

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SIAM J. COMPUT. c© 2013 Society for Industrial and Applied Mathematics
Vol. 42, No. 1, pp. 112–137

SHERALI–ADAMS RELAXATIONS AND INDISTINGUISHABILITY
IN COUNTING LOGICS∗

ALBERT ATSERIAS† AND ELITZA MANEVA‡

Abstract. Two graphs with adjacency matrices A and B are isomorphic if there exists a per-
mutation matrix P for which the identity PTAP = B holds. Multiplying through by P and relaxing
the permutation matrix to a doubly stochastic matrix leads to the linear programming relaxation
known as fractional isomorphism. We show that the levels of the Sherali–Adams (SA) hierarchy of
linear programming relaxations applied to fractional isomorphism interleave in power with the levels
of a well-known color-refinement heuristic for graph isomorphism called the Weisfeiler–Lehman algo-
rithm, or, equivalently, with the levels of indistinguishability in a logic with counting quantifiers and
a bounded number of variables. This tight connection has quite striking consequences. For example,
it follows immediately from a deep result of Grohe in the context of logics with counting quantifiers
that a fixed number of levels of SA suffice to determine isomorphism of planar and minor-free graphs.
We also offer applications in both finite model theory and polyhedral combinatorics. First, we show
that certain properties of graphs, such as that of having a flow circulation of a prescribed value,
are definable in the infinitary logic with counting with a bounded number of variables. Second, we
exploit a lower bound construction due to Cai, Fürer, and Immerman in the context of counting
logics to give simple explicit instances that show that the SA relaxations of the vertex-cover and cut
polytopes do not reach their integer hulls for up to Ω(n) levels, where n is the number of vertices in
the graph.

Key words. first-order logic, counting quantifiers, linear programming, Weisfeiler–Lehman
algorithm, graph isomorphism, combinatorial optimization

AMS subject classifications. 68Q17, 68Q19, 52B12, 05C60, 05C72, 03C80

DOI. 10.1137/120867834

1. Introduction. Let A and B be the adjacency matrices of two labeled graphs
on {1, . . . , n}. The two graphs being isomorphic is equivalent to the existence of a
permutation matrix P for which the relation PTAP = B holds. Multiplying both
sides by P gives the equivalent condition AP = PB. At this point a linear program-
ming relaxation suggests itself: relax the condition that P is a permutation matrix to
a doubly stochastic matrix. How much coarser is this than actual isomorphism?

The concept of fractional isomorphism as defined in the preceding paragraph falls
within the framework of linear programming relaxations of combinatorial problems.
Other types of relaxations of isomorphism include the color-refinement method called
the Weisfeiler–Lehman (WL) algorithm. In this algorithm the vertices of the graphs
are classified according to their degree, then according to the multiset of degrees of
their neighbors, and so on until a fixed point is achieved. If the two graphs get
partitions with different parameters, the graphs are definitely not isomorphic. As
it turns out, fractional isomorphism and color refinement yield one and the same
relaxation: it was shown by Ramana, Scheinerman, and Ullman [31] that two graphs

∗Received by the editors February 28, 2012; accepted for publication (in revised form) Septem-
ber 24, 2012; published electronically January 17, 2013. A preliminary version of this paper appeared
in Proceedings of the 3rd Innovations in Theoretical Computer Science Conference (ITCS 2012). This
research was partially supported by CICYT TIN2010-20967-C04-04 (TASSAT).

http://www.siam.org/journals/sicomp/42-1/86783.html
†Universitat Politècnica de Catalunya, 08034 Barcelona, Spain (atserias@lsi.upc.edu).
‡Universitat de Barcelona, 08007 Barcelona, Spain (elitza.maneva@gmail.com). This author’s

research was supported in part by MICINN Ramon y Cajal.

112

D
ow

nl
oa

de
d

02
/1

9/
13

 to
 1

61
.1

16
.1

64
.2

0.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SA RELAXATIONS AND INDISTINGUISHABILITY 113

are fractionally isomorphic if and only if they are not distinguished by the color-
refinement algorithm.

Despite its simplicity, the color-refinement algorithm is known to behave very well
in practice and is in fact one of the most commonly used heuristics for isomorphism
testing. An example adding support to this claim is a classical result of Babai, Erdős,
and Selkow [4] showing that the color-refinement algorithm will end up distinguishing
a randomly chosen graph from any other graph with high probability. That said, one
obvious limitation of the method is that it will fail badly on regular graphs, as in
such a case the algorithm cannot even start. To remedy this, the WL algorithm has
been extended to refinement of colorings of k-tuples of vertices (the k-WL algorithm)
for k = 1, 2, 3, . . . , thus yielding a hierarchy of increasingly powerful relaxations of
isomorphism. The power of the resulting algorithms has also been studied in depth.
For example, Kucera [22] shows that the algorithm for k = 2 decides isomorphism
almost surely on random regular graphs. Another example of a quite different nature
is the result of Grohe showing that there exists a fixed constant k for which the k-WL
algorithm is able to distinguish any pair of nonisomorphic planar graphs [13]. This
was extended recently to any nontrivial minor-closed class of graphs [15].

Hierarchies of relaxations such as the k-WL algorithm can also be considered in
the context of fractional isomorphism through linear programming. The theory of
lift-and-project methods in the mathematical programming literature provides such
a framework. These are methods by which an initial relaxation P of an integral
polytope P Z is tightened into sharper and sharper polytopes, thus forming a hierarchy
of relaxations:

P = P 1 ⊇ P 2 ⊇ · · · ⊇ P Z.

Examples of these include the hierarchy of linear programming relaxations proposed
by Sherali and Adams [35], that by Lovász and Schrijver [27], and their semidefi-
nite programming versions, including the hierarchy of Lasserre [23]. See [24] for a
survey and comparison. These have been applied for studying classical polytopes of
combinatorial optimization such as the stable-set polytope, the cut polytope, and the
matching polytope, among others [27, 24, 36, 28].

In this paper we show that for k ≥ 2, the kth level of the Sherali–Adams (SA)
hierarchy relaxation of graph isomorphism is sandwiched between the (k − 1)-tuple
version of the WL algorithm and its k-tuple version. What this means is that if two
graphs are distinguishable by the (k − 1)-WL algorithm, then the kth level of SA
vanishes, and that if the kth level of SA vanishes, then they are distinguishable by
the k-WL algorithm. Thus, the k-WL algorithm provides a combinatorial characteri-
zation of the power of this lift-and-project method applied to graph isomorphism. We
call this sandwiching property the Transfer Lemma.

1.1. Consequences. The Transfer Lemma, in combination with the above-
mentioned strong results about the power of the WL algorithm, already has con-
sequences for the graph isomorphism problem itself. For example, it follows directly
from Grohe’s results that there exists a fixed level of SA relaxations that becomes
empty on any pair of nonisomorphic planar graphs. Quite remarkably, the proof of
Grohe’s result relies on the interpretation of the k-WL algorithm as deciding indistin-
guishability in a certain counting logic called Ck+1

∞ω , which does not seem to be related
to linear programming relaxations.

Less immediate applications of the Transfer Lemma arise from the link it sets be-
tween two different areas: polyhedral combinatorics through lift-and-project methods

D
ow

nl
oa

de
d

02
/1

9/
13

 to
 1

61
.1

16
.1

64
.2

0.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

114 ALBERT ATSERIAS AND ELITZA MANEVA

and finite model theory through the counting logics Ck
∞ω. We offer applications going

in both directions.
First, we exploit known results in polyhedral combinatorics to show that several

properties of graphs are definable in the logic Ck∞ω, the infinitary logic with counting
quantifiers and k variables, for an appropriate constant k. These properties include
“having a matching of a given size in bipartite graphs” and “having an st-flow of
a given value in networks with unit capacities.” While the definability of the first
follows also from a result by Blass, Gurevich, and Shelah [6] and is not strictly new,
the second strengthens it and is new; see the section on related work for more on this.

As a second application we export the inexpressibility results due to Cai, Fürer,
and Immerman [7] in the context of counting logics to get instances with fractional
solutions in the context of SA relaxations. From the existence of two nonisomorphic
n-vertex graphs of bounded degree that remain indistinguishable by the logic Ck

∞ω

up to k = Ω(n), we get explicit instances of the max-cut and vertex-cover problems
whose linear programming relaxations do not reach their integer hulls after Ω(n)
levels of SA. Let us note that in both cases stronger results are known: Schoenebeck
[33] proved that a nontrivial integrality gap for vertex-cover resists Ω(n) levels of
the Lasserre hierarchy, and hence of the SA hierarchy, and similar techniques would
apply to max-cut. At any rate, the point we are trying to make is not to get the
strongest possible results, but to illustrate the power that the Transfer Lemma gives
for exporting methods from one field into the other.

Both these applications of the Transfer Lemma make use of a general statement
we prove about the preservation of solutions between k-local linear programs : if two
graphs have a nonempty k-level SA polytope of fractional isomorphisms, our result
implies that solutions to the linear program of one graph translate to solutions of
the linear program of the other. As it turns out, the relaxations of vertex-cover and
max-cut and their SA levels are all local in our sense.

1.2. Related work. For the origins of fractional isomorphism see the refer-
ences in the monograph [32]. The connection between fractional isomorphism and the
color-refinement algorithm for vertices was made in [31]. The extension to the levels
of the SA hierarchy and to the tuple version of the WL algorithm and the logic with
counting quantifiers is, to our knowledge, new. A subsequent work of Grohe and Otto
[16] improves our result by showing, among other things, that a mixture of the kth
and (k+1)st levels exactly captures the k-WL algorithm, and that neither of the pure
levels does. This shows that the gap in our Transfer Lemma cannot be avoided.

The logics Ck∞ω are well studied in finite model theory [9, 26]. The connection
between indistinguishability in these logics and the tuple version of the WL algorithm
is from [18]. Despite the negative results from [7], the expressive power of these
logics is still the object of study. Somewhat unexpectedly, it was shown in [6] that the
property of having a perfect matching in bipartite graphs is expressible in the uniform
version of Ck

∞ω called IFP + C. Here we revisit matchings in bipartite graphs and
consider the more general problems of st-flows in networks with unit capacities. Our
results show that the existence of such flows with prescribed values is expressible in
C3∞ω. Our techniques and those in [6] are completely different. The open problem
from [6] about the definability of perfect matchings in general graphs in Ck

∞ω, for
some k ≥ 0, stays open.

Lift-and-project methods for combinatorial optimization problems have been the
object of intense study. An optimal integrality gap of 2 for vertex-cover was shown
to resist Ω(logn) levels of the Lovász–Schrijver (LS) hierarchy in [1]. This was later

D
ow

nl
oa

de
d

02
/1

9/
13

 to
 1

61
.1

16
.1

64
.2

0.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SA RELAXATIONS AND INDISTINGUISHABILITY 115

improved in [37, 34, 12] to more levels and to the semidefinite version LS+. For the
SA hierarchy, it was shown in [8] that optimal gaps of 2 for vertex-cover and max-cut
resist nΩ(1) levels. For vertex-cover, a gap of 7/6 resists Ω(n) levels of Lasserre and
hence of SA [33], and a gap of 1.36 resists nΩ(1) levels of Lasserre [38]. For max-cut,
we could not find any published lower bound on the SA rank, but Schoenebeck informs
us that his methods would yield a nontrivial gap for up to Ω(n) levels of Lasserre and
hence SA. See also [25] for related results.

2. Preliminaries. In this section we define SA relaxations of 0-1 integer linear
programs and the basic definitions about counting logics and their corresponding
pebble games.

2.1. SA relaxations and fractional isomorphism. Let P ⊆ [0, 1]n be a
polytope of the form

{x ∈ R
n : Ax ≥ b, 0 ≤ x ≤ 1}

for a matrix A ∈ R
m×n and a column vector b ∈ R

m. We write P Z for the convex
hull of the 0-1 vectors in P . The sequence of SA relaxations of P Z is a sequence
of polytopes P 1 ⊇ P 2 ⊇ · · · starting at P 1 = P and each containing P Z. The kth
polytope P k is defined in three steps.

