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ABSTRACT 
 
 Cationic nanovesicles have attracted considerable interest as effective carriers to 

improve the delivery of biologically active molecules into and through the skin. In this study, 

lipid-based nanovesicles containing three different cationic lysine-based surfactants were 

designed for topical administration. We used representative skin cell lines and in vitro assays  

to assess whether the cationic compounds modulate the toxic responses of these nanocarriers. 

The nanovesicles were characterized in both water and cell culture medium. In general, 

significant agglomeration occurred after 24 h incubation under cell culture conditions. We 

found different cytotoxic responses among the formulations, which depended on the 

surfactant, cell line (3T3, HaCaT and THP-1) and endpoint assayed (MTT, NRU and LDH). 

Moreover, no potential phototoxicity was detected in fibroblast or keratinocyte cells, whereas 

only a slight inflammatory response was induced, as detected by IL-1α and IL-8 production in 

HaCaT and THP-1 cell lines, respectively. A key finding of our research was that the cationic 

charge position and the alkyl chain length of the surfactants determine the nanovesicles 

resulting toxicity. The charge on the α-amino group of lysine increased the depletion of cell 

metabolic activity, as determined by the MTT assay, while a higher hydrophobicity tends to 

enhance the toxic responses of the nanovesicles. The insights provided here using different 

cell lines and assays offer a comprehensive toxicological evaluation of this group of new 

nanomaterials. 

 

KEYWORDS: Cationic nanovesicles, lysine-based surfactants, cell culture, skin drug 

delivery, cytotoxicity, inflammatory response 
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1. Introduction 

  
 Cationic lipid-based nanovesicles have been proposed as biocompatible drug delivery 

devices, with specific properties and able to overcome the barriers imposed by cell membranes 

[1]. Among various cationic substances, cationic amphiphile molecules have been successfully 

used in the composition of such carriers [1,2]. Lipid-based devices have a broad spectrum of 

applications, one of which is the topical delivery of active ingredients, intensively studied in 

recent years [3,4]. The inclusion of cationic compounds, such as biocompatible cationic 

amphiphiles, in the basic membrane of liposomes might be a promising approach to increasing 

the formulation’s stability and its specificity for skin drug delivery. The development of new 

lipid-like molecules, such as cationic amphiphiles derived from lipoaminoacids [5,6], has 

become a major feature in the search for natural bioactive molecules that could be used in new 

drug delivery systems [7]. In this context, cationic lysine-based surfactants are a promissing 

group of amino acid-based amphiphiles that can be regarded as an alternative to conventional 

synthetic amphiphiles due to their multi-functionality and biodegradability, the renewable 

source of raw materials used during their synthesis and their low cytotoxic potential [5]. 

 The presence of charges at the vesicle surface may influence topical drug delivery. The 

skin surface bears a net negative charge [8], which, therefore, favor the positively charged 

vesicles to increase the permeation rate of different model drugs through the skin [9,10]. In 

contrast, some authors reported contradictory results, in which vesicles with negative charge 

have higher skin permeation [11,12]. Although extensive studies have focused on the drug 

release and penetration properties of cationic vesicles, the potential toxic mechanisms of this 

kind of carrier have not been explained sufficiently. Some authors have studied the effect of 

structural properties of cationic vesicles on their cytotoxicity [13], while others assessed the 

mechanisms of cell death induced by catanionic vesicles [14]. The search for reliable 
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conditions to assess nanomaterials’ safety is an emerging field that poses many interesting 

challenges. 

 Currently, there are no specific testing requirements for nanotechnology products and, 

therefore, researchers took liberal approaches to studying toxicity [15,16]. Moreover, it is 

worth noting that, because of the expense of animal testing in toxicology and pressure from 

both the general public and government to develop alternatives to in vivo testing, in vitro cell-

based models may be more attractive for preliminary testing of nanomaterials [17].  Here, we 

developed different formulations of cationic nanovesicles containing biocompatible lysine-

based surfactants as surface modification agents, and screened in vitro toxicological assays 

both to understand better the potential health hazards of new nanomaterials designed for 

topical application and to create predictive toxicology approaches for testing nanotechnology-

based products. We specifically studied whether the inclusion of cationic lysine-based 

surfactants, differing in the cationic charge position and in alkyl chain length, may determine 

the cytotoxic and phototoxic potential of nanovesicular systems and modulate molecular 

mechanisms such as inflammatory response in representative skin cell lines. Since there is a 

knowledge gap between the increasing development and use of nanomaterials and the 

prediction of possible health risks [18], safety evaluation and greater understanding of 

nanomaterials’ impact on human health are essential before any clinical application is 

explored.  

 

2. Experimental 

 
2.1. Chemicals and reagents 

2,5-diphenyl-3,-(4,5-dimethyl-2-thiazolyl) tetrazolium bromide (MTT), neutral red 

(NR) dye, 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC), cholesterol and 

dimethylsulphoxide (DMSO) were obtained from Sigma-Aldrich (St. Louis, MO, USA). 
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Dulbecco´s Modified Eagle´s Medium (DMEM), RPMI 1640 medium, fetal bovine serum 

(FBS), phosphate buffered saline (PBS), L-glutamine solution (200 mM), trypsin-EDTA 

solution (170,000 U/l trypsin and 0.2 g/l EDTA) and penicillin-streptomycin solution (10,000 

U/ml penicillin and 10 mg/ml streptomycin) were purchased from Lonza (Verviers, Belgium). 

The 75 cm2 flasks and 96-well plates were obtained from TPP (Trasadingen, Switzerland). All 

other reagents were of analytical grade. 

