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ABSTRACT 

 

Accurate DNA replication is crucial for the maintenance of genome integrity. To this 

aim, cells have evolved complex surveillance mechanisms to prevent mitotic entry in 

the presence of partially replicated DNA. ATR and Chk1 are key elements in the signal 

transduction pathways of DNA replication checkpoint; however, other kinases also 

make significant contributions. We show here that the stress kinases p38 and JNK are 

activated when DNA replication is blocked and that their activity allows S/M, but not 

G2/M, checkpoint maintenance when Chk1 is inhibited. Activation of both kinases by 

DNA replication inhibition is not mediated by the caffeine sensitive kinases ATR or 

ATM. Phosphorylation of MKK3/6 and MKK4, p38 and JNK upstream kinases, was 

also observed upon DNA replication inhibition.  Using a genetic approach, we dissected 

the p38 pathway and showed that both p38α and p38β isoforms collaborate to inhibit 

mitotic entry. We further defined MKK3/6 and MK2/3 as the key upstream and 

downstream elements in the p38 signalling cascade after replication arrest. Accordingly, 

we found that the stress signalling pathways collaborate with Chk1 to keep Cyclin 

B1/Cdk1 complexes inactive when DNA replication is inhibited, thereby preventing cell 

cycle progression when DNA replication is stalled. Our results show a complex 

response to replication stress, where multiple pathways are activated and fulfill 

overlapping roles to prevent mitotic entry with unreplicated DNA. 
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INTRODUCTION 

 

Preventing mitotic entry before completion of DNA replication is critical for the 

maintenance of genome integrity.  For this reason cell surveillance mechanisms have 

emerged to block the activation of mitosis-promoting factors when replication forks are 

present. The mechanisms that ensure cell cycle arrest after replication inhibition are part 

of a wider DNA replication checkpoint. This checkpoint monitors the presence of 

stalled or ongoing DNA replication forks and elicits signal transduction pathways that 

lead to the stabilization of arrested forks, the delay of late origin activation, the 

activation of DNA repair, and also the inhibition of mitotic entry.1-3 The checkpoint 

response is essential not only after inhibition of DNA replication caused by the collision 

of the replication fork with damaged DNA, but also when the progression of the fork is 

slowed down because of secondary DNA structures or protein barriers, such as those 

found in natural pausing sites, fragile sites, repetitive sequences, and highly transcribed 

regions.4 Checkpoint failure will cause the collapse of replication forks and premature 

chromosome condensation, thereby increasing chromosomal abnormalities.  

In mammalian cells, the central players in this checkpoint are ATR and its downstream 

effector kinase Chk1. All members of the Cdc25 phosphatase family are phosphorylated 

by Chk1, in a process that leads to the degradation, inactivation or mislocalization of these 

phosphatases. Lack of Cdc25 activity prevents Cdk2 and Cdk1 activation, thus inhibiting 

S-phase progression (intra-S checkpoint response) and mitotic entry (S-M checkpoint 

response).5-8  In addition, ATR and Chk1 promote the activation of DNA repair machinery, 

the stabilization of replication forks and the suppression of late origin activation and 

homologous recombination.1,9-11 However, recent studies show that checkpoint response 
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needs to be locally inactivated in some conditions, since replication resumption relies on 

neighbour origin activation and homologous recombination mechanisms after DNA 

damage or long times of DNA synthesis inhibition.12,13 Coordination of these apparently 

opposite responses is driven by a not well understood mechanism, although ATR- 

dependent activation of Plk1 seems to be essential for the local firing of neighbour origins 

close to stalled forks.14   

The DNA damage checkpoint shares some common events with the DNA replication 

checkpoint. Two major signal transduction pathways triggered by DNA damage have been 

described, the ATM/Chk2 axis, activated after DNA double strand breaks, and the 

ATR/Chk1 axis, which is mainly induced after lesions that are processed into single strand 

stretches of DNA. Both pathways elicit p53 signalling and inactivate Cdc25 phosphatases, 

consequently arresting cell cycle.15 In parallel to the ATR/Chk1 and ATM/Chk2 axes, the 

p38 stress-induced mitogen activated protein kinase (p38 MAPK) has been described as 

the third player in the DNA damage response, contributing to the inhibition of both G1/S 

and G2/M transitions after DNA damage.16-20 A crucial element in the p38-dependent 

DNA damage response is the mitogen-activated protein kinase-activated protein kinase-2 

(MK2). MK2 inhibits Cdc25 phosphatases by phosphorylating them on the same sites as 

those described for Chk1 and Chk217,21and modulates the levels of some proteins critical 

for the maintenance of checkpoint response, such as Gadd45α, by promoting the 

stabilization of their mRNAs.18 Although some studies are contradictory, JNK, another 

stress-activated protein kinase (SAPK), has been reported to regulate the Cdc25 family of 

phosphatases. Consequently, this kinase has been implicated in the control of mitotic entry 

in response to various genotoxic and non-genotoxic stress stimuli.22-25  Interestingly, Chk1, 

MK2 and JNK also control the G2/M transition in a normal cell cycle.26-29  
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Using asynchronously growing fibroblasts, we previously showed that p38 MAPK 

promotes cell cycle arrest when DNA replication is blocked even in cells where Chk1 

was inhibited or depleted.30 Given the relevance of checkpoint functionality in the 

maintenance of genomic stability,3 we aimed to better define the stress-induced MAPK 

signalling cascade responsible for cell cycle arrest upon replication block. Different 

studies showing a role of SAPKs upon various stimuli which induce DNA damage or 

replication checkpoint responses have been published. However, to our knowledge, a 

simultaneous and comprehensive analysis of JNK and p38 pathways in response to 

replication stress in a non-transformed cell line has not been done. 

