). Assume that f is a continuous map on an interval and has a
period p orbit. If p ≺ q, then f has a period-q orbit.

A easy consequence of this theorem is that if a map has a period-3 orbit then it has
orbits of any period. Therefore, if our transition graph contains three intervals Ii1 →
Ii2 → Ii3 → Ii1 the map has a period-3 point, and therefore it has points of any period.

In fact, once we have a transition graph in I0, . . . , In for a map f , one can make an
anlogous construction as the one we have done for the logistic map. We consider the space
of sequences Σn of n + 1 simbols and the shift map in it. The transition graph of f will
tell us which sequences are admissible in Σn. To label which sequences are admissible,
one usually uses the so called transition matrix, a n + 1 square dimensional matrix
where the entry aij is 1 if the transition graph contains an arrow from Ii to Ij, and a zero
otherwise.

It is a known result that if Ak has no zero entries for some k the system has chaos.

3.3 Strange attractor

In general dynamical systems there are attractor sets which have a complicated structure.
The main idea of an atractor, is an attracting set such that the dynamics in it is chaotic.
There exist different definitions in mathematical literature of strange attractors. Here we
put the definition of strange attractor given in [1, 4] for a map f .

Given a map f : M →M , we call an invariant set S ∈M a chaotic strange attractor
if:

• S Is an attractor.
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• There exits a point in S whose orbit is dense in S.

• it has sensitive dependence with respect to initial conditions.

There are other definitions of strange attractors. One of them is based in the concept
of Lyapunov Exponents.

3.3.1 Lyapunov Exponents

For a one-dimensional map f , following [7], we define the Lyapunov Exponent of an
orbit {x1, x2, x3, . . . }, where xi = f i−1(x1) as:

h(x1) = lim
n→∞

ln |f ′(x1)|+ · · ·+ ln |f ′(xn)|
n

.

There exist analogous definitions in higher dimension of Lyapunov Exponents, and some
authors like [7] ask the chaotic strange attractors to have positive Lyapunov exponent.

Other definitions of strange attractors need the concept of Fractal dimension.

3.3.2 Fractal Dimension

There are several definitions of the fractal dimension. For practical purposes, the most
used is the box-counting dimension and is explained in [7].

The idea of the box-counting dimension of a set S in a m-dimensional space, is to
count how many m-dimensional boxes of side-length ε does it take to cover the object S.
For objects in three-dimensional space, we cover with cubes of side ε. The idea is that an
object will have dimension d if the number of boxes we need is of order (1/ε)d, for small
ε. In general, if S is a set in Rm, we would like to say that S is a d-dimensional set when
it can be covered by N(ε) = C(1/ε)d boxes of side-length ε, for small ε . In this way, it
is not required that the exponent d be an integer.

Let S be a bounded set in Rm. To measure the dimension of S, we lay a grid of
m-dimensional boxes of side-length ε over S. Set N(ε) equal to the number of boxes of
the grid that intersect S. Solving the scaling law for the

dimension d gives us

d =
lnN(ε)− lnC

ln(1/ε)
.

If C is constant for all small ε , the contribution of the second term in the numerator of
this formula will be negligible for small ε . This justifies the following definition:

A bounded set S in Rn has box-counting dimension

Boxdim(S) = lim
ε→0

lnN(ε)

ln(1/ε)

when the limit exists.
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4 Numerical Methods

In this work we have studied two real models given by three dimensional equations that
can not be treated analytically. Therefore, we have combined the theoretical knowledge
of Dynamical systems with some numerical methods to understand the dynamics and
mainly the asymptotic behaviour of the solutions.

The first tool needed to find these solutions is a good numerical integrator for ordinary
differential equations.

4.1 Numerical Integrators of odes

Here we will consider the initial value problem:

y′ = f(t, y), y(t0) = y0. (10)

4.1.1 Runge-kutta

The (possibly) most used method to integrate an ode is the classical fourth-order Runge-
kutta method.

The Runge-kutta method for an initial value problem (10), gives the values of the
solution yn = y(tn), with tn = t0 + nh and h is the step of the method as:

yn+1 = yn + 1
6

(k1 + 2k2 + 2k3 + k4)

tn+1 = tn + h

k1 = hf(tn, yn),

k2 = hf(tn + 1
2
h, yn + 1

2
k1),

k3 = hf(tn + 1
2
h, yn + 1

2
k2),

k4 = hf(tn + h, yn + k3).

Thus, the next value (yn+1) is determined by the present value (yn) plus the weighted av-
erage of four increments, where each increment is the product of the size of the interval,h,
and an estimated slope specified by function f on the right-hand side of the differential
equation.