 
2.2. Surfactants included in the nanovesicular systems 

 Three new biocompatible amino acid-based surfactants derived from Nε or Nα-acyl 

lysine methyl ester salts with one lysine as the cationic polar head (one cationic charge) and 

one alkyl chain were used as surface modification agents to prepare the cationic vesicular 

systems reported in this study: Nε-myristoyl lysine methyl ester (MKM) with one alkyl chain 

of 14 carbon atoms and one positive charge on the α-amino group of the lysine, Nε-palmitoyl 

lysine methyl ester (PKM) with one alkyl chain of 16 carbon atoms and one positive charge on 

the α-amino group of the lysine and Nα-myristoyl lysine methyl ester (MLM) with one alkyl 

chain of 14 carbon atoms and one positive charge on the ε-amino group of the lysine. MKM 

and PKM have a hydrophobic chain attached to the ε-amino group of the lysine, while MLM 

has its hydrophobic chain attached to the α-amino group of the lysine. These lysine-based 

surfactants were synthesized in our laboratory, as described elsewhere [5,6]. 

 
2.3. Preparation of cationic nanovesicular formulations 

 The mixed cationic vesicles were prepared by the film hydration method. Briefly, 

DMPC only or DMPC and cholesterol (CHOL) were mixed with MKM, PKM or MLM in the 

designed molar ratios and dissolved in the mixed chloroform:methanol (1:1, v/v) solvent in a 

round-bottom flask. The formulations of DMPC:surfactant were prepared at 80:20 molar ratio, 

while the molar composition of the vesicular sytems composed of DMPC:CHOL:surfactant 



 6 

were 56:24:20 (30% cholesterol of the total lipid in the formulation). The organic solvent was 

removed under reduced pressure using a R-210 Rotary Evaporator (Buchi, Switzerland) at 

50ºC for 60 min to form a homogeneous thin film. To remove residual traces of the organic 

solvents, the mixed film was freeze-dried (Christ Alpha 2-4 LD freeze-drying system, Martin 

Christ, Germany) overnight. Ten ml of ultrapurified water was added to hydrate the film, and 

the resulting suspension was sonicated for 20 min at 60ºC in an Ultrasons-H ultrasonic bath (J. 

P. Selecta, Spain) to promote the formation of uniform vesicles. The total final concentration 

of each mixed cationic nanovesicle was fixed at 2 mM.  

 Nanovesicle dispersions were purified by filtration using Vivaspin 2 centrifugal 

concentrator (PES membrane, 3,000 Da MWCO, Sartorius Stedim Biotech, Goettingen, 

Germany). The substance filtrated was used to determine the extent of incorporation of the 

cationic surfactants into the vesicles. The amount of unincorporated surfactant was assessed 

by high-performance liquid chromatography (HPLC), following the analytical method 

previously described [5].  

 
2.4. Nanovesicle characterization 

 The mean hydrodynamic size and the polydispersity index (PDI) of the cationic 

nanovesicles were determined at 25ºC by dynamic light scattering (DLS) using a Malvern 

Zetasizer ZS (Malvern Instruments, Malvern, UK). The measurements were performed in 

ultrapurified water immediately after preparation (t = 0 h) and in cell culture medium with 5% 

FBS at t = 0 h and after a 24 h incubation at 37ºC (t = 24 h). Each measurement was 

performed using at least three sets of at least ten runs. 

 The zeta potential (ZP) values of the nanovesicle formulations were assessed by 

determining the electrophoretic mobility of a particle with the Malvern Zetasizer ZS 

equipment. The measurements were performed in ultrapurified water and cell culture medium 

at 25ºC using at least three sets of at least 20 runs. 
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 The morphology and size anlaysis of the vesicular systems were analysed by 

transmission electron microscopy (TEM) and the images were obtained with a Jeol JEM-1010 

electron microscope (Jeol Ltd., Tokyo, Japan) operating at an acceleration voltage of 80 kV. A 

droplet (5 μl) of the vesicles dispersed in ultrapure water was placed on a carbon-coated 

copper grid, forming a thin liquid film. The negative staining of samples was obtained with a 

2% (w/v) solution of phosphotungstate acid (pH 6.5, with KOH). The excess solution was 

removed by a filter paper and followed by thorough air-drying. 

 
2.5. Cell cultures 

 The murine Swiss albino fibroblasts, 3T3, and the spontaneously immortalized human 

keratinocyte HaCaT cell lines were grown in DMEM medium (4.5 g/l glucose) supplemented 

by 10% (v/v) FBS, 2 mM L-glutamine, 100 U/ml penicillin and 100 µg/ml streptomycin at 

37ºC, 5% CO2. The 3T3 and HaCaT cells were routinely cultured in 75 cm2 culture flasks and 

were trypsinized using trypsin-EDTA when the cells reached approximately 80% confluence. 

The human monocytic leukemia cell line THP-1 was grown in RPMI 1640 medium 

supplemented by 10% (v/v) FBS, 2 mM L-glutamine, 100 U/ml penicillin, 100 µg/ml 

streptomycin and 50 μM 2-mercaptoethanol at 37ºC, 5% CO2. The three cell lines were 

obtained from Eucellbank (Universitat de Barcelona, Spain). 

 
2.6. Cytocompatibility assays 

 3T3 (1 x 105 cell/ml) and HaCaT (7.5 x 104 cell/ml) cells were seeded into 96-well cell 

culture plates in 100 µl of complete culture medium. Cells were incubated for 24 h under 5% 

CO2 at 37ºC and the medium was then replaced with 100 µl of fresh medium supplemented by 

5% FBS containing the vesicular system dispersions in the 0.5 – 100 μM concentration range. 

THP-1 cells were seeded into 24-well plates at a density of 1 x 106 cell/ml and then treated 

with vesicle dispersions in the 1 – 100 μM concentration range. The final volume in each well 
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was 500 μl and the medium used contained 5% FBS. Each concentration was tested in 

triplicate and control cells were exposed to medium with 5% FBS only. The cell lines were 

exposed for 24 h to each nanovesicle treatment.  

