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Multi-sided Böhm-Bawerk assignment markets: the core

Abstract: We introduce the class of multi-sided Böhm-Bawerk assignment games, which

generalizes the well-kown two-sided Böhm-Bawerk assignment games to situations with an

arbitrary number of sectors. We reach the extreme core allocations of any multi-sided Böhm-

Bawerk assignment game by means of an associated convex game defined on the set of sectors

instead of the set of sellers and buyers. We also study when the core of these games is stable

in the sense of von Neumann-Morgenstern.

Keywords: Assignment games, multi-sided markets, homogeneous goods, core, extreme

points

JEL Classification: C70, C78

Resum: En aquest treball introdüım la classe de multi-sided Böhm-Bawerk assignment

games, que generalitza la coneguda classe de jocs d’assignació de Böhm-Bawerk bilaterals a

situacions amb un nombre arbitrari de sectors. Trobem els extrems del core de qualsevol

multi-sided Böhm-Bawerk assignment game a partir d’un joc convex definit en el conjunt de

sectors enlloc del conjunt de venedors i compradors. Addicionalment estudiem quan el core

d’aquests jocs d’assignació és estable en el sentit de von Neumann-Morgenstern.



1 Introduction

Consider a market with two different goods, for instance software and hardware products.

In this market there are nS owners of one unit of software and nH owners of one unit of

hardware. All of them want to sell their goods. There are also nB buyers, which want to

buy at most one unit of software and one unit of hardware and have no utility on buying

separately either one. The ith software seller values her good at cS
i dollars, the jth hardware

seller values her good at cH
j dollars and the kth buyer values the bundle formed by the software

and the hardware goods of the former sellers at wk
ij dollars.

In this market, a transaction can only be carried out when a buyer pays for exactly one

unit of software and one unit of hardware. Let pi and qj be the prices that the kth buyer

pays for the goods of the ith software seller and the jth hardware seller, respectively. At

these prices, her utility is given by wk
ij − pi − qj, whereas the benefit of the software seller

is pi − cS
i and the benefit of the hardware seller is qj − cH

j . If we assume that the utility

of the agents is monetary and transferable the total surplus generated by this transaction is
(
wk

ij − pi − qj

)
+
(
pi − cS

i

)
+
(
qj − cH

j

)
= wk

ij − cS
i − cH

j . If wk
ij − cS

i − cH
j < 0 we assume

that no transaction will be carried out since no prices favorable to all parts exist. Let

aijk = max
{

0, wk
ij − cS

i − cH
j

}
be the total gain generated when the ith software seller, the

jth hardware seller and the kth buyer make a transaction. The above market is completely

determined by giving the sets of buyers and owners (or sellers) and the set of parameters

aijk.

In this paper we study a particular case of the above market obtained when all software

goods and hardware goods are respectively homogeneous, i.e. the valuation of each buyer

does not depend on which sellers she buys the two goods from. Therefore we can denote

wk
ij = wk, and thus the profit generated by the ith software seller, the jth hardware seller and

the kth buyer is aijk = max
{

0, wk − cS
i − cH

j

}
. This latter type of markets generalizes the

bilateral Böhm-Bawerk horse markets (Böhm-Bawerk, 1923) to a multilateral situation, and
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hence will be called multi-sided Böhm-Bawerk markets.

We analyze multi-sided Böhm-Bawerk markets within the framework of multi-sided as-

signment games, which are introduced by Quint (1991) as the generalization of two-sided

assignment games (Shapley and Shubik, 1972), and they have been studied also in Lucas

(1995), Stuart (1997), Sherstyuk (1998, 1999), Brânzei et al. (2007) and Tejada and Rafels

(2010). The two-sided Böhm-Bawerk market has also been reinterpreted as an auction game

in Schotter (1974) and Muto (1983). A game-theoretical study of the two-sided Böhm-Bawerk

market can be found in Shapley and Shubik (1972), Moulin (1995), Osborne (2004) and Nuñez

and Rafels (2005).

The main objective of this paper is to study the set of extreme core allocations of multi-

sided Böhm-Bawerk assignment games. To do so, to each m-sided Böhm-Bawerk assignment

game we associate a nonnegative convex game of m players, which are fictitious agents that

correspond to the m sectors of the market, and hence will be called the sectors game. We

prove that the core and the set of extreme core allocations of this latter game are strongly

related with those of the former. As a consequence, we show that all extreme core allocations

of a multi-sided Böhm-Bawerk assignment game are marginal worth vectors, generalizing a

property that holds for all two-sided assignment games (Hamers et al., 2002). We also give

attainable bounds for the number of extreme core allocations of a multi-sided Böhm-Bawerk

assignment game and we study when the core of these games is stable.

The rest of the paper is organized as follows. In Section 2 we introduce the notation

and we describe the multi-sided assignment model. In Section 3 we introduce the class of

multi-sided Böhm-Bawerk problems and we present the results of the paper.

2 Preliminaries and notation

A cooperative game is a pair (N, v), where N is the finite set of players and v(S) ∈ R for

any coalition S ⊆ N , being v(∅) = 0. The core of a game is the set of allocations that
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cannot be improved upon by any coalition on its own. Formally, given (N, v), the core is

the set C(v) := {x ∈ Rn : x(N) = v(N) and x(S) ≥ v(S) for all S ⊂ N}, where as usual

x(S) :=
∑

i∈S xi and x(∅) = 0. A game is balanced if the core is nonempty. A subgame of

(N, v) is any game (N ′, v′) where ∅  N ′ ⊆ N and v′ is the restriction of v to subsets of N ′.

A game is totally balanced if the core of any subgame is nonempty.

Given a finite set N , an ordering θ of N is a bijection from N to {1, ..., |N |}, where |N |

denotes the cardinality of N . Let Θ(N) be the set of all orderings of N . Given (N, v),

the marginal worth vector mθ(v) ∈ Rn associated with θ is defined (see Shapley, 1972) by

mθ
i = v({j ∈ N : θ(j) ≤ θ(i)}) − v({j ∈ N : θ(j) < θ(i)}), for all i ∈ N . A game (N, v) is

convex if for all i ∈ N and for all S ⊆ T ⊆ N\{i} we have v(S∪{i})−v(S) ≤ v(T∪{i})−v(T ).

