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Abstract. We present an algorithm for the computation of reducible invariant tori of discrete dynamical systems
that is suitable for tori of dimensions larger than 1. It is based on a quadratically convergent scheme
that approximates, at the same time, the Fourier series of the torus, its Floquet transformation,
and its Floquet matrix. The Floquet matrix describes the linearization of the dynamics around
the torus and, hence, its linear stability. The algorithm presents a high degree of parallelism, and
the computational effort grows linearly with the number of Fourier modes needed to represent the
solution. For these reasons it is a very good option to compute quasi-periodic solutions with several
basic frequencies. The paper includes some examples (flows) to show the efficiency of the method
in a parallel computer. In these flows we compute invariant tori of dimensions up to 5, by taking
suitable sections.
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1. Introduction. Let us consider a discrete dynamical system that depends on time in a
quasi-periodic way,

(1) - f(x,0), }

0+ w.

| &I
|

We assume that z € R?, § € T? and f is a smooth diffeomorphism. The components of
the frequency vector w are assumed to be linearly independent over the rationals, that is,
(k,w) = kiwy + -+ + kqwg # 0 for all k € Z4\ {0}. Note that, if there exists a k € Z¢ such
that <l_c, w> = 0, then one of the components of  can be expressed as a linear combination of
the remaining ones so that the new expression for (1) has the same dynamics as before but
the new set of angles has dimension d — 1.

Note that, due to the translation in the variable 6, the dynamical system (1) cannot have
fixed points or periodic orbits. The simplest invariant set for this system is an invariant torus
parametrized by the angle 8: we will say that (1) has an invariant torus of dimension d, with
frequency vector w, if there exists a smooth injective map u : T — R”™ such that

(2) u( +w) = f(u(),8) Ve T
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Systems of the form (1) appear in many applications. For instance, it is quite common that
the first (simplified) model of a physical situation is an autonomous system, and that successive
improvements are based on adding perturbations that depend on time in a periodic way. If
they have incommensurable periods, then the resulting perturbation is quasi-periodic and the
model (after a suitable section in the case of a flow) takes the form of (1). Good examples come
from Celestial Mechanics, where the effect of perturbing bodies can be modeled as the sum of
periodic perturbations with incommensurable periods (see, for instance, [24, 25, 22, 23]).

The knowledge of these solutions (and their stable and unstable manifolds) is a key step
in the study of the dynamics of these systems. As mentioned above, they are the simplest
solutions, and, in this sense, they play the same role as the equilibrium points in autonomous
systems [14].

In this paper we focus on the computation of invariant tori of maps, focusing on the case
in which the dimension of the tori is larger than 1. As we will see in the examples, the method
can be used to look for invariant tori of flows by means of a suitable Poincaré section. Let us
start by introducing the main concepts involved in this problem.

As for fixed points or periodic orbits, it is natural to consider the linearized normal be-
havior around a torus, since it provides the linear approximation to its stable, unstable, and
center manifolds. If A(#) € R™ denotes a small displacement with respect to a point u(f) on
the torus, we have that

f(w(®) + 1(6),0) = f(u(8),6) + Dy f (u(8),0)(8) + O(||h][*).

If we define A(f) = D, f(u(f),0) and we rename h as x, the linearized normal behavior around
the torus is described by the following linear skew-product:

z = Af)z,
(3) 0 = 0+w. }

Definition 1.1. The system (3) is said to be reducible if and only if there exists a change
of variables of the form z = C(0)y such that (3) becomes

r = Br,

0 = 0+ w, }
where the matriz B = C~1(0 + w)A(0)C(0) does not depend on 0. The matriz B is called the
Flogquet matriz, and z = C(0)y is the Floquet transformation.

Note that the dynamics of reducible systems is easily described by computing the (eigen-
values of the) reduced Floquet matrix. Hence, the linear stability of the torus is completely
described by (the eigenvalues of) this Floquet matrix.

Reducible tori are quite common in applications. For instance, it is well known that KAM
tori of maximal dimension are always reducible. Most of the lower dimensional tori found by
means of KAM schemes are also reducible (see, for instance, [16, 41, 35]). However, there
are some KAM results that do not require reducibility (the first result in this direction is
[3]). For a discussion on the role of the reducibility condition, see [4]. A discussion about the
mechanisms behind a reducibility loss can be found in [27]. Some examples of reducible tori
in astrodynamics can be found in [9, 30, 26].
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In this work we describe a numerical procedure to compute reducible invariant tori and
their Floquet matrix. The method is very suitable for a parallel computer, and we will explain
our implementation for a cluster of PCs and how it scales with the number of processors. As
mentioned before, this method can also be applied to flows by using a suitable Poincaré
section. Note that a suitable section of the flow reduces the dimension of the computed torus
and, as we will see, it also significantly reduces the number of computations compared to a
similar method for flows.

There are several methods in the literature for the computation of two dimensional in-
variant tori of flows (or, equivalently, invariant curves for maps); among them we men-
tion [13, 14, 46, 12, 40, 8, 47, 9, 15, 43, 44, 28, 1, 42, 29]. There are also numerical meth-
ods to approximate the Floquet matrix and Floquet transformation of linear skew-products;
see [30, 50]. We stress that dealing with tori of dimensions larger than 2 for flows (or larger
than 1 for maps) is more difficult, essentially because of the increase of the computational
effort with the dimension of the torus. A recent advance in computational power comes from
the increase in the number of processors available, either in a single computer or through a
fast network. For this reason it is quite natural to focus on parallelization issues. A possibility
is to implement the same algorithms as before, but taking advantage of a parallel environ-
ment (for an example, see [10]). Here we focus on an algorithm that requires the torus to be
reducible and that offers a high degree of parallelism.

Our algorithm is derived from the proof of the main theorem given in [35]. Although the
results of [35] are for flows (not necessarily Hamiltonian flows), they can be easily translated
for maps. In our approach, we represent the parametrization u(f) of the torus by means of
Fourier series, and we apply a Newton method to look for these Fourier coefficients. It turns
out that, if the torus is reducible and we know an approximation to the reducing change
and the Floquet matrix, the linear system that appears at each step of the Newton process
can be written in block diagonal form (or even in diagonal form!), which is a huge reduction
in computational effort. Therefore, here we try to compute not only the torus but also the
Floquet reduction.