 To determine whether the NVs interact with the viability assays, UV-visible 

absorbance measurements were carried out [19,20]. NVs at 100 μM were suspended in 

DMEM medium (without FBS and phenol red) containing MTT (0.5 mg/ml) or NR (50 

μg/ml) dyes. After 3 h incubation under cell culture conditions, the NVs were pelleted by 

ultracentrifugation, rinsed and extracted with DMSO or a solution containing 50% ethanol 

absolute and 1% acetic acid in distilled water for MTT and NR dyes, respectively. The 

extracted solution was transferred to a quartz cuvette and the absorbance read at 550 nm and at 

intervals from 300 to 700 nm on a Shimadzu UV-160A spectrophotometer (Shimadzu, Kyoto, 

Japan). 

 
2.6.1. MTT assay    

 The MTT assay is based on the protocol first described by Mossmann [21]. In this 

assay, living cells reduce the yellow tetrazolium salt MTT to insoluble purple formazan 

crystals. After 24 h exposure of 3T3 and HaCaT cells to the various vesicular systems, the 

treatment-containing medium was removed, and 100 µl of MTT in PBS (5 mg/ml) diluted 

1:10 in FBS-free medium without phenol red was then added. Plates were further incubated 

for 3 h, after which time the medium was removed. The purple formazan product was then 

dissolved by adding 100 µl of DMSO to each well. Plates were then placed in a microtitre-

plate shaker for 10 min at room temperature and the absorbance of the resulting solutions was 

measured at 550 nm using a Bio-Rad 550 microplate reader. 

 After 24 h incubation of THP-1 cells with the treatments, the plates were centrifuged 

and supernatants were collected and kept at -80ºC till subsequent analysis (see section 1.9). 

Then, 300 μl of a MTT solution of 0.75 mg/ml was added to each well. Cells were incubated 
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for 3 h at 37ºC, plates were then centrifuged, medium discarded and cells lysed in 250 μl/well 

of a mixture of HCl/isopropanol. 100 μl of the resulting solutions were transferred to a 96-well 

plate and the absorbance was read as described above. Cell viability was calculated as the 

percentage of tetrazolium salt reduction by viable cells on each sample against the untreated 

cell control (cells with medium only). 

 
2.6.2. NRU assay   

 Based on the protocol described by Borenfreund and Puerner [22], the NRU assay was 

performed following exposure to the nanovesicles. 3T3 and HaCaT cells were incubated for 3 

h with NR dye solution (50 µg/ml) dissolved in medium without FBS and phenol red. Cells 

were then washed with PBS, followed by the addition of 100 µl of a solution containing 50% 

ethanol absolute and 1% acetic acid in distilled water to extract the dye. Plates were gently 

shaken for 10 min to ensure complete dissolution. We then measured the absorbance of the 

extracted solution at 550 nm using a Bio-Rad 550 microplate reader. The effect of each 

treatment was calculated as the percentage of uptake of NR dye by lysosomes against the 

untreated cell control (cells with medium only). 

 
2.6.3. LDH assay 

 LDH leakage was determined in the conditioned medium 24 h after cationic vesicles’ 

treatment in 3T3 and HaCaT cell lines, using a commercially available kit (Takara Bio Inc, 

Otsu, Japan), in line with the instructions provided by the manufacturer. This assay quantifies 

cytotoxicity based on the measurement of LDH activity released from dead or plasma 

membrane-damaged cells into the supernatant. Results are expressed as percentage of control, 

with 1% Triton-X used as positive control. 

 
2.7. Cell morphology analysis 
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 3T3 cells at a density of 1 x 105 cells/ml were grown on sterile cover glass in 24-well 

plates and then treated without (control) or in the presence of the IC50 concentrations 

(determined by the MTT assay) of the various formulations of cationic vesicles for 24 h. After 

incubation, cell morphology was analyzed by a phase contrast microscope (Olympus BX41, 

Olympus, Japan). Images were digitised by an Olympus XC50 camera connected to Olympus 

cell^B computer software. 

 
2.8. Phototoxicity assay 

 Cell lines 3T3 and HaCaT were used as in vitro models to predict cutaneous 

phototoxicity. Two plates were seeded with cells; one for irradiation (+UVA) and the other 

wrapped in foil and therefore non-irradiated (-UVA). The cells were treated with the various 

vesicle formulations, as described in section 2.6. After treatment application, the plates were 

pre-incubated for 1 h at 37°C in a humidified 5% CO2 and then irradiated with a dose of 2.5 

J/cm2 UVA light. Following irradiation, the plates were incubated again under the same 

conditions to complete 24 h exposure. MTT and NRU endpoint assays were used to assess the 

phototoxic potential of the formulations. The phototoxic effect was evaluated by the OECD 

phototoxic validation test [23], with some modifications. A photoirritation-factor (PIF) was 

calculated, using the following formula: 

 
PIF = IC50 (- UVA) / IC50 (+ UVA)            (1) 

 
Based on the results, a test substance with a PIF < 2 predicts “no phototoxicity”; a PIF > 2 and 

< 5 predicts “probable phototoxicity” and a PIF > 5 predicts “phototoxicity”. 

 
2.9. Cytokine production 

 IL-1α and IL-8 concentrations, as markers of induced inflammatory stimuli, were 

measured by commercially available sandwich enzyme-linked immunosorbent assay (ELISA) 
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kits (Diaclone Research, France and ImmunoTools, Friesoythe, Germany, respectively). The 

results are expressed in pg/ml. 