It is well-known (Shapley, 1972, and Ichiishi, 1981) that a game is convex if and only if its

core coincides with the convex hull of all marginal worth vectors.

Given a cooperative game (N, v), a vector x ∈ Rn is efficient if
∑n

i=1 xi = v(N). The set

of imputations is the set of individually rational efficient vectors, i.e. I(v) = {x ∈ Rn : xi ≥

v({i}),
∑n

i=1 xi = v(N)}. An imputation x dominates another imputation y via coalition

S ⊆ N if x(S) ≤ v(S) and xi > yi for all i ∈ S. Then, a binary relation is defined on the set

of imputations: given x, y ∈ I(v), we say x dominates y if it does so via some coalition. With

this definition, the core C(v), whenever it is nonempty, is proved to coincide with the set of

undominated imputations. This means that all allocations outside the core are dominated,

although not necessarily dominated by a core allocation.

A subset V of imputations is a stable set (von Neumann and Morgenstern, 1944) if it

is internally stable (for all x, y ∈ I(v), x does not dominate y) and externally stable (for

all y ∈ I(v)\V , there exists x ∈ V such that x dominates y). Since the core is the set of

undominated imputations, all the stable sets of a given game (N, v) contain its core. And

when the core is a stable set, then it is the unique stable set.

An m-sided assignment problem (m-SAP) denoted by (N1, ..., Nm;A), is given by m ≥

2 different nonempty finite sets (or sectors) of agents N1, ..., Nm and a nonnegative m-
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dimensional matrix A = (aE)
E∈
∏m

k=1
Nk . With some abuse of notation, let Nk = {1, 2, ..., nk}

for all k, 1 ≤ k ≤ m. We shall refer to the ith agent of type k as i ∈ Nk. We name any

m-tuple of agents E ∈
∏m

k=1 Nk an essential coalition. Each entry aE ≥ 0 represents the

profit associated to the essential coalition E. As an abuse of notation, we also use E to denote

the set of agents that form the essential coalition. An m-SAP is square if n1 = .... = nm.

A matching among N1, ..., Nm is a set of essential coalitions µ = {Er}t
r=1 where t =

min1≤k≤m |Nk| and any agent belongs at most to one of the essential coalitions E1, ..., Et.

We denote by M(N1, ..., Nm) the set of all matchings among N1, ..., Nm. An agent i ∈ Nk,

for some k = 1, ...,m, is unmatched under µ if it does not belong to any of its essential

coalitions. A matching is optimal if it maximizes
∑

E∈µ aE in M(N1, ..., Nm). We denote by

M∗
A(N1, ..., Nm) the set of all optimal matchings of (N1, ..., Nm;A).

For each multi-sided assignment problem (N1, ..., Nm;A), the associated multi-sided as-

signment game (m-SAG) is the cooperative game (N,ωA) with set of players N = ∪m
k=1N

k

composed of all agents of all types and characteristic function

(1) ωA(S) = max
µ∈M(N1∩S,...,Nm∩S)

{∑
E∈µ aE

}
, for any S ⊆ N ,

where the summation over the empty set is zero.

Given (N,ωA), its core, C(ωA), coincides with the set of nonnegative vectors x = (x11, ..., x1n1
;

...;xm1, ..., xmnm), where xki stands for the payoff to agent i ∈ Nk, that satisfy aE −

∑m
k=1 xkik ≤ 0 for any E = (i1, ..., im) ∈

∏m
k=1 Nk, where the inequality must be tight if

E belongs to some optimal matching, and xki = 0 if agent i ∈ Nk is unmatched under some

optimal matching. The two latter conditions guarantee the efficiency of the core allocations.

In the case of only two sectors, i.e. m = 2, the above setting reduces to the classic

Shapley-Shubik assignment market (Shapley and Shubik, 1972). It is well-known that two-

sided assignment games are totally balanced. However, for more than two sides the core of

a m-SAG may be empty -see Kaneko and Wooders (1982) in a more general framework or

Quint (1991)- and also balanced m-SAGs might not be totally balanced (Quint, 1991).
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3 The Böhm-Bawerk model

The three-sided markets described in the Introduction can be easily generalized to include

arbitrary m-sided markets with m − 1 different types of homogeneous goods. When m = 2

the setting reduces to the classical bilateral Böhm-Bawerk assignment market, a celebrated

model that has received wide attention in the literature (see Introduction). Observe that each

buyer or seller in these markets is characterized by a single arbitrary nonnegative valuation,

and the set of all these valuations are the basic data of the market. As in the case of Shapley

and Shubik bilateral market, no restrictions are placed on communication, on transfers of

money, or on transfers of goods.

The basic problem is to decide how the profitability of the market that comes from the

differences in subjective valuations is going to be shared among sellers and buyers. In this

market, a profit can only be reached through trades among agents in the market, i.e. assigning

buyers to sellers and forming matchings. Hence, the situation fits into the framework of multi-

sided assignment games. Thus, to analyze the problem we define a multi-sided assignment

game based on the set of valuations of buyers and sellers and we study its core. In the

particular case of two-sided Böhm-Bawerk assignment games, it is well-known that the core

is a segment, whose extremes are the buyers-optimal and the sellers-optimal allocations. In

this paper we generalize these results.

Let us introduce a multi-sided Böhm-Bawerk market (or problem) with an arbitrary

number of sectors.

Definition 1 An m-sided Böhm-Bawerk market (or problem) is a pair (c;w) where c =

(c1, ..., cm−1) ∈ RN1 × ... × RNm−1 are the sellers’ valuations and w = (w1, ..., wnm) ∈ RNm

are the buyers’ valuations.

From now on, in order to simplify the analysis of the model we will assume that valuations

of the sellers of each sector are arranged in a nondecreasing way and valuations of the buyers
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are arranged in a nonincreasing way, i.e.

(2) ck1 ≤ ... ≤ cknk
, for all k = 1, ...,m − 1 and w1 ≥ ... ≥ wnm .

Given an m-sided Böhm-Bawerk problem (c;w), we denote by A(c;w) the m-dimensional

matrix defined by

(3) aE = max

{
0, wim −

m−1∑

k=1

c
kik

}
, for all E = (i1, ..., im) ∈

m∏

k=1

Nk.