In the first step, each defining inequality aTx ≥ b of P is multiplied by all possible
terms of the form

∏
i∈I

xi

∏
j∈J

(1 − xj),

where I and J are subsets of [n] such that |I ∪ J | ≤ k − 1 and I ∩ J = ∅. This leaves
a system of polynomial inequalities, each of degree at most k. In the second step,
the system is linearized and hence relaxed: each square x2

i is replaced by xi, each
resulting monomial of the form

∏
i∈K xi is replaced by a new variable yK , and the

constraint y∅ = 1 is added. The result is a system of linear inequalities defining a

polytope P k
L in R

nk for nk =
∑k

i=0

(
n
i

)
. In the third step, the polytope is projected

back to n dimensions by defining

P k := {x ∈ R
n : there exists y ∈ P k

L such that y{i} = xi for every i ∈ [n]}.

The polytope P k is called the kth level SA relaxation of P Z. It is not hard to see that
P k ⊇ P Z. Indeed, the integer hull of P is achieved not later than after n steps [35]:

P = P 1 ⊇ P 2 ⊇ · · · ⊇ Pn = P Z.

Thus, the SA hierarchy provides a sequence of tighter and tighter relaxations of the
integral polytope P Z. The smallest k for which P k = P Z is called the SA rank of the
polytope P .

Let us specialize this construction to the polytope defining fractional isomor-
phisms. Let A = (A,EA, CA

1 , . . . , CA
r) and B = (B,EB, CB

1 , . . . , CB
r) be colored

directed graphs, i.e., EA ⊆ A2 and CA
i ⊆ A for i ∈ [r], and the same for B. Al-

though it is not a very important point, note that we do not require the color classes
given by C1, . . . , Cr to be disjoint. Let (Aa,a′)a,a′∈A and (Bb,b′)b,b′∈B be the adja-
cency matrices of A and B, which we also denote by A and B. Let (Ca,c)a∈A,c∈[r]

D
ow

nl
oa

de
d

02
/1

9/
13

 to
 1

61
.1

16
.1

64
.2

0.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

116 ALBERT ATSERIAS AND ELITZA MANEVA

and (Db,d)b∈B,d∈[r] be the 0-1 matrices that encode the colors, which we write as C
and D. For every pair (a, b) ∈ A×B, let Xa,b be a variable. LetX be the |A|×|B| ma-
trix (Xa,b)a∈A,b∈B. The fractional relaxation of isomorphism is the following system
of linear equalities and inequalities:

(1)

AX = XB, C = XD,
BXT = XTA, D = XTC,
Xe = 1, XTe = 1,

X ≥ 0.

We write F (A,B) for this linear program. Note that if A and B are undirected
graphs, then A = AT and B = BT, and the equations AX = XB and BXT = XTA
in F (A,B) become equivalent. In the general case of colored directed graphs, the
equation BXT = XTA is added for symmetry purposes.

For every integer k ≥ 0, let Rk denote the collection of all subsets p ⊆ A×B with
|p| ≤ k. For p ∈ Rk and (a, b) ∈ A×B, we use the notation p∪ ab as an abbreviation
for p ∪ {(a, b)}. For every p ∈ Rk, let Xp be a variable. If A = {a1, . . . , an} and
B = {b1, . . . , bn}, the kth level of SA applied on F (A,B) is equivalent to the system
given by the following equalities and inequalities:

Aa,a1Xq∪a1b + · · ·+Aa,anXq∪anb = Xq∪ab1Bb1,b + · · ·+Xq∪abnBbn,b,(2)

Bb,b1Xq∪ab1 + · · ·+Bb,bnXq∪abn = Xq∪a1bAa1,a + · · ·+Xq∪anbAan,a(3)

together with

Xq∪ab1Db1,c + · · ·+Xq∪abnDbn,c = XqCa,c,(4)

Xq∪a1bCa1,c + · · ·+Xq∪anbCan,c = XqDb,c,(5)

Xq∪ab1 + · · ·+Xq∪abn = Xq,(6)

Xq∪a1b + · · ·+Xq∪anb = Xq,(7)

Xq∪ab ≥ 0,(8)

X∅ = 1(9)

for a ∈ A, b ∈ B, c ∈ [r], and q an element of Rk−1. We obtained these inequalities
by multiplying each equation in (1) by a term of the form

∏
ab∈I Xab for I ⊆ A × B

with |I| ≤ k − 1 and linearizing. Note that the factors of the form
∏

ab∈J (1 − Xab)
that appear to be missing here are really implicit, as the resulting equations can be
obtained as linear combinations of those given. This holds in this special case since all
relevant constraints are equalities instead of inequalities. We write Fk(A,B) for this
system. Note that k = 1 gives F (A,B). If Fk(A,B) is satisfiable, we write A ≡k

SA B.

2.2. Counting logics and pebble games. A counting quantifier has the form
∃≥mxφ, where m is a nonnegative integer. The meaning is that “there exist at least
m distinct x satisfying φ.” For example, the formula

∀x(∃≥dy(E(x, y)) ∧ ¬∃≥d+1y(E(x, y)))

says of a graph that it is d-regular, and it does so using exactly two variables. For
the rest of the paper, let Ck

∞ω denote the collection of all formulas made from atomic
formulas and equalities by means of finitary and infinitary conjunctions, negations,

D
ow

nl
oa

de
d

02
/1

9/
13

 to
 1

61
.1

16
.1

64
.2

0.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SA RELAXATIONS AND INDISTINGUISHABILITY 117

and standard and counting quantifiers, using at most k different variables. For more
background on Ck∞ω we refer the reader to [29, 7, 9].

An essential concept from logic is that of indistinguishability by the formulas of
a logical language. We say that two structures A and B are Ck∞ω-indistinguishable if
every Ck

∞ω-sentence that is true in A is also true in B, and vice versa. This defines
an equivalence relation on the class of structures that we write as A ≡k

C B. This
indistinguishability relation has an alternative interpretation in terms of a two-player
game. For first-order logic these sorts of games go back to Ehrenfeucht [10] and
Fräıssé [11]. For the logic Ck

∞ω we follow [7, 17], but see also [20].
We define the game for ≡k

C. Let A and B be colored directed graphs as before.
Let (a,b) be a pair of k-tuples, where a = (a1, . . . , ak) has ai ∈ A ∪ {�}, and b =
(b1, . . . , bk) has bi ∈ B ∪{�}. We say that (a,b) defines a partial k-isomorphism from
A to B if the following conditions hold for every i ∈ [k], every j ∈ [k], and every
c ∈ [r]:

1. ai = � if and only if bi = �;
2. ai = aj if and only if bi = bj;
3. (ai, aj) ∈ EA if and only if (bi, bj) ∈ EB;
4. ai ∈ CA

c if and only if bi ∈ CB
c .

The game is played by two players: Spoiler and Duplicator. The goal of Spoiler
is to show a difference between A and B. The goal of Duplicator is to hide such a
difference. There are 2k pebbles matched in pairs, initially off the board. In each
round, Spoiler can remove a pair of matched pebbles off the board or choose such a
pair of pebbles to play. Let us say he chooses the ith pair to play. Then he chooses
a structure, A or B, and a subset X of the universe of that structure. In response,
Duplicator must choose a subset Y of the universe of the other structure such that
|Y | = |X |; if she cannot even do that, she loses immediately. To complete the round,
Spoiler places one of the pebbles of the ith pair over an element of Y , and in response
Duplicator places the other pebble of the ith pair over an element of X . At the end
of the round the sets X and Y are forgotten, but the pebbles are retained on the
board. Spoiler wins if at any round the correspondence between pebbles ai �→ bi for
i = 1, . . . , k is not a partial isomorphism between A and B (if the pair i is off the
board, then ai = bi = �). We say that Duplicator has a winning strategy if she has a
strategy to keep playing forever.

Formally, winning strategies are defined through back-and-forth systems as fol-
lows. For a k-tuple a = (a1, . . . , ak), an index i ∈ [k], and an element a, we write a[i/a]
for the result of replacing the ith component of a by a. A winning strategy for the Du-
plicator in the k-pebble game on A and B is a nonempty F ⊆ (A∪{�})k × (B ∪{�})k
such that every (a,b) in F defines a partial k-isomorphism from A to B and for every
i ∈ [k] the following properties are satisfied:

1. (a[i/�],b[i/�]) belongs to F ;
2. for every X ⊆ A there exists Y ⊆ B with |Y | = |X | such that for every b ∈ Y

there exists a ∈ X such that (a[i/a],b[i/b]) belongs to F ;
3. for every Y ⊆ B there exists X ⊆ A with |X | = |Y | such that for every a ∈ X

there exists b ∈ Y such that (a[i/a],b[i/b]) belongs to F .
The first is called the subtuple property, the second is the forth property, and the third
is the back property. If there exists such a strategy, we write A ≡k

C B. It is a theorem
that this notion agrees with indistinguishability by the logic Ck∞ω [7]. A way to decide
whether such a strategy exists is by running the k-dimensional WL algorithm (see the
next section), which runs in time polynomial in |A|k + |B|k. For the statement and a
proof of correctness see [7, 30].

D
ow

nl
oa

de
d

02
/1

9/
13

 to
 1

61
.1

16
.1

64
.2

0.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

118 ALBERT ATSERIAS AND ELITZA MANEVA

2.3. WL algorithm. One way to determine whether A ≡k+1
C B is by run-

ning the k-tuple WL algorithm on each structure and checking whether the resulting
parameters match. Let us now give the details of the algorithm. This exposition
follows [7].

The k-WL algorithm run on A starts with all k-tuples of elements of A classified
into bags labeled by the isomorphism type that the tuples induce on A, where the iso-
morphism type induced by a k-tuple (a1, . . . , ak) is the collection of all atomic formulas
on the variables x1, . . . , xk that are satisfied by the assignment x1 = a1, . . . , xk = ak.
(The atomic formulas are the formulas of the form xi = xj or E(xi, xj) or Cc(xi)
for some c ∈ [r].) At each iteration, the algorithm cycles through all possible k-
tuples (a1, . . . , ak) and counts, for each isomorphism type of (k + 1)-tuples T and
each k-tuple of bags (B1, . . . , Bk), the number of a ∈ A for which the (k + 1)-tuple
(a1, . . . , ak, a) induces on A a substructure of isomorphism type T , and the k-tuple
(a1, . . . , ai−1, a, ai+1, . . . , ak) belongs to the bag Bi for every i ∈ [k]. Once these
counts are over, it refines each bag of tuples into subbags labeled by the outcomes of
these counts. When no further splitting is possible, the algorithm stops. To avoid the
size of the labels increasing exponentially, after each iteration the bags are ordered
in some standard way (lexicographically by their labels, say) and relabeled by their
position in this order. The parameters of the output are the counts that result at the
final collection of bags. Note, by the way, that the splitting process must finish after
no more than |A|k iterations since whenever a bag contains a single tuple it cannot
split any further. When the k-WL algorithm is run on both A and B, we say that
the parameters match if the parameters of their outputs are the same. The claim is
that for k ≥ 1, it holds that A ≡k+1

C B if and only if the parameters match when the
k-WL algorithm is run on A and B. For a proof see [7, 30].

There is one subtle difference between our definition of the k-WL algorithm and
the definition in [7] that is nonetheless relevant only if k = 1. The difference is
that we introduce isomorphism types of (k + 1)-tuples into the counts. In the case
k ≥ 2 it can be seen that these counts are redundant since the maximum arity of the
relations in A is 2. The good news is that our definition unifies the algorithm and its
proof of correctness for the cases k = 1 and k > 1. In contrast the definition in [7]
required splitting into cases. Also the generality of working with isomorphism types
is necessary for dealing with directed graphs (in the case k = 1). Our definition of
k-WL appeared first in [14].

