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Reliable Computation of Robust Response Tori on the Verge of Breakdown∗
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Abstract. We prove the existence and local uniqueness of invariant tori on the verge of breakdown for two
systems: the quasi-periodically driven logistic map and the quasi-periodically forced standard map.
These systems exemplify two scenarios: the Heagy–Hammel route for the creation of strange non-
chaotic attractors and the nonsmooth bifurcation of saddle invariant tori. Our proofs are computer-
assisted and are based on a tailored version of the Newton–Kantorovich theorem. The proofs cannot
be performed using classical perturbation theory because the two scenarios are very far from the
perturbative regime, and fundamental hypotheses such as reducibility or hyperbolicity either do not
hold or are very close to failing. Our proofs are based on a reliable computation of the invariant tori
and a careful study of their dynamical properties, leading to the rigorous validation of the numerical
results with our novel computational techniques.

Key words. normally hyperbolic invariant manifolds, computer validations, invariant tori, strange nonchaotic
attractors
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1. Introduction. The goal of this paper is to present a new methodology to provide
rigorous proofs of the existence and local uniqueness of (fiberwise hyperbolic) invariant tori
in quasi-periodic systems, even in cases in which the available perturbative theory does not
apply. The methodology is suitable for computer-assisted proofs and consists in checking
the hypotheses of a validation result based on the Newton–Kantorovich theorem [27]. As an
application of the methodology, we prove the existence and local uniqueness of invariant tori
on the verge of breakdown in two scenarios: the Heagy–Hammel route to strange nonchaotic
attractors (SNA) [32] in a quasi-periodically driven logistic map and the breakdown of saddle
tori [26] in a quasi-periodically forced standard map.

Organization of the paper. In this introductory section we present an overview of the
paper, including the rigorous validating results of existence of invariant tori in several examples
and a brief discussion of the methodology. In section 2 we summarize the theoretical framework
necessary for the computer-assisted proofs and present a validation algorithm. In section 3 we
present the Fourier models for the rigorous manipulation of Fourier approximations (see also
Appendix A) and the implementation of the validation algorithm. Sections 4 and 5 report
the proofs of the rigorous validations which have to be carried out after accurate numerical
computations.
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1.1. Robust response tori in quasi-periodic systems. The long-term behavior of a dy-
namical system is organized by its invariant objects. Hence, it is important to identify the
robust invariant objects that persist under perturbations of the system. In applications, we
can produce numerical approximations of these objects and we may wish to turn the non-
rigorous calculations into theorems. Hence, the question is to establish whether a numerical
approximation persists as an invariant object of the dynamical system and to provide rigorous
error bounds.

In this paper, we address this question for a particular class of dynamical systems and
invariant objects. The systems we consider are quasi-periodically forced, that is, coupled with
an irrational rotation, and the invariant objects are invariant tori carrying this irrational rota-
tion. These tori are the response to the quasi-periodic forcing and are geometrically described
as graphs of the state variables over the coupled angles describing the quasi-periodic motion
[59]. Since it has been known for a long time that persistence of invariant manifolds is closely
related to the concept of normal hyperbolicity [21, 34, 50, 57], here we consider the analogous
concept, tailored for skew products over rotations. Roughly speaking, an invariant torus is
fiberwise hyperbolic if the linearized dynamics on the normal bundle is exponentially dichoto-
mous, that is, the normal bundle splits into stable and unstable bundles on which the dynam-
ics is uniformly contracting and expanding, respectively. Notice that the tangent dynamics is
dominated by the normal dynamics, since the former presents zero Lyapunov exponents. This
implies that fiberwise hyperbolic invariant tori are robust and are as smooth as the system [28].

Most of the results regarding the existence of invariant objects in the literature are in
fact perturbative [21, 34, 50, 57] and provide rather pessimistic estimates of the persistence
of the invariant objects when applied to concrete examples. In this paper we adopt the
functional framework described in [27], which leads to an a posteriori result based on the
Newton–Kantorovich theorem. Hence, the rigorous validation of numerical computations
consists in checking the hypotheses of this theorem. Notably, the applicability of Newton’s
method for computing response tori is related with the property of fiberwise hyperbolicity.
The methodology is suitable for validating invariant tori that are very close to breakdown.

1.2. Reliable computations on the verge of breakdown. The transition from regular
to irregular motion is a difficult mathematical problem which arises in various fields, such
as solid state physics, chemical reaction dynamics, climate dynamics, and neuroscience. In
systems under quasi-periodic forcing, the transition can be understood as the phenomenon
of breakdown of response invariant tori. A main problem is providing rigorous bounds of
the parameters for which smooth invariant tori do exist, close to the estimated thresholds of
breakdown, since we may need rigorous delimitations of the boundaries between the regular
motion and the irregular motion. In this paper we report the application of computer-assisted
proofs of the existence of invariant tori in two scenarios: the Heagy–Hammel route to an SNA
[32] and the nonsmooth breakdown of saddle invariant tori [26].

1.2.1. Rigorous validations in the Heagy–Hammel route. In quasi-periodic dissipative
systems, it has been observed that an attracting smooth torus may nonsmoothly bifurcate
into an attracting object of complicated geometry (not even continuous) but still carry a non-
chaotic (in fact quasi-periodic) dynamics, the SNA. The discovery of this extremely interesting
behavior [25] (see also [33]) produced an explosion of numerical and experimental studies re-
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porting mechanisms for the birth of SNA which still resonates today (see, e.g., [22, 55] and
references therein). Further theoretical studies with rigorous explanations and mathematical
proofs of some of these mechanisms have been considered in the mathematical literature (see,
e.g., [6, 7, 30, 35, 40, 60, 61]), and all of them involve the collision of invariant tori. The
Heagy–Hammel route [32] falls into this category.

In the Heagy–Hammel route, a period 2 attracting torus (born in a period doubling bifur-
cation) collides with its companion repelling torus, producing an SNA. In this transition, the
repelling torus is preserved, while the period 2 attracting torus is destroyed. This situation
has been observed in numerical experiments on the following quasi-periodically driven logistic
map:

(1.1)

{
zn+1 = a(1 +D cos(2πθn))zn(1− zn),
θn+1 = θn + ω, mod 1,

where ω = 1
2 (
√
5− 1) and a and D are parameters.

In the following, we fix D = 0.1 and let a > 0 vary. Numerical experiments (see subsection
section 4.1 for further details) show that for a ∈]ap, ac[, with ap � 3.141875 and ac � 3.271383,
there is a period 2 attracting torus. See Figure 1. This period 2 attracting torus is born in a
period doubling bifurcation at a = ap, and it is destroyed at a = ac when colliding with the
repelling torus. The repelling torus survives the collision and in fact exists for a ∈]ap,+∞[.

In this scenario, a key role is played by the noninvertibility of (1.1). Interestingly, the role
of noninvertibility in global bifurcations was already noted in [1, 2]. In the present example, the
linearized dynamics of the period 2 attracting torus can be either reducible (which means that
it is invertible) or nonreducible. The linearized dynamics degenerates when the torus crosses
the critical curve {z = 1

2}, at ar � 3.17496. When parameter a approaches the threshold
ac, the unstable dynamics around the repelling torus must be more apparent on the period 2
attracting torus, since both objects approach each other. In the threshold ac, the closure of the
SNA must contain some repelling orbits [60]. Hence, even though the normal dynamics around
the period 2 attracting torus is attracting on average (the Lyapunov exponent is negative), it
may be locally expanding. This local expansivity and the degeneracy of the linear dynamics are
a major drawback in the rigorous validation of the period 2 attracting curve for a close to ac.

The following proposition asserts that the computations of invariant tori in Figure 1 are
reliable. In particular, the period 2 attracting torus exists up to a relative distance which is
less than 7.3 · 10−4 of the (numerically) estimated value of the breakdown. This proposition
is proved in section 4.

Proposition 1.1. Consider the skew product (1.1) with D = 0.1.
(i) For the range of parameters a ∈ (3.157065,∞) there exists a continuous family of

invariant repellor curves.
(ii) For every parameter a = 3.265, 3.268, 3.269 there exists a locally unique period 2

invariant attracting curve.

1.2.2. Rigorous validations on the verge of a hyperbolicity breakdown. We present
reliable computations and validations of saddle invariant tori and their invariant stable and
unstable bundles in quasi-periodically forced systems. We consider the case in which saddle
tori break nonsmoothly (in a sort of nonsmooth Hamiltonian saddle-node bifurcation).
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(a) a = 3.160: Reducible period 2
torus
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(b) a = 3.160: Linearized dynam-
ics of the reducible period 2 torus
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(c) a = 3.180: Irreducible period 2
torus
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(d) a = 3.180: Linearized dynam-
ics of the irreducible period 2 torus
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(e) a = 3.269: Close to breakup
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(f) a = 3.269: Linearized dynam-
ics of the period 2 torus close to
breakup
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(g) a = 3.272: SNA
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(h) a = 3.272: Linearized dynam-
ics of the SNA

Figure 1. On the left, period 2 attracting tori (red) and repelling tori (blue) in the Heagy–Hammel route.
On the right, the linearized dynamics of the period 2 attracting tori.