Notice that, by (2), for all E,E′ ∈
∏m

k=1 Nk,

(4) E ≤ E′ =⇒ aE ≥ aE′ .

When no confusion may arise, we will write simply A instead of A(c;w). Example 1

below is based on an example from both the paper of Shapley and Shubik (1972) and Böhm-

Bawerk’s (1923) book, modified in such a way that each seller has been unsymmetrically

split up into two different sellers. That is, eight individuals each have one software good

for sale and eight other individuals each have one hardware good for sale. Also ten other

individuals each wish to buy exactly one software good and one hardware good. Although

all software goods are alike and all hardware goods are alike, traders (either buyer or sellers)

have different subjective valuations. This numerically specific market will be used through

the paper and it will translate into a 26-person cooperative game (instead of an 18-person

game in the case of Shapley and Shubik). We use S1, ..., S8, H1, ...,H8 and B1, ..., B10 to

denote respectively the software sellers, the hardware sellers and the buyers.

Example 1 A three-sided market with the following agents’ valuations:
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Software sellers Hardware sellers Buyers

S1 values her good at $5 H1 values her good at $5 B1 values a pair at $30

S2 values her good at $5 H2 values her good at $6 B2 values a pair at $28

S3 values her good at $7 H3 values her good at $8 B3 values a pair at $26

S4 values her good at $8 H4 values her good at $9 B4 values a pair at $24

S5 values her good at $11 H5 values her good at $9 B5 values a pair at $22

S6 values her good at $12.7 H6 values her good at $10.3 B6 values a pair at $21

S7 values her good at $13 H7 values her good at $12 B7 values a pair at $20

S8 values her good at $13 H8 values her good at $13 B8 values a pair at $18

B9 values a pair at $17

B10 values a pair at $15

Given (c;w) an m-sided Böhm-Bawerk market, (N,ωA(c;w)) is the associated multi-sided

assignment game -see (1)-, which we will call a multi-sided Böhm-Bawerk assignment game,

where N is composed of all sellers and buyers and ωA(c;w) is defined by (1) and (3).

For all i ∈ N, we introduce the notation Ei := (i, ..., i) ∈ Rm. By (2), the diagonal

matching {Ei : 1 ≤ i ≤ n} is an optimal matching (in general it is not the unique opti-

mal matching), where n := min1≤k≤m nk. In this paper we study the core C(ωA(c;w)) of

(N,ωA(c;w)), which coincides with the following set:

(5)





x ∈ RN1

+ × ... × RNm

+

∣∣∣∣∣∣∣∣∣∣∣

x(Ei) = aEi for all 1 ≤ i ≤ n,

x(E) ≥ aE for all E ∈
∏m

k=1 Nk and

xki = 0 for all i ∈ Nk, k ∈ M and i > n.





,

which is a polyhedral in RN1

+ × ...×RNm

+ and hence it has a finite number of extreme points1.

From Quint (1991), we know that (N,ωA(c;w)) is a totally balanced game, which implies that

C(ωA(c;w)) is always nonempty.

As seen in the Introduction and using (3), only when aE > 0 there exist prices that

1x ∈ C(ωA) is an extreme point of C(ωA) if x = 1

2
x′ + 1

2
x′′ where x′, x′′

∈ C(ωA) implies x = x′ = x′′.
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support a trade between the agents that form the essential coalition E and imply a Pareto

improvement with respect to the non-trade situation. A matching among N1, ..., Nm assigns

agents to agents and form essential coalitions and singletons, and hence can be interpreted

as a collection of trades. We define r as the highest number of Pareto-improving trades that

can take place simultaneously:

(6) r = max
1≤i≤n

{i : aEi > 0} ,

with the convention that r = 0 if all entries of A(c;w) are zero. We say that i ∈ Nk, for

some k = 1, ..,m, is active if 1 ≤ i ≤ r. Otherwise we say that i ∈ Nk is inactive.

We also introduce a vector tc;w ∈ RN1

× ...×RNm
which includes the nonnegative differ-

ences in valuations of either sellers or buyers with respect to the corresponding rth seller of

the same sector or rth buyer, respectively. As we show in Theorem 1, allocations of C(ωA(c;w))

can be decomposed into two terms, one variable term and one constant term given precisely

by t. The translation vector tc;w = (t11, ..., t1n1
; ...; tm1, ..., tmnm) ∈ RN1

× ...×RNm
is defined

by

tki = max{0, ckr − cki} for all 1 ≤ k ≤ m − 1 and 1 ≤ i ≤ nk,

tmi = max{0, wi − wr} for all 1 ≤ i ≤ nm.(7)

In Example 1, we have r = 5 (it is marked in bold in Example 1) and

tc;w = (6, 6, 4, 3, 0, 0, 0, 0; 4, 3, 1, 0, 0, 0, 0, 0; 8, 6, 4, 2, 0, 0, 0, 0, 0, 0).

In the following, to any multi-sided Böhm-Bawerk assignment game we associate another

game defined on the set of sectors M = {1, ...,m}. Below we discuss why we call these

fictitious players as sectors. To define this new game we only take into account both the rth

and the r + 1th agents (if exist) from each sector of the original multi-sided Böhm-Bawerk

assignment game. Notice that a natural way to identify coalitions of the set of sectors M

with essential coalitions of the set of agents N arises: for any S ⊆ M we define the notation

ES := r1S + (r + 1)1M\S ∈ Rm, where, for each T ⊆ M , 1T ∈ Rm is the vector such that
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1T (k) = 1 if k ∈ T and 1T (k) = 0 if k /∈ T . The case in which there is no r + 1th agent for

some of the sectors in M\S must be treated separately, because in this case ES ∈ Rm can

still be defined but it is not an essential coalition of N , i.e. ES /∈
∏m

k=1 Nk.

Definition 2 Given an m-sided Böhm-Bawerk assignment game (N,ωA(c;w)), the associated

sectors game (M,vM
c;w) is the cooperative game with set of players M = {1, ...,m} composed

of all sectors and characteristic function defined, for each S ⊆ M , by

vM
c;w(S) =





aES if ES ∈
∏m

k=1 Nk

0 if ES /∈
∏m

k=1 Nk

if r > 0 and vM
c;w(S) = 0 if r = 0.