3. Transfer Lemma. At this point we have provided all the necessary back-
ground to state the main result.

Theorem 1 (Transfer Lemma). Let A and B be colored directed graphs, and let
k ≥ 1. Then

A ≡k+1
SA B =⇒ A ≡k+1

C B =⇒ A ≡k
SA B.

For k = 1 the second implication can be reversed; that is,A ≡1
SA B is equivalent to

A ≡2
C B. Indeed, ≡1

SA is just fractional isomorphism as discussed in the introduction
and ≡2

C is known to be equivalent to 1-WL (see [18]). Thus, the equivalence between
≡1

SA and ≡2
C is the result from [31], which was the starting point for our work. For

k > 1 we cannot show such an equivalence, and indeed subsequent work [16] shows
that, in general, it does not hold.

The proof will proceed by showing a longer chain of implications that involves two
more notions of indistinguishability: ≡k

EP is an equivalence relation that extends the
combinatorial notion known as “equitable partitions” (see [32]) to k-tuples, while ≡k

CS

D
ow

nl
oa

de
d

02
/1

9/
13

 to
 1

61
.1

16
.1

64
.2

0.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SA RELAXATIONS AND INDISTINGUISHABILITY 119

is another pebble game that we call the sliding game. The complete statement that
we will prove is the following:

A ≡k+1
SA B =⇒ A ≡k+1

C B =⇒ A ≡k
CS B =⇒ A ≡k

EP B =⇒ A ≡k
SA B.

We define ≡k
CS and ≡k

EP in the beginning of the next section and then proceed to the
proof.

4. Proof of the Transfer Lemma. For this section, let A and B be colored
directed graphs, and let k ≥ 1 be a natural number. To prove the Transfer Lemma
we will prove the longer chain of implications referred to at the end of the previous
section. Before that, we need to define the two new notions of indistinguishability.

4.1. Formal definition of the sliding game. Intuitively, the sliding game is a
variant of the pebble game in which the Spoiler is allowed to slide pebbles forward or
backward along the edges of one of the directed graphs, and the Duplicator is required
to slide the corresponding matched pebble in the same direction along the edges of
the other graph. To formalize this we need some notation.

For a in A ∪ {�}, define N+(a) and N−(a) as follows:
1. N+(a) = {a′ ∈ A : (a, a′) ∈ EA} if a �= �;
2. N−(a) = {a′ ∈ A : (a′, a) ∈ EA} if a �= �;
3. N+(a) = N−(a) = A if a = �.

For b in B ∪ {�}, define N+(b) and N−(b) analogously.
A winning strategy for the Duplicator in the k-pebble sliding game on A and B is

a nonempty F ⊆ (A∪{�})k × (B ∪{�})k such that every (a,b) in F defines a partial
k-isomorphism from A to B and for every i ∈ [k] and every o ∈ {+,−}, the following
properties are satisfied:

1. (a[i/�],b[i/�]) belongs to F ;
2. for every X ⊆ No(ai) there exists Y ⊆ No(bi) with |Y | = |X | such that for

every b ∈ Y there exists a ∈ X such that (a[i/a],b[i/b]) belongs to F ;
3. for every Y ⊆ No(bi) there exists X ⊆ No(ai) with |X | = |Y | such that for

every a ∈ X there exists b ∈ Y such that (a[i/a],b[i/b]) belongs to F .
If there exists such a strategy, we write A ≡k

CS B.

4.2. Analogue of equitable partition for tuples. For an integer k ≥ 1, we
write Sk for the set of all permutations on [k]. For a permutation π ∈ Sk, we write
a ◦ π for the tuple (aπ(1), . . . , aπ(k)).

Let a = (a1, . . . , ak) and a′ = (a′1, . . . , a
′
k) be tuples in (A ∪ {�})k. For every

i ∈ [k] and o ∈ {+,−}, define

doi (a, a
′) =

{
1 if a �= a′ and there exists a ∈ No(ai) ∪ {�} such that a′ = a[i/a],
0 otherwise.

Note that d+i (a, a
′) = d−i (a

′, a). Let S and T be subsets of (A ∪ {�})k. For every
i ∈ [k] and o ∈ {+,−}, define

doi (S, T) =
∑
a∈S

∑
a′∈T

doi (a, a
′).

Note that d+i (S, T) = d−i (T, S). If S is a singleton {a}, we write doi (a, T) instead
of doi ({a}, T). We call d+i (a, T) the out-degree of a in T on its ith component and
d−i (a, T) the in-degree of a in T on its ith component.

D
ow

nl
oa

de
d

02
/1

9/
13

 to
 1

61
.1

16
.1

64
.2

0.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

120 ALBERT ATSERIAS AND ELITZA MANEVA

Let (P1, . . . , Ps) be a partition of (A ∪ {�})k into nonempty parts. For every
a ∈ (A ∪ {�})k, let c(a) be the unique m ∈ [s] such that a belongs to Pm. The
partition (P1, . . . , Ps) is called a k-equitable partition of A if for every m ∈ [s] and
every a, a′ ∈ Pm, the following conditions hold:

1. (a, a′) defines a partial k-isomorphism from A to A;
2. c(a[i/�]) = c(a′[i/�]) for every i ∈ [k];
3. doi (a, Pn) = doi (a

′, Pn) for every i ∈ [k], o ∈ {+,−}, and n ∈ [s];
4. |Pc(a)| = |Pc(a◦π)| for every permutation π ∈ Sk;
5. c(a ◦ π) = c(a′ ◦ π) for every permutation π ∈ Sk.

By 3, we note that the following identity holds for every m,n ∈ [s], a ∈ Pm, a′ ∈ Pn,
and i ∈ [k]:

(10) |Pm|d+i (a, Pn) = d+i (Pm, Pn) = d−i (Pn, Pm) = |Pn|d−i (a′, Pm).

We say that A and B have a common k-equitable partition if there exist a
k-equitable partition (P1, . . . , Ps) of A and a k-equitable partition (Q1, . . . , Qt) of
B such that the following conditions are satisfied:

1. s = t and |Pm| = |Qm| for every m ∈ [s];
and, for every m ∈ [s], a ∈ Pm, and b ∈ Qm, the following hold:

2. (a,b) defines a partial k-isomorphism from A to B;
3. c(a[i/�]) = c(b[i/�]) for every i ∈ [k];
4. doi (a, Pn) = doi (b, Qn) for every i ∈ [k], o ∈ {+,−}, and n ∈ [s];
5. c(a ◦ π) = c(b ◦ π) for every permutation π ∈ Sk.

If there exists a common k-equitable partition, we write A ≡k
EP B.

4.3. From SA to pebble game. We show the first implication in the Transfer
Lemma.

Lemma 1. Let k ≥ 2. If A ≡k
SA B, then A ≡k

C B.
Proof. Let (Xp)p∈Rk

be a feasible solution for Fk(A,B). Let F be the collection
of all pairs of k-tuples (a,b) ∈ (A ∪ {�})k × (B ∪ {�})k for which the following two
conditions are satisfied:

1. ai = � if and only if bi = � for every i ∈ [k];
2. p = {(ai, bi) : i ∈ [k], ai �= �, bi �= �} satisfies Xp �= 0.

Note that F is nonempty as the pair of k-tuples (�k, �k) satisfies the two conditions
since in this case p = ∅ and X∅ �= 0 by (9). We proceed to show that each (a,b) in F
defines a partial k-isomorphism fromA to B and that the subtuple and back-and-forth
properties are satisfied. We start with the subtuple property.

Claim 1. Let p, q ∈ Rk. If q ⊆ p, then Xp ≤ Xq.
Proof. Assume q ⊆ p. We proceed by induction on the cardinality of the difference

|p−q|. If |p−q| = 0, then p = q and we are done. Assume |p−q| > 0. Let (a, b) ∈ p−q,
and define p′ = p−{(a, b)}. Then q ⊆ p′ and |p′− q| < |p− q|. By (6) with p′ ∈ Rk−1

we have

Xp′ =
∑
b′∈B

Xp′∪ab′ .

Since each term in the sum is nonnegative by (8), we get Xp′∪ab ≤ Xp′ . Since
p′ ∪ ab = p, the inequality Xp ≤ Xq follows from the induction hypothesis Xp′ ≤
Xq.

Before we continue we need a definition. Let p = {(a1, b1), . . . , (as, bs)} ∈ Rk,
with s ≤ k and (ah, bh) �= (a�, b�) for every h, � ∈ [s], h �= �. We say that p is a

D
ow

nl
oa

de
d

02
/1

9/
13

 to
 1

61
.1

16
.1

64
.2

0.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SA RELAXATIONS AND INDISTINGUISHABILITY 121

partial (k-)isomorphism from A to B if the following conditions are satisfied for every
h, � ∈ [s] and c ∈ [r]:

1. if ah = a�, then bh = b� (and hence h = �);
2. if bh = b�, then ah = a� (and hence h = �);
3. if Aah,a�

= 1, then Bbh,b� = 1;
4. if Bbh,b� = 1, then Aah,a�

= 1;
5. if Cah,c = 1, then Dbh,c = 1;
6. if Dbh,c = 1, then Cah,c = 1.

With this definition we are ready to state the second property of the solutions to
Fk(A,B).

Claim 2. Let p ∈ Rk. If Xp �= 0, then p is a partial isomorphism from A to B.
Proof. Assume Xp �= 0. Let p = {(a1, b1), . . . , (as, bs)}, with s ≤ k and (ah, bh) �=

(a�, b�) for every h, � ∈ [s], h �= �. We need to check all six conditions in the definition
of partial k-isomorphism above.

For 1, assume for contradiction that ah = a� and bh �= b�. Let q = p− {(a�, b�)},
and note that q ∈ Rk−1. From (6) for this q and a = ah we get

Xq∪ahbh = Xq −
n∑

b∈B
b�=bh

Xq∪ahb.

Since (ah, bh) belongs to q, we have q ∪ ahbh = q and therefore

n∑
b∈B
b�=bh

Xq∪ahb = 0.

Each term in the sum is nonnegative by (8), and hence each is 0. In particular, either
h = � and then we are done, or Xq∪ahb� = 0. But ah = a� and q∪a�b� = p, and hence
Xp = 0, a contradiction.

For 2, argue as in 1 using (7) for q = p− {(ah, bh)} and b = b�.
For 3, assume for contradiction that Aah,a�

= 1 and Bbh,b� = 0. Let q = {(ah, bh)}.
Note that q ∈ R1 ⊆ Rk−1 since k ≥ 2. From (2) for this q, a = ah, and b = b� we get

(11) Xq∪a�b� =
∑
b∈B

Xq∪ahbBb,b� −
∑
a∈A
a�=a�

Aah,aXq∪ab� .

Since (ah, bh) belongs to q, by part 1 of this lemma we have Xq∪ahb = 0 whenever
b �= bh. Moreover, whenever b = jh we have Bb,b� = 0 by assumption. Both things
together mean that the first sum in (11) vanishes. Since every term in the second sum
in that same equation is nonnegative by (8), we get Xq∪a�b� ≤ 0. Since q ∪ a�b� ⊆ p,
by Claim 1 we get Xp ≤ 0. But also Xp ≥ 0 by (8), so Xp = 0, a contradiction.

For 4, argue as in 3 using part 2 of this lemma.
For 5, assume for contradiction that Cah,c = 1 and Dbh,c = 0. Let q = p −

{(ah, bh)}. Note that q ∈ Rk−1. From (4) for this q and a = ah we get

(12) XqCah,c =
∑
b∈B

Xq∪ahbDb,c ≤ Xq∪ahbhDbh,c.

D
ow

nl
oa

de
d

02
/1

9/
13

 to
 1

61
.1

16
.1

64
.2

0.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

122 ALBERT ATSERIAS AND ELITZA MANEVA

But then the conditions Cah,c = 1 and Dbh,c = 0 imply that Xq ≤ 0. Since q ⊆ p, we
get Xp ≤ 0 from Claim 1, and hence Xp = 0, a contradiction.