As mentioned above, one of the main issues we have addressed here is parallelization.
When computing invariant tori of dimensions larger than 1, computing resources usually
becomes the main constraint. The method considered here allows for a high degree of paral-
lelism, especially in the parts with higher computation. This includes the evaluation of the
map and its differential and the solution of all the linear systems. We have implemented this
method to run on a cluster. The coding has been done in ANSI C, with calls to the PVM
library for the communications. We include several examples showing the performance of our
implementation. A preliminary version of this work can be found in [31].

One of the main drawbacks of this approach is that not all the tori are reducible (for
concrete examples, see [6, 30, 27]). However, reducibility is quite common in many situations,
and, as we show here, taking advantage of it can allow huge savings in computer time and
memory.

The main difference between this work and previous papers that deal with the computation
of invariant tori is that here we focus on the computation of tori of dimensions larger than 1
for maps (i.e., larger than 2 for flows). In fact, we compute invariant tori of dimensions up to 5
for flows, with accuracies between 10~ and 10~'2, depending on the example. The numerical
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approximation of these tori is very difficult, due to the huge number of computations required.
There are almost no papers in the literature dealing with the computation of tori of dimensions
larger than 2 with this level of accuracy, so it is very difficult to make comparisons with other
methods. Among them, we cite [21] (reprinted in [23]), which contains a calculation of a four
dimensional torus of a flow with quite low accuracy (about 10~*). Moreover, [11] contains some
computations of tori of dimension 2 for maps, although there is no mention of the accuracy.
An alternative procedure to compute higher dimensional tori close to a previously computed
two dimensional torus of a flow is to compute a high order normal form near this torus (see
[19]); the main inconvenience of this procedure is that it is only valid in a neighborhood of the
initial torus (the case of invariant tori of dimensions up to 3 for flows around a periodic orbit
can be found in [18]). A specific method for close to integrable Hamiltonian systems can be
found in [39]; this method reproduces the classical Kolmogorov proof of the KAM theorem,
and it is used to approximate a four dimensional torus for the Sun-Jupiter-Saturn system.

In this paper we focus only on nonautonomous systems (2), and we look for invariant
tori parametrized by the forcing angle §. In a forthcoming paper [32] we will show how this
method can also be used for autonomous systems,

z=f(x), zeR"

where the frequency of the torus does not appear explicitly.

The paper is organized as follows: Section 2 contains the description of the method,
section 3 discusses the implementation in a parallel computer, and section 4 contains some
examples to illustrate the method.

2. The main iteration. We will assume that there exists an invariant torus for (1), that
is, that there exists a smooth function u : T — R™ verifying (2). The numerical method
is based on a Newton iteration, with quadratic convergence. Therefore, it needs an initial
approximation to the desired torus. For the present moment, and to simplify the presentation,
we will simply assume that such an approximation is available. In the examples we will discuss
some possibilities for deriving this initial approximation.

Let ||.]| be a norm over R”, and, if u : T¢ — R™ is a smooth function, we use the standard
notation ||u||oo = supy ||u(f)||. We assume that we have a parametrization xq : T — R™ such
that, if we define

(4) Yo(0) = zo(0 +w) — f(z0(0)),

then ||yolloo is small. We will denote this as ||yo|leo ~ €.

We also assume that we know an n x n matrix Cy(6) that is also a good approximation
to the Floquet transformation. This means that the matrix Cy ' (6 + w) D, f(20(6), 0)Co(0) is
close to a constant matrix By, or, in other words, if we denote

(5) Qo(0) = C; M0 + w) D, f(20(0))Co(#) — Bo,

what we are assuming is that ||Qpllco = €.
In one step of the iterative procedure, we want to compute a new approximation xi to
the torus, a new approximation ' to its Floquet change, and a new approximation B to its
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reduced matrix, such that the new “remainders”

(6) y1(0) = 21(0 +w) — f(21(0)),
(7) Q1(0) = C7 MO +w)D, f(21(0))C1(0) — By

are of second order with respect to the previous ones, that is, ||y1 s & €2 and [|Q1]|o0 = 2.

In a practical implementation of the method we will use truncated Fourier series to rep-
resent the approximations to the torus and the Floquet change. For simplicity, we will first
describe it using infinite series. The details of the representation in truncated Fourier series
are discussed in section 3.1.

2.1. On the hypotheses. Asmentioned before, the method is based on a proof of existence
of such tori. Here we discuss the role of these hypotheses and how they affect the convergence
of the numerical method.

A first hypothesis refers to the smoothness of the map. It is quite common to require
analyticity, since it simplifies the proofs and it is enough for most of the applications. For
these reasons, we will assume that the map (1) and the functions z¢() and Cy(#) giving the
initial approximations to the torus and to the Floquet change are real analytic.

A second hypothesis is a Diophantine condition on the frequency vector w and the eigen-
values Aq,..., A, of the matrix By: we assume that there exist real constants ¢ > 0 and
v > d — 1 such that

Cc

(8) |eXP(<k‘aW>i)_/\j|>W vk e ZT\{0}, j=1,....n,
s
(9) exp((k,w) 1) - 32 >ﬁ Vkezd\ {0}, jl=1,...,n,
where “i” denotes the complex unit. It is clear that condition (8) is always satisfied if all the

eigenvalues \; have moduli different from 1, and that (9) is always satisfied if all the eigenvalues
have different moduli. If there are eigenvalues with modulus 1 and/or eigenvalues with the
same modulus, (8) and (9) may still hold (for a general reference, see [37]). The roles of these
two conditions are different. When (8) does not hold, in the conservative case the torus is
generically destroyed (see [49]). In the dissipative case, the torus suffers a differentiability loss
(see [7]). When, during a continuation process, a torus approaches a failure of condition (8),
methods based on a Fourier series representation of the torus require more and more Fourier
modes to achieve a given accuracy.