Even if this is a good numerical integrator, the local error at each step is of order O(h5

and the global error is of order O(h4), it is not very fast. The classical way to improve
the accuracy is to use a variable step size using step size control. As we will deal with a
chaotic regime (we are interested in finding a chaotic attractor) the sensitive dependence
respect to initial conditions obliges the step size to be very small to do not loose accuracy.
This makes the method too slow to study the asymptotic behaviour of the system when
it has chaotic behaviour and strange attractors.

4.1.2 The Taylor method

A way to produce numerical integrators of very high order is by means of Taylor expan-
sions. Most of the books in Numerical Analysis in the literature disregarded these methods
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because, to apply it, one has to found high order derivatives, and this is “supously” dif-
ficult. In Stoer Bulish book [?] page 414-415, it is said: “The higher-order methods so
obtained, however are hardly useful, since in every step (xi, ηi) → (xi+1, ηi+1), one must
compute not only f (the vector field), but also the partial derivatives fx, fy, etc.

Nevertheless the dynamical system group in the UB has experts that have developed
a systematic and programmable way to compute this derivative: the so called automatic
differentiation. This makes this method very powerful.

A very good explanation of this method can be found in [6]

Again we will consider the initial value problem (10). The main idea of this method is to
write the unknown y(t) in a Taylor series around tn up to order N :

y(t) = a0 + a1(t− tn) + · · ·+ aN(t− tn)N

y′(t) = a1 + 2a2(t− tn) + · · ·+NaN(t− tn)N−1 + (N + 1)aN+1(t− tn)N

then one can also write the Taylor expansion up to of the right hand side of the equation
up to order N

f(t, y(t)) = b0 + b1(t− tn) + · · ·+ bN(t− tn)N

and these coefficients only depend on a1, . . . aN . Then, the differential equation becomes:

a1+2a2(t−tn)+· · ·+NaN(t−tn)N−1+(N+1)aN+1(t−tn)N = b0+b1(t−tn)+· · ·+bN(t−tn)N

and from this last equation we can find aN+1 = bN/(N + 1).
When one uses a numerical integrator in a ordinary differential equation, one important

point is the step size. The bigger the step the faster the method. The reason is clear, the
number of computations decreases as the size of the step increases. But we need to make
the optimal choice of the step size to perform the minimum number of computations with
the accuracy we want to obtain.

Therefore we need to control the maximum value the step h = (tn+1− tn) can achieve.
In [5] it is shown how to choose in an optimal way, the step size h and the order of

truncation of the Taylor series p to obtain a given accuracy ε and minimize the number
of computations per unit of time.

• A straightforward choice to ensure a good accuracy is

h = ρ(
ε

M
)

1
p+1 , (11)

where ρ is an approximated value of the convergence ratio of convergence of the
Taylor series and p is the order of truncation.

• One can see that the number of computations for unit of time is approximately
given by

φ(p) =
c(p+ 1)2

ρ( ε
M

)
1

p+1

.
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• Minimizing the function φ one gets the optimal truncation value as:

p = −1

2
ln(

ε

M
)− 1

• Once we have the optimal value of p we obtain h from (11):

hmax = ρ/e2

The stimate of ρ is obtained by estimating |an|−1/n for n = p− 2, p− 1, p.
This method has advantages respect to the Runge-Kutta one: mainly when we are in

a part of the phase space where the solution has a big radius of convergence, because this
allows us to use big step size without loosing accuracy getting a fast method. For this
reason, in this work, we will use always this method.

4.2 Other standard numerical tools

In this section we briefly describe some complementary numerical tools we have used to
analyse our models (4) and (1): the numerical differentiation and extrapolation and some
methods for looking for zeros of a map.

4.2.1 Zero finders

In this work we use four different methods to look for zeros of different one and two
dimensional functions: the iteration method, bisection method, Secant method
and Newton method. Each one has advantages and disadvantages depending of the
map, so we will use one or another in different situations of our work. We will have a
function:

F : Rn → Rn

and we look for α ∈ Rn such that
F (α) = 0 (12)

An important issue in these kind of problems is to begin the iteration at a point x0
such that |x0−α| is small enough. This will make the method work faster and, moreover,
will ensure that our method converges to the suitable root α we are looking for, when the
function F has several zeros. As our function will be the Poincaré map of an autonomous
vector field depending on parameters we will use the Theorem of continuous (and differ-
entiable) dependence of solutions with respect to initial conditions and parameters. This
will allows us to use a continuation method with respect to parameters. After a small
variation of the parameter, we will use as the new initial condition the just computed zero
of the function for a value of the parameter nearby.