 To assess whether there was an inflammatory reaction measured by the presence of IL-

1α, HaCaT cells at a density of 1 x 105 cells/ml were grown in 24-well plates and then 

exposed to a range of concentrations from 1 to 100 μM of the various vesicle formulations 

diluted in medium with 1% FBS. After 24 h exposure, conditioned medium was recovered, 

centrifuged and used for the determination of extracellular IL-1α (IL-1α release). Monolayers 

were washed with PBS, then lysed in 300 μl of PBS containing 0.5% of Triton X-100 and 

used for the determination of intracellular IL-1α (cell-associated IL-1α). The protein content 

of the cell lysate determined by a commercial kit (Bio-Rad, Hercules, CA, USA) based on the 

dye-binding procedure of Bradford [24]. Cell viability was determined by the LDH leakage 

assay as described previously. 

 IL-8 release was assessed in cell-free supernatants after incubation of the various 

cationic vesicle formulations with THP-1 cells. The supernatants were colected directly from 

the cytotoxicity assay plates, centrifuged and stored at -80ºC until analysis. 

 
2.10. Statistical analysis 

 All in vitro experiments were performed at least three times, using three replicate 

samples for each formulation concentration tested. Results are expressed as mean ± standard 

error of the mean (SEM). Statistical analyses used the Student’s t-test or one-way analysis of 

variance (ANOVA) to determine the differences between the datasets, followed by Dunnett’s 

post-hoc test for multiple comparisons using SPSS®  software (SPSS Inc., Chicago, IL, USA). 

p < 0.05 and p < 0.005 were considered significant.  

 
3. Results and discussion 
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 Cationic lipid-based vesicles have attracted considerable interest because of their use 

as effective drug delivery systems [25,26]. More specifically, these kinds of carriers have been 

studied to improve the delivery of biologically active molecules into and through the skin 

[10,12]. Among a range of applications, cationic nanovesicles could be used in cosmetic 

formulations and epicutaneous drug release, because the addition of polar amphiphiles 

increases the likelihood of skin penetration [27]. In the present study, we provided new 

cationic nanocarriers as possible vehicles for dermal and transdermal applications. The 

cationic amphiphiles used as surface modification agents have biocompatible properties and 

can be considered much more suitable for practical applications than current commercial 

surfactant systems [28]. Furthermore, we showed previously that amphiphiles with the 

positive charge on the α-amino group of lysine (MKM and PKM) have pH-dependent 

membrane lytic activity [29,30]. Some researchers have reported that the use of pH-sensitive 

lipid vesicles for skin delivery of biologically active molecules resulted in enhanced effects 

[31].  

 Here experiments were performed to investigate the physicochemical parameters of the 

nanovesicles and, more particularly, to see how their composition affects their interaction with 

cells that are representative of the skin and play a key role in irritant, inflammatory and 

immunological reactions. The in vitro methods proposed here to assess the safety of new 

nanomaterials are adapted to nanoscale colloids. They are a direct extension of methods 

known for other macroscopic biomaterials or soluble drug toxicology assessments. However, 

since there are no defined protocols for assessing nanotoxicity [15,16], the use of the current 

assays to evaluate the toxic potential and the mechanisms involved is of great importance in 

determining structure/function relationships between nanomaterials and toxicity. 

     

3.1. Characterization of cationic nanovesicles 
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 Nanomaterial size and zeta potential are very important parameters in drug delivery 

applications. As  keeping nanomaterials in solution for longer periods results in aggregation 

[32], we prepared fresh formulations for each subsequent study to guarantee nanosized 

vesicles. Table 1 shows the results for each formulation. Average nanovesicle hydrodynamic 

diameter is between 90 and 255 nm, as determined by DLS analysis. The addition of 

cholesterol decreased the mean nanovesicle diameter, with the exception of the formulations 

containing MKM. When the nanovesicles containing MKM and PKM were dispersed in cell 

culture medium (DMEM with 5% FBS), the size increase was slight by 0 h, but significant 

agglomeration to micron-sized structures occurred after 24 h incubation under cell culture 

conditions. The easy aggregation in cell culture medium is probably attributed to the high 

ionic nature of the solution, resulting in the formation of the secondary particles [33]. In 

contrast, the nanovesicles containing MLM did not suffer agglomeration in cell culture 

medium, which can be attributed to their higher charge density (pKa MLM = 8.1) [29], 

corroborated by the ZP values determined in cell culture medium. The ZP values of all 

formulations are highly positive (> 40 mV) and did not differ significantly from each other. In 

contrast, in cell culture medium almost neutral values were obtained. The high positive ZP 

values in water indicate the stability of the prepared formulations and reflect the net charge on 

the surface of the vesicles. This is also of great importance in preventing fusion or aggregation 

of nanovesicles [13]. It has been reported that a physically stable formulation would have a 

minimum ± 30 mV ZP as a borderline value of colloidal stability [34]. The PDI values 

reported in Table 1 range from 0.23 to 0.42, indicating a relatively homogenous vesicular 

population. A PDI value lower than 0.3 indicates a homogenous and monodisperse population 

[34]. 

 The TEM morphological analysis showed that all the cationic vesicle formulations 

displayed clear negative staining images with a roughly spherical shape (Fig. 1). The 
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nanovesicles containing the surfactants with the positive charge on the α-amino group of 

lysine (PKM and MKM) were in general much smaller (~ 20–50 nm) than those obtained by 

DLS. These differences were especially significant for the nanovesicles with MKM (Figs. 1a, 

b), while the formulations with PKM showed more heterogeneous size distribution (Fig. 1e, f). 