For 6, argue as in 5 using (5) for the same q and b = bh.
The next claim states the forth property.
Claim 3. Let q ∈ Rk−1. If Xq �= 0, then for every X ⊆ A there exists Y ⊆ B

with |Y | = |X | such that for every b ∈ Y there exists a ∈ X such that Xq∪ab �= 0.
Proof. Assume Xq �= 0. For every (a, b) ∈ A × B, define Ya,b = Xq∪ab/Xq and

let Y be the |A| × |B| matrix (Ya,b)a∈A,b∈B. Equations (6), (8), and (9) imply that
Y is a doubly stochastic matrix. Therefore, by the Birkhoff–von Neumann theorem,
Y is the convex combination of one or more permutation matrices: Y =

∑r
t=1 αtΠt,

with r ≥ 1 and αt > 0 for every t ∈ {1, . . . , r}. Let π be the permutation underlying
Π1 interpreted like a bijection from A to B. For every X ⊆ A, define Y = π(X).
Obviously |Y | = |X |. Moreover, for every b ∈ Y , choose a = π−1(b) ∈ X and check
that

Ya,b =
r∑

t=1

αtΠt(a, b) ≥ α1Π1(a, b) = α1 > 0.

This implies Xq∪ab �= 0, and we are done.
The final claim states the back property.
Claim 4. Let q ∈ Rk−1. If Xq �= 0, then for every Y ⊆ B there exists X ⊆ A

with |X | = |Y | such that for every a ∈ X there exists b ∈ Y such that xq∪ab �= 0.
Proof. This proof is as in Claim 3; reverse the roles of X and Y , and a and b.
These claims complete the proof of the lemma.

4.4. From pebble game to sliding game. We show that if the Duplicator
has a winning strategy in the nonsliding game with k+1 pebbles, then she also has a
winning strategy in the sliding game with k pebbles. Intuitively, the idea is that the
Duplicator can use her strategy in the nonsliding game to simulate the moves of the
sliding game by pretending that the Spoiler makes restricted use of pebble k + 1.

More precisely, if Spoiler slides pebble i ∈ [k] from a to a′ in the sliding game,
then Duplicator pretends that Spoiler actually does the following: place pebble k+1
on a′ to force the sliding condition on the Duplicator side, then move pebble i from
a to a′ to actually get the move done, and finally remove pebble k + 1 off the board
to leave it free for the next move. We make this argument formal in the next lemma.

Lemma 2. Let k ≥ 1. If A ≡k+1
C B, then A ≡k

CS B.

Proof. Let F be a winning strategy witnessing that A ≡k+1
C B. Let H be the

collection of all pairs of k-tuples (a′,b′), with a′ = (a′1, . . . , a′k) ∈ (A∪{�})k and b′ =
(b′1, . . . , b

′
k) ∈ (B ∪ {�})k, for which there exists (a,b) in F , with a = (a1, . . . , ak+1)

and b = (b1, . . . , bk+1), such that ai = a′i and bi = b′i for every i ∈ [k]. In words, a′

and b′ are the projections on the first k components of some pair of tuples (a,b) that
belongs to F . We claim that H is a winning strategy in the k-pebble sliding game.

First, H is nonempty since F is nonempty. Second, every (a′,b′) in H is a partial
k-isomorphism since the corresponding (a,b) in F is a partial (k + 1)-isomorphism.
Third, for every (a′,b′) in H and every i ∈ [k], the pair (a′[i/�],b′[i/�]) belongs to H
by the closure under subtuples of F . Next we argue that the back and forth properties
are satisfied. By symmetry, it suffices to check the forth property with +-orientation.

Fix (a′,b′) in H, with a′ = (a′1, . . . , a
′
k) and b′ = (b′1, . . . , b

′
k). Let the correspond-

ing pair of tuples in F be a = (a′1, . . . , a′k, ak+1) and b = (b′1, . . . , b′k, bk+1). Fix i ∈ [k]
and X ⊆ N+(a′i). By the closure under subtuples of F and the forth property of F
applied to the pair (a[k+1/�],b[k+1/�]), component k+1, and set X ⊆ N+(�) = A,

D
ow

nl
oa

de
d

02
/1

9/
13

 to
 1

61
.1

16
.1

64
.2

0.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SA RELAXATIONS AND INDISTINGUISHABILITY 123

there exists Y ⊆ N+(�) = B with |Y | = |X | such that for every b ∈ Y there exists
a ∈ X such that (a[k+1/a],b[k+1/b]) belongs to F . Now let us show the following.

Claim 5. Y ⊆ N+(b′i).
Proof. If b′i = �, there is nothing to show since in that case N+(b′i) = B and it is

obvious that Y ⊆ B. Assume then that b′i �= �. Fix an arbitrary element b ∈ Y . We
want to show that (b′i, b) is an edge in B. By the choice of Y , there exists a ∈ X such
that (a[k + 1/a],b[k + 1/b]) belongs to F . In particular, (a[k + 1/a],b[k + 1/b]) is a
partial (k + 1)-isomorphism, and since (a′i, a) is an edge in A, (b′i, b) must also be an
edge in B. This shows that Y ⊆ N+(b′i).

Next we show the following.
Claim 6. For every b ∈ Y , there is a ∈ X such that (a′[i/a],b′[i/b]) is in H.
Proof. In the proof of the previous claim we argued that for every b ∈ Y there

exists a ∈ X such that (a[k + 1/a],b[k + 1/b]) belongs to F . By the forth property
of F applied to the pair of tuples (a[k + 1/a],b[k + 1/b]), component i, and set
X ′ = {a} ⊆ N+(a′i), there exists Y ′ ⊆ N+(b′i) with |Y ′| = |X ′| such that for every
b′ ∈ Y ′ there exists a′ ∈ X ′ such that (a[k + 1/a, i/a′],b[k + 1/b, i/b′]) belongs to F .
But since the members of F define partial (k+1)-isomorphisms and the only a′ in X ′

is a, necessarily Y ′ = {b} since otherwise the components i and k +1 would be equal
in a[k + 1/a, i/a′] and different in a[k + 1/b, i/b′].

The previous paragraph shows that for every b ∈ Y there exists a ∈ X such
that the pair (a[k + 1/a, i/a],b[k + 1/b, i/b]) belongs to F . Since (a′[i/a],b′[i/b]) is
precisely the pair of projections on the first k components of the tuples in (a[k +
1/a, i/a],b[k+1/b, i/b]), this shows that for every b ∈ Y there exists a ∈ X such that
(a′[i/a],b′[i/b]) belongs to H.

The forth property of H is proved, which proves the lemma.

4.5. From sliding game to common equitable partition. Let a and b be
k-tuples in (A ∪ {�})k and (B ∪ {�})k, respectively. Define (a,A) ≡ (b,B) if (a,b)
belongs to some winning strategy for the Duplicator in the k-pebble sliding game on
A and B.

Lemma 3. ≡ is an equivalence relation.
Proof. The symmetry of the relation follows from the symmetry of the game, and

its reflexivity is clear. The only property that requires checking is transitivity. Assume
(a,A) ≡ (b,B) and (b,B) ≡ (c,C). Let F and F ′ be the two winning strategies
witnessing these facts. Let G be the collection of all pairs of k-tuples (a′, c′) with
a′ ∈ (A∪{�})k and c′ ∈ (C∪{�})k for which there exists a k-tuple b′ ∈ (B∪{�})k such
that (a′,b′) belongs to F and (b′, c′) belongs to F ′. Clearly, each (a′, c′) in G defines
a partial k-isomorphism from A to C. Moreover, (a′[i/�], c′[i/�]) belongs to G by the
closure under subtuples properties of F and F ′. Indeed, (a′[i/�],b′[i/�]) belongs to F
and (b′[i/�], c′[i/�]) belongs to F ′ for the b′ that witnesses that (a′, c′) belongs to G.
The back and forth properties of G are also easily derived from the back and forth
properties of F and F ′. Finally, G contains the pair (a, c) by construction, which
means that it is nonempty and hence a winning strategy witnessing that (a,A) ≡
(c,C).

In restriction to a single structure A, the equivalence relation ≡ can be thought
as an equivalence relation on (A ∪ {�})k.

Lemma 4. The sequence of equivalence classes of ≡ on (A∪{�})k is a k-equitable
partition of A.

Proof. Let (P1, . . . , Ps) be the equivalence classes of ≡ on (A∪ {�})k. This forms
a partition of (A ∪ {�})k. Fix an index m ∈ [s], and fix tuples a = (a1, . . . , ak)

D
ow

nl
oa

de
d

02
/1

9/
13

 to
 1

61
.1

16
.1

64
.2

0.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

124 ALBERT ATSERIAS AND ELITZA MANEVA

and a′ = (a′1, . . . , a
′
k) in Pm. Since a ≡ a′, the pair (a, a′) belongs to some winning

strategy F . In particular it defines a partial k-isomorphism from A to A.
To argue that c(a[i/�]) = c(a′[i/�]) for every i ∈ [k], note that (a[i/�], a′[i/�])

also belongs to F by the closure under subtuples property in the definition of winning
strategy.

Next we want to show that doi (a, Pn) = doi (a
′, Pn) for every i ∈ [k], o ∈ {+,−},

and n ∈ [s]. First we consider the case that a[i/�] lands in Pn. In this case
doi (a, Pn) = 1 since every tuple in Pn must be equivalent to a[i/�] and hence have �
in the ith component, and doi (a, Pn) is precisely the number of a ∈ No(ai)∪ {�} such
that a[i/a] belongs to Pn. Also a′[i/�] lands in Pn by the previous paragraph, and
hence doi (a

′, Pn) = 1 by the same argument.
Next we consider the case where a[i/�] does not land in Pn. Let X be the set of

all a ∈ No(ai) such that a[i/a] belongs to Pn. Then |X | = doi (a, Pn). Similarly, let
X ′ be the set of all a′ ∈ No(a′i) such that a′[i/a′] belongs to Pn. Since a′[i/�] does
not land in Pn either because c(a[i/�]) = c(a′[i/�]), we have |X ′| = doi (a

′, Pn). We
show that |X | = |X ′|.

Let Y ⊆ No(a′i) be the set guaranteed to exist by the forth property of F for
the pair of tuples (a, a′), index i, and set X . Then |Y | = |X |. We claim that
Y ⊆ X ′. To show this, observe that for each a′ ∈ Y there exists some a ∈ X such
that (a[i/a], a′[i/a′]) belongs to F . Hence a[i/a] ≡ a′[i/a′], which means that a′[i/a′]
belongs to the equivalence class Pn of a[i/a]. This shows that Y ⊆ X ′. Therefore
|Y | ≤ |X ′| and hence |X | ≤ |X ′| because |Y | = |X |. The symmetric argument
exchanging the roles of a, X and a′, X ′ would show that |X ′| ≤ |X |. Thus |X | = |X ′|,
as was to be shown.

To argue that c(a ◦ π) = c(a′ ◦ π) for every permutation π ∈ Sk, note that F ◦ π
defined as {(c ◦ π, c′ ◦ π) : (c, c′) ∈ F} is also a winning strategy. The same argument
shows that |Pc(a)| = |Pc(a◦π)|.

Lemma 5. Let k ≥ 1. If A ≡k
CS B, then A ≡k

EP B.
Proof. Let (P1, . . . , Ps) be the k-equitable partition given by ≡ on A. Similarly,

let (Q1, . . . , Qt) be the k-equitable partition given by ≡ on B.
By hypothesis there exists a winning strategy for the Duplicator on A and B.