Our results show that after DNA synthesis inhibition, both p38 α/β and JNK are 

activated and required to achieve a complete ATR/Chk1–independent arrest in a subset 

of cells with unreplicated DNA. Accordingly, we demonstrate that stress signalling 

pathways keep Cyclin B1/Cdk1 complexes inactive in response to DNA replication 

block when Chk1 is inhibited. We have further defined the upstream and downstream 

elements needed for p38 and JNK function after DNA synthesis inhibition. Our findings 

lead to a model where MKK3/6-p38-MK2/MK3 and MKK4/JNK signalling pathways 

act in parallel and independently to ATR/Chk1 to establish and maintain cell cycle 

arrest when DNA replication is blocked. 



 7

RESULTS 

p38 is specifically activated in arrested S-phase cells and maintains cell cycle arrest 

even when Chk1 is not functional. 

We previously showed that Chk1 and p38 collaborate to inhibit entry into mitosis in the 

presence of HU. To better understand p38 activation under these circumstances, we first 

analyzed now whether its activation was dependent on DNA replication inhibition. To 

this end, NIH3T3 fibroblasts were synchronized and HU was added either in G1 or in S-

phases. Phosphorylation of p38 was observed only when HU was added in S-phase 

cells, indicating that the effect was dependent on the presence of arrested DNA 

replication forks (Fig. 1A and Supplementary Fig. S1A).  Interestingly, p38 was only 

activated at HU concentrations that were completely blocking DNA synthesis, while 

Chk1 phosphorylation was already observed when DNA replication was slowed down 

(Fig. 1B and Supplementary Fig. S1B). Other drugs known to inhibit DNA replication 

as aphidicolin (DNA polymerase α inhibitor), camptothecin (topoisomerase I inhibitor) 

and etoposide (topoisomerase II inhibitor) also induced p38 phosphorylation when 

added in S-phase (Fig 1C).   

We took advantage of etoposide, which induces DNA damage both in S and G2 phases, 

to test whether p38 was specifically acting in S-phase. Etoposide was added to a 

population enriched in S-phase cells, together with Chk1 or p38 inhibitors. As observed 

in figure 1D, late S and G2 damaged cells relied entirely on Chk1 to arrest cell cycle, 

while cells with DNA content clearly below 4n remained arrested after Chk1 inhibition. 

Of note, the observation that a population of cells overrides the cell cycle arrest after 

UCN01 treatment indicates that the drug is in fact inhibiting Chk1 in our model, and as 

extensively proved.31 Single inhibition of p38 after etoposide treatment did not induce 

mitotic entry under our experimental conditions. In contrast, simultaneous inactivation 
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of Chk1 and p38 after DNA damage led to the unscheduled mitotic entry of a new 

subset of cells with DNA content between 2n and 4n, S-phase cells. Similar results were 

obtained using asynchronously growing MEFs (Fig. 1E). These observations indicate 

that the activities of both Chk1 and p38 are essential to prevent mitotic entry of S-phase 

cells with arrested DNA replication. Conversely, p38 activity is dispensable for the cell 

cycle arrest induction in cells with fully replicated DNA. 

 

Both p38 α and β collaborate to inhibit mitotic entry after DNA replication arrest.  

We have previously reported that DNA replication block induces phosphorylation of 

p38 and its downstream kinase MK2 in p38α knockout (KO) MEFs, suggesting that 

another isoform, possibly p38β, is also activated by HU.30 Using p38β KO MEFs, we 

confirmed here that p38α was phosphorylated after HU treatment (Fig. 2A). 

Furthermore, phosphorylation of MK2 after DNA replication inhibition was also 

observed in the p38β KO MEFs, thereby indicating that both isoforms can 

phosphorylate MK2 in response to HU (Fig. 2A). MK2 phosphorylation was abolished 

either after chemical inhibition of p38 α/β (SB203580) or in the double p38α and p38β 

KO MEFs (Fig 2A and Supplementary Fig. S2).  

We next analyzed the ability of these cells to arrest cell cycle after a replication stress.  