The mean hydrodynamic particle size measured by DLS did not capture the real population 

distribution of the nanovesicles observed by TEM. The latter’s aggregate population was 

undetected even as a peak by DLS analysis. This disparity between DLS and TEM analysis, 

previously reported [32,35,36], might be a result of the resolution limitations of DLS. DLS 

provides a scattered intensity-based size of a colloidal particle, and thus the mean diameter is 

biased towards larger vesicles, even though they may occupy a much smaller fraction of the 

vesicle population [35]. Moreover, these observed differences might be attributed to 

aggregation [32,37] or to the swelling of the nanovesicles in the presence of water [36]. In 

contrast, the nanovesicles containing the surfactant MLM, which have the positive charge on 

the ε-amino group of lysine, did not show the same significant disparity between DLS and 

TEM analysis (Figs. 1c, d). In general, the TEM images corroborated the mean size obtained 

by DLS. Moreover, TEM images also revealed the formation of a multilayered membrane in 

the vesicles containing the surfactant MLM (Figs. 1c, d), while those containing the 

surfactants MKM and PKM showed unilamellar membranes in both presence and absence of 

cholesterol in the basic membrane (Figs. 1a, b, e, f).  

 The HPLC analysis of the filtrated samples (obtained from the purification process 

performed to remove the unincorporated amount of surfactant) revealed that the cationic 

surfactants were highly incorporated into the formulations (from 75 to 99% incorporation). 

(Table 1). It is noteworthy that the vesicles containing cholesterol have a lower degree of 

surfactant incorporation than those with DMPC only. Moreover, the formulations with the 

surfactant PKM have almost total incorporation of this compound into the nanovesicle. This 
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observation was fully expected since, the longer the alkyl chain of a surfactant is, the greater is 

its tendency to incorporate into lipid-based vesicles due to its hydrophobicity [38]. 

   

3.2. Cytocompatibility studies 

 The cytotoxic potential of new nanovesicles designed for biomedical application was 

evaluated on representative skin cells using established in vitro methods. HaCaT keratinocyte 

and 3T3 fibroblast cultures gave an appropriate in vitro model for skin irritation [39], while 

the human monocytic leukemia cell line THP-1 is considered surrogate of cutaneous dendritic 

cells in in vitro skin sensitization studies [40]. The combination of different cell lines and 

cytotoxicity assays gives information concerning general and specific toxicological 

mechanisms [41] that could help in understanding the toxic response of nanomaterials. 

 All the formulations containing the surfactants showed, as expected, higher 

cytotoxicity than the vesicles formulated without surfactant (data not shown). The cationic 

charge of the vesicles is probably responsible for the initial binding to the surface membrane 

by ionic interaction with the negatively charged cell membrane [42], which might enhanced 

the toxic effects of these formulations. Indeed, the cytotoxic effects observed showed many 

disparities between formulations that, in fact, depend on the surfactant, cell line and endpoint 

assay. The vesicles containing MKM and PKM (positive charge on the α-amino group of 

lysine) have a clear and dose-dependent decrease in MTT activity in the three cell lines 

studied after 24 h, while the NRU and LDH assays showed a significant decline in cell 

viability only at doses > 50 μM (Fig. 2). In contrast, the vesicular systems containing MLM 

(positive charge on the ε-amino group of lysine) showed similar cytotoxic responses by the 

three endpoint assays. These differences are reflected by comparing the IC50 values of the 

vesicles, as shown in Table 2. 

 In studies of MTT and NR dye interactions with nanovesicles, we observed minimal 

interference with each dye. These data were proved by the UV-vis measurements (data not 
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shown). Only the formulations containing PKM induced a slight increase in the MTT 

absorbance values at 550 nm. This might be due to a false positive reaction in which MTT was 

converted to formazan in the absence of cells. However, these small interferences did not 

result in further increases in cell viability with increasing concentration (false viability), which 

is in contrast to previous reported data for other types of nanomaterials [19,20]. These data 

prove that these viability endpoints are suitable for the intended purpose. 

 A key finding of our research was that the structural characteristic of the surfactants 

included in the nanovesicular systems directly affect the toxicological effects of such 

nanomaterials. Firstly, the position of the cationic charge in the amphiphile molecule was 

critical in determining the sensitivity of the endpoint used to assess the formulation’s 

cytotoxicity. On the one hand, the nanovesicles containing the compounds with the positive 

charge on the α-amino group of lysine (MKM and PKM) have greater cytotoxicity detected by 

MTT than by NRU and LDH endpoints. On the other hand, the nanovesicles containing MLM 

(with the positive charge on the ε-amino group of lysine) displayed in general the same level 

of cytotoxicity with the three endpoints. These effects might be due to a different interaction 

mechanism of the vesicular systems within cell as a function of the cationic charge position on 

the amphiphile included in them. The MTT assay is a measurement of cell metabolic activity 

within the mitochondrial compartment, while the NRU and LDH assays measure membrane 

integrity. NR dye diffuses through intact cell membranes to accumulate within lysosomes, 

while the LDH endpoint detects cells in the last stages of cell death [43]. Based on the 

mechanisms of cell damage detected by each cytotoxicity assay, our overall results suggest 

that the vesicles containing MKM and PKM interacted early with the mitochondrial 

compartment, first affecting cell metabolic activity, while the plasma membrane is affected in 

an lesser extent. The early interaction of these nanovesicles with the mitochondria might be 

due to their cell internalization before any damage to the cell membrane. The ability of these 
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nanomaterials to be cell internalized was corroborated using the fluorophores nile red and 

calcein as drug models (unpublished results). Moreover, the pH-sensitive activity of MKM 

and PKM [29,30] could favor this increased mitochondrial damage: the nanovesicles 

containing these compounds might have the ability to lysis the endosome membrane after cell 

internalization, enhancing, thus, their potencial toxicity in the cell cytoplasm (especially to the 

mitochondria). Finally, it is also worth noting that the length of the surfactant alkyl chain also 

affected the nanovesicles’ cytotoxicity. Regardless of the cell line and endpoint used, the 

vesicular systems containing the amphiphile PKM were the most cytotoxic. Therefore, we can 

conclude that, the longer the alkyl chain of the surfactant is, the greater the cytotoxicity of the 

resulting vesicular system. In line with these findings, our previous studies revealed that the 

amphiphiles also displayed significant differences in their phospholipid bilayer-perturbing 

properties [29,30], corroborating that the interaction processes with cell membrane are directly 

dependent on surfactant structure.  