Condition (9) has a more technical role: it is required to obtain reducible tori, but its
failure is not related to the destruction of the tori. A study of the role of (9) along a family of
invariant tori can be found in [4], where the dynamical effects of the failure of this condition
are studied. Here, we need condition (9) to compute the Floquet transformation that reduces
the linearized flow along the torus to a constant coefficients matrix. So, when (9) is nearly
violated, the number of Fourier modes used to represent this Floquet transformation increases.

As we will see in the next two sections, the iterative method is based on computing correc-
tions for the approximations to the torus and the Floquet transformation. These corrections
are obtained by solving a linear equation that comes from the linearization of the problem.
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As usual, this equation is solved by expanding in Fourier series with respect to #. Then,
the coefficients of the Fourier series of these corrections contain the divisors exp((k,w) i) — A;
(for the torus) and Ajexp(i(k,w)) — A¢ (for the Floquet change). Hence, we not only need
that these values are different from zero but that they cannot get too close to zero when |k|
increases (k is the index of the Fourier expansion), because this could destroy the convergence
of these series. This is the so-called small divisors problem.!

The last hypothesis is a nondegeneracy condition. At each step of the iterative process,
the approximation to the reduced Floquet matrix B changes, and so do its eigenvalues. This
means that asking for conditions (8) and (9) at the beginning is enough for the first step of the
iterative process, but it does not guarantee that they are satisfied for the following steps. To
deal with this situation, it is common to ask that the eigenvalues A; depend on parameters.
Then, playing with the parameters, one can recover properties (8) and (9). This allows us to
show that, for a (Cantor) set of positive Lebesgue measures of values of the parameters, these
conditions are satisfied in all the steps and the proof can be completed.

For more details on these topics, we suggest the general works [5, 38, 45] and references
therein.

In principle, to be sure that the method will converge, one should check all the condi-
tions of the theorems, including that the value € that measures the accuracy of the initial
approximation is small enough. As we will apply only a finite number of iterations of the
method, we can check for the conditions at each step. In particular, for the range of consid-
ered Fourier coefficients (i.e., the range of indices k) we check if the values |exp((k,w) i) — A,
and |\; exp(i (k,w)) — A¢| are very small. If so, the program stops with a message. The error
due to the use of truncated Fourier series is discussed in section 3.2.

2.2. Correcting the approximation to the torus. We assume that we know an approxi-
mation to the torus, zg, and an approximation to its Floquet transformation, Cy, and to its
Floquet matrix, By. If we define yy and Qg as in (4) and (5), then we are assuming that
llyolloo and [|Qollco are of order e (here £ denotes a small parameter). To simplify notation,
we write this as ||yo||ec & € and [|Qollcc &~ €. The first step of the iteration is based on the
following property.

Lemma 2.1. Let \1,..., )\, be the eigenvalues of By, and we assume that they satisfy the
Diophantine condition (8) for some constants ¢ > 0 and y > d. Let us define g(0) = —Cy* (0+
w)yo(8). Then, there exists a function u : T* — R™ satisfying

(10) u(f +w) = Bou(f) + g(6),
and such that, if £1(0) = xo(0) + Co(8)u(0) and y1 is defined as in (6), we have that
[

Proof. Writing x1(0) = xo(0) + h(#), we can use the smoothness of f to look for a linear
approximation to h as

y1(8) = 2o(8 + w) + h(8 +w) — f(w0(6)) — Dy f(x0(8))A(8) + O(|1]?).

If all the eigenvalues have modulus different from 1, and there are no two of them with the same modulus,
these divisors can be bounded from below by a constant, and the study becomes much simpler. See, for
instance, [2].
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We look for an h satisfying
(11) h(8 +w) = Dy f(20(0))h(0) — yo(0).

If we can find such an h, with a norm of the same order as yyg, it is clear that we will have
ly1lleo & €2. To solve (11), we apply the transformation h() = Cy(#)u(f) to obtain

(12) u(f +w) = (Bo + Qo(0))u(f) + g(b),

where Qo has been defined in (5) and g(f) = —Cy (0 + w)yo(0). Tt is easy to check that, to
get a remainder y; of order £2, it is enough to compute an approximate solution of (12) with
an error of order 2. Therefore, since it is enough to compute v with an accuracy of order ¢,
we drop ()¢ and we focus on (10).

To see that (10) has a solution, we expand u and g in Fourier series. Although it is usual
in theoretical works to expand in complex series, here we expand in real Fourier series. The
reason is that we have used real expansions in the computer programs. Hence,

ap :
9(0) = 3 + > akcos (k,0) +> by sin (k,0)

k40 k40
u(f) = % + Zak cos (k,0) + Zﬁk sin (k, 0) ,
k#0 k#0

where (k,0) = k1601 + --- + kq04. If we plug these expansions into (10), it is not difficult to
check that the unknown Fourier coefficients oy, 8r must satisfy the equations

(674} ag
Id— By) X0 =%
( d 0) 2 97
(13) (B2 — 2cos (k,w) By + Id)ay, = (cos (k,w) Id — By)ay, — sin (k, w) by,

(B2 —2cos (k,w) By +1d) B, = (cos (k,w) Id — Bo)by, + sin (k,w) ay.