Sometimes, it will be enough to use the Iteration method, which, consists in building
a sequence Xn+1 = G(Xn), for G = F + Id. If G : B → B is a contraction (|DG(x)| < 1,
∀x ∈ B) one can apply the fix theorem to the function G and this sequence will converge
to the fix point of the function G.
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A very straightforward method for one-dimensional maps, that simply relies in Bolzano’s
theorem is the Bisection method. One needs to find two values a and b with F (a)F (b) <
0 and then build a sequence of intervals

(a, b) = (a0, b0) ⊃ (a1, b1) ⊃ · · · ⊃ (ak, bk) ⊃ . . . ,

We choose (ak+1, bk+1) from (ak, bk), considering ck = (ak+bk)/2. Then we choose the new
interval (ak, c) or (c, bk) depending on F (ak) · F (c) < 0 or F (c) · F (bk) < 0 respectively.

This is a very slow method but its advantage is that is always convergent. We will
often use this method as a first step to get a reasonable approximated value of the root
and then apply a fast method, like the Newton method, to improve its accuracy.

If we are dealing a one dimensional map and computing the derivative is very expensive
one can use as an alternative the Secant method. As it is known the Newton method
approximates the zero of the function F by the zero of the tangent line to F at the point
xk. The secant method instead approximates it by the zero of the secant line to F at the
point xk and xk−1.

xk+1 = xk − f(xk)
xk − xk−1

f(xk)− f(xk−1)
(k ≥ 1).

The Newton method is one of the most used methods to find zeroes of functions due
to its fast convergence, but it only can be used if one has a good enough approximation
X0 of the root. The method gives us a sequence:

Xk+1 = Xk − (DF (Xk))
−1F (Xk) (13)

wich converges to a zero α of F and can be used in any dimension. To use this method
one needs to know the derivatives of the function F . We will use the Newton method
several times in our work. First to compute the time where our solutions intersect a
given section when computing the corresponding Poincaré map. Later to look for fixed
or periodic points of this map. In both cases we will not have analytic expressions of the
map F whose zero we are looking for. Then we need a numerical method to compute the
derivatives of F . This can be numerically expensive because the discretized formulas for
the derivatives are numerically unstable (they always are given by quotients of quantities
which are close to zero). On the other hand we know that Newton method has quadratic
convergence if the Jacobian matrix is not singular or close to singular.

In case we are dealing with a n-dimensional system we will not compute DF−1 in
formula (13). Instead we will solve the linear system

DF (Xk)∆ = −F (Xk)

And then
Xk+1 = Xk + ∆.

We proceed in this way because to compute the inverse are as expensive as solving n
linear systems.
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4.2.2 Numerical Differentiation

To numerically compute the derivative of a function f the simplest method is just to use
its definition

f ′(x) =
f(x+ h)− f(x)

h
+O(h)

or even better

f ′(x) =
f(x− h)− f(x+ h)

2h
+O(h2) = D(h) + a2h

2 + a4h
4 + . . . (14)

The formulas above are quite delicated, numerically speaking: subtracting similar
quantities and quotients by small quantities are a source of lose significant digits and
accuracy. Then we can not choose a very small values of h, to get small error of the
approximations formulas above. Instead we will use extrapolation.

The extrapolation method is a method used to improve approximated formulas,
when one can compute the approximated formula, which has an error of order O(hk),
with different values of the step size h. The method also allows to estimate the constants
in the asymptotic formulas of the error.

Let A(h) be an approximation of A that depends on a positive step size h with an
error formula of the form:

A− A(h) = ahk +O(hk
′
) k′ > k

Using two different step size h and h/t we have:

A = A(h) + ahk +O(hk
′
)

A = A(h/t) + a(h/t)k +O(hk
′
)

(15)

Then multiplying the second equation by tk and subtracting the first equation gives

(tk − 1)A = tkA(h/t)− A(h) +O(hk
′
)

Hence,

A =
tkA(h/t)− A(h)

(tk − 1)
+O(hk

′
)

Which is a better approximation of the expression A.
This process can be repeated to remove more error terms to get even better approxi-

mations, this is called the repited Richardson extrapolation.
We can also obtain the value of the first asymptotic constant of the error: subtracting

the second equation in (15) to the first one one can obtain the constant a:

a ' A(h/t)− A(h)

hk(1− 1/tk)
.

When applying one step of extrapolation to the formula (14) one obtains:

4D(h/2)−D(h)

3
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5 Analysis of the Models

As we said in section 1 in this work we will study two ecological models: The three-species
food chain (1), and the epidemic model SEIR (4).