We found that the presence of only one of the p38 isoforms (α or β) was sufficient to 

partially maintain cell cycle arrest after HU and UCN01 treatment, while cells deficient 

for both isoforms were not able to prevent mitotic entry after Chk1 inactivation (Fig. 2B 

and Supplementary Fig. S3). Moreover, no further significant mitotic entry was detected 

after p38 chemical inhibition in these conditions, proving that SB203580 dependent 

mitotic entry is due to its effect on p38α and p38β. Of note, under our experimental 
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conditions, UCN01 did not inhibit MK2 activity, measured by HSP27 phosphorylation 

(Supplementary Fig. S2)  

Our findings demonstrate that both p38α and p38β are activated after DNA replication 

block and cooperate in maintaining cell cycle arrest of cells with non-replicated DNA. 

 

p38 activation after DNA replication block is mediated by MKK3 and MKK6 but 

is ATR/ATM-independent.    

Activation of p38 after DNA damage by doxorubicin and camptothecin is ATR/ATM-

dependent, although the mechanism that links ATR/ATM and p38 remains unknown. In 

contrast, p38 activation induced by UV is not mediated by these kinases.17,32,33 As is the 

case with UV, p38 phosphorylation after a replication block is not dependent on 

ATR/ATM, as it was not inhibited by caffeine addition, either when it was added at the 

same time or one hour before the HU treatment (Fig. 3A). To further explore the 

upstream elements needed for p38 activation upon DNA replication block, we analyzed 

the phosphorylation status of MKK3/6, the main MAPK kinases (MAP2K) reported to 

act directly upstream of p38. P-MKK3/6 was observed upon HU treatment (Fig 3B), 

indicating that at least one of them was activated after DNA replication block. We next 

assessed their role in p38 activation in MKK3 and MKK6 single and double KO 

MEFs.34 MKK3/6 double KO MEFs did not activate p38 in response to HU. In contrast, 

phosphorylation of p38 was detected in these cells when they were exposed to a 

different stress agent such as anisomycin, confirming that after some stimuli other 

MAP2K can trigger p38 activation in the absence of MKK3/6 kinases34 (Fig. 3C). This 

suggested that p38 phosphorylation upon DNA replication block is mediated by at least 

one of these kinases. In agreement with these data, MKK3/6 double KO cells were not 

able to inhibit mitotic entry after DNA synthesis arrest and Chk1 inactivation (Fig. 3D 
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and Supplementary Fig. S4). We next examined the contribution of each MAP2K to p38 

phosphorylation upon DNA replication block. As shown in figure 3C, p38 activation 

was detected in both MKK3 and MKK6 single depleted cells upon HU treatment. 

Accordingly, the Chk1-independent induction of cell cycle arrest was partially 

abrogated in the single KO MEFs (Fig. 3D and Supplementary Fig. S4). These 

observations demonstrate that both MKK3 and MKK6 participate in the DNA 

replication checkpoint, working together to activate p38 MAPK and consequently 

reinforcing the cell cycle arrest induced by DNA replication inhibition.  

 

p38 acts through MK2 and MK3 in response to DNA replication block.  

MK2 and MK3 are key p38 effectors in the stress response, with MK2 being the most 

studied so far.35,36  It has been shown that in response to DNA damage MK2 is activated 

by p38, which in turn phosphorylates and inactivates several members of the Cdc25 

family, consequently preventing activation of Cdk1 and mitotic entry.17,21 To test 

whether the p38 function after DNA replication block was dependent on MK2 activity, 

we analyzed the checkpoint response in MK2 KO MEFs. The Chk1-independent 

checkpoint was partially abrogated in MK2 depleted cells, suggesting that MK2 was 

only partially responsible for the p38-dependent cell cycle arrest (Fig. 4 and 

Supplementary Fig. S5). As MK3 is able to phosphorylate the same substrates in vitro 

as MK2, and partial functional redundancy between both kinases has been frequently 

reported,35-37 we wondered whether MK3 was acting together with MK2 after 

replication inhibition. To test the role of this kinase in the DNA replication checkpoint, 

the ability to arrest cell cycle after HU treatment was assayed in MK3 KO cells or 

double MK2 and MK3 KO MEFs. Cells lacking MK3 also had a partial Chk1-

independent response to DNA synthesis arrest. Moreover, when MK2 and MK3 were 
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absent, a higher proportion of cells entered mitosis by the sole inhibition of Chk1. Only 

a minor increase in mitotic entry was observed upon additional p38 inhibition in these 

cells, indicating that the main role of p38 after DNA replication block is driven by its 

downstream kinases MK2 and MK3 (Fig. 4 and Supplementary Fig. S5). We reasoned 

that p38 acts through MK2 and MK3 to prevent mitotic entry in response to DNA 

replication arrest.   