 Together with the disparities observed with different cytototoxic assays, we also found 

that each cell line used showed different sensitivity to the cationic nanovesicles. 

Unfortunately, no clear conclusion was achieved about which cell was the most sensitive. 

Although we have no explanation for these differences at present, these data showed cell-

specific differences in cationic vesicle processing and toxicity. The results given are in line 

with previous studies [42,44], in which was reported that cytotoxic effects of particulate 

carrier systems differ, depending on the cell lines used, due to the innate nature, metabolic 

abilities (e.g. enzymes present) and capabilities of these cells. All in all, our results showed 

that the surfactants have a strong effect on the interaction of nanovesicles with the cells and, 

thus, on their cytotoxicity. These findings corroborated previous studies that found that the 

type and concentration of surfactant strongly affected the toxic responses of solid lipid 
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nanoparticles [44] and also have a slighly effect on the cytotoxicity of lipoplex formulations 

[1,2].  

 
3.3. Morphological analysis 

 Light microscopy analysis was used to view the effects of nanovesicles on the 

morphology of 3T3 cells after 24 h of incubation. Untreated control cells showed a well-

spread and flattened morphology (Table 2). In contrast, 3T3 cells treated with the IC50 

concentrations of the nanovesicles displayed prominent morphological changes, including 

rounding, reduced spreading and shrunken cells. These morphological changes corroborate 

and are directly attributed to the cytotoxic effects of each vesicular system.  

 
3.4. Phototoxicity assessment 

 Keratinocytes and fibroblasts are considered biologically relevant targets for skin 

irritants and photoirritants [45]. We therefore chose HaCaT and 3T3 cells as model cell 

systems to study the cutaneous phototoxic potential of nanovesicles. No potential phototoxic 

effects were observed, with PIF values lower than 2 (non-phototoxic) in all cases (Fig. 3). In 

general, the IC50 values in irradiated (+UVA) and non-irradiated (-UVA) plates were similar 

to the HaCaT cells, and only the formulations containing the amphiphile MKM showed a 

significant increase (p < 0.005) in the toxic response after irradiation, as determined by the 

NRU assay. In contrast, more significant differences between (-UVA) and (+UVA) plates 

were observed with 3T3 cells, especially with the NRU assay. Although the MTT assay gave 

lower IC50 values (for the formulations containing MKM and PKM) for the (+UVA) plates 

than the NRU assay did (as also found in the cytotoxicity assays, see section 3.2), the latter 

assay was more sensitive in detecting the UVA irradiation effects in both cell lines studied. 

These results suggest that the nanovesicle treatment followed by UVA irradiation has a greater 

effect on the plasma membrane of the cells than on their metabolic activity. Furthermore, the 
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results of nanovesicle phototoxicity revealed the different sensitivity of the two cell lines 

regardless of the endpoint used, with HaCaT cells being, in general, less sensitive to the 

phototoxic effects. This variability in the effects of photoirritants on human keratinocytes and 

3T3 cells was previously demonstrated in the original phototoxicity validation study [46] and 

in the studies of other amino acid-based surfactants [47]. All these data indicate the 

importance of assessing specific effects with different endpoints in a variety of different cell 

types. 

 As also discussed above for the general cytotoxicity assays, it is worth mentioning that 

the structural features of the amphiphiles also affected the phototoxicity of the nanovesicles. 

Vesicles containing MKM (positive charge on the α-amino group of lysine) had a significant 

phototoxic effect with both cell lines and endpoint assays, while those containing MLM 

(positive charge on the ε-amino group of lysine) had practically no phototoxicity in either cell 

line. Moreover, the length of the amphiphile alkyl chain also affected the phototoxicity of the 

formulations. Although the vesicles containing PKM (with 16 carbon atoms) were the most 

cytotoxic formulations, they showed lower phototoxic effects than those containing MKM 

(with 14 carbon atoms). Altogether, the results obtained showed that even though the 

formulations with MKM were the least cytotoxic in almost all conditions tested (see section 

2.2), they displayed the highest potential phototoxicity of the nanovesicular systems. 

 
3.5. Inflammatory response 

 To gain an insight into possible inflammatory reactions attributable to the nanovesicle 

formulations, secretion of cytokines (IL-1α and IL-8) by two different cell lines (HaCaT aand 

THP-1, respectively) were examined by ELISA. THP-1 cells were stimulated with 5 ng/ml of 

lipopolysaccharide (LPS) from Escherichia coli O55:B5 (Sigma, St Louis, MO), in order to 

examine the capacity of this cell model to up-regulate cytokine (IL-8) production [48]. We 

found significantly higher IL-8 concentrations (652.14 ± 13.86 pg/ml, p < 0.005), while cell 
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viability was 87.5% as detected by the MTT assay. THP-1 cells were chosen because they 

were proposed as an in vitro model able to produce and release the potent pro-inflammatory 

cytokine IL-8 [48,49]. Therefore, this in vitro model is a promising tool for the screening of 

new nanomaterials with possible inflammatory response. IL-8 (Fig. 4) release was induced in 

THP-1 cells in a dose-dependent manner by the formulations containing the amphiphiles 