Let F be such a strategy. By the forth property of F , for every a in Ak there exists
b = b(a) in Bk such that (a,b) belongs to F , and therefore (a,A) ≡ (b(a),B).
Moreover, by the transitivity of the equivalence relation and the fact that (a,A) ≡
(b(a),B) for every a ∈ (A ∪ {�})k it follows that (a,A) ≡ (a′,A) if and only if
(b(a),B) ≡ (b(a′),B). This means that there exists a well-defined injective mapping
α : {1, . . . , s} → {1, . . . , t} that takes m ∈ [s] to the unique n ∈ [t] such that every a
in Pm is equivalent to every b in Qn.

Claim 7. s = t.
Proof. The injective mapping α : {1, . . . , s} → {1, . . . , t} shows that s ≤ t. By

symmetry we also get t ≤ s and hence s = t.
Since α is indeed a bijection, we may assume that it is the identity by rearranging

the partitions. In other words, from now on we assume that (a,A) ≡ (b,B) if and
only if c(a) = c(b).

Claim 8. c(a[i/�]) = c(b[i/�]) for every i ∈ [k], m ∈ [s], a ∈ Pm, and b ∈ Qm.
Proof. Since (a,A) ≡ (b,B), the pair (a,b) belongs to some winning strategy F ,

but then the pair (a[i/�],b[i/�]) also belongs to F by the closure under subtuples of
winning strategies. This shows that c(a[i/�]) = c(b[i/�]).

Next we show that the degrees are the same.

D
ow

nl
oa

de
d

02
/1

9/
13

 to
 1

61
.1

16
.1

64
.2

0.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SA RELAXATIONS AND INDISTINGUISHABILITY 125

Claim 9. doi (a, Pn) = doi (b, Qn) for every i ∈ [k], o ∈ {+,−}, m,n ∈ [s], a ∈ Pm,
and b ∈ Qm.

Proof. Let a = (a1, . . . , ak) and b = (b1, . . . , bk). First we consider the case
that a[i/�] lands in Pn. In this case doi (a, Pn) = 1 since every tuple in Pn must be
equivalent to a[i/�] and hence have � in the ith component, and doi (a, Pn) is precisely
the number of a ∈ No(ai) ∪ {�} for which a[i/a] lands in Pn. By Claim 8, b[i/�] also
lands in Qn. Hence doi (b, Qn) = 1 by the same argument, which completes this case.

Next we consider the case that a[i/�] does not land in Pn. Let X be the set
{a ∈ No(ai) : a[i/a] ∈ Pn}. Thus |X | = doi (a, Pn). By the definition of winning
strategy for the Duplicator there exists a set Y ⊆ No(bi) with |Y | = |X | such that
for every b ∈ Y there exists a ∈ X such that (a[i/a],b[i/b]) belongs to F . Since this
implies (a[i/a],A) ≡ (b[i/b],B), we can conclude that b[i/b] ∈ Qn for every b ∈ Y .
Thus doi (b, Qn) ≥ |Y | = |X | = doi (a, Pn).

The symmetric condition for winning strategy implies the opposite inequality, and
putting the two together we have doi (a, Pn) = doi (b, Qn).

Next we show that the classes have the same sizes.
Claim 10. |Pm| = |Qm| for every m ∈ [s].
Proof. First notice that the fact that there is a winning strategy for the Duplicator

implies that |A| = |B|. To see this note first that the pair of k-tuples (�k, �k) belongs
to the winning strategy by the closure under subtuples of winning strategies, and
that the forth property applied to this pair of tuples and any i ∈ [k], o ∈ {+,−}
requires that for every X ⊆ No(�) = A there must exist a Y ⊆ No(�) = B such that
|Y | = |X |, among other properties. In particular, choosing X = A we get |B| ≥ |A|.
By the symmetric condition we also get |A| ≥ |B|. Using the equality between the
sizes of A and B the statement of this claim follows from the previous one, as we show
next.

For every m,n ∈ [s], a ∈ Pm, a′ ∈ Pn, b ∈ Qm, and b′ ∈ Qn we have the
identities

|Pm|d+i (a, Pn) = d+i (Pm, Pn) = d−i (Pn, Pm) = |Pn|d−i (a′, Pm),

|Qm|d+i (b, Qn) = d+i (Qm, Qn) = d−i (Qn, Qm) = |Qn|d−i (b′, Qm).

Therefore

|Pm|
|Pn| =

d−i (a
′, Pm)

d+i (a, Pn)
=

d−i (b
′, Qm)

d+i (b, Qn)
=

|Qm|
|Qn| ,

where the second equality follows from the previous claim. This means that the ratio
r = |Pm|/|Qm| does not depend on m, and since |A| = ∑s

m=1 |Pm| = r
∑s

m=1 |Qm| =
r|B|, it follows that r = 1.

Claim 11. c(a ◦ π) = c(b ◦ π) for every permutation π ∈ Sk, m ∈ [s], a ∈ Pm,
and b ∈ Qm.

Proof. Since (a,A) ≡ (b,B), the pair (a,b) belongs to some winning strategy F .
But then the pair (a◦π,b◦π) belongs to F ◦π defined by {(c◦π, c′ ◦π) : (c, c′) ∈ F},
which is again a winning strategy. This shows that c(a ◦ π) = c(b ◦ π).

These claims show that (P1, . . . , Ps) and (Q1, . . . , Qs) witness that A and B have
a common k-equitable partition.

4.6. From common equitable partition to SA. We prove the last implica-
tion of the Transfer Lemma.

Lemma 6. Let k ≥ 1. If A ≡k
EP B, then A ≡k

SA B.

D
ow

nl
oa

de
d

02
/1

9/
13

 to
 1

61
.1

16
.1

64
.2

0.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

126 ALBERT ATSERIAS AND ELITZA MANEVA

Proof. Let (P1, . . . , Ps) and (Q1, . . . , Qs) be the common k-equitable partition of
A and B.

For every q ⊆ A × B with |q| ≤ k, if q is not a partial mapping, define Xq = 0.
If q is a partial mapping, define Xq as follows. Let a1, . . . , ar be an enumeration
without repetitions of Dom(q). In particular, r ≤ k. Let a = (a1, . . . , ar, �, . . . , �)
be the k-tuple that starts with a1, . . . , ar and is padded to length k by adding stars.
Let b = (b1, . . . , bk) be the k-tuple defined by bi = q(ai) for every i ∈ {1, . . . , r} and
bi = � for every i ∈ {r + 1, . . . , k}. Let m = c(a) and n = c(b). If m �= n, define
Xq = 0. If m = n, define Xq = 1/|Pm| = 1/|Qm|. Since c(a ◦ π) = c(b ◦ π) and
|Pc(a)| = |Pc(a◦π)| hold for every permutation π ∈ Sk, this definition does not depend
on the choice of the enumeration a1, . . . , ar and is hence well defined.

Claim 12. If |q| < k and a ∈ A, then Xq =
∑

b∈B Xq∪ab.
Proof. If q is not a partial mapping, then Xq = 0 and Xq∪ab = 0 for every b ∈ B,

and the identity is obvious. Assume then that q is a partial mapping and that |q| < k.
Let a1, . . . , ar be an enumeration without repetitions of Dom(q). In particular, r < k.
Let a = (a1, . . . , ar, �, . . . , �) be the k-tuple that starts with a1, . . . , ar and is padded
to length k by adding stars. Let b = (b1, . . . , bk) be the k-tuple defined by bi = q(ai)
for every i ∈ {1, . . . , r} and bi = � for every i ∈ {r + 1, . . . , k}. Setting i = r + 1 for
the rest of the proof, in particular, ai = bi = �.

Let m = c(a) and n = c(b). If m �= n, we have Xq = 0 by definition, and
also Xq∪ab = 0 for every b ∈ B since otherwise c(a[i/a]) = c(b[i/b]), which implies
c(a) = c(b), and hence m = n, by the definition of common equitable partition. Since
this makes the identity obvious, we may assume that m = n.

Recall i = r + 1, and let a′ = a[i/a] and m′ = c(a′). Note that none of the
tuples b′ in Qm′ can have � in the ith component since (a′,b′) must define a partial
k-isomorphism; a′ does not have it. We claim that

∑
b∈B

Xq∪ab =
d+i (b, Qm′)

|Qm′ | =
d−i (Qm′ , Qm)

|Qm||Qm′ | =
1

|Qm| = Xq.

The first equality follows from the definition of Xq∪ab that sets Xq∪ab = 0 if b[i/b]
does not belong to Qm′ , and Xq∪ab = 1/|Qm′ | if b[i/b] belongs to Qm′ , together with
the fact that N+(bi) = B since bi = �, and that b[i/�] does not land in Qm′ since
no tuple in Qm′ has � in the ith component. The second equality follows from the
identity

|Qm|d+i (b, Qm′) = d+i (Qm, Qm′) = d−i (Qm′ , Qm).

For the third equality, let b ∈ B be such that b[i/b] lands in Qm′ . Such a b must
exist since d+i (b, Qm′) = d+i (a, Pm′) and d+i (a, Pm′) ≥ 1 as a[i/a] lands in Pm′ and
a ∈ N+(ai) = N+(�) = A. Again we are using the fact that no tuple in Qm′ has
� in the ith component to make sure that the count d+i (b, Qm′) does not include �.
Now we have d−i (b[i/b], Qm) = 1 since d−i (b[i/b], Qm) is precisely the number of b′

in N−(b) ∪ {�} such that b[i/b′] belongs to Qm, but the only such b′ is �. Indeed,
every tuple b′ in Qm has � in the ith component since (b,b′) must define a partial
k-isomorphism, and b has it. This together with the identity

d−(Qm′ , Qm) = |Qm′ |d−i (b[i/b], Qm)

proves the third equality and the claim.
Claim 13. If |q| < k and b ∈ B, then Xq =

∑
a∈A Xq∪ab.

D
ow

nl
oa

de
d

02
/1

9/
13

 to
 1

61
.1

16
.1

64
.2

0.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SA RELAXATIONS AND INDISTINGUISHABILITY 127

Proof. As above, exchange the roles of a and b, and A and B.
Claim 14. If |q| < k, a ∈ A, and b ∈ B, then

∑
a′∈A

Aa,a′Xq∪a′b =
∑
b′∈B

Xq∪ab′Bb′,b.

Proof. If q is not a partial mapping, then Xq = 0 and Xq∪a′b = 0 for every
b ∈ B, and the identity is obvious. Assume then that q is a partial mapping and
that |q| < k. Let a1, . . . , ar be an enumeration without repetitions of Dom(q). In
particular, r < k since we are assuming |q| < k. Let a = (a1, . . . , ar, a, �, . . . , �) be
the k-tuple that starts with a1, . . . , ar, follows with a, and is padded to length k by
adding stars. Similarly, let b = (q(a1), . . . , q(ar), b, �, . . . , �) be the k-tuple that starts
with q(a1), . . . , q(ar), follows with b, and is padded to length k by adding stars.

Set i = r + 1 for the rest of the proof, and let m = c(a) and n = c(b). By the
same argument as in Claim 12, note that none of the tuples in Qm or Pn has � in the
ith component since neither a nor b has it. We claim that

∑
a′∈A

Aa,a′Xq∪a′b =
∑

a′∈N+(a)

Xq∪a′b =
d+i (a, Pn)

|Pn| .(13)

The first equality is obvious. The second equality follows from the definition of Xq∪a′b
that sets Xq∪a′b = 0 if a[i/a′] does not belong to Pn, and Xq∪a′b = 1/|Pn| if a[i/a′]
belongs to Pn, together with the fact that a[i/�] does not land in Pn since none of
the tuples in Pn has � in the ith component.

At the same time we claim that

(14)
∑
b′∈B

Xq∪ab′Bb′,b =
∑

b′∈N−(b)

Xq∪ab′ =
d−i (b, Qm)

|Qm| .

Again the first equality is obvious, and the second equality follows from the definition
of Xq∪ab′ , together with the fact that the tuples in Qm do not have � in the ith
component.