D
ow

nl
oa

de
d 

02
/0

5/
13

 to
 1

61
.1

16
.1

68
.8

9.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

RELIABLE COMPUTATION OF ROBUST RESPONSE TORI 601

The phenomenon of breakdown of saddle invariant tori in quasiperiodic conservative sys-
tems is poorly understood and, as far as we know, only two numerical studies have reported
mechanisms and conjectured a theoretical framework [26, 29]. The phenomenon consists in
the nonuniform approach to the stable and unstable bundles, deteriorating as the parameters
approach a certain threshold. In other words, the projectivizations of the invariant bundles
show the typical collision mechanism of creation of SNA observed, e.g., in the Harper map
[30, 41]. Moreover, the corresponding Lyapunov multipliers are away from 1. As suggested
in [29, 26], the nonuniform collision of the bundles leads to a lack of uniform hyperbolicity in
the torus and to its breakdown when the parameters cross the threshold.

The model we consider in the present paper is the quasi-periodically forced standard map,
defined as

(1.2)

⎧⎨
⎩
xn+1 = xn + yn+1,
yn+1 = yn − κ

2π sin(2πxn)− ε sin(2πθn),
θn+1 = θn + ω, mod 1,

where we fix ω = 1
2(
√
5− 1), and κ, ε are parameters.

In the following, we fix κ = 1.3 and let ε vary. For ε = 0 there exists an invariant saddle
torus. Numerical experiments (see subsection 5.1 for further details) suggest that there is a
limiting value εc ≈ 1.2352755, the critical parameter value, where the saddle torus breaks up:
its invariant stable and unstable bundles collide in a nonsmooth manner while the maximal
Lyapunov multiplier remains far from zero.

In the nonsmooth breakdown scenario, for κ = 1.3, we prove the existence of the saddle
torus up to a bound that is at a relative distance less than 4.3 · 10−7 from the estimated
threshold of breakdown. This is part of the following proposition.

Proposition 1.2. Consider the skew product (1.2) with κ = 1.3:
(i) For the parameters ε = 10−2j, j = 0, . . . , 123, and ε = 1.231, 1.232, 1.233, 1.234,

1.235, 1.2351, 1.2352 there exist locally unique invariant saddle curves.
(ii) For the range of parameters ε ∈ [0, 1.167434] there exists a continuous family of

invariant saddle curves.
(iii) For every parameter ε = 1.235270, 1.235273, 1.235275 there exists a locally unique

invariant saddle curve.
In this bifurcation the computation of invariant tori and their stable and unstable bundles

is difficult, since these objects are highly deteriorated and close to breakdown, and simple
iteration algorithms of computation do not apply. Notice we have validated Figures 2(c) and
2(d), in which the bundles present SNA-like behavior.

1.3. The methodology. Our methodology represents an advance on the results, numerical
algorithms, and experiments presented in [27, 28, 29], which are the inspiration for this paper.
In these references, the dynamical characterization of the condition of invariance of a torus
leads to a functional equation that fits in the framework of the Newton–Kantorovich theorem
[38]; see Theorem 1 in [27] (Theorem 2.8 in the present paper). We emphasize that the nonde-
generacy conditions of the Newton–Kantorovich theorem correspond to hyperbolicity proper-
ties of the approximate invariant tori. Therefore, starting with an approximate solution of the
invariance equation and an approximation of the hyperbolicity properties (i.e., of the stable
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(a) x-coordinate projection of the in-
variant torus. ε = 1.235.
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(b) Invariant subbundles. ε = 1.235.
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(c) x-coordinate projection of the
invariant torus. ε = 1.235275.
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(d) Invariant subbundles. ε = 1.235275.

Figure 2. Nonsmooth bifurcation: invariant torus and its subbundles for κ = 1.3 near the bifurcation value
εc ≈ 1.2352755. See text for further details.

and unstable bundles), one can use rigorous interval arithmetic [53, 39] to verify the hypothe-
sis of the constructive existence theorem (see Theorem 2.8), which consists in checking several
a posteriori bounds. The verification of these bounds leads to the proof of the existence (and
local uniqueness) of a true solution of the invariance equation and hence of the true invariant
torus and its stable and unstable bundles. In the situations explained in this paper, in which
tori are about to break, having accurate and efficient numerical methods is essential to be able
to produce approximations that pass the validation test. In this paper we use Fourier methods
[29] and rational approximation of frequencies (computing periodic orbits of approximate peri-
odically forced systems) to obtain these approximate solutions. These numerical methods are
tailored for the specific class of invariant tori we consider. (See, e.g., [8, 9] for general numeri-
cal methods to compute normally hyperbolic invariant manifolds.) An alternative topological
approach for validating the existence of invariant sets of normally hyperbolic type has been
considered in [11], which is based on the method of covering relations [65]. These methods
work for more general dynamical systems but cannot be used to prove the (local) uniqueness
of the invariant sets. Moreover, the properties of normal hyperbolicity are checked by using
cone conditions, which are extremely difficult to verify for the examples considered here. Our
functional analysis flavor for computer-assisted proofs in dynamical systems problems using
Newton-like methods in fact has a long history that goes back to the proof of the Feigenbaum
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conjecture in unimodal maps [45, 46], the proof of the universality in the period-doubling
cascade for area-preserving maps [20], and the proof of the existence of critical invariant tori
in Hamiltonian systems [43]. See also the inspiring chapter 7 in [17] and the review [44]. Also,
the recent papers [23, 4] deal with rigorous computer-assisted validations of zeros of nonlinear
functionals defined in infinite dimensional Banach spaces in the context of evolution equations.
In these references, the linearizations of the corresponding functionals are compact operators,
which have a relatively simple spectrum, making it relatively easy to verify the nondegeneracy
conditions required to apply a Newton-like method. In contrast, the operators arising in the
problems presented here are noncompact and their spectra are sets of annuli centred at 0
[51, 15] (the inner annulus could be a disk if the dynamical system is nonreversible), which
makes the (direct) computation of spectra relatively difficult. Fortunately, checking the appli-
cability of Newton’s method is equivalent to checking that 1 is not in the spectrum, and this is
just rephrasing the condition of hyperbolicity. In this paper, a natural Banach space for use in
the parameterizations of tori and their bundles is the space of continuous periodic functions.
A suitable method for rigorously enclosing continuous periodic functions is to use (truncated)
Fourier series, bounding the size of the truncated tails. (Other manifolds or other dynamics
could require other Banach spaces and other types of approximations.) In particular, the
Fourier model we use to manage Fourier series rigorously is a trigonometric polynomial with
interval coefficients plus an interval error. We emphasize that suitable Fourier and Lindst-
edt (Fourier–Taylor) models are ubiquitous in computer-assisted proofs in KAM theory and
renormalization theory [13, 19, 18, 42, 43, 49]. Our validation algorithms for proving the ex-
istence of invariant tori were implemented using our own C++ library to manipulate Fourier
models together with the rigorous interval library FILIB++ Interval Library; see [48]. All the
validations presented here were tested with several types of computers working under several
operating systems, although we report only the results obtained with a machine with Intel
Core2 Quad CPU Q9550 at 2.83 GHz working under Debian, using one of the processors.

1.4. Notation. Rn denotes the n-dimensional real space, and e1, . . . en represents its unit
vectors that form the standard basis. For i = 1, . . . n and v ∈ Rn, πiv is the ith component
of the vector v. L(Rn;Rk) is the space of linear maps from Rn to Rk, identified by the set
of k × n matrices. The space of endomorphism of Rn, identified by the set of square n × n
matrices, is L(Rn) = L(Rn;Rn), and GL(Rn) is its subgroup of automorphisms, i.e., the group
of invertible n × n matrices. In represents the n × n identity matrix. L(Rn,Rm;Rk) denotes
the set of bilinear maps from Rn × Rm to Rk. We also denote L2(Rn;Rk) = L(Rn,Rn;Rk)
and L2(Rn) = L2(Rn;Rn). If we are given norms in Rn, Rm, Rk, we consider the induced
norms in the spaces of linear maps and bilinear maps previously mentioned. For instance, if
we consider the maximum norm in Rn, Rm, Rk for M ∈ L(Rn;Rk) and B ∈ L(Rn,Rm;Rk) we
have |M | = maxi

∑
j |πiMej | and |B| = maxi

∑
r,s |πiB(er, es)|.

T = R/Z denotes the one-dimensional torus. The translation on the torus of frequency
ω ∈ R is the map tω : T → T defined as tω(θ) = θ + ω.

Rn×T denotes a trivial bundle over T (with projection π : Rn×T → T). We assume that
this bundle is endowed with a Finslered norm, i.e., a norm | · |θ on each fiber Rn × {θ} that
depends continuously on θ. We typically omit the subindex θ when the fiber is understood
(or if the norm does not depend on θ). A strip in the bundle is a set D ⊂ Rn × T such that
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for π(D) = T. For each θ ∈ T, Dθ = {z ∈ Rn | (z, θ) ∈ D} ⊂ Rn. A typical example is
D = U × T, where U ⊂ Rn is open.

For a vector space Z and a Finslered norm in the trivial bundle Z ×T over T, we identify
the space of continuous sections of the bundle with the set of continuous functions σ : T → Z,
C0(T;Z), endowed with the supremum norm ‖σ‖ = supθ∈T |σ(θ)|θ.

2. A validation algorithm for robust invariant tori. In this section we review some def-
initions and results on fiberwise hyperbolic invariant tori (FHIT) for skew products over
rotations. In particular, we state Theorem 1 in [27] for existence and local uniqueness of
FHIT, which is the basis for our validation algorithms of existence and local uniqueness of
FHIT.