From the ecological point of view, the main purpose when one studies these models, is
to be able to make predictions and understand the past the present and future behaviour
of the system. Consequently it is fundamental to obtain and understand the attractors of
the system. These sets are the ones where the systems would be with highest probability.
Moreover, the solutions of the system will approach this sets in natural way. Furthermore,
these are the sets which can easily be obtained numerically. Therefore our main purpose
would be how these sets behave when a parameter of the system vary between two valid
ecological values. We will focus on the food-chain model, and we will give a detailed
explanation of this model, but the general scenario is very similar for SEIR model.

We begin by sweeping the parameter space to detect the different qualitative be-
haviour. Lately we will focus on each qualitative different region.

In the three-specie model (1) we will fix all the parameters except b1 ∈ [2, 6.2]. This
parameter is related to the interaction between the species X and Y . We will see that
different values of b1 gives rise to different qualitative behaviour of the system.

One general fact is that the planes x = 0, y = 0, z = 0 are invariant planes. This is a
consequence of the fact that normal vectors to these surfaces ((1, 0, 0), (0, 1, 0), (0, 0, 1))
are orthogonal to the vector field. As consequence the region

{(x, y, z), x ≥ 0, y ≥ 0, z ≥ 0}

is an invariant region. In fact, it has no sense to study regions of the phase space with
negative values of the variables because those have no biological meaning. Therefore,
during this work we have restrict ourselves to the positive region.

5.1 Local behaviour

The system has in general 6 equilibrium points p1 . . . p6 given by:

p1 = (0,
d2

a2 − b2d2
,− d1

a2 − b2d2
)

p2 = (1, 0, 0)

p3 = (
d1

a1 − b1d2
,
a1 − (1 + b1)d1

(a1 − b1d1)2
, 0)

p4 = (x4, y4, z4)

p5 = (x5, y5, z5)

p6 = (0, 0, 0)
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where

x4 =
(1 + b1)a2 + (1− b1)b2d2 −

√
(a2 − b2d2)((1 + b1)2a2 − (4a1b1 + (1 + b1)2b2)d2)

2b1(a2 − b2d2)

y4 =
d2

a2 − b2d2

z4 =
(1 + b1)(a1 − b2d2)− 2a1b1d2 + 2b21d1d2 +

√
(a2 − b2d2)((1 + b1)2a2 − (4a1b1 + (1 + b1)2b2)d2)

2b21d2(b2d2 − a2)

x5 =
(b1 − 1)a2 + (1− b1)b2d2 +

√
(a2 − b2d2)((1 + b1)2a2 − (4a1b1 + (1 + b1)2b2)d2)

2b1(a2 − b2d2)

y4 =
d2

a2 − b2d2

z4 =
(1 + b1)(b2d2 − a2) + 2a1b1d2 − 2b21d1d2 +

√
(a2 − b2d2)((1 + b1)2a2 − (4a1b1 + (1 + b1)2b2)d2)

2b21d2(a2 − b2d2)

We recall that we will take the values of the parameters as

a1 = 5, a2 = 0.1, b2 = 2, d1 = 0.4, d2 = 0.01 (16)

We have written a code which computes the points and the Jacobian J of the vector
field at them. Then using the direct or inverse power iteration method, the fact that
λ1λ2λ3 = det(J) and λ1 + λ2 + λ3 = tr(J) we have computed the eigenvalues for different
values of the parameter b1. In this way we have obtained:

• p1 does not vary with b1, but is not in the positive region and therefore we will not
consider it.

• The point p2 does not vary with b1. It is always a saddle with two negative eigen-
values and a positive one. For instance when b1 = 2 they are: λ1 = 1.266667,
λ2 = −0.01, λ3 = −1.

• The point p3 is in the positive region. It is an unstable focus with two complex
eigenvalues with positive real part, and a positive real one. For instance when
b1 = 2 the point is (0.095238, 0.215420, 0) and the eigenvalues are: λ1 = 0.005237,
λ2 = 0.030913 + 0.544651i, λ3 = 0.030913− 0.544651i.

• p4 is not in the positive region, therefore we will not consider it.