MKM and PKM. The cationic vesicles containing MKM showed significant cytokine release 

at concentrations higher than 2.5 μM (p < 0.005), while those containing PKM induced 

significant IL-8 release at concentrations higher than 1 μM and 5 μM, for the formulations 

with DMPC only or DMPC and cholesterol as lipid matrix, respectively. Interestingly, the 

surfactant MLM, which differs in the position of the cationic charge, did not show a dose-

response release of IL-8, but only induced a significant increase in the level of this cytokine at 

the highest concentration. Indeed, since the significant release at the highest concentrations 

might be related to cell death, it is reasonable to consider cytokine release responses given by 

concentrations that displayed viability higher than 75% as significant [40,49]. Therefore, we 

can reasonably consider as significant IL-8 releases those induced at concentrations equal to 

or lower than 2.5 μM and 5 μM for the formulations containing PKM and MKM, respectively, 

while no significant response can be attributed to the formulations containing MLM, as even a 

10-fold higher concentration (50 μM, viability > 75%) did not induce IL-8 release. The IL-8 

release induced by nanomaterials has also been studied in different cell lines and, in line with 

our findings, only slight or negligible inflammatory response due to increased levels of IL-8 

was found [16,50]. 

 Keratinocytes participate actively in inflammatory and immunological skin reactions 

[51]. The human keratinocyte HaCaT cell line was stimulated with SDS 20 μg/ml, as positive 

control, to confirm IL-1α up-regulation [52]. Under these conditions, we found significantly 

higher cell-associated IL-1α concentrations (239.12 ± 9.87 pg/mg protein, p < 0.005) with cell 
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viability of 85.7% as detected by the LDH assay. Therefore, the combination of keratinocyte 

and cytokine production (IL-1α as a pro-inflammatory cytokine) offers a simplified in vitro 

model to evaluate the potential toxicity of new nanomaterial-based formulations with 

cutaneous applications. In this study, IL-1α production (both cell-associated and that released 

into extracellular media) was investigated in human keratinocytes following their exposure to 

nanovesicle formulations. The intracellular amount of IL-1α was standardized with the total 

cell protein content and the LDH assay was used as an indicator of cell viability. Fig. 5 shows 

our results for cell-associated IL-1α (pg/mg protein) and IL-1α release (pg/ml) after cationic 

vesicle treatment. Neosynthesis or release of IL-1α only achieved significant levels above the 

basal values (negative control) at the highest exposure conditions (25 to 100 μM) in almost all 

cases, but the levels obtained were below those of the positive control SDS. For some 

formulations there was a down-regulatory effect in cell-associated IL-1α and an increase in 

IL-1α release at the highest concentrations, which can be directly attributable to the loss of 

cell membrane integrity (as seen in the LDH assay results, see Figs. 2e,f). The formulations 

containing cholesterol in the lipid matrix induced, in general, lower IL-1α production. 

Moreover, the nanovesicles containing MLM were those that induced lower production of IL-

1α, as also observed for IL-8 release. This means that the inflammatory response of the 

nanovesicles might also be directly related, as reported for the cytotoxic and phototoxic 

studies, to the position of the cationic charge of the amphiphile: the formulations containing 

the surfactant with the positive charge on the ε-amino group of the lysine have the least 

inflammatory potential. In the same way as described for the IL-8 and since the significant 

release at the highest concentrations might be related to cell death, the neosynthesis or release 

of IL-1α were not significant. All in all, and despite some significant responses found for IL-8 

and IL-1α release in comparison with control cells, our results suggest  that only a very slight 

inflammatory and allergenic effect was induced by nanovesicle formulations. 
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4. Conclusions 

 We demonstrated that the cytotoxicity of cationic nanovesicles differed between the 

three representative skin cell lines as well as when the in vitro endpoint varied, showing that 

the selected cell type and assay can affect the final outcome. Moreover, no potential 

phototoxic effect was induced by all nanovesicular systems, while only a slight inflammatory 

response occurred due to cytokine release. The formulations with MLM showed the lowest 

tendency to induce phototoxicity and inflammation. Overall, our findings showed that 

nanovesicle composition plays a primary role in the underlying toxicity. The cytotoxic 

responses of the nanovesicles varied especially as a function of the cationic charge position on 

the amphiphile included in them. Furthermore, the surfactant with the highest hydrophobicity 

tends to enhance the toxic potential of the formulations. All these findings suggest that 

differential toxicity according to vesicle composition could be an important concept when 

developing new nanomaterials for biomedical applications. In conclusion, the combination of 

all assays used in the present study offers an in-depth and comprehensive evaluation of the 

potentially toxic effects of nanomaterials. Due to their generally low toxicity, the nanovesicles 

containing MKM and MLM are especially recommended for topical administration.  
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Figure captions: 

Fig. 1. TEM images of cationic nanovesicles (a) DMPC:MKM (80:20, molar ratio), (b) 

DMPC:CHOL:MKM (56:24:20, molar ratio), (c) DMPC:MLM (80:20, molar ratio), (d) 

DMPC:CHOL:MLM (56:24:20, molar ratio), (e) DMPC:PKM (80:20, molar ratio), (f) 

DMPC:CHOL:PKM (56:24:20, molar ratio). Scale bars correspond to 100 nm. 

 
Fig. 2. Cell viability measured by the (a,b) MTT, (c,d) NRU and (e,f) LDH assays on (a,c,e) 

3T3 and (b,d,f) HaCaT cell lines. Each cell line was exposed to increasing concentrations of 

the nanovesicle formulations, ranging from 0.5 to 100 μM. Results are given as a percentage 

of untreated control cells. The nanovesicles did not induce loss of cell viability when 

concentrations were lower than 10 μM, as determined by the LDH assay (data not shown). 

Results are expressed as mean ± SEM of three independent experiments, performed in 

triplicate. 

 
Fig. 3. Cytotoxicity and phototoxicity induced by the nanovesicle formulations expressed as 

IC50 values on 3T3 and HaCaT cell lines. Values were obtained from MTT and NRU assays. 