Inhibition of DNA replication leads to Cyclin B1 (CycB1) associated kinase 

inactivation, which correlates with the disappearance of the high-mobility, hypo-

phosphorylated band of the Cdk1 associated to Cyclin B138 (Figs. 5A and 5B). In 

concordance with the low percentage of cells entering mitosis after Chk1 inhibition in 

WT cells (Figs. 2B, 3D and 4), single inactivation of Chk1 did not recover neither the 

appearance of the high-mobility band of Cdk1 nor the kinase activity of the 

CycB1/Cdk1 complexes. Electrophoretic mobility of Cdk1 and complete activity of 

CycB1-associated Cdk1 were only achieved after simultaneous addition of both Chk1 

and p38 inhibitors (Fig. 5A), in correlation with the observed increase of mitotic cells 

(Figs. 2B, 3D and 4). Note that in figure 5A (lower panel), a strong Cdk1 kinase activity 

was detected after simultaneous Chk1 and p38 inactivation, although less CycB1/Cdk1 

complex was immunoprecipitated. Confirming the role of MK2 and MK3 in the S-phase 

checkpoint, the sole inhibition of Chk1 after replication block in MK2/MK3 double 

depleted cells led to the appearance of the lower Cdk1 band, and consequently, to the 

recovery of CycB1/Cdk1 activity (Fig. 5B).  Additional inactivation of p38 in these 

cells did not induce any change neither in Cdk1 electrophoretic mobility nor in its 

kinase activity. An intermediate scenario was found in single MK2 or MK3 KO MEFs, 

thereby indicating that not only MK2 but also MK3 regulates CycB1/Cdk1 activity (Fig. 
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5B). Consequently, we conclude that both, MK2 and MK3, can inhibit CycB1/Cdk1 

activation even in the absence of Chk1 activity.  

 

JNK is activated after DNA replication arrest. 

We wondered whether other stress pathways were also involved in the DNA replication 

inhibition response. JNK kinase has been recently reported to phosphorylate and inhibit 

Cdc25 phosphatases, thereby restraining cell cycle progression and preventing mitotic 

entry under different stress conditions.22-25As shown in figure 6A, HU and aphidicolin 

treatments led to JNK1/2 phosphorylation. Activation of JNK1/2 after HU addition was 

confirmed by the detection of c-jun phosphorylation, one of its main substrates (Fig. 

6B). As in the case of p38, JNK activation was only observed at HU concentrations that 

were completely blocking DNA synthesis (Fig. 6C and Supplementary Fig. S1B). We 

next examined whether DNA replication inhibition was also activating MKK4 and 

MKK7, the direct upstream JNK kinases. HU treatment triggered MKK4 but not MKK7 

phosphorylation (Fig. 6D), suggesting that MKK4 is the MAP2K responsible for JNK 

activation after DNA replication block.  

To further explore the upstream mechanisms involved in MKK4/JNK activation after 

DNA replication arrest, we assessed the role of ATR and ATM in the induction of JNK 

phosphorylation. As in case of p38, caffeine treatment did not prevent phosphorylation 

of JNK (Fig. 6E), indicating that the activation of this SAPK was also independent of 

ATR and ATM activity. 

 

p38 and JNK stress kinases display similar activation kinetics upon DNA synthesis 

inhibition.   
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We sought to analyze the activation profiles of Chk1, p38 and JNK after DNA synthesis 

arrest. To this end, NIH3T3 were synchronized at S-phase and the phosphorylation of 

these kinases was examined at different times upon HU addition. As shown in figure 

6F, the three kinases were rapidly phosphorylated after DNA replication block. Chk1 

maximum activation was achieved one hour after HU treatment. Despite some overlap 

with Chk1 phosphorylation was detected, p38 and JNK kinase activation displayed 

slower activation kinetics, reaching their maximum peak 2 hours after the HU addition. 

Remarkably, both SAPKs had parallel activation profiles. Note that JNK levels 

remained unchanged during the course of the experiment, indicating that the detected 

JNK phosphorylation was not due to an increase in its total levels. These findings show 

that both p38 and JNK kinases are similarly and rapidly activated after DNA replication 

blockade.   

  

JNK contributes to block mitotic entry after DNA replication arrest.  

The similar activation kinetics of p38 and JNK kinases after DNA synthesis block 

prompted us to analyze the role of JNK in the establishment and maintenance of DNA 

replication checkpoint. To this end, we evaluated the ability of JNK1/2 depleted MEFs 

to induce cell cycle arrest upon replication inhibition. Cells lacking JNK1/2 were still 

able to arrest after HU treatment (Fig. 7A and Supplementary Fig. 6). The sole 

inhibition of p38 in these cells did not provoke any increase in mitotic entry 

(Supplementary Fig. 6), indicating that JNK was dispensable in the Chk1-mediated 

arrest. However, after Chk1 inactivation a percentage of JNK1/2 KO cells entered 

mitosis, while, confirming our previous results, WT cells were still arrested. Of note, 

p38 phosphorylation was observed in JNK1/2 KO cells under these conditions (Fig. 

7B). Interestingly, simultaneous inhibition of Chk1 and p38 kinases in JNK1/2 KO cells 



 14

allowed checkpoint abrogation in a new subset of cells (Fig. 7A and Supplementary Fig. 

6). These observations suggest that JNK1/2 participate in parallel to p38 in the Chk1-

independent checkpoint response to prevent mitotic entry in the presence of 

unreplicated DNA.  