The eigenvalues of the matrices B(()k) = B2 — 2cos (k,w) By + Id (k # 0) are of the form

A2—2cos (k,w) A+1 for A € Spec (By), which implies that Bék) is invertible if all the eigenvalues
of By are different from exp(+ (k,w)1). For the convergence of the series we use condition (8)
to show the analyticity of u in a subset of the analyticity domain of g in the same way it is
done in [35] or [38]. [ ]

2.3. Correcting the approximation of the Floquet transformation. The linearized flow
around the initial approximation is given by

i Dy f(zo(0))z, }

SRS
|

0+ w.
We have an approximation for its Floquet change and the reduced Floquet matrix, Cy(6) and

By, satisfying (5) with ||Qo||eo = €. After the previous step, we have a new approximation to
the solution, z1, and we want to find a new transformation C1(#) and a new reduced matrix
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B such that (7) is satisfied with ||Q1]|ec ~ €2 (this situation has already been considered in
several places; see [2, 34, 33]). Let us introduce the matrices R and B as

R(0) = Cy'(0 +w)Dyf(x1(8))Co(6) — Bo,

14
(14) Bi = By + Avg(R),

where Avg (R) denotes the average of the map 6 — R(6), that is,

.Avg(R)::z§%yzj§dIMO)d&

Lemma 2.2. Let Ay, ..., An be the eigenvalues of By, and we assume that they satisfy the
Diophantine condition (9) for some constants ¢ > 0 and v > d. Let us define R(0) =
R(0) — Avg (R). Then, there exists a matriz valued function H : T? — R™ ™ satisfying

(15) H(0 +w)B, — BiH(0) = R(6)
and such that, if C1(0) = Cy(0)(Id + H(0)), the matriz Q1 defined as in (7) satisfies
Q1] ~ 2.

Proof. We look for a new approximation to the Floquet transformation, e-close to the
previous one,

(16) C1(0) = Co(0) (Id + H(0)),

where H (6) denotes a matrix with norm of order e. The new transformation z = C7(#)z must
reduce the linear skew product

(17) 0 = 0+w 1 }
to the form

2= (Bi+@i0)-
(18) 0 = 6 —Flw, 1 }

Q1 being a matrix with norm of order 2.
Let us introduce the matrices R and Bj as in (14). Applying the transformation z =

Co(0)y to (17), we obtain
= (Bl + E(G)) Y, }

19
(19) YN

Q)

where R(0) = R(0) — Avg (R(9)). Now, if we denote a near identity transformation as

y=Id+H())u
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(H is supposed to be small), and we apply it to (19), we obtain

= (d+ H(O+w) ™" (B1 + E(e)) (1d + H(9)) u, }

N

(20)

|

= 0+ w.

We are interested in reducing (20) to order 2. Note that (I + H(# 4+ w))~" can be approxi-

mated by
Id+H@O+w) '~ T—-H(O+w),

with an error of O(||H||?). This means that (20) can be written as

i = (31—H(9+w)Bl+BlH(9)+E(9)+O(||H||2)) u,
0 = 0+ w.

Hence, if H(0) satisfies (15), it is clear that the transformation (16) reduces (17) to the form
(18).

To show that (15) has a solution, we expand H and R in complex Fourier series (although
for the computations we will use a real expansion, as will be discussed later). Therefore, we
denote B

H(0) =) Hyexp(i(k,0), R(0) =) Riexp(i(k.0)),
k k0
and we insert these expansions into (15). Equating for each k& we have that, for & = 0, it is
enough to take Hy = 0. For k # 0, Hy has to satisfy

(21) Hy B exp(i(k,w)) — B1Hy, = Ry.

For each k # 0, let us define the linear map Ly, acting on the space of constant matrices,
as Ly(H) = HB; exp(i (k,w)) — B1H. Without loss of generality, we can assume that Bj is
already in diagonal form, By = diag(\1,...,\,). Then, it is not difficult to show that

ker(Ly) = {0} <= there exist j, ¢ such that \; exp(i(k,w)) — A¢ = 0.

Taking into account condition (9), it is clear that (21) determines the matrices Hy for all
k # 0. Moreover, (9) allows us to prove the convergence of these series and to show that H is
analytic on a subset of the domain of analyticity of R. As in Lemma 2.1, the details can be
found in [35] or [38]. [ ]

For the computations, we will use real Fourier series. As Hy = 0, we write

H(9) = Z H]E,C) cos (k,0) + ngs) sin (k,0) ,

k0
R(0) = 3" R\ cos (k.0) + R sin (k,0) .
k=0

Then, it is not difficult to derive the following expressions:

(H, cos (k,w) + Hy sin (k,w)) By = BLH, = RY?,

22
(22) (H,gs) cos (k,w) — ngc) sin (k,w))By — Blngs) = R,(:).

For each k, this is a linear system (of dimension 2n?) for the unknowns H ]gc) and H ]gs).
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2.4. The iterative scheme. This process is repeated until the norm of the remainders,
llUklloo and ||Qkllco, is small enough. The scheme is summarized as follows: We assume we
have an approximation z(6) of a torus such that ||yo(0)|lcc = ||z0(0 +w) — f(20(0))||cc =~ €
and an approximation y = Cy(f)x to its Floquet transformation such that it transforms the
linear system

fi'_ - Dxf(xO(e))x7 }
0 =0+w

into
5 = (Bo+Qo(®), }
0 = 0+ w,

with [|Qo]lec = e. Each iteration of the process has two steps. The first step consists of the
following operations:
1(a) Compute g(0) = —Cy (6 + w)yo(6).
1(b) Find w such that (6 +w) = Bou(#) + g(6). This is done by expanding ¢g and u in real
Fourier series and using (13).
1(c) Compute h(6) = Co(0)u(h).
1(d) The new approximation to the torus is x1(0) = x¢(6) + h(0).
The second step corrects the approximation to the Floquet matrix and Floquet transfor-
mation. It consists of the following operations: N
2(a) Compute R(0) = Cy(0 + w)D,f(x1(0))Co(0) — By, R() = R(A) — Avg(R), and
By = By + Avg (R). B is the new approximation to the Floquet matrix of the torus.
2(b) Find a matrix valued function H such that H(0 + w)B; — B1H(0) = R(¢). This is
done by expanding R and H in real Fourier series; see (22).
2(c) Compute C1(0) = Co(0)(Id + H(#)). C) is the new approximation to the Floquet
change.

Note that the dimension of the linear systems in the method depends only on the dimension
of the phase space, and their number depends only on the number of Fourier modes used in
the approximation. As the number of Fourier modes needed to approximate a torus grows
exponentially with the dimension of the torus, the method is suitable for computing tori of
higher dimensions.

3. Computer implementation. In this section, we discuss the computer implementation
of the algorithm. As is usual in numerical implementations, we will use truncated Fourier
series to represent tori and their Floquet transformations, although for some operations it is
better to represent them by a table of values (see section 3.1). The number of Fourier modes
considered (or the number of points in the tables) is determined from the level of accuracy,
as discussed in section 3.2. Finally, in section 3.3, we discuss some details of the parallel
implementation.