2.1. FHIT. A (discrete) quasi-periodic system (with frequency ω ∈ R/Q) is described by
a skew product over a rotation

(2.1)
(F, tω) : D ⊂ Rn × T −→ Rn × T,

(z, θ) −→ (F (z, θ), θ + ω),

where F : D ⊂ Rn × T → Rn is continuous in the open strip D. Throughout this paper, we
assume that F is C2 with respect to z. The bundle map (2.1) induces a graph transform
functional F : C0(T,Rn) → C0(T,Rn), defined as

F(K)(θ) = F (K(θ − ω), θ − ω).

Notice that the graph of a continuous map K : T → Rn is a torus that is a copy of the base
T, and it is invariant under the skew product (F, tω) iff

F(K) = K.

We will slightly abuse notation and refer to K as a torus.
The linearized dynamics around a torus K is given by the vector bundle map

(2.2)
(MK , tω) : Rn × T −→ Rn × T,

(v, θ) −→ (MK(θ)v, θ + ω),

where MK : T → L(Rn) is the transfer matrix MK(θ) = DzF (K(θ), θ). We also refer to
(MK , tω) as the cocycle induced by (F, tω) and K. A cocycle (MK , tω) induces a transfer
operator MK : C0(T;Rn) → C0(T;Rn), defined as

(2.3) MK(V )(θ) = MK(θ − ω)V (θ − ω).

Notice that DF(K) = MK . We will suppress the dependence of K when it is clear from the
context.

The relation between the dynamical properties of cocycles and the spectral properties of
the associated transfer operators has been intensively studied in the literature; see, e.g., [51,
58, 34, 50, 47, 16]. These are important to describe the dynamical and functional properties of
invariant objects and dynamical systems. We define now (both dynamically and functionally),
the main geometric object of this paper.
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Definition 2.1. A FHIT of the system (2.1) is an invariant torus K : T → Rn such that
its corresponding cocycle (MK , tω) is uniformly hyperbolic, that is, there exists a continuous
decomposition of the vector bundle Rn × T in a Whitney sum S ⊕ U of two invariant bundles
S and U , such that M restricted to U is invertible, and there exist constants C > 0 and
0 < λ < 1 such that

(i) if (v, θ) ∈ S, then |M(θ + (	− 1)ω) · · ·M(θ)v| ≤ Cλ�|v| for all 	 ≥ 0;
(ii) if (v, θ) ∈ U , then |M(θ + 	ω)−1 · · ·M(θ − ω)−1v| ≤ Cλ−�|v| for all 	 ≤ 0.
Definition 2.2. A FHIT of the system (2.1) is an invariant torus K : T → Rn such that its

corresponding transfer operator MK is hyperbolic, i.e., its spectrum has empty intersection
with the unit circle {λ ∈ C : |λ| = 1}.

It turns out that both definitions are equivalent. The stable bundle S and the unstable
bundle U of a cocycle (MK , tω) are constructed from the spectral projections associated to the
transfer operator MK (and the spectral gap in the unit circle). The width of the spectral gap
is given by the hyperbolicity constant λ that measures the hyperbolicity of the cocycle. The
uniformity of the hyperbolicity property around the torus is given by the uniformity constant
C, which is related to the norms of the spectral projections (and hence with the shapes of the
bundles). If the spectrum of MK is inside the unit circle, then we say that the torus K is an
attractor and U is the zero bundle. If the spectrum of MK is outside the unit circle, then the
torus K is a repeller and S is the zero bundle. Otherwise we will say that the torus K is a
saddle.

Remark 2.3. We emphasize that there is a bootstrap in the regularity of a FHIT, and even
though in Definition 2.1 we assume that it is continuous, in fact it is as smooth as the system
[28].

Remark 2.4. Most of the above also works with slight modifications for invariant graphs of
skew products over homeomorphisms. But fiberwise hyperbolic invariant graphs are in general
less regular than the system.

Remark 2.5. Since ω is irrational, the spectrum of the transfer operatorM is a set of annuli
centered at 0, and the inner annulus is a disk if the corresponding cocycle is noninvertible.
This is also true in the generality of invariant graphs of skew products over homeomorphisms
with a dense set of aperiodic points [51].

Remark 2.6. Transfer operators are bounded but noncompact operators. This fact makes
the computation of their spectrum difficult [36].

In our methods of computation and validation of invariant tori, the crux is that a sufficient
condition to apply Newton’s method to solve the invariance equation

F(K)−K = 0

from an approximate solution K0 is the invertibility of the bounded linear operator DF(K0)−
I = MK0 −I, and this is implied (in fact equivalent, since the rotation ω is irrational) by the
hyperbolicity condition. Moreover, as a consequence of the implicit function theorem, FHIT
are robust (persist) under perturbations of the system [28].

2.2. Reducibility. The standing hypothesis in our methodology is that the torus K is
fiberwise hyperbolic and the corresponding stable and unstable bundles are trivial (i.e., given
by global frames). Hence, we can define a matrix valued map P : T → GL(Rn), whose first nsD
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606 J.-L. FIGUERAS AND A. HARO

columns of P , P s parametrize the stable bundle S (of rank ns) and the last nu columns of P ,
P u parametrize the unstable bundle U (of rank nu). Since the bundles S and U are invariant,
then

(2.4) P (θ + ω)−1MK(θ)P (θ) =

(
Λs(θ) 0
0 Λu(θ)

)
,

where Λs : T → L(Rns) and Λu : T → GL(Rnu). In other words, a main assumption is that
the cocycle (MK , tω) is reducible to a block diagonal cocycle (Λ, tω), with Λ = (Λs,Λu). Λs

and Λu give the dynamics on the stable and unstable bundles, respectively.
Remark 2.7. Nontriviality of rank 1 bundles can easily be overcome with the double

covering trick. See [29] for examples of computation of invariant tori with nonorientable
bundles.

Using suitable adapted norms, one can bound the norms of the block diagonal cocycle
obtaining max

(‖Λs‖, ‖(Λu)−1‖) ≤ λ, with λ < 1. Hence,
(i) if (v, θ) ∈ S, then v = P s(θ)vs with vs ∈ Rns and |M(θ + (	 − 1)ω) · · ·M(θ)v| ≤

‖P‖ ‖P−1‖ λ�|v| for all 	 ≥ 0;
(ii) if (v, θ) ∈ U , then v = P u(θ)vu with vu ∈ Rnu and |M(θ + 	ω)−1 · · ·M(θ − ω)−1v| ≤

‖P‖ ‖P−1‖ λ−�|v| for all 	 ≤ 0.
That is, the condition number C = ‖P‖ ‖P−1‖ of the adapted frame P is the uniformity
constant of the hyperbolic splitting.

An important situation in which linearized dynamics is very simple and estimates of the
hyperbolicity constants can be, in principle, easily obtained is when the cocycle (MK , tω)
is reducible to a constant cocycle (Λ0, tω) (possibly using the double covering trick). The
linearized dynamics is then equivalent to iterating the constant matrix Λ0, but the problem
is obtaining the suitable adapted frame. We emphasize that invertible rank 1 cocycles are
reducible to constants, under Diophantine conditions of the frequency ω, while noninvertible
rank 1 cocycles are not; see section 4. There are many other situations in which cocycles
fail to be reducible (see, e.g., [33]), implying a complex behavior of the linearized dynamics
[29, 26].

2.3. A validation theorem. In the previous subsection we grasped the relation between
hyperbolicity and the applicability of Newton’s method. From Theorem 1, p. 12, in [27], New-
ton’s method for finding FHIT converges quadratically, provided that the initial approxima-
tions of the torus and its invariant bundles are fairly accurate. The following is a reformulation
of such a theorem (see [27] for the proof), which is the theoretical core of the validations done
in this paper.

Theorem 2.8. Let Rn×T be the Finslered trivial bundle over T. Let F : D ⊂ Rn×T → Rn

be a continuous map defined in an open strip D, C2 with respect to z, and ω ∈ R, defining
the skew product (F, tω) : D → Rn × T.

Assume we are given
(1.1) a continuous map K : T → Rn, parameterizing a torus;
(1.2) two continuous matrix-valued maps P1, P2 : T → L(Rn), giving adapted frames;
(1.3) a continuous block diagonal matrix-valued map Λ = diag(Λs,Λu) : T → L(Rn), where

Λs : T → L(Rns) and Λu : T → GL(Rnu) with n = ns + nu;
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RELIABLE COMPUTATION OF ROBUST RESPONSE TORI 607

(1.4) a closed strip D̄P1(K, r) = {(K(θ) + P1(θ)v, θ) | θ ∈ T, |v| ≤ r} ⊂ D, where r > 0;
(1.5) a positive constant b such that B(z, θ) = P2(θ + ω)D2

zF (z, θ) [P1(θ)·, P1(θ)·] ∈ L2(Rn)
satisfies |B(z, θ)| ≤ b for any (z, θ) ∈ D̄P1(K, r).

Let σ, τ, λ be positive constants such that
(2.1) for each θ ∈ T, T (θ) = P2(θ)P1(θ)− In ∈ L(Rn) satisfies |T (θ)| ≤ τ ;
(2.2) for each θ ∈ T, S(θ) = P2(θ+ω)DF (K(θ), θ)P1(θ)−Λ(θ) ∈ L(Rn) satisfies |S(θ)| ≤ σ;
(2.3) for each θ ∈ T, max

(|Λs(θ)|, |Λu(θ)−1|) ≤ λ;
and assume that
(2.4) λ+ σ + τ < 1.