We next examined the contribution of JNK1/2 to CycB1/Cdk1 inhibition after HU 

treatment. In contrast to WT cells, the appearance of the high-mobility Cdk1 band and a 

partial CycB1 associated Cdk1 activation were achieved in HU-treated JNK1/2 DKO 

MEFs when Chk1 was inhibited (Fig. 7C). Higher activity of Cdk1 co-

immunoprecipitated with CycB1 was obtained when p38 was also inactivated, in 

agreement with the increment of mitotic cells observed in the same condition (Figs. 7A 

and 7C). Our data demonstrate that JNK1/2 collaborate with p38 and Chk1 to inhibit 

CycB1/Cdk1 activation after a DNA replication block. 
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DISCUSSION 

Coordination of DNA replication and mitotic entry is essential to ensure genome 

integrity. It is therefore not surprising to find multiple and redundant pathways that 

provide a robust mechanism to inhibit progression into M-phase when DNA replication 

is blocked (S/M checkpoint). We showed here that, when DNA replication is inhibited, 

the stress kinases p38 and JNK are activated in addition to Chk1, triggering parallel 

responses that ensure inhibition of mitotic entry even in the absence of Chk1 activity. 

The p38 MAPK cascade responds to a wide range of stimuli and drives various cellular 

outcomes, that will depend on the cell type, the duration and strength of the signal, the 

crosstalk with other signalling pathways, the different p38 isoforms activated, and the 

downstream effectors modulated by them.39 Using genetically modified MEFs, we 

dissected the essential elements of the p38 MAPK signalling pathway that are involved 

in the DNA replication checkpoint. After DNA replication block, both p38α and p38β 

isoforms are activated and participate in promoting cell cycle arrest. Moreover, our 

results show that p38α/β function is mainly driven by their downstream kinases MK2 

and MK3, as double MK2 and MK3 depleted cells do not show an increase in 

checkpoint abrogation after inhibition of p38 by SB203580. 

Recently, in addition to p38 MAPKs, JNK kinases have also been involved in cell cycle 

arrest induced by either genotoxic or non-genotoxic insults.22-25 In agreement with these 

reports, we showed that JNK1/2 depletion leads to an impaired cell cycle arrest in 

response to replication block when Chk1 is inactivated. 

It has been reported that p38α and MK2 are activated and become crucial in the DNA 

damage checkpoint response of p53-deficient cells.18,32 In that model, both Chk1 and 

p38α/MK2 pathways are essential to maintain the G2 arrest, as the sole inhibition of 

either of them allows unscheduled mitotic entry of cells with unrepaired DNA. Here we 
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proved that not only p38α and MK2 but also JNK, p38β and MK3 are part of the DNA 

replication checkpoint response. Single Chk1, p38 or JNK activities are sufficient for 

the induction and maintenance of the cell cycle arrest after a replication stress in p53-

proficient, non-transformed cells. However, after simultaneous inhibition of Chk1 and 

p38 or JNK kinases some S-phase arrested cells are allowed to escape from cell cycle 

arrest and enter into mitosis with unreplicated DNA. Moreover, we showed that the 

response to DNA damage in S-phase synchronized cells mimics the one induced by a 

replication block, while the DNA damage response of G2 cells strongly relies on Chk1, 

suggesting the existence of different checkpoint mechanisms to arrest cell cycle in each 

cell phase. 

Correlating with their role in the induction of cell cycle arrest, our results show that 

JNK and p38α/β-MK2/MK3, collaborate to maintain CycB1/Cdk1 inactive when DNA 

replication is inhibited in the absence of Chk1 activity. Coordinated dephosphorylation 

of Cdk1 inhibitory sites by Cdc25 phosphatase family and nuclear translocation of the 

complex are essential for the correct mitotic entry.40,41It is well known that Chk1, MK2 

and JNK phosphorylate Cdc25 phosphatases, thereby inducing their cytoplasmic 

localization, degradation or inactivation, depending on the specific phosphorylation site 

or the phosphatase isoform targeted.8,22 We hypothesize that the inactivation of 

CycB1/Cdk1 complex by MK2, MK3 and JNK1/2 kinases after a DNA replication 

block occurs through inhibition of Cdc25 activity, although a different mechanism to 

prevent CycB1/Cdk1 activation cannot be excluded from our data. 

The signalling linking the different DNA lesions to SAPK activation is not well 

understood. Previous reports have shown that p38 activation in response to γ irradiation, 

camptothecin, cisplatin and doxorubicin is ATM or ATR-dependent, while its activation 

in response to UV occurs in the absence of these kinases.20,32 A large family of kinases 
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with MAPK kinase kinase (MAP3K) activity has been described, and some of them 

have been reported to simultaneously activate MKK3/6 and MKK4/7, p38 and JNK 

MAP2Ks respectively.42 A recent work shows, using a FRET (Förster resonance energy 

transfer) biosensor to detect MAP3K activity, that activation of these kinases occurs in 

different cellular compartments depending on the stimulus, MAP3Ks are activated in 

the cytoplasm by anisomycin and in the nucleus after etoposide treatment.43 We 

hypothesize that arrested DNA replication forks may activate a nuclear MAP3K 

upstream of p38 and JNK. One of the MAP3K that has been described as an important 

activator after DNA damage is the TAO2 kinase.33 In that work, the authors 

demonstrate that ATM is needed to induce TAO2 activation, which in turn activates 

MKK3/6 kinases after different DNA damage agents or long exposure to HU. Our data 

indicate that both p38 and JNK activation after replication block are caffeine 

insensitive, suggesting that a different mechanism of those described is driving the 

signal from short term stalled forks to stress activated effectors. 