Fix a′ ∈ Pn and b′ ∈ Qm. From the definition of common equitable partition we
have d−i (a

′, Pm) = d−i (b, Qm) and d+i (b
′, Qn) = d+i (a, Pn). Moreover, |Pm| = |Qm|

and |Pn| = |Qn|. These, together with either of the two identities

|Pn|d−i (a′, Pm) = d−i (Pn, Pm) = d+i (Pm, Pn) = |Pm|d+i (a, Pn),

|Qm|d+i (b′, Qn) = d+i (Qm, Qn) = d−i (Qn, Qm) = |Qn|d−i (b, Qm),

give the identity

d−i (b, Qm)

|Qm| =
d+i (a, Pn)

|Pn| .

This shows the equality between (13) and (14).
Claim 15. If |q| < k, a ∈ A, and c ∈ [r], then XqCa,c =

∑
b∈B Xq∪abDb,c.

Proof. First assume that Ca,c = 0, so that the left-hand side is 0. Then for every
b ∈ B we have either Db,c = 0 or Db,c = 1 and then Xq∪ab = 0 since q ∪ ab cannot be
a partial isomorphism in this case. Thus, each term in the right-hand side is 0.

D
ow

nl
oa

de
d

02
/1

9/
13

 to
 1

61
.1

16
.1

64
.2

0.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

128 ALBERT ATSERIAS AND ELITZA MANEVA

Next assume that Ca,c = 1, so that the left-hand side is Xq. Then Xq∪ab = 0
whenever Db,c = 0 since q ∪ ab cannot be a partial isomorphism in this case. Thus,
the right-hand side can be written as

∑
b∈B

Xq∪ab,

which equals Xq by (6).
Claim 16. If |q| < k, b ∈ B, and c ∈ [r], then XqDb,c =

∑
a∈AXq∪abCa,c.

Proof. This proof is the same as in the previous claim, exchanging the roles of a
and b, and C and D.

These claims show that the proposed assignment satisfies all the equations of
Fk(A,B). Since the components are nonnegative, the lemma follows.

5. Preservation of local linear programs. Many of the linear programs (LPs)
that appear in the combinatorial optimization literature are composed of linear in-
equalities that are in some sense local : the variables involved in the inequality talk
about some small neighborhood of the graph or hypergraph, or whatever combinato-
rial structure the LP refers to. In this section we isolate one such definition of local
LP and show that its polytope of feasible solutions is preserved by the SA levels of
fractional isomorphism. This will be of use in the applications of sections 6.

5.1. Local LPs. LetA = (A,EA, CA
1 , . . . , CA

r) be a colored directed graph. Let
the size of a tuple a ∈ Ak, denoted by |a|, be the number of distinct elements in the
tuple. For a tuple a = (a1, . . . , ak) ∈ Ak, let us temporarily define γ : {a1, . . . , ak} →
{1, . . . , |a|} to be the unique bijective map such that γ(ai) ≤ |(a1, . . . , ai)| for every
i ∈ [k]. We will denote by [A, a] the generic colored directed graph isomorphic to the
subgraph of A induced by {a1, . . . , ak} together with the tuple corresponding to a,
which we refer to as its order-tuple. Thus, in [A, a],

1. the vertices are {1, . . . , |a|},
2. the edges are {(γ(a), γ(a′)) : (a, a′) ∈ EA},
3. the ith color is {γ(a) : a ∈ CA

i }, and
4. the order-tuple is (γ(a1), γ(a2), . . . , γ(ak)).

For two tuples a = (a1, . . . , am) and b = (b1, . . . , bn), we write ab for the con-
catenation tuple (a1, . . . , am, b1, . . . , bn). If m = n, we write a �→ b for the tuple of
pairs ((a1, b1), . . . , (am, bm)), which we think of as a partial mapping.

A basic k-local LP is specified by rational numbers d[C,c] and M
[C,c]
r for every

generic colored digraph C of size at most k with order-tuple c of length at most 2k
and for every r ≤ k. The instantiation of the system on A is the system of inequalities
that has one variable xa for every tuple a ∈ A≤k and one inequality of the form

k∑
r=1

∑
a∈Ar

|aa′|≤k

M [A,aa′]
r xa ≤ d[A,a′]

for every a′ ∈ A≤k. In words, the coefficient of the variable indexed by a in the
inequality indexed by a′ depends only on [A, aa′] and the length of a. A k-local
LP is a union of basic k-local LPs. If L is a k-local LP, its instantiation on A,
denoted by L(A), is the union of the instantiations of the basic k-local systems that
compose L.

D
ow

nl
oa

de
d

02
/1

9/
13

 to
 1

61
.1

16
.1

64
.2

0.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SA RELAXATIONS AND INDISTINGUISHABILITY 129

5.2. Examples. Before we go on to show that the feasible solutions to local LPs
are preserved by the SA levels of fractional isomorphism, let us give a few examples
of local LPs. These examples will actually play a role later in the paper.

Typical constraints. All four examples discussed contain two types of constraints
for which it is easy to check the condition of k-locality. One special case that satisfies
the condition is an LP consisting of a single inequality with the same coefficient for all
xa in which a induces a particular colored directed subgraph or one in a set of colored
directed subgraphs on the structure. We call such a basic local LP homogeneous. The
objective functions of many natural LPs are homogeneous local LPs, as we will see.

Another special case is when the coefficient in front of variable xa in the inequality
indexed by a′ is nonzero only if the elements in a are contained within a′. In this

case we have M
[C,c]
r �= 0 only if the first r elements of c are included in the last s− r,

where s is the length of c. The nonzero coefficients are allowed to all be different
since in the case that a1 and a2 are contained in a′, we have [A, a1a

′] �= [A, a2a
′]

whenever a1 �= a2, because they have different order-tuples. We call such a basic
k-local LP bounded. In particular, any inequality in an LP that mentions only the
variables indexed by tuples over up to k points of A is a bounded k-local LP. We see
examples below.

Matchings in bipartite graphs. We write the fractional matching polytope for
general graphs which, for bipartite graphs, is known to coincide with its integer hull.

Let G = (V,E) be an undirected graph. The classical way of writing the frac-
tional matching polytope has one variable xe for each edge e ∈ E and two types of
constraints:

∑
e∈δ(u) xe ≤ 1 for u ∈ V,

0 ≤ xe ≤ 1 for e ∈ E,

where δ(u) denotes the set of edges ofG that are incident on u. The classical objective
function is

maximize
∑

e∈E xe.

In order to write this LP as a local LP, we introduce one variable xuv for every pair
of vertices u, v ∈ V , and we add constraints that force these variables to 0 if {u, v} is
not an edge of the graph and force xuv = xvu for every u, v ∈ V . We also incorporate
the objective function as one additional constraint:

1
2

∑
u�=v xuv ≥ W,(15) ∑

v �=u xuv ≤ 1 for u ∈ V,(16)

0 ≤ xuv ≤ 1 for u, v ∈ V,(17)

xuv = 0 for u, v ∈ V such that {u, v} �∈ E,(18)

xuv = xvu for u, v ∈ V with u �= v.(19)

We check that this is a 2-local LP. First, inequality (15) is a basic homogeneous
2-local system: set d[C,c] = −W if C is the empty graph and c is the empty tuple,

and d[C,c] = 0 otherwise; set M
[C,c]
r = −1/2 if r = 2 and C is a graph on {1, 2} and

c = (1, 2), and M
[C,c]
r = 0 otherwise. Second, inequality (16) is a basic 2-local LP: set

D
ow

nl
oa

de
d

02
/1

9/
13

 to
 1

61
.1

16
.1

64
.2

0.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

130 ALBERT ATSERIAS AND ELITZA MANEVA

d[C,c] = 1 if C is a graph on {1} and c = (1), and d[C,c] = 0 otherwise; set M
[C,c]
r = 1

if r = 2 and C is a graph on {1, 2} and c = (1, 2, 1), and M
[C,c]
r = 0 otherwise. The

remaining inequalities are basic bounded 2-local systems. Thus, the result is a union
of basic 2-local LPs and hence a 2-local LP.

Maximum flows. A network is a directed graph without self-loops, and with
two distinguished vertices s and t. We code these as colored directed graphs G =
(V,E, S, T), with color S set to {s} and color T set to {t}. Our networks have unit
capacities at every edge.

The classical LP for st-flows has one variable xe for every e ∈ E and two types
of constraints:

∑
e∈δ−(u) xe −

∑
e∈δ+(u) xe = 0 for u ∈ V \ {s, t},

0 ≤ xe ≤ 1 for e ∈ E,

where δ−(u) denotes the set of edges of G entering u, and δ+(u) denotes the set of
edges of G leaving u. The objective is to maximize the flow going out of s:

maximize
∑

e∈δ+(s) xe.

In order to write this LP as a local LP, we introduce one variable xuv for every pair
of vertices u, v ∈ V and add constraints that force xuv to be nonzero only on edges
(u, v) ∈ E. We also incorporate the objective function as a constraint:

∑
v �=s xsv ≥ W,(20) ∑
v �=u xvu −∑

v �=u xuv = 0 for u ∈ V \ {s, t},(21)

0 ≤ xuv ≤ 1 for u, v ∈ V,(22)

xuv = 0 for u, v ∈ V such that (u, v) �∈ E.(23)

Inequality (20) is a basic homogeneous 2-local LP: set d[C,c] = −W if C is the

empty graph and c is the empty tuple, and d[C,c] = 0 otherwise; set M
[C,c]
r = −1

if r = 2 and C is a graph on {1, 2} with color S on vertex 1 and c = (1, 2), and

M
[C,c]
r = 0 otherwise. Equation (21) is a union of two basic 2-local LPs with opposite

signs: one for ≤ and one for ≥. In the first, set d[C,c] = 0 for every C and c, and

M
[C,c]
r = 1 if r = 2 and C is a graph on {1, 2} where 2 is not colored S or T and

c = (1, 2, 2), and set M
[C,c]
r = −1 if r = 2 and C is a graph on {1, 2} where 1 is not

colored S or T and c = (1, 2, 1), and M
[C,c]
r = 0 otherwise. The remaining inequalities

are basic bounded 2-local LPs.
SA levels of vertex-cover. Let G = (V,E) be an undirected graph. The vanilla

LP for vertex cover is

0 ≤ xu ≤ 1 for u ∈ V,(24)

xu + xv ≥ 1 for {u, v} ∈ E.(25)

The objective function is

minimize
∑

u∈V xu.

The corresponding t-level SA system is defined on the variables yI for every I ⊆ V with
|I| ≤ t. For I, J ⊆ V , let S(I, J) =

∑
J′⊆J(−1)|J

′|yI∪J′ , which is the linearization of

D
ow

nl
oa

de
d

02
/1

9/
13

 to
 1

61
.1

16
.1

64
.2

0.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SA RELAXATIONS AND INDISTINGUISHABILITY 131

the extended monomial
∏

i∈I xi

∏
j∈J (1 − xj). In particular, S(I, J) = 0 if I and J

are not disjoint. In the following definition I and J range over all disjoint subsets of V
such that |I ∪ J | ≤ t− 1. We also incorporate the objective function as a constraint:

∑
u∈V y{u} ≤ W,(26)

y∅ = 1,(27)

0 ≤ S(I ∪ {u}, J) ≤ S(I, J) for u ∈ V,(28)

S(I ∪ {u}, J) + S(I ∪ {v}, J) ≥ S(I, J) for {u, v} ∈ E.(29)

Inequalities (28) and (29) come from multiplying (24) and (25) by the extended
monomial

∏
i∈I xi

∏
j∈J (1− xj) and linearizing.

To put it in the form of a local LP we need the variables to be indexed by tuples,
so we replace yI for I = {v1, . . . , vr}, r ≤ t, by ya for a = (v1, . . . , vr), and for every
permutation π : [r] → [r] we add the constraint ya = ya◦π. Constraints should also
be indexed by tuples, so (29) is really a pair of (equivalent) constraints: one for (u, v)
and one for (v, u).