Let ρ, h be positive constants such that
(3.1) for each θ ∈ T, R(θ) = P2(θ + ω) (F (K(θ), θ)−K(θ + ω)) ∈ Rn satisfies |R(θ)| ≤ ρ;
(3.2) (1− λ− σ − τ)−2bρ ≤ h;

and assume that
(3.3) h < 1

2 .
Let r0, r1 be positive constants such that
(4.1) (1− λ− σ − τ)(1−√

1− 2h)b−1 ≤ r0;
(4.2) r1 ≤ min((1− λ− σ − τ)(1 +

√
1− 2h)b−1, r);

and assume that
(4.3) r0 ≤ r.

Then, there exists a unique continuous map K∗ : T → Rn such that
(a.1) for each θ ∈ T, F (K∗(θ), θ)−K∗(θ + ω) = 0;
(a.2) for each θ ∈ T, |P−1

1 (θ) (K∗(θ)−K(θ)) | ≤ r1.
Moreover,
(a.3) for each θ ∈ T, |P−1

1 (θ) (K∗(θ)−K(θ)) | ≤ r0.

Let λ̂, μ be positive constants such that
(5.1) for each θ ∈ T, max (|Λs(θ)|, |Λu(θ)|) ≤ λ̂;
(5.2) λ(1− λ2)−1(1− τ)−1(br0 + σ + λ̂τ) ≤ μ;

and assume that
(5.3) μ < 1

4 .
Then, there exist a continuous matrix-valued map P∗ : T → GL(Rn) and a continuous block-
diagonal matrix-valued map Λ∗ = diag (Λs∗,Λu∗ ) : T → L(Rn), where Λs∗ : T → L(Rns) and
Λu∗ : T → GL(Rnu), such that
(b.1) for each θ ∈ T, P∗(θ + ω)−1DzF (K∗(θ), θ)P∗(θ)− Λ∗(θ) = 0;
(b.2) for each θ ∈ T, |P1(θ)

−1(P∗(θ)− P1(θ))| ≤ rP , where rP ≥ μ√
1−4μ

;

(b.3) for each θ ∈ T, |Λ∗(θ)− Λ(θ)| ≤ rΛ, where rΛ ≥ (1+rP ) (1− τ)−1(br0 + σ + λ̂τ).
The main idea behind Theorem 2.8 is to consider an adapted frame, given by the matrix-

valued map P1, in which the hyperbolicity properties are checked. This frame P1 encodes
the approximations of the stable and unstable bundles. In more detail, the conditions to be
checked in Theorem 2.8 state the following:

(1) From the initial data, K, P1 (and P2) one constructs an adapted system of coordinates
(v, θ) on a neighborhood of the torus, a strip D̄P1(K, r):

(v, θ) ∈ {(v, θ) | θ ∈ T, |v| ≤ 1} → (z = K(θ) + P1(θ)v, θ) ∈ D̄P1(K, r).

D
ow

nl
oa

de
d 

02
/0

5/
13

 to
 1

61
.1

16
.1

68
.8

9.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

608 J.-L. FIGUERAS AND A. HARO

In these coordinates, and in this strip, the norm of the second differential of F is
bounded by b. Cocycle (DF (K(θ), θ), tω) is approximately reducible (via P1 and P2)
to the block diagonal cocycle (Λ(θ), tω).

(2) Point (2.4) is the verification of the hyperbolicity property (and of the invertibility of
P1). This depends on the error bound in the approximate inverse P2, the quality of
the conjugacy to the block diagonal cocycle (Λ, tω), and the hyperbolicity property
viewed in the adapted frame.

(3) The approximate invariance of the torus is estimated by ρ in (3.1). If ρ is small enough,
then there will be a true invariant torus nearby. The first step is checking (3.3).

(4) Points (3.3) and (4.3) check the Newton–Kantorovich hypothesis for the validation of
the existence and local uniqueness (in D̄P1(K, r1)) of a FHIT K∗ nearby K. An upper
bound of the distance between K∗ and K, in the P1 adapted frame, is given by r0.

(5) Checking point (5.3) leads to a validation of the invariant bundles codified in P∗,
providing rigorous upper bounds of the distance between the adapted frames P1 and
P∗ (and hence, between the approximate and true invariant bundles) and estimates of
the hyperbolicity properties.

Remark 2.9. One can perform the bounds of Theorem 2.8 in the original coordinates, that
is, compute ρ0 and b0 such that
(1.5′) for each (z, θ) ∈ D, |D2

zF (z, θ)| ≤ b0;
(3.1′) for each θ ∈ T, |F (K(θ), θ)−K(θ + ω)| ≤ ρ0.
These estimates lead to (crude) bounds of ρ and b. In particular, inequality (3.2) in Theo-
rem 2.8 is rephrased as
(3.2′) (1− λ− σ − τ)−2C2b0ρ0 ≤ h,
where C = ‖P2‖‖P1‖ is the condition number of the adapted frame. Notice that h grows
with the square of the hyperbolicity constant C/(1 − λ). Hence, the weaker the hyperbolic
properties, the much harder it is to pass the Newton–Kantorovich test.

Remark 2.10. Theorem 2.8 is stated using C0 norms. One can state a similar theorem
using norms with higher regularities (e.g., Cr, Sobolev, analytic). In this paper we have only
considered (and implemented) validations using C0 norms. Hence, although the FHIT K∗
is as smooth as the skew product and the bundles are as smooth as its differential, we only
measure the distance of the invariant objects to the approximately invariant objects using C0

norms. We plan to come back to this problem in the future.
Remark 2.11. Theorem 2.8 works, with minor changes, if T is replaced by a general compact

metric space and tω : T → T is replaced by any homeomorphism.

3. Implementation of the validation algorithm. In this section we explain implemen-
tation issues of computer validations of FHIT in skew products over rotations, based on
Theorem 2.8. Since the base manifold of the skew product is a torus, and the base dynamics
is a rotation, we use Fourier polynomials to approximate the periodic functions to model the
components of the approximate invariant tori and bundles of the input data for the algorithm
(and this is the reason for assuming triviality of the bundles).

Theorem 2.8 assumes a Finslered norm. In our present implementation, we have considered
the sup norm on each fiber. Hence, instead of considering adapted (Finslered) norms, we
consider suitable adapted frames.
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The core of the implementation is a set of routines to rigorously manage periodic functions
and enclose them in Fourier polynomials plus error intervals. These are what we refer to as
the Fourier models and are briefly introduced in subsection 3.1 and in Appendix A.

The validating computer program has to verify, from an approximately invariant torus
and approximately invariant stable and unstable bundles (e.g., computed numerically or using
perturbative arguments), all the hypotheses of Theorem 2.8. Notice that the checking has to
be done only once. Since we will apply the computer programs in situations in which tori
are about to break (see sections 4 and 5), we prioritize the accuracy over the speed of the
computations.

3.1. Fourier models. Here we detail the definition of Fourier models, assuming the reader
is familiar with interval computations [52, 62, 64]. In what follows, when we refer to interval
we mean a compact interval. Given a (compact) interval J = [a, b]. The modulus of an
interval is |J | = max(|a|, |b|). Following the standard findings in the literature, the result of
an operation with intervals is an interval that encloses the result. This is what one can do
when implementing interval operations in a computer.

Definition 3.1. A (one-dimensional, real) Fourier model of order m ≥ 0 is a couple Ĝ =
(G(θ), R), where

G(θ) = A0 +

m∑
k=1

(
Ak cos(2πkθ) +Bk sin(2πkθ)

)
is a trigonometric polynomial with interval coefficients A0, . . . , Am, B1, . . . Bm, and the re-
mainder R = R(Ĝ) is an interval. Abusing notation, we denote B0 = {0}, and for all k > m
we define Ak = Bk = {0}.

We say that a continuous function g : T → R belongs to the Fourier model Ĝ, denoted
g ∈ Ĝ, if for all θ ∈ T, g(θ) ∈ A0 +

∑m
k=1 (Ak cos(2πkθ) +Bk sin(2πkθ)) +R.

Let Ĝ, Ĥ be two Fourier models. We say that Ĝ is enclosed by Ĥ, Ĝ ⊂ Ĥ, iff for any
continuous periodic function g : T → R, g ∈ Ĝ implies g ∈ Ĥ.

Given an interval J , the image of J under the Fourier model Ĝ is defined as Ĝ(J) =
G(J)+R(Ĝ), where G(J) is the interval image of J under the trigonometric polynomial with
interval coefficients G. That is, Ĝ(J) = {f(θ) ∈ R | f ∈ Ĝ, θ ∈ J}. The image of Ĝ is
Ĝ([0, 1]). The supremum norm is the nonnegative number ‖Ĝ‖ = |Ĝ([0, 1])|. Upper bounds of
the supremum norm are |A0|+

∑m
k=1 (|Ak|+ |Bk|)+ |R| and |A0|+

∑m
k=1

√|Ak|2 + |Bk|2+ |R|.
Remark 3.2. The computer implementation of Ĝ(J) obtains an enclosure E of the result,

i.e., Ĝ(J) ⊂ E. In order to avoid large overestimations, especially in cases in which the
functions f ∈ Ĝ behave wildly, we subdivide the interval J and compute the enclosures of the
subdivisions.