3.1. Table of values and Fourier coefficients. Some of the operations in the algorithm
are better performed on Fourier series (see (13) and (22)), while some others are better done
on tables of values of the functions (the computation of the matrices D, f(x;(f)) and R(6)
and the products involving them).

To perform these transformations, we have used a multidimensional discrete Fourier trans-
form algorithm, as explained in [17]. These techniques are implemented in the well-known
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library FFTW3 (its home page is http://www.fftw.org/), included as an optional package in
several GNU/Linux distributions.

We note that the two sets (table of values and truncated Fourier series) have the same
size. Hence, truncated series or tables of values will be stored indistinctly in the same array,
depending on the step where the algorithm is.

3.2. The control of the error. We have two main sources of error that affect the result.
(i) The error of the invariance condition on the table of values of the torus (and of the
Floquet transformation). This error is easy to control: the iterations explained in section 2
are stopped when the remainders on this mesh are small.

(ii) The interpolation error, due to the substitution of the torus (and the Floquet change)
for a mesh of points. To control this second source of errors we need first to estimate it, and
then to be able to change the mesh when this error is too large. In what follows we will discuss
these issues.

Let us denote by A C T¢ the set of points corresponding to the tables of values used in the
algorithm. Assume that after some iterations we have obtained two sets of values, one for the
torus and one for the Floquet transformation, {x(6;)}e,c4 and {C(6;)}g,c4, and a constant
Floquet matrix B satisfying

maxd||z(0; +w) — fx(0:)][} <o,

(23) .
ggﬁ{llc (0; +w) Dy f(2(6:))C(6;) — B} <6,

where 9 is a fixed tolerance. Let us define 61 2 as
61 = max{||z(0 +w) — f(x(0))[l},
0cTd

Jy = gg{;{\\c_lw +w) Dy f(2(0))C(0) — Bl|}-

Note that the computation of d; 2 is a difficult task (especially for d > 2). We will use two
different methods to estimate these values. The first method is very fast (it requires almost
no work), but the value provided is a rough estimate of the true value. The second method
requires a much greater effort, and the result is more reliable. Let us first explain these two
methods, and then we will discuss how we use them.

The first method consists in looking at the norm of some of the “last” coefficients of
the Fourier series and using it as an estimate for the truncation error of the series. As
we are looking for a fast indicator, we have used the last two coeflicients along the “lines”
k= (0,...,0,k;,0,...,0) (for j = 1,...,d). Once the Newton iteration has converged on a
given mesh, we check the size of these coefficients. If one of them is larger than a prescribed
threshold, we assume that the interpolation error is too big, and we increase the number of
Fourier modes in the direction of these large coefficients (this is equivalent to refining the
mesh of points in the direction of the corresponding angles ;). Then, we restart the Newton
iterations from the previous approximation, with the new Fourier modes set to zero.

The second test is to evaluate the estimation of the error (23) on a set of values A c T4
different from the set A used for the computations. A first option is to use a thinner partition
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Ato produce a better estimate of the invariance errors d1 2. The main inconvenience is that the
number of points in the mesh grows very fast. For instance, if we double the number of points
in each direction 60;, j = 1,...,d, the total number of points in the mesh grows by a factor of
2¢. Although this test has a natural parallelism, it can take a long time, especially in those
cases where the map is given by the Poincaré section of a flow. For this reason, we propose
the following alternative: During the iterative procedure, we will use a mesh A with the same
number of points as A. This mesh is obtained by adding a small vector v = (v1,...,74) to
each point of 4. The values «; are one half of the distance between the points of A in the
direction ¢;. In this way the new mesh A is interlaced with the initial mesh A. Then, we
check the conditions
21123‘5{”95(@ +w) = f(x(0:),0:)]|} <6,

max{[|C (0 + ) Def (2(0:),09C(6:) = B} < 6

If this test is not satisfied, we add some Fourier coefficients (in all the “directions” 6;), and
we go back to the Newton iteration to refine the solution. If it is satisfied, we can either stop
the algorithm and accept the solution or check it again with a thinner mesh. The idea is to
avoid checking with finer meshes during the computations (it is too costly) and to do a single
check at the end to be sure of the accuracy.

3.3. Parallelism. The method has mainly two parallel points: the simultaneous resolution
of the different linear systems that appear in (13) and (22) and the multiple evaluations of
the map f and its differential. This last point could be the most computing-intensive part if
the evaluation of f and D f requires a lot of operations (think of a Poincaré map of an ODE).
These are the places where most of the computational work is done.

Our implementation runs in a cluster of PCs, connected through an Ethernet network, and
using the PVM library for the communications (see [20]). The PVM library is freely accessible
from the Internet, and it also comes as an option in several GNU/Linux distributions.

The programming model used is the so-called master-slave model: there is a main pro-
gram (the master) that splits the work into independent pieces and sends them to a set of
programs (usually called slaves, but we prefer to refer to them as secondary programs) that
do the computations and send the results back to the master (we prefer to call it the primary
program). This is one of the simplest paradigms for parallel computing, and it is enough for
our situation.

In our implementation, the primary program runs in one of the nodes of the cluster, while
the secondary programs run in different nodes, on a CPU-per-program basis. We use three
different classes of secondary programs.

(i) Secondary programs of the kind A (SPA). Their task consists in creating and solving
the linear systems (13). In this way each SPA receives from the main program a subset of
multi-indices k. For each k, the SPA computes the linear system in (13) and solves it. Then,
it returns to the main program an integer. This integer means that it has finished the task.
If there are more systems to be solved, the main program sends the SPA another subset of
multi-indices; otherwise it sends an integer to tell SPA that there are no more systems to
solve. Then, SPA returns all the computed solutions to the main program.
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(ii) Secondary programs of the kind B (SPB). They take care of the construction and
resolution of the linear systems (22). Similarly to the SPA, each SPB receives from the main
program a subset of multi-indices k. Then, for each k, the SPB constructs the linear system
in (22) and solves it. After that, it returns to the main program an integer saying that this
task has been finished. As before, the main program knows if there are more systems to solve,
and, if so, it send two integers more. If all the systems have been solved, the main program
sends an integer to indicate to the SPB that the computation is finished, and then the SPB
sends all the results to the main program.