If vM
c;w(S) > 0 then necessarily ES ∈

∏m
k=1 Nk. By (6), if r > 0 we always have vM

c;w(M) =

aEM > 0 and vM
c;w(∅) = 0. When no confusion may arise we will write simply vM instead of

vM
c;w.

In Theorem 1 below we show that the core and the extreme core allocations of the sectors

game (M,vM
c;w) are strongly related to the core and the extreme core allocations respectively

of the multi-sided Böhm-Bawerk assignment game (N,ωA(c;w)). Specifically, we prove that

for each allocation x ∈ C(vM
c;w), there is a unique core allocation x ∈ C(ωA(c;w)) such that

the variable part of the payoffs to agents of the kth sector at x coincides with the payoff to

sector k ∈ M at x, and vice versa, hence giving sense to call these fictitious players as sectors.

Since payoffs in both games belong to different spaces ( RM versus RN1

× ...×RNm

), we need

to define a function to map payoffs in the sectors game to payoffs in the multi-sided Böhm-

Bawerk game. Given an m-sided Böhm-Bawerk assignment game (N,ωA(c;w)), we introduce

the replica operator Rc;w defined by

(8)
Rc;w : RM −→ RN1

× ... × RNm

(x1, ..., xm) −→ (

r︷ ︸︸ ︷
x1, ..., x1,

n1−r︷ ︸︸ ︷
0, ..., 0; ... ;

r︷ ︸︸ ︷
xm, ..., xm,

nm−r︷ ︸︸ ︷
0, ..., 0)
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Notice that Rc;w is an injective linear function. In the case of Example 1,

Rc;w(x1, x2, x3) =

(x1, x1, x1, x1, x1, 0, 0, 0;x2, x2, x2, x2, x2, 0, 0, 0;x3, x3, x3, x3, x3, 0, 0, 0, 0, 0).

Before proving the next theorem we introduce further some notation. Given t ∈ Rl and

B ⊂ Rl, let t + B := {x ∈ Rl : x = t + x′ and x′ ∈ B} denote the translated set B by the

vector t.

Theorem 1 Let (N,ωA(c;w)) be an m-sided Böhm-Bawerk assignment game and let (M,vM
A(c;w))

be the associated sectors game. Then,

1. C(ωA(c;w)) = tc;w + Rc;w(C
(
vM
c;w

)
).

2. Ext
{
C(ωA(c;w))

}
= tc;w + Rc;w(Ext

{
C
(
vM
c;w

)
)
}
).

Proof. We assume r > 0 to avoid (N,ωA) and (M,vM ) being the null game, where both

statements can be easily verified. We start proving Part 1.

First we show that C(ωA) ⊆ tc;w + Rc;w(C
(
vM
)
). Let i ∈ Nk for some k ∈ M . We

introduce the notation Ei,k := i1{k} + r1M\{k} and E
i,k

:= r1{k} + i1M\{k}. If i ≤ r then

Ei,k and EM belong to an optimal matching, since

(9) aEi,k + a
E

i,k = aEM + aEi ,

where EM = Er = r1M and Ei = i1M . Next, we consider any x ∈ C(ωA). By core

conditions, x(Ei,k) = aEi,k > 0 and x(EM ) = aEM > 0, where the positivity holds by (4)

and (6). Applying (3) and Definition 2, if we subtract these two latter expressions we obtain,

given i ∈ Nk such that i ≤ r,

xki − xkr = ckr − cki if 1 ≤ k < m and

xki − xkr = wi − wr if k = m.(10)
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If i > r there are two possibilities. Either i ∈ Nk is not assigned under diagonal matching or

it is assigned, which by core conditions implies x(Ei) = 0. In both cases, given i ∈ Nk such

that i > r, we obtain

(11) xki = 0, for all k ∈ M.

Observe that (10) and (11), together with (7), imply that, given k ∈ M and i ∈ Nk, then

xki + tki = xki + cki − ckr = xkr if i ≤ r and xki + tki = 0 if i > r. Let x = (x1, ..., xm) :=

(x1r, ..., xmr) ∈ Rm. By (8), x = tc;w + Rc;w(x). It remains to show that x ∈ C
(
vM
)
. On

the one hand, x(M) = x(EM ) = aEM = vM (M) since EM belongs to an optimal matching.

Thus, x is an efficient allocation. On the other hand, let S ⊆ M be an arbitrary coalition

of sectors. If vM (S) = 0, we trivially have x(S) ≥ 0 = vM (S). Hence, assume vM (S) > 0.

In this case, x(S) = x(ES) ≥ aES = vM
c;w(S) where the first equality holds by (11) and the

inequality holds since x belongs to C(ωA(c;w)). In conclusion, x ∈ tc;w + Rc;w(C
(
vM
c;w

)
).

Second we show that C(ωA) ⊇ tc;w + Rc;w(C
(
vM
)
). Consider x ∈ C

(
vM
)

and let x =

tc;w+Rc;w(x) ∈ RN1

×...×RNm

, which by construction has nonnegative components. We start

proving that x is an efficient vector. We apply (7) and (8). On the one hand, for all 1 ≤ i ≤ r,

we have x(Ei) =
∑m−1

k=1 (xk + (ckr − cki)) + (xm + (wi − wr)) = x(M) + aEi − aEM = aEi ,

where the last equality holds since x ∈ C
(
vM
)
. On the other hand, for all r + 1 ≤ i ≤ n,

where n = mink∈M nk, we have
∑m

k=1 xki = 0 = ai...i. Lastly, if i ∈ Nk for some k ∈ M is

unassigned under the diagonal matching, then i > r and we have xki = 0.

It remains to check that, at x, no essential coalition can improve on their own. Let E =

(i1, ..., im) ∈
∏m

k=1 Nk be an arbitrary essential coalition and let SE := {k ∈ M : 1 ≤ ik ≤ r}.

We distinguish two cases.

• Case 1: m ∈ SE.