Given a d-variable function ϕ(x1, . . . , xd) and d Fourier models Ĝ1, . . . , Ĝd, we are in-
terested in computing a Fourier model Ĥ enclosing the composition ϕ ◦ Ĝ, where Ĝ =
(Ĝ1, . . . , Ĝd). That is, we want that for any continuous functions g1 ∈ Ĝ1, . . . , gd ∈ Ĝd,
ϕ ◦ g ∈ Ĥ, where g = (g1, . . . , gd). Appendix A explains some algorithms to compute enclo-
sures of compositions of Fourier models with some elementary functions.

3.2. Validation of FHIT. Here we show how Theorem 2.8 can be implemented, via Fourier
models, in order to validate some initial data as a good approximation of a FHIT and its
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610 J.-L. FIGUERAS AND A. HARO

invariant subbundles for a given continuous skew product (F, tω) : D ⊂ Rn×T → Rn ×T, C2

with respect to z. The Finslered norm we consider in Rn × T is the sup norm on each fiber.
We assume that we can effectively compute the enclosures of the components of the com-

positions of F (z, θ), DzF (z, θ) and D2
zF (z, θ) with Fourier models. That is, we can substitute

z by a (vector) Fourier model K̂ if for each θ ∈ [0, 1], K̂(θ) ⊂ Dθ (a fact that can be rigorously
checked by using interval arithmetic).

The input data of the validation algorithm follows:
(0) Compute, e.g., numerically or using perturbative arguments, the trigonometric polyno-

mial approximations of an invariant torus (K), the adapted frame (P1) and its inverse
(P2), and the dynamics on the invariant bundles (Λ = diag(Λs,Λu)). References [27,
29] include algorithms and numerical computations of invariant tori and their bundles.
The order m of the approximations depends on the decay of the coefficients of the
Fourier expansions (and hence on the quality of the initial data). We take m in such
a way that the size of the discarded term is below a given threshold (say, 10−6).

The validation algorithm mimics the statement of Theorem 2.8. Here are the steps:
(1) From the input data, derive the Fourier models K̂, P̂1, P̂2, Λ̂ = (Λ̂s, Λ̂u).

Introduce a radius r, and compute a Fourier model K̂r = K+P1 [−r, r]n ∈ D̄θ. Check
(using interval aritmetics) that for all θ ∈ T, K̂r(θ) ∈ Dθ. If not, the algorithm stops.
Then, compute the Fourier model B̂ = B(K̂+P̂1 [−r, r]n , ·) of the bilinear map B(z, θ)
for points (z, θ) in the strip D̄P1(K, r). Compute an upper bound of the maximum
norm of B̂, b.

(2) Compute the upper bounds σ, τ, λ by enclosing the Fourier models Ŝ, T̂ , Λ̂s, (Λ̂u)−1.
Check (using interval arithmetic) if λ+σ+τ < 1. If not, hyperbolicty is not validated,
and the algorithm stops.

(3) Compute the upper bounds ρ of the error in the invariance equation from the Fourier
model R̂. Then, compute an upper bound h of (1−λ−σ− τ)−2bρ, and check if h < 1

2 .
If not, the torus is not validated and the algorithm stops.

(4) Compute an upper bound r0 of (1− λ− σ − τ)(1 −√
1− 2h)b−1, and check if r0 ≤ r.

If not, the torus is not validated and the algorithm stops.
After validating these steps, the torus is validated, meaning that there is a unique invariant
torusK∗ in the strip D̄P1(K, r1), where r1 is a lower bound of (1− λ− σ − τ) (1 +

√
1− 2h)b−1

and r. Moreover, the torus K∗ is contained in the strip D̄P1(K, r0).
Remark 3.3. Bound b (and subsequently h) depends on the radius r of the strip. This

choice has consequences on the estimates of the error radius r0, which should be not greater
than r, and the uniqueness radius r1. In our actual implementation, the choice is taking
2(1− λ− σ − τ)−1ρ ≤ r (hence r is not given, but computed!), which ensures (if h < 1

2) that
r0 ≤ r. By tuning r one can improve r0 and r1.

The final step of the validation algorithm is checking the invariance of the adapted frame,
as follows:

(5) Compute the upper bound of μ using σ, τ, λ, λ̂, b, r0. Check if μ < 1
4 . If not, the

adapted frame is not validated, and the algorithm stops.
Else, there is an invariant frame P∗, codifying the stable and unstable bundles of K∗. The
upper bounds rP and rΛ are rigorous estimates of the distances between the approximate and
true adapted frame and hyperbolic dynamics, respectively.

D
ow

nl
oa

de
d 

02
/0

5/
13

 to
 1

61
.1

16
.1

68
.8

9.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

RELIABLE COMPUTATION OF ROBUST RESPONSE TORI 611

3.3. Validation of a family of FHIT. Here we show the procedure to validate the existence
of a family of FHIT of a one-parameter family of skew products (Fs, tω) : D ⊂ Rn×T → Rn×T

with parameter s ∈ [a, b].
Consider the interval [a, b] = I ∪ J , where I and J are closed intervals, and let Ki, P1,i,

P2,i, and Λi for i = I, J be the initial data of the validation algorithm for the (interval) skew
products (Fi, tω). In order to check that the corresponding validated tori belong to the same
family we proceed as follows:

(0) Apply the validation algorithm explained in subsection 3.2 to the (interval) skew
products (Fi, tω), i = I, J . Besides the Fourier models corresponding to the initial data, K̂i,
P̂1,i, P̂2,i, and Λ̂i, the validation algorithm produces bounds ρi, σi, τi, r0,i, r1,i, hi.

(1) Construct the Fourier model ÊI,J = P̂2,J · (K̂J − (K̂I + P̂1,I · [−r0,I , r0,I ]
n)). Check if

(3.1) ||ÊI,J || ≤ (1− τJ)r1,J .

If this holds, the two initial data approximate the same family of FHIT; if not, this family
has not been validated.

4. Example 1: Computer validations for noninvertible skew products. In this section we
report computer validations of existence of invariant tori for a noninvertible map, the quasi-
periodically driven logistic map (1.1), proving Proposition 1.1. Special emphasis is placed on
validation of nonreducible tori for values close to their breakdown. Note that in this context,
the concept of nonreducible torus is equivalent to the noninvertibility of the transfer matrix
along the torus.

Recall from (1.1) that the quasi-periodically driven logistic map is the skew product

(4.1)
(F, tω) : R× T −→ R× T,

(z, θ) −→ (a(1 +D cos(2πθ))z(1 − z), θ + ω),

where here we fix ω = 1
2 (
√
5− 1) and a and D are parameters. In this section, we fix D = 0.1

and let a > 0 vary. The critical curve, where derivative of F with respect to z vanishes, is
C = {z = 1

2}.
We start with a numerical exploration of the model, then we face the computational

problems produced by noninvertibility and deterioration of uniform hyperbolicity, and, after
careful numerical computations of the input data for the validation algorithm, we apply such
an algorithm to validate the existence of period 2 attracting tori for parameter values very
close to the threshold.

4.1. Numerical exploration. Figure 3(a) shows the bifurcation diagram of the invariant
objects, while Figure 3(b) shows the corresponding Lyapunov multipliers. A particularly
simple case is the zero-curve xa(θ) = 0, for which the Lyapunov multiplier can be analytically
computed (see, e.g., [37]): Λ0(a) =

a
2 (1 +

√
1−D2). Hence, for D = 0.1, the zero-curve K0 is

attracting if a < at and repelling if a > at, and in at = 2(1+
√
0.99)−1 there is a transcritical

bifurcation. Now, let’s explain the other invariant curves and their bifurcations, labeled in
Figure 3(b). This is done through a numerical exploration.
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(a) x(0) value of the invariant curves
x(θ) with respect to parameter a.
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(b) The Lyapunov multiplier of the in-
variant curves.

Figure 3. Bifurcation diagram of the invariant curves and their Lyapunov multipliers, with respect to
parameter a. Red represents a repelling curve and blue an attracting object. See text for details.

(A) a ∈ (0, at). There is a reducible repelling curve K1(a), and its cocycle is reducible
to a constat Λ1(a) ∈]1,+∞[. In fact, as a → 0, K1(a) ∼ a−1

a and hence goes to −∞, and
Λ1(a) → 2. As a → at this curve tends (uniformly) to the zero curve K0, and Λ1(a) → 1.
At a = at = 2(1 +

√
0.99)−1 there is a transcritical bifurcation (with K0).

(B) a ∈ (at, ar,1). K1(a) is a reducible attracting curve, and its cocycle is reducible to a
positive constant Λ1(a) ∈]0, 1[.
At a = ar,1 � 1.854419, the curve K1(a) is tangent to the critical curve C.

(C) a ∈ (ar,1, ar,2). K1(a) is a nonreducible attracting curve, since its transfer matrix
vanishes at the points in which K1(a) intersects the critical curve C.
At a = ar,2 � 2.406952, the curve K1(a) is again tangent to the critical curve C.

(D) a ∈ (ar,2, ap). The curve K1(a) is a reducible attracting curve, and its cocycle is
reducible to a negative constant Λ1(a) ∈]− 1, 0[.
At ap � 3.141875, Λ1(a) = −1, and K1(a) has a period doubling bifurcation, in which a
period 2 attracting curve K2(a) is born.