Inequality (26), which comes from the objective function, is a homogeneous 1-local
LP, which implies it is also a homogeneous (t+1)-local LP. The remaining constraints
are bounded (t+ 1)-local LPs.

SA levels of max-cut. Again, let G = (V,E) be an undirected graph. The LP
relaxation for max-cut known as the metric polytope has one variable xuv for every
pair of vertices u, v ∈ V and the constraints below:

0 ≤ xuv ≤ 1 for u, v ∈ V,(30)

xuv = xvu for u, v ∈ V,(31)

xuw ≤ xuv + xvw for u, v, w ∈ V,(32)

xuv + xvw ≤ 2− xuw for u, v, w ∈ V.(33)

The objective function is

maximize 1
2

∑
{u,v}∈E xuv .

The corresponding t-level SA system is defined on the variables yI for every
I ⊆ V 2 with |I| ≤ t. In the following system I and J range over all disjoint subsets
of V 2 such that |I ∪ J | ≤ t − 1. We also incorporate the objective function as a
constraint:

1
2

∑
{u,v}∈E y{uv} ≥ W,(34)

y∅ = 1,(35)

0 ≤ S(I ∪ {uv}, J) ≤ S(I, J),(36)

S(I ∪ {uv}, J) = S(I ∪ {vu}, J),(37)

S(I ∪ {uw}, J) ≤ S(I ∪ {uv}, J) + S(I ∪ {vw}, J),(38)

S(I ∪ {uv}, J) + S(I ∪ {vw}, J) ≤ 2S(I, J)− S(I ∪ {uw}, J).(39)

To put it in the form required by Theorem 2 we need the variables to be indexed by
tuples, so we replace yI for I = {(v1, v′1), . . . , (vr, v′r)}, r ≤ t, by ya for a = (a1, . . . , ar)
with ai = (vi, v

′
i), and for every permutation π : [r] → [r] we add the constraint

ya = ya◦π.

D
ow

nl
oa

de
d

02
/1

9/
13

 to
 1

61
.1

16
.1

64
.2

0.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

132 ALBERT ATSERIAS AND ELITZA MANEVA

Similarly to the case of vertex-cover, the first constraint, which comes from the
objective function, is a homogeneous 2-local LP, which implies it is also a homogeneous
(2t+ 1)-local LP. The remaining constraints are bounded (2t+ 1)-local LPs.

5.3. Preservation of feasible solutions. Next we show that local LPs have
the good feature that their polyhedra of feasible solutions are preserved by sufficiently
high levels of the SA relaxation of fractional isomorphism. More precisely, to preserve
k-local LPs, k levels suffice. The full statement is the following.

Theorem 2. Let L be a k-local LP, and let A and B be colored digraphs such
that A ≡k

SA B. Then L(A) is feasible if and only if L(B) is feasible. Furthermore, if
xa is a solution of L(A), then xb =

∑
a∈Ar Xa �→b xa is a solution of L(B), where

X denotes the solution witnessing A ≡k
SA B, and r is the length of b.

The rest of this section is devoted to the proof of Theorem 2. Let us fix A and
B such that A ≡k

SA B, and let X be a solution of Fk(A,B) witnessing this fact. We
start with a straightforward lemma about the properties of X that we will use several
times.

Lemma 7. Let 0 ≤ r, s ≤ k be integers, let a ∈ Ar and a′ ∈ As be such that
|aa′| ≤ k, and let b ∈ Br. Then

Xa �→b =
∑

b′∈Bs

[A,aa′]=[B,bb′]

Xaa′ �→bb′ .

Proof. The proof is a simple induction on s. For s = 0 the statement trivially
holds. Next, for s ≥ 1, suppose a′ = a′′a, where a′′ ∈ As−1 and a ∈ A. Applying
Claim 2 from section 4 we have∑

b′′∈Bs−1,b∈B

[A,aa′′a]=[B,bb′′b]

Xaa′′a �→ bb′′b =
∑

b′′∈Bs−1

[A,aa′′]=[B,bb′′]

∑
b∈B

Xaa′′a �→ bb′′b.

Equation (6) of the SA system shows that the right-hand side is∑
b′′∈Bs−1

[A,aa′′]=[B,bb′′]

Xaa′′ �→bb′′ ,

and the induction hypothesis gives that this is precisely Xa �→b.
We proceed with the proof of the theorem. It is sufficient to prove the statement

for a basic k-local LP L given by M
[C,c]
r and d[C,c]. Let xa be a feasible solution for

L(A). Thus for every a′ ∈ A≤k we have

(40)

k∑
r=1

∑
a∈Ar

|aa′|≤k

M [A,aa′]
r xa ≤ d[A,a′].

We need to show that for every b′ ∈ B≤k it holds that

(41)

k∑
r=1

∑
b∈Br

|bb′|≤k

M [B,bb′]
r

∑
a∈Ar

Xa �→b xa ≤ d[B,b′].

In the following, let 0 ≤ s ≤ k be such that b′ ∈ Bs. Using Lemma 7 the left-hand
side of (41) becomes

k∑
r=1

∑
b∈Br

|bb′|≤k

M [B,bb′]
r

∑
a∈Ar

∑
a′∈As

[A,aa′]=[B,bb′]

Xaa′ �→bb′ xa.

D
ow

nl
oa

de
d

02
/1

9/
13

 to
 1

61
.1

16
.1

64
.2

0.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SA RELAXATIONS AND INDISTINGUISHABILITY 133

Rearranging the sums with care we can rewrite this as

∑
a′∈As

[A,a′]=[B,b′]

k∑
r=1

∑
b∈Br

|bb′|≤k

∑
a∈Ar

[A,aa′]=[B,bb′]

M [B,bb′]
r Xaa′ �→bb′ xa

=
∑

a′∈As

[A,a′]=[B,b′]

k∑
r=1

∑
a∈Ar

|aa′|≤k

∑
b∈Br

[A,aa′]=[B,bb′]

M [B,bb′]
r Xaa′ �→bb′ xa

=
∑

a′∈As

[A,a′]=[B,b′]

k∑
r=1

∑
a∈Ar

|aa′|≤k

M [A,aa′]
r xa

∑
b∈Br

[A,aa′]=[B,bb′]

Xaa′ �→bb′ .

In the last line we used the fact that the condition [A, aa′] = [B,bb′] implies

M
[A,aa′]
r = M

[B,bb′]
r . Using again Lemma 7 the last expression becomes

∑
a′∈As

[A,a′]=[B,b′]

k∑
r=1

∑
a∈Ar

|aa′|≤k

M [A,aa′]
r xa Xa′ �→b′

=
∑

a′∈As

[A,a′]=[B,b′]

Xa′ �→b′

k∑
r=1

∑
a∈Ar

|aa′|≤k

M [A,aa′]
r xa

≤
∑

a′∈As

[A,a′]=[B,b′]

Xa′ �→b′ d[A,a′] = d[B,b′].

In the last line we used (40), together with the fact that the condition [A, a′] = [B,b′]
implies d[A,a′] = d[B,b′], another application of Lemma 7, and X∅ = 1 by (9). This
completes the proof of Theorem 2.

6. Applications. In this section we highlight some applications of the Transfer
Lemma. First, we use known results from polyhedral combinatorics to get new de-
finability results in finite model theory. Second, we use known constructions in finite
model theory to get instances of high SA rank.

In the following, let MAX-FLOW denote the LP for st-flows, as discussed in sec-
tion 5. Similarly, let BIPARTITE-MATCHING denote the standard LP for matchings in
bipartite graphs. For every integer t ≥ 1, let VERTEX-COVERt denote the tth level of
SA of the standard linear programming relaxation of vertex-cover, and let MAX-CUTt

denote the tth level of SA of the metric polytope relaxation of max-cut.

6.1. New definability results. For a local LP L, we say that L is preserved
by an equivalence ≡ if, whenever A ≡ B and L(A) has a solution, L(B) also has
a solution. More generally, if L is a local LP with an associated objective function
max cTx for which the constraint cTx ≥ W is also a local LP for every value W ,
then we say that the optimum value of L is preserved by ≡ if the expanded local LP
L ∪ {cTx ≥ W} is preserved by ≡ for every W .

The examples mentioned are all k-local LPs, for appropriate k, with the objective
function incorporated as a constraint. A corollary to Theorem 2 is that the opti-
mum value of MAX-FLOW is preserved by ≡2

SA. Similarly, the optimum value of the
LP BIPARTITE-MATCHING is preserved by ≡2

SA, the optimum of VERTEX-COVERt is
preserved by ≡t+1

SA , and the optimum of MAX-CUTt is preserved by ≡2t+1
SA . By the

D
ow

nl
oa

de
d

02
/1

9/
13

 to
 1

61
.1

16
.1

64
.2

0.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

134 ALBERT ATSERIAS AND ELITZA MANEVA

Transfer Lemma, the optimum values of these LPs are also preserved by ≡3
C in the

first two cases and by ≡t+2
C and ≡2t+2

C in the last two.
One consequence of this is, for example, that the class of bipartite graphs that have

a perfect matching is definable by a sentence of the logic C3∞ω. Indeed, by a standard
result of finite model theory, each ≡3

C-equivalence class is definable by a C3
∞ω-sentence

(see Lemma 1.39 in [29]), and therefore it suffices to take the (infinitary) disjunction
of the sentences that define the equivalence classes of the bipartite graphs that have
a perfect matching. The preservation by ≡3

C guarantees the correctness. The same
sort of argument carries over to MAX-FLOW on st-networks. Thus, for example, the
class of saturable networks is C3∞ω-definable, where a saturable network is one in
which enough flow can be pushed through it to fill the capacity of all arcs leaving the
source. Obviously, the same would work for networks on which a 1/3-fraction of the
capacity, say, can be filled.

A less direct application concerns the max-cut problem on K5-minor-free graphs.
A nontrivial result in polyhedral combinatorics states that for graphs G that do
not have K5 as a minor, optimizing over the projection of the metric polytope to
the edges of G yields the integral optimal cut of G [5]. Since this is what the LP
MAX-CUT1 is and the optimum of MAX-CUT1 is preserved by ≡4

C, we get that the
class of K5-minor-free graphs that have a partition that cuts at least half the edges
is C4∞ω-definable by the same argument as before. Obviously, the choice to cut half
the edges is arbitrary. Let us note that from the results in [15] on counting logics
being able to express all polynomial-time properties on classes of minor-free graphs,
this definability result would follow for Ck∞ω replacing C4∞ω for some k (that is very
likely big). This is because optimizing a linear function over the metric polytope can
be done in polynomial time by linear programming. Our argument shows that k = 4
is enough, and it is interesting that the two proofs are very different.

It should be noted that the method outlined here yields definability results for
infinitary logic only, and it is not clear how to apply it to obtain definability results
in its uniform fragment IFP+C (inflationary fixed-point logic plus counting).

6.2. SA rank lower bounds. In this subsection we show how to build instances
of high rank from the methods for proving inexpressibility results for counting logics.

Suppose we are asked to show that the property of having a vertex-cover of at most
a third of the vertices is not definable in the logic Ck

∞ω. Here k could be a function
of the number of vertices n. The way to do so is by exhibiting two n-vertex graphs G
and H, one of which has a vertex-cover of size at most n/3 and the other does not,
and yet G and H are indistinguishable by the logic in the sense that G ≡k

C H. As
a matter of fact, this is a complete method in the sense that if the property is really
not definable in the logic, then such graphs G and H are guaranteed to exist (see
[9]). Let us now see what this tells us about the SA levels of the LP-relaxation for
vertex-cover.