If aE = 0, we trivially have x(E) ≥ 0 = aE. Hence, we assume aE > 0. Let E′ :=

13



∑
k∈SE

ik1{k} + (r + 1)1M\SE
. Then, by construction of x,

x(E) = xm + (wim − wr) +
∑

k∈SE\{m}

(xk + (ckr − ckik))

= x(SE) +
∑

k∈SE\{m}

(ckr − ckik) + (wim − wr)

≥ vM (SE) +
∑

k∈SE\{m}

(ckr − ckik) + (wim − wr)

= wr −
∑

k∈SE\{m}

ckr −
∑

k/∈SE

ck(r+1) +
∑

k∈SE\{m}

(ckr − ckik) + (wim − wr)

= wim −
∑

k∈SE\{m}

ckik −
∑

k/∈SE

ck(r+1) = aE′ ≥ aE,

where the first inequality holds since x ∈ C
(
vM
)
, the last inequality holds by (4) and

the last two equalities are obtained applying (3).

• Case 2: m /∈ S.

The proof is similar to that of the above case and it is left to to the reader.

Finally we prove Part 2. Since a translation does not change the extreme points of a

polytope, by Part 1 it is enough to prove that x ∈ Ext
{
C
(
vM
)}

if and only if Rc;w(x) ∈

Ext
{
Rc;w(C

(
vM
)
)
}
. This equivalence comes from observing that Rc;w(x) = 1

2Rc;w(x′) +

1
2Rc;w(x′′) if and only if x = 1

2x′ + 1
2x′′, since Rc;w is an injective linear function.

The above result shows that each core allocation x of a Böhm-Bawerk multi-sided as-

signment game (N,ωA(c;w)), which is given by (5), can be decomposed into two terms: one

constant term given by tc;w which is different for any agent, and one common term (for all

agents of the same sector) given by the unique allocation x ∈ C(vM
c;w) associated to x.

Next we turn into the study of the sectors game and exploit its features to prove further

results of the original multi-sided Böhm-Bawerk assignment game. We start with the sectors

game associated to Example 1, which is shown below.
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vM ({1}) = a566 = 0 vM ({1, 2}) = a556 = 1

vM ({2}) = a656 = 0 vM ({1, 3}) = a565 = 0.7 vM ({1, 2, 3}) = a555 = 2

vM ({3}) = a665 = 0 vM ({2, 3}) = a655 = 0.3

The core of the above game is depicted in Figure 1.

.

..

..

.

(0, 0, 2)

(1, 0, 1)

(0, 1, 1)

(1.7, 0, 0.3)

(0, 1.3, 0.7)

(2, 0, 0)
(1.7, 0.3, 0) (0.7, 1.3, 0)

(0, 2, 0)

Figure 1: The core of the sectors game associated to a three-sided Böhm-Bawerk assignment

game

The following proposition proves that the sectors game associated to a multi-sided Böhm-

Bawerk assignment game has a special structure, it is a convex game.

Proposition 1 Let (N,ωA(c;w)) be an m-sided Böhm-Bawerk assignment game. Then, the

associated sectors game (M,vM
c;w) is convex.

Proof. First of all, observe that, by definition of the sectors game and (4), vM is monotone,

i.e. vM (S) ≤ vM (T ) for S ⊆ T ⊆ M . Next, let k ∈ M and S ⊆ T ⊆ M\{k}. We want to

show that

(12) vM (S ∪ {k}) − vM (S) ≤ vM (T ∪ {k}) − vM (T ).

We distinguish some cases.
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• Case 1: vM (S) > 0.

By monotonicity of vM , we have vM (S∪{k}), vM (T ∪{k}), vM (T ) > 0. Since vM (S) >

0, there exists the r + 1th agent (either seller or buyer) of the kth sector. Applying the

definition of the sectors game, the two terms of (12) are equal to wr − wr+1 if k = m

or ck(r+1) − ckr if 1 ≤ k < m. Thus (12) holds.

• Case 2: vM (S) = 0 and vM (S ∪ {k}) > 0.

By monotonicity of vM , we have vM (T ∪ {k}) > 0. Since vM (S ∪ {k}) > 0, there exists

the r+1th agent (either seller or buyer) for each of the sectors in M\ (S ∪ {k}). Suppose

k = m (the other cases are analogous and they are left to the reader). On the one hand,

if vM (T ) > 0 then (12) reduces to wr −
∑

l∈S clr −
∑

l∈M\S∪{k} cl(r+1) ≤ wr − wr+1,

which is equivalent to vM (S) = 0. On the other hand, if vM (T ) = 0 then (12) trivially

holds by monotonicity of vM .

• Case 3: vM (S) = vM (S ∪ {k}) = 0.

In this case (12) trivially holds by monotonicity of vM .

As a consequence of Proposition 1 and Theorem 1 we provide a method to find all the

extreme core allocations of a multi-sided Böhm-Bawerk assignment game (see Corollary 1).

In words, for each extreme point of the core of an m-sided Böhm-Bawerk assignment game

there is a permutation of the set of sectors such that when we replicate and translate the

marginal worth vector associated to this latter permutation we obtain the former vector, and

vice versa.

Corollary 1 Let (N,ωA(c;w)) be an m-sided Böhm-Bawerk assignment game and let (M,vM
c;w)

be the associated sectors game. Then,

Ext
{
C(ωA(c;w))

}
=
{
tc;w + Rc;w

(
mθ(v

M
c;w)

)}
θ∈Θ(M)

.
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To illustrate the above result we study the extreme core allocations of the three-sided

Böhm-Bawerk assignment game that corresponds to Table 1. The set Ext(C(ωA(c;w))) is

obtained from the six possible marginal worth vectors of (M,vM
c;w):

θ mθ(vM
c;w) tc;w + Rc;w

(
mθ(v

M
c;w)

)

(1,2,3) (0,1,1) (6,6,4,3,0,0,0,0;5,4,2,1,1,0,0,0;9,7,5,3,1,0,0,0,0,0)

(1,3,2) (0,1.3,0.7) (6,6,4,3,0,0,0,0;5.3,4.3,2.3,1.3,1.3,0,0,0;8.7,6.7,4.7,2.7,0,0,0,0,0,0)

(2,1,3) (1,0,1) (7,7,5,4,1,0,0,0;4,3,1,0,0,0,0,0;9,7,5,3,1,0,0,0,0,0)

(2,3,1) (1.7,0,0.3) (7.7,7.7,5.7,4.7,1.7,0,0;4,3,1,0,0,0,0,0;8.3,6.3,4.3,2.3,0.3,0,0,0,0,0)