(E) a ∈ (ap, ac). K1(a) is a reducible repelling curve, and its cocycle is reducible to a
negative constant Λ1(a) ∈] − ∞,−1[. There is also a period 2 attracting curve K2(a) (see
Figures 4(a) and 4(b) for the corresponding Lyapunov multipliers).
At a = ac � 3.271383, the period 2 attracting curve collides in a nonsmooth way with the
repelling curve, bifurcating in an SNA.

(F) a ∈ [ac,∞). The reducible repelling curve K1 survives after the collision and it exists
for all these values. There is also a strange attractor, a geometrically complex attracting
object that comes from the destruction of K2.

We have focused our study in region (E), very far from the perturbative regime. This is
known as the Heagy–Hammel fractalization route to SNA. Figures 5(a) and 5(b) show these
invariant objects before and after the collision at a = ac. Remarkably, the main ingredient
in this route is the loss of reducibility that the period 2 attracting curve suffers at a = ar �
3.17496, related to the nonsmooth collision with the repelling curve at a = ac � 3.271383.

We have validated both the repelling curve and the period 2 attracting curve in region
E. Of course, our techniques can also be applied to analyzing cases (A), (B), (C), and (D).
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a

(a) Lyapunov multiplier of the period 2
attracting curve in region (E). The peaks
correspond to variations of the number of
zeroes of the transfer cocycle [37].
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(b) Lyapunov multiplier of the repelling
curve in regions (E) and (F). There is no
trace of the nonsmooth (E)–(F) bifurca-
tion of the period 2 attracting companion
around a = 3.271.

Figure 4. Lyapunov multipliers of the invariant and periodic curves with respect to parameter a.
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(a) Invariant curves for a = 3.24. The
red curve is the period 2 attractor, and
the blue curve is the repellor.
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z
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(b) Invariant objects for a = 3.272. The
red object is the SNA, and the blue curve
is the repellor.

Figure 5. Graphical representation of the Heagy–Hammel route. See text for details.

In the smooth bifurcations at a = at (in (A)–(B)) and a = ap (in (D)–(E)) the invariant
tori are reducible. The attracting torus in region (C) is not reducible, but it is far from
destruction. Hence, the study in region (E) close to a = ap is an example of system close to
smooth (reducible) bifurcation and close to a = ac is an example of system close to nonsmooth
(nonreducible) bifurcation and can be applied to the other cases.

Remark 4.1. Nonreducibility region (C) separates region (B), in which the torus is attract-
ing with a well-defined positive eigenvalue, and region (D), in which the torus is attracting
with a well-defined negative eigenvalue. In region (C) we cannot define an eigenvalue, since
the cocycle is not reducible to constant. But we can define a Lyapunov multiplier (which in
reducible cases is the absolute value of the eigenvalue), which in the region (C) does not cross
0. Hence, the sign of the eigenvalue jumps (from + to −) in region (C). Interestingly, this
phenomenon of jump of the sign has been observed in other quasi-periodic systems [29, 26].

4.2. Numerical computation of the initial data. In this section, we describe how to
compute the initial data K,P1, P2,Λ for attracting curves of the noninvertible one-dimensional
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skew product (F, tω). Similar methods can be applied for repelling curves by using a right
inverse of the map (i.e., one of the branches of the inverse of (F, tω)). We will also present
methods to deal with noninvertible transfer matrices.

The approximately invariant torus K can be computed using the simple iteration algo-
rithm, since the invariant torus is attracting. The number of iterations needed to obtain
a good approximation depends heavily on the modulus of the Lyapunov multiplier. In our
computations, the number of iterations does not exceed 1010.

More challenging is the computation of the initial data P1, P2, Λ, since even though the
transfer matrix M is contracting “on average,” it can be locally expanding. The condition of
invertibility of the transfer matrix plays a key role in this computation. We have considered
two methods in order to overcome these computational problems.

Lyapunov metric. This is a general construction when dealing with uniform hyperbolicity
[3] that we adapt for the one-dimensional case. For a uniformly attracting torus with transfer
matrix M and Lyapunov multiplier λ, this metric is given by |v|θ = |L(θ)v|, where L : T →
[1,∞) is the continuous function

(4.2) L(θ) =

∞∑
j=0

1

λ̄j
|M(θ + (j − 1)ω) · · ·M(θ)|,

where 1 > λ̄ > |λ| + ε, for sufficiently small ε > 0. Instead of considering this Lyapunov
metric, we consider the transformations P1(θ) =

1
L(θ) and P2(θ) = L(θ). Hence, we define the

continuous function

(4.3) Λ(θ) = P2(θ + ω)M(θ)P1(θ) = sgn(M(θ))

(
L(θ)− 1

L(θ)

)
λ̄,

where sgn(·) is the sign function. Then, |Λ(θ)| ≤ λ̄ < 1 for all θ ∈ T.
Reducibility and almost reducibility to constant coefficients. The goal of the reducibility

method is to reduce the transfer matrix to a constant Λ, which satisfies

(4.4) M(θ)P1(θ) = P1(θ + ω)Λ,

for a suitable transformation P1(θ) �= 0. If M(θ) is invertible for all θ ∈ T, this equation is
solved by taking logarithms and solving the small divisor equations obtained by matching the
Fourier coefficients.

If M(θ) has zeroes, (4.4) has no continuous solutions. Hence, we cannot reduce M(θ) to
constant coefficients. To overcome this difficulty, we consider the modified equation

(4.5) (M(θ)2 + εη(θ))P1(θ)
2 = P1(θ + ω)2λ2

ε

for a suitable function η : T → [0, 1] and a sufficiently small ε > 0.

One choice for the function η is η(θ) = 1− (M(θ)
‖M‖

)2
. This function achieves its maximum

value 1 when the transfer matrix vanishes and decays rapidly outside its zeroes.
Notice that

(4.6) λ2
ε = exp

(∫
T

log(M(θ)2 + εη(θ))dθ

)
;

hence we consider ε > 0 such that |λε| < 1 (notice that |λ0| < 1).
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By defining

Λ(θ) =
M(θ)√

M(θ)2 + εη(θ)
λε,

we obtain that P1, P2 = P−1
1 , and Λ satisfy equation

P2(θ + ω)M(θ)P1(θ) = Λ(θ).

Remark 4.2. In numerical computations these equations are solved by matching Fourier
coefficients up to a finite order, even though the analytical solution of small divisors equations
involve the smoothness of the transfer matrix and Diophantine properties of the rotation ω.
These are intermediate computations to produce initial data to be validated by our computer
programs.

Numerical comparison of both methods. The Lyapunov metric method and the almost
reducibility method have been tested, among others, for the period 2 attracting curve of the
quasi-periodically driven logistic map with D = 0.1 and a = 3.250. In this case, the transfer
matrix is noninvertible, hence nonreducible to constant. See Figure 6 to check differences
between the two methods. In Figure 6(a) we can see that the dynamics of the linear cocycle is
locally expanding in some regions (but it is globally contracting), while in Figures 6(e) and 6(c)
the linear cocycles are locally and globally contracting. Notice that the Fourier coefficients of
the reduced matrix Λ(θ), Figure 6(d), decay slowly when using the Lyapunov metric method,
while they decay exponentially fast when using the almost reducibility method, Figure 6(f).

4.3. Computer validations. Motivated by the previous numerical study (see subsection
section 4.1), we have validated the invariant curves appearing in the bifurcation diagram in
Figure 3(a) up to values of a close to the smooth bifurcations (A)–(B) (transcritical) and
(D)–(E) (period doubling) and the nonsmooth bifurcation (E)–(F). We report here in detail
the existence of the repellor in regions (E) and (F) and the existence of the period 2 attracting
curve near the nonsmooth bifurcation (E)–(F).

Invariant curves in regions (A), (B), (C), and (D) have been validated using no more
than 20 Fourier modes. The validations near the smooth bifurcations have been performed
obtaining results similar to the ones reported below for the repellor.

To summarize the validations that we will present in detail, we have the proofs in the next
subsections.

4.3.1. Proof of Proposition 1.1: Validation of the repellor. Here we explain the vali-
dation of the repelling curve. First, we validate analytically the existence of this curve for
a ∈ (4.6,∞) and then, via computer-assisted proofs, we validate it for a ∈ (3.157065, 5) and
check that the two families match.

Analytic validation. For the analytic validation, it is convenient to consider the following
right inverse of (F, tω):

(4.7)

(G, t−ω) : R× T −→ R× T

(z, θ) −→
(
1

2
+

1

2

√
1− 4

z

a(1 +D cos(2π(θ − ω)))
, θ − ω

)
.

We apply the validation algorithm with the following initial datum: K(θ) = a−1
a , P1(θ) =

D
ow

nl
oa

de
d 

02
/0

5/
13

 to
 1

61
.1

16
.1

68
.8

9.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

616 J.-L. FIGUERAS AND A. HARO

-1

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

z

θ

(a) Transfer matrix M(θ).
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(c) Reduced matrix Λ(θ), computed via
Lyapunov metric method.
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(d) Modes of the reduced matrix Λ(θ),
computed via Lyapunov metric method.
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(e) Reduced matrix Λ(θ), computed via
almost-reducibility method.
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(f) Modes of the reduced matrix Λ(θ), com-
puted via almost-reducibility method.

Figure 6. Graphical comparison of the computed reduced Λ(θ) of the period 2 attracting curve for a = 3.25
and D = 0.1.

P2(θ) = 1, Λ(θ) = M(θ) = DzG(a−1
a , θ). In the following, we consider the bound

Δ =

√
1− 4(a− 1)

a2(1−D)
.