(iii) Secondary programs of kind C (SPC). They have the task of evaluating over A the
application f and its differential D, f. The SPC also receives from the main program a set
of values of the angles #. The SPC computes the evaluation of f(0) and D, f(z(0),6) for all
these 0’s and asks the main program for another set. When all the evaluations have been
done, The SPC sends all the results to the main program.

The nonparallel part is done by the main program, and it contains the fast Fourier trans-
forms and the error estimates. We have done some tests including a parallelization of these
two points, but, for the examples included in this paper, it takes a bit longer. The reason is
that both computations are very fast and the overhead added by the communications is too
big. However, for much larger examples, this parallelization could be advantageous.

4. Examples. In this section we present several examples to show the effectiveness of the
method.

4.1. A quasi-periodically forced pendulum. Let us consider the following system of
ODEs:

T =y,
(24) gy =—asinz +eq(bo,...,0q),
éi:wi, ’iZO,...,d,

where z € R, y € R, and, for i = 0,...,d, 0§; € T and w; € R. We will use the following
function ¢:

(25) q(@o,...,ﬁd) =

d -1
d+2+Zcos€,~] .

=0

The reason for using this expression and not something simpler like " cosf; is to have a
perturbing function with many harmonics of a relevant amplitude. A natural way to get this
is to invert a trigonometric polynomial with a zero in the complex plane, not far from the real
line (think of the Fourier expansion of the function ¢ in (25)).

Note that, for ¢ = 0, system (24) has the d-dimensional invariant torus z = y = 0, € T¢.
It is known [35, 36] that there exists a Cantor set £ of values of € for which the system (24)
has a (d+1)-dimensional invariant torus, with frequencies wy, . .., wqy. Moreover, the Lebesgue
measure of the set €N [0, ep] is exponentially small with 9. When ¢ is small but outside of
the set £, the torus can still exist, but with different stability properties and/or it does not
need to be unique. For a discussion of this, see [4].
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Table 1
The torus for the quasi-periodically forced pendulum. The first column shows the value of d; the second
column corresponds to the accuracy required to the solution (the value § in (23)); the third column contains the
number of harmonics of the initial approximation; the last column shows the final number of harmonics used
to approzimate the solution within the accuracy shown in the second column.

1 Initial Final
l.e-12 21 29
l.e-14 21 33
l.e-12 441 1225
l.e-14 441 1591

l.e-12 9261 53235
l.e-6 | 390625 531441
l.e-8 | 390625 | 1185921

1.e-10 | 390625 | 1975467

NGNS 0 O O] Sy § 5

Here we select a small value for ¢, and we will try to compute an invariant torus close to

the origin, with frequencies wy,...,wy. For the computations we will use several values for d
to produce invariant tori of different dimensions. For d = 1,...,4, the frequency vector w is
taken as

(26) wo=1, wi=v2 w=V3 ws=V5 wi=VT

Finally, we will use the parameters a = 0.8 and € = 0.15. To apply the methodology described
before, let us consider the return map for the section 6y = 0 (mod 27). If we denote a point
on this section by z = (z,y) and 0 = (61, ...,04), we represent the associated return map to
the section 0y = 0 ( mod 27) as

z = P(z,9),
(27) 0 = 0+w, }
with w = (@1,...,04), where, for i = 1,...,d, we define &; = 27w;. The Jacobian of (27) is

obtained by means of the numerical integration of the variational equations of (24). We will
focus on invariant tori of dimension d, that is, tori that can be parametrized as zy : T% — R?
and that satisfy the equation zo(0 +w) = P(20(0),8). They are the simplest invariant objects
of a system like (27). As mentioned before, the linearization around such a torus is given by
(3), where A(0) = D, P(z0(0),6).

When e = 0, the point x = y = 0 is invariant by the flow of (24), and this implies that the
map P satisfies P(0) = 0 (note that if we consider the variable 6, this set is a d-dimensional
invariant torus for (27)). To apply the previous algorithm, we will use zo(f) = 0 as an initial
approximation to the torus and the Jacobian of P at z = 0 (for ¢ = 0) as an approximation
to the reduced matrix (note that, for ¢ = 0, the Jacobian of P does not depend on #) and the
identity matrix as an approximation to the Floquet transformation. In other words, we use
the torus for € = 0 as an approximation to the torus for ¢ small.

As the number of Fourier terms needed to get an approximation with a prescribed accuracy
is not known in advance, we start with a given number, and the algorithm for the control
of the error (see section 3.2) takes care of increasing the number of Fourier terms. Table 1
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Table 2
Stability of the torus for the quasi-periodically forced pendulum. The first column contains the value of
d, and the second and third columns show modulus and argument of the eigenvalues of the Floquet matrix,
respectively.

Modulus Argument
1.0000000000000000e+4-00 | £6.7997888309559873e-01
9.9999999999999989e-01 +6.7049041137795473e-01
1.0000000000000000e4-00 | +6.6756788267641354e-01
1.0000000000000000e+4-00 | £6.6631201608602053e-01

B~ W N =

Table 3
Computing time for the torus of the quasi-periodically forced pendulum (24). The first column is the value
of d, the second column (p) shows the number of processors used, the third column is the total time (clock time,
not CPU time) taken by the program, the fourth is the CPU time used by the main program (the nonparallel
part), and the last one is the difference between the two previous columns.

d| p Total Main Parallel

1 1 6.619s 0.502s 6.117s
2 3.675s 0.499s 3.176s

21 1 11.214s 0.492s 10.722s
2 5.485s 0.469s 5.016s
3 4.288s 0.501s 3.787s

311 8mb59.267s 0m25.444s 8m33.823s
2 4m43.562s 0m25.388s 4m18.174s
3 3m17.493s 0m25.298s 3m17.493s
4 2m35.243s 0m25.285s 2m9.958s
5 2m11.122s 0m25.293s 1m45.829s
6 1mb52.951s 0m25.445s 1m27.506s

411 109m45.770s | 5m47.956s | 103mb57.814s
2 58mb5.449s 5m45.136s | 52m20.313s
4 32m7.966s 5m47.030s | 26m22.830s
6 23m28.204s 5m47.180s 17m41.024s
8 19m8&.460s 5m46.636s 13m21.824
10 16mb55.771s 5m48.277s 11m7.494s

shows the required number of terms for different values of d and different accuracies. Table 2
displays the eigenvalues of the Floquet matrix of the solutions for d = 1,2,3, and 4. Note
that all these solutions are linearly stable.