(3,1,2) (0.7,1.3,0) (6.7,6.7,4.7,3.7,0.7,0,0;5.3,4.3,2.3,1.3,1.3,0,0,0;8,6,4,2,0,0,0,0,0,0)

(3,2,1) (1.7,0.3,0) (7.7,7.7,5.7,4.7,1.7,0,0;4.3,3.3,1.3,0.3,0.3,0,0,0;8,6,4,2,0,0,0,0,0,0)

Also as a consequence of Theorem 1 and Proposition 1, the attainable lower and upper

bounds for the core payoffs of any active agent i ∈ Nk, k ∈ M are respectively tki + vM ({k})

and tki + vM (M) − vM (M\{k}). Moreover, for any ordering θ ∈ Θ(M) of the set of sectors,

the corresponding extreme core allocation tc;w+Rc;w

(
mθ(v

M
c;w)

)
of the m-sided Böhm-Bawerk

assignment game (N,ωA(c;w)) can be interpreted as follows: agents of the first sector in θ

receive their best payoff, agents of the second sector in θ receive their best possible payoff

provided that agents of the first sector receive their best payoff, and so on and so forth,

hence generalizing the interpretation of the only two extreme core allocations in the case of

two-sided Böhm-Bawerk assignment games as the buyers-optimal and the sellers-optimal.

Corollary 1 implies that the core of an m-sided Böhm-Bawerk game has at most m!

extreme core allocations. The next result shows that this bound is only attainable for multi-

sided Böhm-Bawerk assignment games with at most three sectors, i.e. m ≤ 3, (see for instance

Figure 1).

Proposition 2 Let (N,ωA(c;w)) be an m-sided Böhm-Bawerk assignment game. Then,

• 1 ≤
∣∣Ext

{
C(ωA(c;w))

}∣∣ ≤ m
(
m−1
m/2

)
if m is even,

• 1 ≤
∣∣Ext

{
C(ωA(c;w))

}∣∣ ≤ m
( m−1
(m−1)/2

)
if m is odd,
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and the bounds are attainable.

Proof. The lower bound is attained, for instance, when (N,ωA(c;w)) is the null game. By

Corollary 1, to calculate which is the number of extreme points of the core of (N,ωA(c;w)) it

suffices to count how many different marginal worth vectors of the associated sectors game

(M,vM ) there are. Let θ ∈ Θ(M) be an arbitrary ordering of the set of sectors. Given

k ∈ M , let Pθ,k := {l ∈ M : θ(l) < θ(k)} be the set of predecessors of k w.r.t. θ, and

Fθ,k := {l ∈ M : θ(l) < θ(k)} be the set of followers of k w.r.t. θ.

Since (M,vM ) is monotone, we can define t∗θ as the lowest integer t ∈ {1, ...,m} such

that vM ({k : θ(k) ≤ t}) > 0. Then, let k∗
θ = θ−1(t∗θ) be the agent that appears in the k∗

θ-th

position in the ordering θ. Applying (3) and Definition 2, it can be checked that any marginal

worth vector of (M,vM ) has the following description

(13)

mθ
k(v

M ) =





0 if 0 ≤ θ(k) < t∗θ

aE

if θ(k) = t∗θ,

where E = r1Pθ,k∗
θ

+ r1{k∗

θ
} + (r + 1)1Fθ,k∗

θ

ck(r+1) − ckr if t∗θ < θ(k) ≤ m and k 6= m

wr − wr+1 if t∗θ < θ(k) ≤ m and k = m

Moreover, (13) reveals that, given θ, if we permute either the set of the predecessors or the

set of followers of k∗
θ = θ−1(t∗θ), the marginal worth vector (given by (13)) remains invariant.

That is, mθ(vM ) = mθ′(vM ) if Pθ,k∗

θ
= Pθ′,k∗

θ′
and Fθ,k∗

θ
= Fθ′,k∗

θ′
. For each order θ there

are (t∗θ − 1)! (m − t∗θ)! different orderings that are obtained permuting either the set of the

predecessors or the set of followers of k∗
θ and thus give rise to the same marginal worth vector.

Observe that the more equidistant t∗θ is with respect to 1 and m, the smaller (t∗θ − 1)! (m − t∗θ)!

is. Thus, it is not difficult to check that

(14) min
t∗
θ
∈{1,...,m}

(t∗θ − 1)! (m − t∗θ)! =





(m/2)! (m/2 − 1)! if m is even

((m − 1) /2)! ((m − 1) /2)! if m is odd
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When, for all θ ∈ Θ(M), t∗θ is the minimum value given by (14), we obtain the following

upper bounds for the number of extreme points of C(ωA):

• |Ext {C(ωA)}| ≤ m!
(m/2)!(m/2−1)! = m

(
m−1
m/2

)
if m is even,

• |Ext {C(ωA)}| ≤ m!
((m−1)/2)!((m−1)/2)! = m

(
m−1

(m−1)/2

)
if m is odd.

To prove that these bounds are attainable we consider some specific m-sided Böhm-

Bawerk market with two agents (either sellers or buyers) for each sector. We need to distin-

guish two cases.

• Case 1: m is even.

Let us introduce the m-sided Böhm-Bawerk market (c;w) where c = (c1, ..., cm−1) ∈

R2(m−1) is given by ck = (1−ε, 2) for all 1 ≤ k ≤ m−1, and w = (3m/2−1+ε, 3m/2−2),

for some small enough ε > 0. By the symmetry of the problem, it is easy to check that

(15) vM (S) =





0 if |S| < m/2

εm/2 if |S| = m/2

|S| (1 + ǫ) − m/2 if |S| > m/2

If ε > 0 satisfies ε(m/2 − 1) < 1 then 0 < εm/2 < 1 + ε. If we plug (15) into (13)

we realize that all marginal worth vectors mθ(vM ) have the same structure: they pay

0 to the first m/2 − 1 sectors in θ, εm/2 to the m/2th sector in θ and 1 + ε to the

last m/2 − 1 sectors in θ. Hence, to construct one marginal worth vector we proceed

as follows: we pick one sector k ∈ M and plug it into the ’central’ position m/2 + 1.

Then, among the remaining m − 1 sectors we pick m/2 to be the predecessors of k.

All marginal worth vectors that are constructed like this are different. Furthermore,

there are exactly m
(m−1

m/2

)
such vectors. Therefore the upper bound for the number of

extreme points is attainable.
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• Case 2: m is odd.