• The point p5 is in the positive region. It is an stable focus with two complex
eigenvalues with negative real part, and a real negative one. At b1 = 2.1 the point
is (0.759062, 0.125000, 13.288677), and the eigenvalues are: λ1 = −0.395013, λ2 =
−0.001687 + 0.114683i, λ3 = −0.001687− 0.114683i. See Figure 2

After b1 = 2.1 the point p5 undergoes a Hopf Bifurcation becoming a saddle-focus
with two complex eigenvalues with positive real part, and a real negative one. At
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Figure 2: Stable focus at b1 = 2.1 before Hopf bifurcation

this Hopf bifurcation a stable periodic orbit γ, of size O(
√
b1 − b∗1) is born around

it, where b∗1 is the bifurcation value. For instance at b1 = 2.2 the eigenvalues are:
λ1 = −0.434119, λ2 = 0.009033+0.108102i, λ3 = 0.009033−0.108102i. See Figure
3

As we will see, this bifurcation is the origin of the transition to chaos through a
period-doubling cascade of the periodic orbit γ.

• The point p6 does not vary, and it is always a saddle with two negatives eigenvalues,
and a positive one.
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Figure 3: Stable periodic orbit at b1 = 2.2 after Hopf bifurcation

Figure 4: Poincare section at x = 0.75 for periodic orbit at b1 = 2.2 and at b1 = 2.3839

5.2 Transition to chaos

In this section we will show how the Hopf bifurcations experienced by the point p5, is the
beginning of a set of bifurcation which will lead the system to a chaotic behaviour and
the birth of the strange attractor.

As we explained in the previous section at b1 = b∗1 a periodic orbit γ appears around
p5. To study the behaviour of γ when varying b1, and also the behaviour of the orbits
near γ, we will use the Poincaré map. By numerical observations we decided to take as a
good Poincaré section (see Figure 4):

Σ = {(x, y, z), x = x∗} x∗ = 0.75

To compute the Poincaré map, we have taken a point p0 ∈ Σ, and we have built
the solution φ(t, p0) using the Taylor method until it reaches again Σ with the same
orientation. To have a accurate approximation of P (p0) we need to have an accurate
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approximation of the time t0 > 0 such that φ(t0, p0) ∈ Σ. To obtain t0 we have proceeded
in two steps:

1. We have extend the solution until a time t such that

(πxφ(t, p0)− x∗)(πxφ(t+ h, p0)− x∗) < 0,

where h step in the Taylor method.

2. Taking either t0 = t or t0 = t + h, we improve the value of the crossing time t0 by
applying the Newton method to solve the equation

πx(φ(t+ h, p0)− x∗) = 0.

As φ is the solution of the ODE (1), we can get the derivative in terms of φ:

πx(φ)′ = πx(φ)(1− πx(φ))− f1(πx(φ))πy(φ)

Obviously, p∗ = γ ∩ Σ is a fixed point of the Poincaré map. If γ is a stable periodic
orbit, the point p∗ is a stable fixed point of the Poincaré map. Nevertheless, as we want
to detect the bifurcations we need a numerical method to compute the eigenvalues of
DP (p∗). We use the numerical differentiation and extrapolation explained in section 4.2.
For instance for b1 = 2.2 the point is

p∗ = (0.127731729624708, 12.996965239079815)

and the eigenvalues are

λ1 = −0.000000263444777 λ2 = −0.066970693318373

Next step is to find several period-doubling bifurcations of the periodic orbit γ. As
we will work with the Poincaré map, we will look for values of b1 such that one of the
eigenvalues of DP (p∗) becomes −1, in fact it will be λ2.

To get this value of b1 we proceed as follows:

• Increase b1 = b1 + ∆b1.

• Compute the new fixed point iterating the map.

1. If we are far away from bifurcations these iterates converge fastly to the new
fixed point.

2. If we approach the bifurcation value, as the fixed point loses stability, the
iterates do not converge to the new fixed point. Therefore what we do is to
apply Newton method, to get it.

• We compute the eigenvalues of de Jacobian of the Poincaré map, that in this case
will have modulus less than 1.

31



When λ2 crosses the value −1, we have already passed the bifurcation value, b11 where
the period-doubling occurs. To improve the accuracy of the value we apply the Secant
method to solve the equation

1 + tr(J(b1)) + det(J(b1)) = 0

using the secant method.
Obviously at every step of the secant method, we have to find the fixed point of P , by

combining iteration and Newton.
Proceeding in this way, we have obtained the first period-doubling bifurcation value

at b1 ' 2.290883230232997 In Figure 6 we show the two periodic orbit which arises at
this bifurcation.