We further characterized the MAP2Ks involved in p38 and JNK activation in the S-

phase checkpoint. It has been recently shown that MAP2Ks differentially activate each 

p38 isoform depending on the type of stimulus.39  Here we show that after DNA 

replication block both MKK3 and MKK6 are involved in p38α and β activation, since in 

their absence p38 is not phosphorylated after DNA synthesis inhibition and the p38 

replication checkpoint response is not functional. The MAP2Ks reported for JNK 

activation are MKK4 and MKK7.42 We propose here that MKK4 is the specific 

upstream kinase responsible for JNK activation in the DNA replication checkpoint, 

since only MKK4 but not MKK7 phosphorylation is detected after HU treatment. In 

contrast to what was reported for UV,34 after DNA replication block MKK4 cannot 

compensate the MKK3/6 role in p38 activation, as p38 phosphorylation is not detected 
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after HU treatment in double depleted MKK3/6 cells. Our data suggest that, after 

replication block, cells can trigger activation of either MKK3/6-p38-MK2/3 or MKK4-

JNK pathways, which collaborate with Chk1 to restrain cell cycle progression.  

One possibility is that the role of SAPKs upon DNA replication block is completely 

redundant with Chk1, therefore allowing a more robust checkpoint response. However, 

we have found some differences between Chk1 and SAPKs activation. JNK and p38 

activation kinetics differ from Chk1 activation profile after HU treatment. The stress-

kinases phosphorylation is induced later and it is more sustained than Chk1 

phosphorylation. Moreover, p38 and JNK are only activated when DNA replication is 

completely blocked, while Chk1 phosphorylation is already observed when DNA 

replication is slowed down. Therefore, p38 and JNK signalling pathways may control 

additional mechanisms in the replication checkpoint response when cells are exposed to 

more challenging conditions.  

Single cell analysis will help to elucidate whether there are cells that activate one or 

more SAPKs at the same time. In fact, Chk1 inhibition in JNK-depleted cells abrogates 

the HU induced S/M checkpoint response in a subset of cells, while another group of 

cells needs additional inhibition of p38 in order to enter into mitosis with unreplicated 

DNA. These results could indicate that, whereas all cells activate Chk1 after a 

replication block, activation of each one of  the SAPKs is diverse among the cell 

population. Their specific activation in a single cell may depend on the S-phase point 

reached at the moment of DNA replication arrest, the number of stalled replication forks 

or how long a cell has been exhibiting them. Alternatively, SAPKs could be activated 

by all cells with stalled DNA replication forks, but different levels of checkpoint 

kinases activity would be needed to keep CycB1/Cdk1 complexes inactive within the 
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population, making some cells more sensitive to cell cycle arrest abrogation after partial 

checkpoint inhibition. 

Despite Chk1, p38 and JNK activation are readily detected upon DNA replication 

block, we noticed that only a subset of S-phase arrested cells abrogates checkpoint and 

enter mitosis after their simultaneous inactivation. This suggests that additional 

mechanisms, such as transcriptional repression of mitotic inducers30 are playing 

important roles in the checkpoint response. Nevertheless, there is a reproducible, 

significant increase in mitotic entry of cells with unreplicated DNA when Chk1 and 

SAPKs are simultaneously inhibited. These mitotic cells with unreplicated or damaged 

DNA are thought to undergo mitotic catastrophe, a heterogeneous mechanism which 

has been proposed to be an important oncosupressive process, due to its function in 

sensing mitotic failures and eventually eliminating aberrant cells. Defects in the 

execution of this mechanism can ultimately lead to the survival of some damaged, 

aberrant cells harbouring aneuploidies. Components involved in this process, such as 

spindle checkpoint or G1 DNA damage response proteins, are commonly mutated in 

pre-cancerous and cancerous cells.44  Therefore, we propose that, under replication 

stress, partial defects in ATR/Chk1 and SAPK signalling pathways could additionally 

favour genomic instability by increasing the frequence of aberrant mitotic cells.    
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MATERIALS AND METHODS 

 

Cell culture 

Immortalized mouse embryo fibroblasts (MEFs) wild-type (WT), MK2-/-, MK3-/-, 

MK2/3-/-, MKK3-/-, MKK6-/-, MKK3/6-/- and JNK1/2-/- were established from 

embryonic day 13.5 mice with the corresponding genotypes as previously described.34,45-47 

MEFs p38α-/-, p38β-/- and double knockouts p38α-/- and p38β-/- were generated from 

E13.5 mice embryos of the corresponding genotypes by 3T3 spontaneous immortalization 

protocol. MEFs were grown in Dulbecco’s modified Eagle’s medium (DMEM) 

supplemented with 10% foetal calf serum (FCS). NIH3T3 cells were grown in DMEM 

supplemented with 10% donor bovine serum (DBS), and made quiescent by serum 

starvation. 