The constants ρ = 1
2 − 1

a − 1
2Δ, σ = τ = 0, and λ = λ̂ = 1

a(1−D)Δ satisfy inequalities (2.1),

(2.2), (2.3), and (2.4) of the validation Theorem 2.8. Inequality (2.5) is satisfied if a > 1
(1−D)Δ .
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Choosing r = 2ρ
1−λ , we obtain the upper bound of the second derivative (3.1) to be

b =
2

a2(1−D)2
(
1− 4(a−1

a
+r)

a(1−D)

) 3
2

,

from which we obtain h = (1 − λ)−2bρ. Fixing D for a > 0 sufficiently big, we obtain h < 1
2

and then there is a unique invariant torus close to initial data K. In particular, for D = 0.1,
we obtain the crude lower bound a > 4.6 (for which h < 0.45).

Computer validation. After showing the existence of the repelling curve for values a > 4.6,
we proved (computer-assisted) the existence of the family of the repelling curve for 3.157065 ≤
a ≤ 5. At a = 5 the Lyapunov multiplier is 2.962531, while at the end of the validation,
a = 3.157065, the Lyapunov multiplier is 1.016861. This validation has been done, using
expression (4.1), by computing the initial data using the algorithms presented in subsection
section 4.2 with 30 Fourier modes (This choice of number of modes is done in order to ensure
that the discarded modes are of magnitude less than 10−8.) We emphasize that the width of
the intervals of validation shorten as they approach to the period doubling bifurcation value
a � 3.143. The algorithm stops when the width of the intervals is less that 10−6, reaching
a = 3.157065. See Figure 7(a).

Remark 4.3. In this computation we apply the validation algorithm 2800 times and the
time of computation is around 307 minutes. This means that each validation step, which
consists in computing the initial data, validating the existence and uniqueness of a FHIT near
it, and then checking the matching, takes around 6.5 seconds.

In order to show how the upper bounds of the validation algorithm behave near the bifur-
cation value, we apply the validation algorithm for values a = 3.16+0.01·j with j = 0, . . . , 184,
using 30 Fourier modes. The results are displayed in Figures 7(b), 7(c), and 7(d).

Remark 4.4. While the numerically computed initial data is produced with a nonrigorous
estimate of the error of order 10−14, and although the validations are done using the FILIB++
library, which operates with intervals in double precision, the rigorous error bounds achieve
order 10−10.

4.3.2. Proof of Proposition 1.1: Validation of the nonreducible period 2 attracting
curve. The goal in this subsection is to validate nonreducible period 2 attracting curves near
the predicted nonsmooth bifurcation value a∗ ≈ 3.271. To do so, we considered the second
iterate of the driven logistic map (4.1):

(4.8)
(F, tω)

2 : R× T −→ R× T,
(z, θ) −→ (F (F (z, θ), θ + ω), θ + 2ω).

First, we perform a numerical study of the regularity of the initial data: the torus K,
the transformations P1 and P2, and the normalized cocycle Λ. Since the associated transfer
matrix M is noninvertible, we use the almost-reducibility method to compute P1, P2, and
Λ. Figure 8 shows, with respect to parameter a, a numerical estimate of the maximum slope
of the computed initial data. Note that P1 is the initial datum with the biggest slope. For
example, at a = 3.265 the slope of P1 is 4.3 · 104, while the slopes of the torus and the
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Figure 7. Data obtained of the validations of the repelling curve for D = 0.1.
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Figure 8. Maximum slopes of the period 2 attracting curve K (in red), its P1 transformation (in green),
and the normalized cocycle Λ (in blue) with respect to parameter a.

normalized cocycle are 2.4 · 101 and 3.07 · 103, respectively. Notably, at a = 3.269 the slope
of P1 is 4.25 · 106. Hence, P1 is used in order to determine the number of Fourier modes in
the validation process, because it is the initial datum with the biggest Fourier coefficients.
We choose the number of modes so that the discarded ones are of magnitude less than 10−8.
Figure 9 shows the initial data K (and M), P1 and Λ for a = 3.265 and a = 3.269. Notice
that a small change in the value of a leads to a dramatic change in the initial data.

The validation results for different values of the parameter a are shown in Table 1. The
initial data used as input is computed with high accuracy because at these parameter values,
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3.265.
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(d) Cocycle M(θ) for a = 3.269.
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(g) Reduced cocycle Λ(θ) for a =
3.265.
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Figure 9. Graphs of the initial data close to the breakdown of the period 2 curve.
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Table 1
Validation results of the period 2 invariant torus of the driven logistic map for different values of a close

to breakdown.

a 3.265 3.268 3.269

h 3.046383e-05 2.248226e-03 4.203495e-01

r0 5.365990e-09 1.701127e-07 3.635973e-06

rΛ 5.815762e-03 4.542701e-04 -

Order 3000 17,000 27,000

Time (minutes) 5 130 361

the period 2 attracting curve is near the repellor curve. Note also that in all these validations
the time computation depends heavily on the regularity of the initial data, because less regu-
larity implies the use of more Fourier modes to represent the initial data, which implies more
computational time.

Remark 4.5. Note that in Table 1, for the parameter value a = 3.269, we do not have
an estimation of rΛ. This is because the validation algorithm cannot compute it due to the
fact that the upperbound μ (see point (5.2) of Theorem 2.8) is bigger than 1

4 . This means
that although we could validate the existence (and local uniqueness) of the period 2 invariant
torus, we could not validate the distance between the initial data Λ0 and the transfer operator
of the truly invariant torus of the system.

5. Example 2: Computer validations on the verge of the hyperbolicity breakdown of a
saddle torus. In this section we report computer validations of existence of saddle tori on the
verge of their hyperbolicity breakdown for the quasi-periodically forced standard map (1.2).
This phenomenon was described in [29, 26] for similar models.

5.1. Numerical exploration. For every κ > 0, there exists a family Kε(θ) of saddle type
invariant tori with ε ∈ [0, εc), and K0(θ) =

(
1
2 , 0

)
. These invariant tori and their invariant

bundles are computed using Fourier methods [27].
An interesting problem is to approach as closely as possible the limiting value εc, the

critical parameter value, and study the obstructions to fiberwise hyperbolicity. We perform a
numerical exploration and we find that the bifurcation mechanism around εc depends on κ.
Particular examples are as follows:

(i) For κ = 0.3, then εc ≈ 1.3364054, and there is a smooth bifurcation: the hyperbolicity
is lost because the maximal Lyapunov multiplier goes to 1 as ε goes to εc, but the invariant
subbundles collide smoothly. Also, the invariant tori are smooth at the bifurcation. Similar
behavior happens for close values of κ.

(ii) For κ = 1.3, then εc ≈ 1.2352755, and there is a nonsmooth bifurcation: the hyper-
bolicity is broken down because the invariant bundles collide nonuniformly as ε goes to εc, and
the maximal Lyapunov multiplier stays far from 1. The invariant tori loose their smoothness
at the bifurcation. Similar behavior happens for close values of κ.

In this paper we report results for κ = 1.3. Figure 10 shows the observables (Lyapunov
multiplier and minimum distance between the invariant bundles) near the breakdown. Figure 2
shows the invariant tori and their invariant bundles for several values of the parameter ε.
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(a) Lyapunov multiplier as a function of ε.
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(b) Minimum distance between subbun-
dles. It approaches 0 as ε gets close to εc.

Figure 10. Nonsmooth bifurcation: observables for κ = 1.3 near the bifurcation value εc ≈ 1.2352755.

Table 2
Numerical estimates (nonrigorous) of the bounds of the validation algorithm for the initial data producing

the validated results.

ε 1.235270 1.235273 1.235275

h 2.169418e-08 1.260415e-05 8.546872e-06

r0 1.801702e-14 5.751160e-12 1.234738e-12

r1 1.661000e-06 9.125708e-07 2.889308e-07

μ 7.453060e-08 4.723001e-05 1.346137e-05

rΛ 2.901342e-08 1.831964e-05 5.199567e-06

Order 8192 8192 16,384

As an illustration of the numerical computations on the verge of the breakdown, Table 2
shows the estimated values of the bounds of the validation algorithm for several values of the
parameter ε close to εc.

5.2. Computer validations. In this section we report computer validations of the invariant
tori for the nonsmooth bifurcation scenario for κ = 1.3 with εc = 1.2352755. This is a
challenging example because the invariant subbundles near the bifurcation are quite wild
(SNA behavior in the projectivized cocycle; see [30]). Thousands of Fourier modes are needed
in order to obtain good initial data for the validation algorithm.

5.2.1. Proof of Proposition 1.2. For proving point (i) in Proposition 1.2, we validate tori
Kε for all the values of ε in the proposition. Note that the difference between the predicted
breakdown value εc and the last validation ε = 1.2352 is less than of order 8·10−5. These results
are reported in Figure 11. We observe that as ε increases, the upper bounds of the validation
algorithm h and r0, which measure the quality of the approximate invariant torus, increase,
while the lower bound of r1, which measures the size of the uniqueness strip, decreases. We
also observe that the upper bounds μ and rΛ, which measure the quality of the approximate
invariant bundles, increase. The number of Fourier modes required in the validations goes
from 0 to 1280.