We find the next period-doubling bifurcations applying the same methodology to the
maps P 2, P 4, etc. In this way we have found the following bifurcation values:

• b1 = 2.290883227570100 period 2

• b1 = 2.378002203462342 period 4

• b1 = 2.390795195220854 period 8

• b1 = 2.393734238320441 period 16

• b1 = 2.393800222850270 period 32

The previous method has been designed to get a quantitative and accurate information
of the successive bifurcation values, nevertheless there is a faster way to realise that this
bifurcations take place. We plot the classical bifurcation diagram: in the x-axis we plot
the parameter b1 and in the y-axis we plot the second component of the stable periodic
point, obtained after a large number of iteration of the Poincaré map. To avoid the
transition behaviour we do not plot the points until we get around 15000 units of time
in the integration process. One can see this bifurcation diagrams in Figure 5. Looking
at this figure one can also see that after the period-doubling cascade we have studied,
other period-doubling cascades occur. For instance as b1 decreases approximately from
2.55 to 2.45 there is a period-doubling cascade that seems to meet with the first one. In
the picture also appear other cascades beginning with a different period.

Looking at the bifurcation diagram, it seems to appear a bifurcation cascade which
ends in an strange attractor at b1 = 3. Moreover, integrating the system for near values
the set of periodic orbits seems to have the shape of the strange attractor that appears
after this (last?) bifurcation cascade (see Figure ??).

Finally we have computed the Feigenbaum constant using its definition (8) and the
best result computed is: 4.670999

That is not so accurate value as in the logistic case, but in this case the problem is
quite more dificult, because in this case the solution have to be numerically integrated.
In addition, as we will explain later, the Jacobian matrix is ill-conditioned because it has
a eigenvalue very close to zero and also all bifurcations are closer to each other than in
the logistic case, making the significant digits to be out of our precision control.
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Figure 5: Bifurcation diagram for Poincaré map (plotting y)

Figure 6: First period-doubling bifurcation, b1 = 2.28, b1 = 2.29, b1 = 2.3

Figure 7: Periodic orbit corresponding to a 3-periodic point of the Poincaré map (b1 =
2.93)
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Figure 8: High-periodic orbit takes the shape of Strange Attractor (b1 = 2.96)

Figure 9: Strange atractor

5.3 Strange Attractor

In this section we will numerical study the Strange Attractor the system has for b1 = 3
after the period doubling cascades. The global analysis of a strange attractor is quite
difficult. Even to have rigorous evidences of its existence is quite complicated due to the
fact that it is easy to confuse it with a set of periodic orbits (of very high period). More-
over, to deal with a three dimensional system makes the graphic analysis very difficult.
Therefore we will use some known techniques which allow us to find insides working with
a one dimensional map: the so called transition graphs. The results obtained studying
this one dimensional system can be translated to understand phenomena which occur in
the real three dimensional Dynamical System we are studying.

A first reduction of the dimension of the system can be done by considering again
a suitable Poincaré map. After numerical observations it seems convenient to choose a
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Figure 10: Poincare section at z = 9.3 at b1 = 3.0

Poincaré section (see Figure 10):

Σ = {(x, y, z), z = 9.3}

The results of this map are in Figure 11
Looking at Figure 10 one can see that the Poincaré map is very contracting in one

dimension, that is, one of the eigenvalues of its Jacobian is very close to zero. This has
been a dificulty in applying the different methods because the derivative of P is close to
singular. One can check this fact the well-known formula ([9]):

detDP (γ(0)) = e
∫ T
0 divX(γ(t))dt

On the other hand, this property makes this Poincaré map very suitable to be studied

using the methodology for one-dimensional maps called transition graph.
Now, to get a transition graph for this map, we proceed as follows:

If our Poincaré map P sends the point (xn, yn) to the point (xn+1, yn+1) we define the
map f as the one dimensional map such that f(xn) = xn+1 and we plot the graphic of
the map f . A plot of this map is given in figure Figure 12. Looking at this figure one
can observe the following facts:

• f : I → I, I = [0.946, 0.975]

• We choose a partition of I = I1∪I2∪I3, with I1 = [0.946, 0.957], I2 = [0.957, 0.963],
I3 = [0.963, 0.975], and their transition graph is given in Figure 13 (see alsoFigure
12)

• The transition matrix for this graph is:

M =

 0 0 1
1 1 0
1 1 1
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Figure 11: Poincare map (section at z = 9.3 at b1 = 3.0)

Figure 12: Poincaré map xn+1 = P (xn)
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Figure 13: Transition graph for Poincaré map xn+1 = P (xn)

As a consequence we know:

1. There is a fixed point of f in I2 and another in I3 (see Figure 12. Later we will
choose a new set of smaller intervals that will give us extra information.

2. There is a two periodic orbit in I1 whose orbit moves between I1 and I3.

3. As the graph shows that f 3(Ij) ⊃ Ij, j = 1, 2, 3 and f(I1) ∩ I1 = ∅ there is a three
periodic orbit that moves among the three intervals.

Furthermore, it is easy to see that M2 has no zero entries and therefore we know that
the system has a transitive orbit.