Table 3 shows the computing time needed to obtain the solution in four different cases:
d =1 and d = 2 with accuracy 1074, d = 3 with accuracy 1072, and d = 4 with accuracy
1071%. The second column shows the number of CPUs used (each is a 2.4 GHz Intel Xeon
processor). Each processor runs one SPA, one SPB, and one SPC (see section 3.3). Moreover,
one of the processors runs the main program. The third column corresponds to the total time
spent by the algorithm (i.e., from the beginning to the end of the run). The time spent by the
main program (i.e., the part that has not been parallelized) is shown in the fourth column.
The time used in the parallel part is obtained by subtracting the third and fourth columns,
and it is shown in the last one.

Figure 1 (left) shows the invariant curve of (27) for d = 1 in the (z,y) plane. Figure 1
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Figure 1. The picture of the found solution in the case of d =1 (on left) and d =2 (on right).
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Figure 2. Some slices of the computed torus in the case d = 3. Left: 61 = 0. Middle: 02 = 0. Right: 03 = 0.

(right) shows the torus of (27) for d = 2. To make this plot, we have taken a uniform “squared”
mesh on T? and we have plotted the image of this mesh through the parametrization of the
torus to make a “geometric” plot. Another option would be to take a trajectory on T? (a
straight line with the slope given by the frequencies) and to plot the image of this line in
the phase space by means of the parametrization of the torus. Figure 2 shows three slices of
the invariant torus for the case d = 3; that is, we fix the value of one of the angles and we
draw the resulting two dimensional torus as in the previous figure. Finally, Figure 3 shows six
sections of the solution in the case d = 4. Of course, it is possible to use a three dimensional
mesh in Figure 2 (or a four dimensional mesh in Figure 2), but the resulting plot is less clear.
Another possibility is to visualize the torus making a movie of the section, when the value of
the coordinate used for the section varies from 0 to 27.

4.1.1. A dissipative situation. Here we consider a dissipative perturbation of (24):

T =y
(28) y = —y —asinz + eq(bo, ..., 04),
Qi = Wy, iZO,...,d,

where the function ¢ is defined in (25) and the frequencies w; are defined in (26). We also fix
e=0.15, « =0.8, and d = 4.

As was done in section 4.1, we use the Poincaré section 6y = 0, and we will compute
invariant tori for the corresponding Poincaré map P. As before, we will obtain the initial
approximation for the method from the case ¢ = 0: the fixed point x = y = 0 is used for the
torus, the differential of P at this point for the Floquet matrix, and the identity matrix for
the Floquet transformation.
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Figure 3. Some slices of the found solution in the case d = 4. The first row shows the slices 61 = 02 =0
(left); 61 = 03 = 0 (middle); and 01 = 04 = 0 (right). The second row corresponds to the slices 62 = 03 = 0
(left); 02 = 04 = 0 (middle); and 03 = 04 = 0 (right).

"Bradi20gar U 12 — Brad1a0dar 12 — "Bradia0bar u 13 —

-0.002

0,004

0,006

-0.008

35 0.04 0,085 0.05 0,055 0.06 0.085 03 0,035 0.08 0,045 0.05 0,055 0.06 32 0034 0036 0038 004 0042 0044 0046 0048 005
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Figure 4. Slices of the found solution for example (28) in the case d = 4. The first row shows the slices
01 =02 =0 (left); 61 = 03 =0 (middle); and 61 = 04 =0 (right). The second row corresponds to the sections
02 =03 =0 (left); 02 = 04 =0 (middle); and 03 = 04 = 0 (right).

The invariant torus for ¢ = 0.15 has been computed with an accuracy of 10712, The num-
ber of Fourier terms required to get this accuracy is 1, 185,921. The eigenvalues of the Floquet
matrix have modulus 4.3213918263772258 x 1072 and argument +1.5161316762139108. We
note that, as the divergence of (28) is constant and equal to —1 and the matrix A(6) is ob-
tained by integrating the variational flow for 27 units of time (we recall that wg = 1), then
det A(f) = exp(—2m). Therefore, the product of the modulus of the two computed eigenval-
ues should be equal to exp(—2m). As an extra test for the level of accuracy, we compute the
difference between this product and exp(—27), and the result is 7.1 x 1071, Figure 4 shows
six sections of the solution.
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4.2. The multicircular model. Let us assume that the Sun and Jupiter move in a circular
orbit around their common center of mass according to the Kepler laws. The restricted three
body problem (RTBP) describes the motion of a third particle on the vector field produced by
these two primaries (the Sun and Jupiter). It is assumed that the mass of this third particle is
so small that it does not affect the motion of the two primaries. It is common to choose units
of distance, time, and mass such that the distance between the primaries is 1, the period of
the primaries is 27, and the sum of masses of the Sun and Jupiter is 1. It is also usual to use
a rotating coordinate system with origin at the center of mass so that the two primaries are
kept fixed on the X axis. In this reference system, there are five equilibrium points for the
particle: three of them (Li, Lo, and L3) are on the X axis, and the other two (L4 and Ls)
form an equilateral triangle with the primaries (for more details, see, for instance, [48]).