 

Drugs  

Drugs and their working concentrations were used as follows:  1.5 mM hydroxyurea (HU), 

50 μM etoposide, 5μg/ml aphidicolin, 10 μg/ml anisomycin, 10μM bromodeoxyuridine 

(BrdU), 1μM camptothecin, 5 mM caffeine and 300 nM for UCN01 (all from Sigma, St 

Louis, MO, USA); 10 μM SB203580 and SB218078 (both from Calbiochem, Merck 

KGaA, Darmstadt, Germany).  

 

Gel electrophoresis, immunoblotting, immunoprecipitation and Cdk1 kinase assay. 

Cell extracts were obtained and run in Laemmli SDS-polyacrylamide gels, and transferred 

to Nitrocellulose membranes as previously described.48 Incubation with antibodies was 
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conducted overnight at 4ºC. Antibodies used:  p38 (sc-728; 1:100), Cdk1 (p34(17)sc-54; 

1:200),  Cyclin B1 (GNS1, sc-245; 1:100), GAP120 (sc-63; 1:100) and Cdk4 (H-303 sc-

749; 1:500) (all from Santa Cruz Biotechnology, Inc., Santa Cruz, CA, USA); Cyclin B1 

(#4138, 1:1000), P-p38 T180/Y182 (#9211; 1:1000), MAPKAPK2 (#3042; 1:1000), P-

MAPKAPK2 T334 (#3041; 1:1000), JNK (#9252; 1:1000), P-JNK T183/Y185 (#9211; 

1:1000), P-HSP27 S82 (#2401; 1:1000), P-Chk1 S345 (#2341, 1:500), P-MKK3/6 (#9236; 

1:1000), P-SEK1/MKK4(Ser257) (#4514; 1:1000), P-MKK7 (Ser271/Thr275) (#4171; 

1:1000), SEK1/MKK4 (#9152; 1:1000) and MKK7 (#4172; 1:1000) (all from Cell 

Signaling; Beverly, MA, USA); P-c-Jun (BS4045; 1:1000) (Bioworld, St. Louis Park, MN, 

USA). Cyclin B1 was immunoprecipitated with a mouse monoclonal antibody (#05-373, 

from Millipore). Immunoprecipitation and Cdk1 kinase assays were performed as 

described in Rodriguez-Bravo et al.30 

 

Flow cytometry 

Combined analysis of DNA content and phospho-Histone H3 (Ser10) was performed to 

quantify the percentage of mitotic cells. Cells were trypsinized, washed in ice-cold PBS 

and fixed with 70% ethanol overnight at -20ºC. Cells were then permeabilized with PBS 

containing 0.2% Triton X-100 (Sigma, St. Louis, MO, USA) for 10 min at 4ºC, blocked 

with 2% FCS in PBS, and incubated with anti-phospho-H3 for 45 min at room 

temperature (Millipore, #06-570; 1:400). After washing, cells were incubated with 

secondary Alexa488-conjugated antibody (1:500) for 30 min at room temperature, 

washed, and resuspended in PBS containing 20 μg/ml propidium iodide (Sigma, St. 

Louis, MO, USA) dissolved in PBS with 0.2 mg/ml RNAse A (Sigma, St. Louis, MO, 

USA) and 0.1 %(v/v) Triton X-100  prior to analysis by FACS (FACSCalibur). 
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Double analysis of DNA content and BrdU was performed to determine the progression 

through the cell cycle of the S-phase cells. Cells were trypsinized, washed in ice-cold 

PBS and fixed with 70% ethanol overnight at -20ºC. Afterwards, cells were washed and 

treated with 2N HCl dissolved in PBS containing 0.1 %(v/v) Triton X-100 for 15 min at 

room temperature. A Na2B4O7·10H2O buffer with a pH of 8.5 was used twice to 

neutralize the HCl solution. After that, cells were washed and blocked with 3%BSA 

(Sigma, St. Louis, MO, USA) in PBS- containing 0.05%(v/v) Tween (Sigma, St. Louis, 

MO, USA) prior the incubation with anti-BrdU (Abcam, ab6326; 1/250) for 1 hour at 

room temperature. After washing, cells were incubated with secondary Alexa488-

conjugated antibody (1:500) for 45 min at room temperature, washed, and resuspended 

in PBS containing 10 μg/ml propidium iodide dissolved in PBS with 0.1 mg/ml RNAse 

A, prior to analysis by FACS (FACSCalibur). 
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LEGENDS TO FIGURES 

 

Fig. 1. The stress activated protein kinase p38 is activated in response to DNA 

replication block and prevents mitotic entry of cells with unreplicated DNA. A) 