It is analogous to the above case by taking the m-sided Böhm-Bawerk market (c;w)

where c = (c1, ..., cm−1) ∈ R
2(m−1) is given by ck = (1− ε, 2) for all 1 ≤ k ≤ m− 1, and

w = (3 (m − 1) /2, 3 (m − 1) /2 − 1 − ε), for some small enough ε > 0, and hence it is

left to the reader.

Observe that Proposition 2 tells that, as it is already known, a two-sided Böhm-Bawerk

assignment game (m = 2) has at most 2 extreme core allocations. Notice also that, for

instance, the maximum number of extreme core allocations is respectively 6, 12, 30, 60 for

m = 3, 4, 5, 6 respectively. We want to stress that the number of extreme core allocations

of an m-sided Böhm-Bawerk assignment game does not depend on the number of buyers or

sellers of each sector but only on the number m of sectors.

Hamers et al. (2002) prove that classical bilateral assignment games satisfy the CoMa-

property, i.e. any extreme core allocation is a marginal worth vector. We next show that this

property also holds for multi-sided Böhm-Bawerk games.

Theorem 2 Multi-sided Böhm-Bawerk assignment games satisfy the CoMa-property.

Proof. We prove that for each extreme core allocation x of (N,ωA(c;w)) there is an ordering

θN ∈ Θ(N) of the set of agents N (composed of all buyers and sellers) such that x is the

marginal worth vector associated to θN . By Corollary 1, we know that every extreme core

allocation of (N,ωA(c;w)) is the translation and replica of one marginal worth vector of the

sectors game (M,vM
c;w). Taking advantage of the above facts, the proof of the theorem consists

on associating to each ordering of sectors θM ∈ Θ(M) an ordering of agents θN ∈ Θ(N) such

that mθN

(ωA) = tc;w + Rc;w(mθM

(vM )).

Without loss of generality let θM = (1, 2, ...,m) be the natural ordering of the set of

sectors. Then, let θN ∈ Θ(N) be any ordering of the set of agents (defined from θM )

constructed as follows: all inactive agents appear (arbitrarily ordered) before all active agents,
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i.e. θN (i′) < θN (i′′) for all i′ ∈ {i ∈ Nk : k ∈ M, i > r} and i′′ ∈ {i ∈ Nk : k ∈ M, i ≤ r},

and all active agents are ordered as follows,

(r ∈ N1, ..., r ∈ Nm, r − 1 ∈ N1, ..., r − 1 ∈ Nm, ... ... , 1 ∈ N1, ..., 1 ∈ Nm).

Notice that we are implicitly using the natural ordering θM in the restriction of θN to the

set of active agents since, for any index i ∈ {1, ..., r}, agents i ∈ N1, ..., i ∈ Nm are ordered

following the ordering of sectors θM = (1, 2, ...,m).

For notational convenience, we use mθN

ki (ωA) to denote the payoff to agent i ∈ Nk, k ∈ M ,

according to the marginal worth vector mθN

(ωA). By (2) and (6), we have ωA(S) = 0 for all

S ⊆ N composed only of inactive agents. Hence, for all i ∈ Nk and k ∈ M such that i > r,

we have mθN

ki = 0, which coincides with the payoff to agent i ∈ Nk in the translation and

replica of mθM

k (vM ).

Next assume that i ∈ Nk and k ∈ M such that i ≤ r. By the definition of the characteristic

function ωA in the case of a multi-sided Böhm-Bawerk assignment game, ωA(S) is obtained as

follows. The buyer in S with higher valuation (if exists) and the sellers of each sector in S with

lower valuations (if exist) are arranged in an essential coalition E ∈
∏m

k=1 Nk. If aE = 0 or E

cannot be formed we stop. If not, we keep repeating the above procedure with the remaining

agents, until either the new essential coalition has zero worth or no essential coalition can be

formed. Lastly ωA(S) is obtained adding up all the worths associated to essential coalitions

constructed. In other words, to obtain ωA(S) we partition S into ’ranking-ordered’ coalitions

and add up their corresponding worths.

In the case in which S = PθN ,i∪{i}, where PθN ,i denotes the set of predecessors of i ∈ Nk

w.r.t. θN , it is easy to check that the essential coalitions constructed by the above procedure

are (if exist)

Êi := (

k︷ ︸︸ ︷
i, ..., i,

m−k︷ ︸︸ ︷
i + 1, ...i + 1), ..., Êr := (

k︷ ︸︸ ︷
r, ..., r,

m−k︷ ︸︸ ︷
r + 1, ...r + 1).

Similarly, in the case in which S = PθN ,i, the essential coalitions constructed by the above

21



procedure are (if exist)

Ẽi := (

k−1︷ ︸︸ ︷
i, ..., i,

m−k+1︷ ︸︸ ︷
i + 1, ...i + 1), ..., Ẽr := (

k−1︷ ︸︸ ︷
r, ..., r,

m−k+1︷ ︸︸ ︷
r + 1, ...r + 1) .

Therefore, by (2) and (6),

mθN

ki (ωA) = ωA(PθN ,i∈Nk ∪ {i}) − ωA(PθN ,i∈Nk)

=

(
r−1∑

l=i

aÊl + vM ({1, ..., k − 1, k})

)
−

(
r−1∑

l=i

aẼl + vM ({1, ..., k − 1})

)

=





ckr − cki + vM ({1, ..., k − 1, k}) − vM ({1, ..., k − 1}), if k < m

wi − wr + vM ({1, ..., k − 1, k}) − vM ({1, ..., k − 1}), if k = m





= tki + mθM

k (vM ),

where the third equality holds applying (3) to all entries of the matrix A in the sum, which by

(6) are strictly positive, and the last equality is obtained applying (7) and (8). Observe that

in the case where either Êr /∈
∏m

k=1 Nk or Ẽr /∈
∏m

k=1 Nk we have vM ({1, ..., k − 1, k}) = 0

and vM ({1, ..., k − 1}) = 0, respectively.

In conclusion, mθN

(ωA(c;w)) =
−→
t c;w + Rc;w(mθM

(vM
c;w)) and hence (N,ωA(c;w)) satisfies

the CoMa-property.