The set of intervals we have chosen, it is good in the sense that it shows that there
exist orbits of any period and also transitive orbits, but on the other hand, this choice
does not show some important information. For instance, since the map crosses y = x
twice in I3, we know that there are two fixed points, but the transition graphs only point
out one of them, in such interval. Consequenly could be better to choose a finer partition
of I, for instance usually it is a good idea to choose the relative extrems.

Proceeding in this way we get the new following intervals:

Ĩ1 = [0.946, 0.951], Ĩ2 = [0.951, 0.957], Ĩ3 = [0.957, 0.963],

Ĩ4 = [0.963, 0.97], Ĩ5 = [0.97, 0.975]

See Figure 14 and Figure 15
With this new graph we can see, for instance, that there are two fixed points in I3

and that there is a total of three fixed points. The reason is that we have divided I3 in
Ĩ4 and Ĩ5 and it is verified that f(Ĩi) ⊃ Ĩi for i = 3, 4, 5. Moreover, we have not lost the
information about the 3-periodic orbit because f 3(Ij) ⊃ Ij, j = 1, 4, 5, and f(Ĩ1) = Ĩ5.

In addition, this new partition allows us to use symbolic dynamics to study it. In this
case not all the words are admissible,

37



Figure 14: Transition graph for Poincaré map xn+1 = P (xn)

I4

I2I1

I3I5

Figure 15: Transition graph for Poincaré map xn+1 = P (xn)
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Figure 16: Stable focus

For the SEIR model a similar study can be done. The mecanism of transition to chaos
is very similar: first a Hopf bifurcation, which creates a periodic orbit, then a cascade of
period-doubling bifurcations of this periodic orbit, and later the appearance of a strange
attractor if the system.

In Figure 16 we show the stable focus, then in Figure 17 we show the stable periodic
orbit born in the Hopf bifurcation. Figure 18 shows the strange attractor of the system.
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Figure 17: Stable periodic orbit

Figure 18: strange atractor
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6 Chaos in real ecological systems

In this section we focus in the arguments the authors of the book [1] use to prove the
existence of Chaos in real ecologic systems. As we already explained in the introduction,
the use of mathematical models, as well as numerical simulation and other techniques
coming from Dynaimcal Systems, have made apparent the fact that these systems can
behave as deterministic chaotic systems.

Nevertheless, some groups of specialists in the area, still think that chaotic systems
do not exist in nature by several reasons:

1. All the experiments done in labs with those species that are supposed to have chaotic
behaviors seem to show the opposite behavior.

2. There is a mathematical-ecological argument: If the evolution of most of species is
governed by deterministic chaos, as they pass though all the possible states of the
systems, they should also become arbitrarily close to extinction. Therefore, if at
those moment the cited species suffer some external pressure, they should disappear.
This should be the cause of extinctions of a lot of species, but this is not the case.

3. There is a systematic doubt about the validity and the robustness of the mathe-
matical models used. This has been often used as an evidence of that this chaotic
behavior is a just ”rare” property of the mathematical models themselves.

The two first objections can be overcome by using what is called the space-time chaos.
In most of the models there is an implicit assumption: it is admissible to eliminate the
space as a variable; the space makes to increase the number of individuals proportionally
to the increasing of the space. But adding degrees of freedom to a complex and nonlinear
system, as it is for instance the interaction of several populations, can lead to unsuspected
behaviors.

The authors talk about experiments which results that show that, adding the space
to a system leads to an increasing of its complexity. This can be, with high probability,
one of the causes why species in nature, without space limitations, have a demographical
evolution that seems governed by the deterministic chaos. But they do not show this
chaotic behavior in more reduced spaces like a lab.

The same argument can be used for the second one. As we already notice, introducing
time as a variable also increases the different qualitative dynamics in a system, and can
make these dynamics more complex in general. But sometimes, the space variable can also
have a stabilizing effect, is what the authors call the ”chaotic stability”. The meaning
of this term can be understood as follows: If there is space between several groups of
individuals of the same species, each can behave, up to certain point, as an independent
system, having its own chaotic behavior and can reach some level close to extinction.
Nevertheless at the same time other groups of the same species can be in a different state
of the chaotic system, in such a way that sum of boths gives enough individuls to make
the species survive.
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The last objection is more difficult to refute. Nevertheless, there are other ways to
prove or show signs of the existence of Chaos in natural systems and make this argument
useless

En aquest sentit existeix un mètode molt interessant per a la reconstrucció de conjunts
atractors d’un sistema, sobre el qual només es coneix la sèrie temporal d’alguna de les
seves variables. S’anomena el mètode dels delay plots, utilitza el teorema de Withney,
desenvolupat per Takens:

Following wikipedia (http : //en.wikipedia.org/wiki/Takens ′ theorem) :
A delay embedding theorem gives the conditions under which a chaotic dynamical

system can be reconstructed from a sequence of observations of the state of a dynamical
system. The reconstruction preserves the properties of the dynamical system that do not
change under smooth coordinate changes, but it does not preserve the geometric shape
of structures in phase space.