We use the validation algorithm for families of FHIT to prove point (ii) in Proposition 1.2.
The validations in the parameter interval ε ∈ [0, 1.167434] have been performed with Fourier
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Figure 11. Data output obtained from the validations of the invariant tori and their invariant bundles for
κ = 1.3 with respect to ε. See text for details.

models of order less than 2000. The main problem for validating the family further is that
the width of the parameter intervals required in the algorithm is too small, of order 10−6.
This happens because as the family approaches the bifurcation, the invariant tori and their
associated initial data (P1, P2 and Λ) changes dramatically. (See, for example, the behavior
of the Lyapunov multiplier in Figure 10.)

Finally, we prove point (iii) in Proposition 1.2. The validation of the initial data for the
values ε = 1.235270, 1.235273, 1.235275, with Lyapunov multipliers Λ = 1.442582, 1.441463,
1.440193, illustrates the applicability of the validation algorithm in cases that are extremely
close to the nonsmooth bifurcation. The obtained results are shown in Table 3. Note that
the difference between 1.235275 and the predicted bifurcation value, 1.2352755, is less than
5.3 · 10−7.

6. Final comments. In the validation examples we show that it is important to under-
stand the dynamics around the invariant tori in order to obtain successful validations. A key
role is played by the matrix-valued maps P1 and P2, which give an adapted frame where the
hyperbolicity conditions are checked, and the hyperbolicity constant λ. In fact, the condition
number ‖P1‖‖P2‖

1−λ gives a measure of the quality of the hyperbolicity. The bigger it is, the
harder the validations. Note that this condition number is big when the invariant torus is
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Table 3
Validation results of invariant tori of the quasi-periodically forced standard map for three ε values near

the predicted breakdown. Note that the order of the Fourier models and the time of validation increase as ε
increases. Compare these rigorous results with the nonrigorous estimates given in Table 2.

ε 1.235270 1.235273 1.235275

h 2.853269e-03 8.140590e-03 8.928078e-02

r0 1.302039e-07 2.490723e-07 1.035418e-06

r1 9.100589e-05 6.069352e-05 2.107294e-05

μ 1.825306e-03 5.188943e-03 3.841927e-02

rΛ 1.370355e-03 3.900239e-03 2.985134e-02

Order 5802 7918 27,692

Time (minutes) 103 154 1094

near the boundaries of the uniform hyperbolicity. Moreover, the computation of the adapted
frame is difficult in cases in which the dynamics is nonreducible or when the torus is about to
break.

In the quasi-periodically driven logistic map, we saw that in order to validate the existence
of the period 2 attracting curve it is important to establish whether the linearized dynamics
around the torus is reducible. The linear behavior determines the possible adapted frames P1,
P2 and also the possible parameterization of the dynamics on the bundles, given by Λ. The
nonreducible case is the most difficult case to work on. We used different methods to study this
case and then compared them. Finally, we applied it to see the results and effectiveness of the
validation, obtaining good results for accuracy. In the quasi-periodically forced standard map,
we saw that the linearized dynamics, as long as the FHIT exists, is reducible, but when the
invariant tori approach a nonsmooth breakdown, we observed that this reducibility condition
blows up. We therefore studied the effectiveness of the validation algorithm near this blow-up
and obtained that the validation algorithm can be applied near the breakdown and thus deals
successfully with this singular behavior.

We emphasize that our methodology can be applied to many other examples for validat-
ing invariant tori and produce rigorous bounds on the thresholds, from smooth bifurcations
(saddle-node, period doubling, Hamiltonian saddle-node) to nonsmooth bifurcations or break-
downs (nonsmooth saddle-node and nonsmooth pitchfork bifurcations to SNA [24, 35, 54],
SNAs in Harper maps), and also for computing enclosures of the spectrum Schrödinger op-
erators [30, 29]. The examples reported in this paper present certain characteristics that
make them more difficult to deal with. The bifurcating objects of the SNA mechanisms
mentioned above are attracting and reducible tori, while in the Heagy–Hammel mechanisms
reported in this paper the attracting tori are nonreducible. We emphasize that nonreducibil-
ity is an essential feature of some fractalization mechanisms producing false SNA [10, 31, 37],
but computer-assisted proofs in those cases are even more challenging since the tori wrinkle
substantially.

The nonsmooth Hamiltonian saddle-node mechanism of a saddle torus is difficult to deal
with. For instance, the smooth Hamiltonian bifurcation in which a saddle torus smoothly
bifurcates to an elliptic torus has been observed in the quasi-periodically forced standard
map for κ = 0.3. In this case the validation can be easily carried out up to values close to
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the estimated critical value εc using less than a hundred Fourier modes, in contrast to the
thousands of Fourier modes needed to validate invariant tori close to nonsmooth breakdowns.

The computational time of the validation algorithms depends heavily on the regularity
of the initial data and hence their number of Fourier modes. The most time-consuming
computations with Fourier models are the product and the evaluation. Although the times
reported in this paper correspond to computations with a single processor, we have also used
the library OpenMP (see [14]) in order to have parallel computations (by distributing the
product and evaluation routines on the processors).

All the validations were performed using double precision with the aid of the interval
package library FILIB++.This, of course, has its limitations, and if we want to validate
invariant tori more precisely, then we will need a multiprecision library, but the procedure for
validating the invariant tori remains the same. An example where a multiprecision library is
needed is [12].

The models worked out in this paper have simple analytic expressions. But our validation
algorithms can be applied to more general models, as long as we can evaluate the map (and
its first and second derivatives). For instance, for a skew product flow, we can consider its
Poincaré map with the variationals [5, 63].

Appendix A. Operations with Fourier models. Here we detail some implementations of
compositions with Fourier models with elementary functions that are combinations of finitely
many arithmetic operations and compositions with simple functions (or intrinsic functions
[56]) such as the power function, the exponential function, or the trigonometric functions.
Since we have to truncate the results, let us start with the following definition.

Definition A.1. Let Ĝ = (G(θ), R) be a Fourier model of order m, and 	 ≥ 0. We de-
fine the 	-tail of Ĝ as Ĝ>� = (G>�(θ), R), where G>�(θ) is the intervalar Fourier poly-
nomial

∑m
k=�+1(Ak cos(2πkθ) + Bk sin(2πkθ)). We define the 	-enclosure of Ĝ as Ĝ≤� =

(G≤�, Ĝ>�([0, 1])), where G≤�(θ) = A0 +
∑�

k=1(Ak cos(2πkθ) + Bk sin(2πkθ)). Abusing nota-

tion, Ĝ>−1 = Ĝ, Ĝ≤−1 = Ĝ([0, 1]).
The arithmetic operations with Fourier models are defined as follows. Addition and sub-

traction of two Fourier models Ĝ and Ĥ is defined componentwise:

Ĝ+ Ĥ = (G(θ) +H(θ), R(Ĝ) +R(Ĥ)), Ĝ− Ĥ = (G(θ)−H(θ), R(Ĝ)−R(Ĥ)).

If J is an interval, we define the multiplication of Ĝ with J as

J · Ĝ = (JG(θ), JR).

The product of Ĝ and Ĥ is

Ĝ · Ĥ = (G(θ)H(θ), G([0, 1])R(Ĥ ) +H([0, 1])R(Ĝ) +R(Ĝ)R(Ĥ)).

In order to bound the order of the Fourier models through the operations in a computation,
we in fact compute enclosures of the products. For instance, if Ĝ and Ĥ are two Fourier
models of order m, their m-product is the m-enclosure of the product, i.e., (Ĝ · Ĥ)≤m.

Once we have defined the arithmetic operations with Fourier models, compositions with
polynomials are straightforward. Enclosures of the compositions of Fourier models with simple
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functions, such as the exponential, power function, logarithm, etc. can be performed with the
aid of the corresponding Taylor polynomial approximations (and Lagrange error bounds). We
explain here the composition with the sine and cosine functions, which are the ones that
appear in our examples.

Given 	 > 0, let S�(x), C�(x) be the Taylor polynomials of degree 	 of the sine and cosine
functions, respectively. Let

Ŝ�(x) = S�(x) +
[−1, 1]

(	+ 1)!
xl+1, Ĉ�(x) = C�(x) +

[−1, 1]

(	+ 1)!
xl+1

be the corresponding polynomials with Lagrange error bounds. Then, the compositions of
(F, tω) with the sine and cosine functions are enclosed in

sin�(Ĝ) = sin(A0) · Ĉ�(Ĝ>0) + cos(A0) · Ŝ�(Ĝ>0),

cos�(Ĝ) = cos(A0) · Ĉ�(Ĝ>0)− sin(A0) · Ŝ�(Ĝ>0),

respectively. In computer implementations, the order 	 of the Taylor polynomials is chosen
such that | 1

(l+1)! (Ĝ>0[0, 1])
l+1| is less than a given tolerance. We also use m-products in the

intermediate computations.
Another operation used in this paper is the shift of a Fourier model Ĝ = (G(θ), R) by

an (interval) rotation ω. This is the Fourier model Sω(Ĝ) = (S(θ), R) with S(θ) = A0 +∑m
k=1 (A

′
k cos(2πkθ) +B′

k sin(2πkθ)), where

A′
k = Bk cos(2πkω) −Ak sin(2πkω), B′

k = Ak cos(2πkω) +Bk sin(2πkω).
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[31] A. Haro and Simó, To Be or Not To Be a SNA: That Is the Question, http://www.maia.ub.es/dsg/2005/

0503haro.pdf (2005).
[32] J. F. Heagy and S. M. Hammel, The birth of strange nonchaotic attractors, Phys. D, 70 (1994),

pp. 140–153.
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