Since G ≡k
C H, by the Transfer Lemma we get G ≡k−1

SA H. On the other hand,

VERTEX-COVERk−2 is a (k−1)-local LP, so its optimum value is preserved by ≡k−1
SA by

Theorem 2. Therefore G and H give the same optimum value of VERTEX-COVERk−2,
which must be at most n/3 since the integral optimum is always an upper bound on
the relaxation of a minimization problem. We conclude that H is a graph on which
the optimum of VERTEX-COVERk−2 is strictly smaller than the minimum vertex-cover
since, by construction, H does not have a vertex-cover of size at most n/3. If we
manage to afford k = Ω(n), where n is the number of vertices in H, we get an optimal
rank lower bound, up to constant factors.

D
ow

nl
oa

de
d

02
/1

9/
13

 to
 1

61
.1

16
.1

64
.2

0.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SA RELAXATIONS AND INDISTINGUISHABILITY 135

The sketched plan can be carried out for many LPs, including VERTEX-COVER

and MAX-CUT, to get SA rank lower bounds. In the rest of this section we outline the
ingredients that are needed for this.

A well-known construction due to Cai, Fürer, and Immerman [7] gives explicit

pairs of nonisomorphic n-vertex graphs G and H such that G ≡Ω(n)
C H. It was later

observed in [2] that such graphs can be thought of as systems of linear equations over

GF(2), call them S and T, that remain ≡Ω(n)
C -indistinguishable, yet one is satisfiable

and the other is not. This time n refers to the number of variables in the systems.
At this point an approach suggests itself: apply the standard reduction from the
solvability of linear equations over GF(2) to vertex-cover to get pairs of graphs, call

them G′ and H′, and hope that they stay ≡Ω(n)
C -indistinguishable, where now n is

the number of vertices in these graphs. And indeed, if done with care, this actually

works. One easy way to guarantee that G′ and H′ are ≡Ω(n)
C -indistinguishable is by

showing that the reduction is definable in the logic Ck
∞ω for a fixed constant k.

7. Discussion and open problems. Isomorphism is the finest of all binary
relations on finite structures. There are other interesting relations such as embeddings
and homomorphisms that could be phrased as 0-1 LPs and then relaxed. The SA levels
of these would then yield tighter and tighter approximations. On the combinatorial
side, embeddings and homomorphisms also admit relaxations through corresponding
pebble games. In the case of homomorphisms, this is the existential k-pebble game
popularized by Kolaitis and Vardi in the context of constraint satisfaction problems
[21]. Does a version of the Transfer Lemma apply in this case too? One of the
directions is easy, and a version of this was actually anticipated in [3], but it seems
that the lack of counting in the homomorphism game could be a serious obstacle for
the other.

On a different line of thought, the most promising outcome of our main result
is the connection it sets between polyhedral combinatorics and finite model theory.
In section 6 we have shown how rather elementary arguments are able to exploit the
knowledge in one field to get results in the other. We hope that more sophisticated
arguments could lead to stronger results. Let us point out two interesting possibilities.

In the direction from polyhedral combinatorics to finite model theory, it would be
interesting to exploit the sophisticated constructions of integrality gap instances in the
world of lift-and-project methods. One of the admitted bottlenecks of the pebble-game
technique for proving inexpressibility results is the lack of general methods for building
pairs of structures with different properties that stay sufficiently indistinguishable.
Perhaps the methods for building integrality gap instances, say as in [8] through
metric-embedding arguments from functional analysis, could be of use for building
such objects. A concrete example where this could be applied is to the problem of
perfect matchings on general graphs. In short, the question reduces to building, for
every constant k ≥ 2, a pair of ≡k

C-equivalent (or ≡k
SA-equivalent) graphs G0 and

G1 in which G0 has a perfect matching but G1 does not. This would show that the
class of general graphs having a perfect matching is not definable in the logic Ck

∞ω

for any k, thus solving a problem in [6]. The recent progress in understanding the SA
levels of the matching polytope could perhaps be also useful here [28].

In the direction from finite model theory to polyhedral combinatorics, new results
could follow if the construction in [7] were strengthened to a pair of indistinguishable
instances of the unique-games problem with a large gap in their optimal values. With
such a lower bound in hand one would likely be able to exploit the reductions from

D
ow

nl
oa

de
d

02
/1

9/
13

 to
 1

61
.1

16
.1

64
.2

0.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

136 ALBERT ATSERIAS AND ELITZA MANEVA

unique-games to vertex-cover in [19] to get instances where an optimal integrality gap
of 2 could resist up to Ω(n) levels of SA, which is currently not known. At any rate,
exploring the gap-creating reductions underlying PCP constructions in the context
of finite model theory appears to be an attractive line of research worth pursuing in
itself.

Acknowledgments. We are grateful to Grant Schoenebeck for discussions on
the integrality gap instances for vertex-cover and max-cut in lift-and-project hierar-
chies. We are also grateful to Martin Grohe for references on the WL algorithm.

REFERENCES

[1] S. Arora, B. Bollobás, L. Lovász, and I. Tourlakis, Proving integrality gaps without
knowing the linear program, Theory Comput., 2 (2006), pp. 19–51.

[2] A. Atserias, A. A. Bulatov, and A. Dawar, Affine systems of equations and counting in-
finitary logic, Theoret. Comput. Sci., 410 (2009), pp. 1666–1683.

[3] A. Atserias, P. G. Kolaitis, and M. Y. Vardi, Linear Programming and the Existential
Pebble Game, manuscript, 2006.

[4] L. Babai, P. Erdős, and S. M. Selkow, Random graph isomorphism, SIAM J. Comput.,
9 (1980), pp. 628–635.

[5] F. Barahona and A. Mahjoub, On the cut polytope, Math. Programming, 36 (1986), pp. 157–
173.

[6] A. Blass, Y. Gurevich, and S. Shelah, On polynomial time computation over unordered
structures, J. Symbolic Logic, 67 (2002), pp. 1093–1125.

[7] J. Cai, M. Fürer, and N. Immerman, An optimal lower bound on the number of variables for
graph identification, Combinatorica, 12 (1992), pp. 389–410.

[8] M. Charikar, K. Makarychev, and Y. Makarychev, Integrality gaps for Sherali-Adams
relaxations, in Proceedings of the 41st Annual ACM Symposium on Theory of Computing
(STOC), 2009, pp. 283–292.

[9] H. Ebbinghaus and J. Flum, Finite Model Theory, Springer-Verlag, Berlin, 1995.
[10] A. Ehrenfeucht, An application of games to the completeness problem for formalized theories,

Fund. Math., 49 (1961), pp. 129–141.
[11] R. Fräıssé, Sur une nouvelle classification des systèmes de relations, Comptes Rendus, 230

(1950), pp. 1022–1024.
[12] K. Georgiou, A. Magen, T. Pitassi, and I. Tourlakis, Integrality gaps of 2−o(1) for vertex

cover SDPs in the Lovász-Schrijver hierarchy, in Proceedings of the 48th Annual IEEE
Symposium on Foundations of Computer Science (FOCS), 2007, pp. 702–712.

[13] M. Grohe, Fixed-point logics on planar graphs, in Proceedings of the 13th Annual IEEE
Symposium on Logic in Computer Science (LICS), 1998, pp. 6–15.

[14] M. Grohe, Isomorphism testing for embeddable graphs through definability, in Proceedings of
the 32nd Annual ACM Symposium on the Theory of Computing (STOC), 2000, pp. 63–72.

[15] M. Grohe, Fixed-point definability and polynomial time on graphs with excluded minors, in
Proceedings of the 25th Annual IEEE Symposium on Logic in Computer Science (LICS),
2010, pp. 179–188.

[16] M. Grohe and M. Otto, Pebble games and linear equations, in Proceedings of the 21st Annual
Conference of the European Association for Computer Science Logic (CSL), LIPIcs 16,
Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, Wadern, Germany, 2012, pp. 289–
304.

[17] N. Immerman, Descriptive Complexity, Springer-Verlag, New York, 1999.
[18] N. Immerman and E. Lander, Describing graphs: A first-order approach to graph canoniza-

tion, in Complexity Theory Retrospective, Springer-Verlag, New York, 1990, pp. 59–81.
[19] S. Khot and O. Regev, Vertex cover might be hard to approximate to within 2-epsilon, J. Com-

put. System Sci., 74 (2008), pp. 335–349.
[20] P. G. Kolaitis and J. A. Väänänen, Generalized quantifiers and pebble games on finite

structures, Ann. Pure Appl. Logic, 74 (1995), pp. 23–75.
[21] P. G. Kolaitis and M. Y. Vardi, Conjunctive-query containment and constraint satisfaction,

J. Comput. System Sci., 61 (2000), pp. 302–332.
[22] L. Kucera, Canonical labeling of regular graphs in linear average time, in Proceedings of

the 28th Annual IEEE Symposium on Foundations of Computer Science (FOCS), 1987,
pp. 271–279.

D
ow

nl
oa

de
d

02
/1

9/
13

 to
 1

61
.1

16
.1

64
.2

0.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SA RELAXATIONS AND INDISTINGUISHABILITY 137

[23] J. B. Lasserre, Global optimization with polynomials and the problem of moments, SIAM J.
Optim., 11 (2011), pp. 796–817.

[24] M. Laurent, A comparison of the Sherali-Adams, Lovász-Schrijver and Lasserre relaxations
for 0-1 programming, Math. Oper. Res., 28 (2001), pp. 470–496.

[25] M. Laurent, Lower bound for the number of iterations in semidefinite hierarchies for the cut
polytope, Math. Oper. Res., 28 (2003), pp. 871–883.

[26] L. Libkin, Elements of Finite Model Theory, Springer-Verlag, Berlin, 2004.
[27] L. Lovász and A. Schrijver, Cones of matrices and set-functions and 0-1 optimization, SIAM

J. Optim., 1 (1991), pp. 166–190.
[28] C. Mathieu and A. Sinclair, Sherali-Adams relaxations of the matching polytope, in Pro-

ceedings of the 41st Annual ACM Symposium on Theory of Computing (STOC), 2009,
pp. 293–302.

[29] M. Otto, Bounded Variable Logics and Counting: A Study in Finite Models, Lecture Notes
Logic 9, Springer-Verlag, Berlin, 1997.

[30] O. Pikhurko and O. Verbitsky, Logical complexity of graphs: A survey, in Model Theoretic
Methods in Finite Combinatorics, Contemp. Math. 558, American Mathematical Society,
Providence, RI, 2011, pp. 129–179.

[31] M. V. Ramana, E. R. Scheinerman, and D. Ullman, Fractional isomorphism of graphs,
Discrete Math., 132 (1994), pp. 247–265.

[32] E. R. Scheinerman and D. H. Ullman, Fractional Graph Theory, Wiley-Interscience, New
York, 1997.

[33] G. Schoenebeck, Linear level Lasserre lower bounds for certain k-CSPs, in Proceedings of
the 49th Annual IEEE Symposium on Foundations of Computer Science (FOCS), 2008,
pp. 593–602.

[34] G. Schoenebeck, L. Trevisan, and M. Tulsiani, Tight integrality gaps for Lovasz-Schrijver
LP relaxations of vertex cover and max cut, in Proceedings of the 39th Annual ACM
Symposium on Theory of Computing (STOC), 2007, pp. 302–310.

[35] H. D. Sherali and W. P. Adams, A hierarchy of relaxations between the continuous and
convex hull representations for zero-one programming problems, SIAM J. Discrete Math.,
3 (1990), pp. 411–430.

[36] T. Stephen and L. Tunçel, On a representation of the matching polytope via semi-definite
liftings, Math. Oper. Res., 24 (1999), pp. 1–7.

[37] I. Tourlakis, New lower bounds for vertex cover in the Lovasz-Schrijver hierarchy, in Pro-
ceedings of the 21st Annual IEEE Conference on Computational Complexity (CCC), 2006,
pp. 170–182.

[38] M. Tulsiani, CSP gaps and reductions in the Lasserre hierarchy, in Proceedings of the 41st
Annual ACM Symposium on Theory of Computing (STOC), 2009, pp. 303–312.

D
ow

nl
oa

de
d

02
/1

9/
13

 to
 1

61
.1

16
.1

64
.2

0.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