Black bars = non-irradiated cells and white bars = UVA-irradiated cells (2.5 J/cm2). The 

photoirritation-factor (PIF) was calculated as described in Section 1.9. Results are expressed 

as mean ± SEM of three independent experiments, performed in triplicate. Statistical analyses 

were performed using the Student’s t-test. * p < 0.05, ** p < 0.005 denote significant 

differences. 

 
Fig. 4. IL-8 release (bars) induced by THP-1 cells with increasing concentrations of each 

nanovesicle formulation. Cell viability (line) was determined by MTT assay and is expressed 

as percentage of control. Results are expressed as mean ± SEM of three independent 

experiments, performed in triplicate. Statistical analyses were performed using ANOVA 

followed by Dunnett’s multiple comparison test. * p < 0.05, ** p < 0.005 denote significant 

differences. Different scale bars were used to express the results better. 

 
Fig. 5. (a) Cell-associated IL-1α (pg/mg protein) and (b) IL-1α release (pg/ml) to the culture 

medium by HaCaT cells with increasing concentrations of each nanovesicle formulation. The 

concentrations tested were 1 μM (white bars), 2.5, 5, 10, 25, 50 and 100 μM (black bars). 

Results are expressed as mean ± SEM of three independent experiments, performed in 

triplicate. Statistical analyses were performed using ANOVA followed by Dunnett’s multiple 

comparison test. * p < 0.05, ** p < 0.005 denote significant differences. 



Table 1. Characterization parameters of the different cationic nanovesicles. 
 DMPC:MKM 

(80:20) 
DMPC:CHOL:MKM 

(56:24:20) 
DMPC:PKM 

(80:20) 
DMPC:CHOL:PKM 

(56:24:20) 
DMPC:MLM 

(80:20) 
DMPC:CHOL:MLM 

(56:24:20) 
Size (nm) ± SEM a 

t = 0 h water 94.16 ± 2.05 107.33 ± 0.94 253.07 ± 26.05 184.77 ± 6.64 174.40 ± 7.16 127.50 ± 1.96 
t = 0 h DMEM 5% FBS 94.42 ± 6.50 159.77 ± 5.71 229.37 ± 12.64 197.73 ± 6.57 229.63 ± 16.33 170.27 ± 9.49 
t = 24 h DMEM 5% FBS b 1781.67 ± 45.72/ 

110.3 ± 5.17 
2028.67 ± 21.23/ 
154.33 ± 11.95 

1059.50 ± 10.61/ 
118.93 ± 2.09 

1488 ± 19.59/ 
125.67 ± 11.94 

193.47 ± 7.75 151.77 ± 4.44 

PDI ± SEM a  

t = 0 h water 0.231 ± 0.004 0.278 ± 0.019 0.427 ± 0.017 0.331 ± 0.020 0.394 ± 0.003 0.256 ± 0.006 
t = 0 h DMEM 5% FBS 0.385 ± 0.015 0.236 ± 0.001 0.522 ± 0.001 0.288 ± 0.001 0.445 ± 0.007 0.319 ± 0.029 
t = 24 h DMEM 5% FBS b 0.903 ± 0.075 1.00 ± 0.000 0.605 ± 0.002 0.973 ± 0.027 0.294 ± 0.001 0.352 ± 0.007 

Zeta potential (mV) ± SEM a 

t = 0 h water 42.7 ± 0.90 41.2 ± 1.66 52.8 ± 1.15 55.17 ± 0.67 78.7 ± 2.56 44.9 ± 0.40 
t = 0 h DMEM 5% FBS 1.23 ± 1.64 -3.13 ± 0.81 6.78 ± 0.94 0.86 ± 0.11 13.00 ± 0.49 8.61 ± 0.16 

% incorporation of surfactant into NVs  ± SEM a 

 88.56 ± 0.009 75.96 ± 0.054 99.10 ± 0.007 98.96 ± 0.006 90.85 ± 0.053 79.05 ± 0.038 
a Mean of three experiments ± standard error of the mean (SEM). 
b Incubated under cell culture conditions: 37ºC, 5% CO2. 
 



Table 2. Cytotoxicity of the nanovesicle formulations expressed as IC50 values (μM) on 3T3, HaCaT and THP-1 cell lines.  

Nanovesicle formulation 

IC50 (μM) a 

3T3 HaCaT       THP-1 

MTT NRU LDH MTT NRU LDH MTT 

DMPC:MKM 28.16 71.14 60.01 8.03 162.22 129.43 13.92 

DMPC:CHOL:MKM 31.05 72.59 79.82 19.51 191.32 141.35 21.18 

DMPC:PKM 3.76 41.62 33.24 2.12 47.68 46.94 12.31 

DMPC:CHOL:PKM 3.86 43.88 35.56 2.26 70.31 46.34 11.73 

DMPC:MLM 36.41 39.23 32.23 65.66 64.32 84.42 89.41 

DMPC:CHOL:MLM 39.11 42.96 36.14 73.25 71.41 77.53 102.48 

Cell morphology – 3T3 b 

Control DMPC:MKM 
DMPC:CHOL:

MKM 
DMPC:PKM 

DMPC:CHOL:

PKM 
DMPC:MLM 

DMPC:CHOL:

MLM 

       
a Mean of three independent experiments. 
b Induced by treatment with the IC50 determined by MTT assay. Morphological changes was analysed under a phase  
contrast microscope. 
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(a) 3T3 - MTT 

0

20

40

60

80

100

120

0 10 20 30 40 50 60 70 80 90 100

Concentration µM

Vi
ab

ili
ty

 (%
)

DMPC:MKM
DMPC:CHOL:MKM
DMPC:PKM
DMPC:CHOL:PKM
DMPC:MLM
DMPC:CHOL:MLM

(b) HaCaT - MTT 
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