Takens theorem is the 1981 delay embedding theorem of Floris Takens. It provides
the conditions under which a smooth attractor can be reconstructed from the observations
made with a generic function. Later results replaced the smooth attractor with a set of
arbitrary box counting dimension and the class of generic functions with other classes of
functions.

Delay embedding theorems are simpler to state for discrete-time dynamical systems.
The state space of the dynamical system is a ν-dimensional manifold M . The dynamics
is given by a smooth map

f : M →M

Assume that the dynamics f has a strange attractor A with box counting dimension
dA. Using ideas from Whitney’s embedding theorem, A can be embedded in k-dimensional
Euclidean space with

k > 2dA

That is, there is a diffeomorphism ϕ that maps A into Rk such that the derivative of ϕ
has full rank.

A delay embedding theorem uses an ”observation function” to construct the embedding
function. An observation function α must be twice-differentiable and associate a real
number to any point of the attractor A. It must also be typical, so its derivative is of full
rank and has no special symmetries in its components. The delay embedding theorem
states that the function

φT (x) =
(
α(x), α (f(x)) , . . . , α

(
fk−1(x)

))
is an embedding of the strange attractor A.
There is a very interesting method to reconstruct attractors of a system, when we only

know a temporal series of one of its variables. It is called the Delay plots method, and
is a method based on Witney theorem, that F. Takens developed in the 80ts.

Following wikipedia (http : //en.wikipedia.org/wiki/Takens ′ theorem) :
A delay embedding theorem gives the conditions under which a chaotic dynamical

system can be reconstructed from a sequence of observations of the state of a dynamical
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system. The reconstruction preserves the properties of the dynamical system that do not
change under smooth coordinate changes, but it does not preserve the geometric shape
of structures in phase space.

Takens theorem is the 1981 delay embedding theorem of Floris Takens. It provides
the conditions under which a smooth attractor can be reconstructed from the observations
made with a generic function. Later results replaced the smooth attractor with a set of
arbitrary box counting dimension and the class of generic functions with other classes of
functions.

Delay embedding theorems are simpler to state for discrete-time dynamical systems.
The state space of the dynamical system is a ν-dimensional manifold M . The dynamics
is given by a smooth map

f : M →M

Assume that the dynamics f has a strange attractor A with box counting dimension
dA. Using ideas from Whitney’s embedding theorem, A can be embedded in k-dimensional
Euclidean space with

k > 2dA

That is, there is a diffeomorphism ϕ that maps A into Rk such that the derivative of ϕ
has full rank.

A delay embedding theorem uses an ”observation function” to construct the embedding
function. An observation function α must be twice-differentiable and associate a real
number to any point of the attractor A. It must also be typical, so its derivative is of full
rank and has no special symmetries in its components. The delay embedding theorem
states that the function

φT (x) =
(
α(x), α (f(x)) , . . . , α

(
fk−1(x)

))
is an embedding of the strange attractor A.
Takens theorem shows that it is enough to have a temporal series of one of the variables

of the system to reconstruct the rest of the needed information to rebuild the attractor.
We just need to work with one variable and replace the other variables by the resulting
time τ -delayed value of the chosen variable that we know by the temporal series.

For intance, if we have a n-dimensional dynamical system and we only know measures
of a temporal series of a certain variable x(t), we will build a phase space given by the
variables:

{x(t), x(t− τ), x(t− 2τ), . . . , x(t+ (n− 1)τ)}

Using this method in cases were the temporal series comes from real data one has
rebuild an attractor that has the structure of an strange attractor. Of course, it is
important to avoid the possible noise coming from wrong data, wrong measurements,
or other factors that have no relation with the presence of an strange attractor in the real
system. To this end, the used tool is the Poincaré map, also very used during this work.
Moving the Poincaré section transversally to the orbits one can obtain the points given
by the orbits when they meet the section. Looking at the ”picture” this map defines a
deterministic behavior, the same happens with the system. On the contrary, when the
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system is chaotic, one can just see a kind of ”cloud” of disordered points. Obviously, this
last observation is not a rigorous proof of the existence or not of chaos, but it is a good
way to obtain some evidence of it.
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