We are interested in finding quasi-periodic solutions near L5 in models that are a pertur-
bation of the RTBP. More concretely, we consider perturbations obtained by adding planets
to the system. We will assume that the planets move in circular orbits around the center of
masses of the Sun and Jupiter. In particular, we want to consider the direct gravitational
effect on the particle due to Saturn, Uranus, Neptune, and Earth. The equations of motion
for the particle are

T =pg+Yy,
y:py_x7
23:pz;

. T — [ x—(u—1)
px:py_(l_:u) 5 M 3
s Ty

d
T — a; cos b; cos 0;
(29) — E my;— ;3 . + g my a2 27
; A ; 1

: y _ Y
Py =—Pa— (1= p) g — 35
s T

Yy +a;sinb; aZ SlnH d sin 6;
S a

=0

. z
pz:_(l_u)_:;_ _3 Z m; 37
Ts LY S —

Z

where 0; = wit—l—GEO), and w; are the frequencies of the perturbing planets, m; are their masses,
and a; denotes their semimajor axis, in these coordinates. Moreover,

r = (v — p)? + 92 + 22,
ri=(z—(p—1)%+y*+ 2%

72 = (z — a;cos0;)? + (y + a;sin ;) + z

for i = 0,...,d. In our examples d takes values from 1 to 3 (d + 1 is the number of per-
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Table 4
Masses, frequencies, and radius for the planets used in (29).

m; ws a;
5.1464752074960787e-05 | 0.92801432138537394 | 5.7788760748791814
2.8561327940941584e-04 | 0.59716051258412511 | 1.8335242195766197
4.3620791653297386e-05 | 0.85880670883551138 | 3.6880511883932363
3.0375324347911519e-06 | -0.1862408594090464 | 0.8923832582416737

W N = O =

Table 5
Accuracy and number of harmonics: The first row shows the value of d, the second row is the accuracy of
the solution, and the third row contains the number of harmonics needed in the approximation of the solution.

d 1 2 3
Tolerance l.e-12 | 1.e-10 1.e-9
Number of harmonics 89 3555 | 147825

turbing planets). The mass parameter p (that corresponds to the Sun—Jupiter problem) is
9.5388118036309677 x 10~*. Table 4 shows the values of the constants, in adimensional units,
that appear in the equation. The index ¢ = 0 corresponds to Uranus, i = 1 to Saturn, i = 2
to Neptune, and ¢ = 3 to Earth.

As in the previous examples, we will work on the section #y = 0. The corresponding return
map depends on d angles (because the system depends on d+ 1 and the section removes one of
them). For simplicity, let us abuse the notation and denote by z the vector (z, v, 2, pz, py, p2) €
RS, Moreover, we define § = (01,...,604), and, as before, we call P the return map to the
section fp = 0. In this way, the system (29) can be represented by

(30) i P(z,0), }

0+ w,

YR
|

with w = (@), with @; = 27w;/wp for i = 1,...,d. The differential of P is obtained by
means of the numerical integration of the variational equations of (29). Therefore, if zo(6) is
a quasi-periodic solution of (30), then the linear dynamics around it are given by (3), where
A(f) = D.P(z(0),0).

We are interested in finding an invariant torus of (29) near the equilibria Ls of the un-
perturbed system, with the same frequencies as the perturbation. We will use as an initial
approximation the coordinates of the point L5 of the Sun—Jupiter RTBP. The linearization of
P at Ls (again for the Sun—Jupiter RTBP) will be used as the initial guess for the reduced
Floquet matrix of the invariant torus of (29) that we want to compute. As for the unperturbed
case (the RTBP) the Floquet change is the identity, we will also select the identity as a first
approximation for the perturbed situation.

Table 5 shows the number of Fourier terms required to get an approximation of the torus
with a given accuracy. In all the cases (d = 1,2, 3) the six eigenvalues of the Floquet matrix
are complex conjugate pairs with modulus 1, so the tori are linearly stable. In Table 6 the
positive argument of these eigenvalues is shown. The first row corresponds to the case d = 1,
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Table 6

Positive argument of the eigenvalues of the Floquet matriz of the tori found for the multicircular model.

d=1

d=2

d=3

5.4503461453063606e-01

4.6491650709992588e-01

4.8782691342003148e-01

5.4486199466481278e-01

4.6494463080617310e-01

4.8785025706880447e-01

5.4486200678996954e-01

4.6494454724444878e-01

4.8785033947562140e-01

the second to the case d = 2, and the last row to the case d = 3. As an extra test, we compute
the difference between the product of the eigenvalues and 1 (the product has to be 1 due to
the Hamiltonian structure). This difference is 4.66 x 10715 for d = 1, 2.64 x 107! for d = 2,
and 5.14 x 1072 for d = 3. Finally, Figures 5 and 6 show the tori for the discrete system (30).
The tori for the flow (29) can be easily obtained by means of numerical integrations starting
on a mesh of points on the tori found for (30).
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Figure 5. Tori of the multicircular model for d = 1 (first row) and d = 2 (second row). First column:
(z,y) projection; second column: (pz,py) projection.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 02/05/13 to 161.116.168.89. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

1402

ANGEL JORBA AND ESTRELLA OLMEDO

08679 0869 0.869

0.86785 0868 0.868

0.8678 0867 0.867

086775 0866 0.866

0.8677 0865 0.865

0.86765 0864 0864

0.8676, 0863 0.863
04953 -0.49525 0.4952 -0.49515 -0.4951 -0.49505 0.495 0.49495 -0.4949 0503 0502 0501 05 0499 0498 0497 0496 0495 0494 0503 0502 0501 05 0499 0498 0497 0496 0495 0494

04964 0485 0485

-0.49645

04965

-0.49855

04966

049665 0501 0501

-0.4987 052,

0502,
ke7es  0se7es  0sers | 0me776 | 06772 | 086768 %

685 0.86 0.8675 -0.867 -0.8665 0.866 0.8655 0.865 0.8645 0864 635 -0.868 0.8675 -0.867 -0.8665 -0.866 -0.8655 -0.865 -0.8645 -0.864 0.8635

Figure 6. Tori of the multicircular model for d = 3. First row: (x,y) projection; second row: (pz,py)
projection. The three columns refer to the slices 61 =0, 02 =0, and 63 = 0.
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