In the final part of this paper we investigate when the core of a multi-sided Böhm-Bawerk

assignment game is a stable set in the sense of von Neumann-Morgestern. Given a multi-sided

Böhm-Bawerk assignment game, we say that agent i ∈ Nk, k ∈ M is a null player if aE = 0

for all E ∈
∏m

k=1 Nk such that i ∈ E. An special subclass of multi-sided Böhm-Bawerk

assignment games is the class of multi-sided assignment games with a constant matrix, i.e.

with all entries equal, which are called multi-sided glove markets (or T-markets, Brânzei et

al., 2007). A multi-sided glove market is therefore obtained when all buyers’ valuations are

the same and, for each other sector, all sellers’ valuations coincide.

Our next result identifies necessary and sufficient conditions which guarantee that the

core of a multi-sided Böhm-Bawerk assignment game is stable, and it generalizes the result

known for the two-sided case. Nevertheless, the proof presented here is not parallel to that
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of the two-sided case since, unlike for this latter case, in the general case there is not known

yet a necessary and sufficient condition for the core of an arbitrary multi-sided assignment

game to be stable (see Solymosi and Raghavan, 2001).

Proposition 3 Given an m-sided Böhm-Bawerk assignment game (N,ωA(c;w)) without null

players, the following statements are equivalent:

(a) C(ωA(c;w)) is a stable set.

(b) (N,ωA(c;w)) is an square m-sided glove market.

Proof. Since there are no null players, we necessarily have r > 0. First we prove that (a)

implies (b). Consider the allocation

(16) y = (

r︷ ︸︸ ︷
aE1, ..., aEr ,

n1−r︷ ︸︸ ︷
0, ...0;

n2︷ ︸︸ ︷
0, ..., 0; ...;

nm︷ ︸︸ ︷
0, ..., 0) ∈ RN1

× ...× ∈ RNm

.

Suppose that y /∈ C(ωA). Since C(ωA) is stable, there must be x ∈ C(ωA) such that

x dominates y via coalition T ⊆ M and ωA(T ) > 0. Let E = (i1, ..., im) ⊆ T be some

essential coalition such that aE > 0. Then, x1i1 > y1i1 = aEi1 = x(Ei1) ≥ x1i1 ,where the

strict inequality holds by the domination conditions, the first equality holds by (16), the

second equality and the last inequality hold by (5). Hence, we have a contradiction and thus

y ∈ C(ωA). Analogously,

(17) z = (

n1︷ ︸︸ ︷
0, ..., 0;

r︷ ︸︸ ︷
aE1, ..., aEr ,

n2−r︷ ︸︸ ︷
0, ...0; ; ...;

nm︷ ︸︸ ︷
0, ..., 0) ∈ C(ωA).

Next we prove that (N,ωA) is square. Suppose not, i.e. there is at least one inactive agent.

We can assume without loss of generality that r + 1 ∈ N1 exists. Let E = (i1, ..., im) ∈

{r + 1} × N2 × ... × Nm be any essential coalition containing agent r + 1 ∈ N1. Then,

y(E) = y1i1 = aEi1 = 0 ≥ aE ≥ 0, where the first two equalities hold by (16), the third

equality holds by (6) and the first inequality holds since y ∈ C(ωA). Therefore, aE = 0 for

all E ∈ {r + 1} ×N2 × ...×Nm such that r + 1 ∈ E, which contradicts (N,ωA) has not null

players.
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Lastly, we prove that A is a constant matrix. By (4) we have

(18) aE1 ≥ aE ≥ aEr for all E ∈

m∏

k=1

Nk = {1, ..., r}m.

Moreover, aE1 = y(E′) = aE′ = z(E′) = aEr , where E′ = (1, r, ..., r), the first equality holds

by (16), the second and third equalities hold since y, z ∈ C(ωA) and, by (9), E′ belongs to

some optimal matching, and the last equality holds by (17). Therefore, (18) reduces to a

chain of equalities and thus (N,ωA(c;w)) is an square m-sided glove market.

Second, we prove that (b) implies (a). Let (N,ωA) be an square multi-sided glove market

and let y ∈ I(ωA)\C(ωA). By (5), there must be an essential coalition E = (i1, ..., im) ∈

∏m
k=1 Nk such that y(E) < C. Consider the vector x ∈ RM defined by xk := ykik + δ/m, for

all k ∈ M , where δ := C − x(E) > 0. It is straightforward to check that x ∈ C(vM ), since

vM (M) = C and vM (S) = 0 for all S  M . Then, x = tc;w + Rc;w(x) ∈ RN1

× ... × RNm

belongs to C(ωA). Furthermore, we have ykik < xkik for all k ∈ M . Then x dominates y via

E and C(ωA) is a stable set.

In the general case in which there might be null players, a multi-sided Böhm-Bawerk

assignment game (N,ωA(c;w)) has an stable core if and only if the square r×
m︷︸︸︷... ×r submatrix

given by the active agents of each sector -where r is defined in (6)- is constant and the

remaining entries are null.

We conclude with two final remarks. On the one hand, one may be tempted to think that

the cooperative analysis of a multi-sided Böhm-Bawerk market made throughout this paper

can be simplified to the analysis of a (classical) two-sided Böhm-Bawerk assignment game, by

clustering the (m−1)-tuples of sellers (one of each sector) into single sellers. However, merging

sellers presents two main drawbacks. First, there is not a unique way to merge sellers. In fact,

if active sellers are merged with inactive sellers, the profitability of the market, i.e. the value

of the grand coalition in the corresponding cooperative game, may decrease. Second, even

if active sellers are merged with active sellers and inactive sellers are merged with inactive

sellers, the merging of the extreme points (or other solution concepts, e.g. the nucleolus) of
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an m-sided Böhm-Bawerk assignment game may not coincide respectively with the extreme

points (or the nucleolus) of the merging of the m-sided Böhm-Bawerk assignment game.

On the other hand, most markets are interesting precisely when the worths of coalitions

are not additively separable in individual agents’ contributions. In fact, this is the case in

our problem because of three potentially non-trivial aspects: (1) valuations are arbitrarily

nonnegative, (2) worths of essential coalitions are truncated at zero making this case distinct

from the purely additive case and (3) the number of firms and buyers may be arbitrarily

different.
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