Synchronized NIH3T3 were treated with HU during G1 (0h after activation from 

quiescence) or S-phase (14h after activation from quiescence). p38 and p38 

phosphorylation (P-p38) were analyzed by western blot after a 6h treatment. B) S-phase 

synchronized NIH3T3 cells (14 h after activation from quiescence) were treated with 

indicated HU concentrations during 2h. p38, p38 phosphorylation (P-p38) and Chk1 

S345 phosphorylation (P-Chk1) were analyzed by western blot. GAP120 was used as 

loading control. C) S-phase NIH3T3 synchronized cells (14 h after activation from 

quiescence) were treated with aphidicolin (Aph), camptothecin (CPT) or etoposide 

(Etop) during the indicated time. Cell extracts were analyzed by western blot using 

antibodies to detect phosphorylated p38 (P-p38) and p38. D) S-phase synchronized 

NIH3T3 cells were treated with etoposide (Etop) or with etoposide and UCN01 (UCN) 

or SB203580 (SB) for 3h. DNA content and P-H3 positive cells were analyzed by 

FACS. E) Asynchronously growing MEFs were treated with etoposide (Etop) for 8h 

and during the last 3h UCN01 (UCN01) or SB203580 (SB) were added. DNA content 

and P-H3 positive cells were analyzed by FACS. D) and E) Representative experiments 

are shown.  Total percentages of P-H3 positive cells are shown.  

 

Fig. 2.  Both p38α and β cooperate to inhibit mitotic entry in DNA replication 

checkpoint.  

Asynchronously growing MEFs were non-treated (C) or treated with HU for 10h and 

during the last 5h UCN01 (UCN) or SB203580 (SB) were added. A) Cell extracts were 
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analyzed by western blot to detect phospho-p38 (P-p38), phospho-MK2 (P-MK2), MK2 

and GAP120 (loading control). B) Graphs show the percentage of P-H3 positive cells 

after each treatment analyzed by FACS. Mean±SEM of at least 3 independent 

experiments are shown. WT: wild type; p38α KO: p38α knockout; p38β KO: p38β 

knockout; p38α/β DKO: p38α and β double knockout. 

 

Fig. 3. Both MKK3 and MKK6 collaborate to activate the p38-dependent 

checkpoint response to HU treatment.  A) Asynchronously growing MEFs were left 

untreated (C), or treated with HU for 5h (HU), caffeine alone for 6h (Caff Pre), or HU 

and caffeine together for 5h (HU + Caff). Caffeine was also added 1h before the HU 

treatment (HU + Caff Pre). Cell extracts were analyzed by western blot using antibodies 

to detect phospho-p38 (P-p38), phospho-Chk1 S345 (P-Chk1) or GAP120 (used as a 

loading control). B) Asynchronously growing MEFs were treated with HU for the 

indicated time, 1h with anisomycin (An) or left untreated (C). Cell extracts were 

analyzed by western blot to detect phospho-MKK3/6 (P-MKK3/6), MKK6 and GAP120 

(loading control). C) Asynchronously growing MEFs were left untreated (C), or were 

treated with anisomycin for 1h (An), or with HU for the indicated times. Cell extracts 

were analyzed by western blot to detect phospho-p38 (P-p38) or p38. D) 

Asynchronously growing MEFs were non treated (C) or treated with HU for 10h. 

UCN01 (UCN) or SB203580 (SB) were added when indicated during the last 5h of the 

HU treatment. Graphs show the percentage of P-H3 positive cells after each treatment 

analyzed by FACS. Mean±SEM of at least 3 independent experiments are shown.  WT: 

wild type; MKK3 KO: MKK3 knockout; MKK6 KO: MKK6 knockout; MKK3/6 DKO: 

MKK3/6 double knockout. 
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Fig. 4. Both MK2 and MK3 are key p38-downstream elements in the DNA 

replication checkpoint. Asynchronously growing MEFs were non treated (C) or treated 

with HU for 10h and during the last 5h SB218078 (2180) or SB203580 (SB) were 

added. Graphs show the percentage of P-H3 positive cells after each treatment analyzed 

by FACS. Mean±SEM of at least 3 independent experiments are shown.  WT: wild 

type; MK2 KO: MK2 knockout; MK3 KO: MK3 knockout; MK2/3 DKO: MK2/3 

double knockout. 

 

Fig. 5. Inhibition of CycB1 associated kinase activity after replication block is 

Chk1, p38 and MK2/3-dependent.  A) Asynchronously growing MEFs were treated 

with HU for 10h and during the last 5h SB218078 or SB203580 were added. Cells were 

lysed and Cyclin B1 immunoprecipitated. Upper panel: Immunoprecipitated Cyclin B1 

and associated Cdk1 were analyzed by western blot. Lower panel: after Cyclin B1 

immunoprecipitation, Cdk1 activity in each condition was evaluated by performing an 

H1-kinase assay. In parallel, Cdk1 levels of the same immunoprecipitates were 

analyzed. (B) MK2 knockout, MK3 knockout and MK2/MK3 double knockout MEFs 

were treated as in (A). Immunoprecipitated CycB1 and Cdk1-associated to CycB1 were 

detected by western blot (left panels). In parallel, CycB1-associated Cdk1 activity was 

assayed (right panels). MK2 KO: MK2 knockout; MK3 KO: MK3 knockout; MK2/3 

DKO: MK2/3 double knockout.  

 

Fig 6. JNK stress kinase is activated after DNA replication block.  

A)  Asynchronously growing MEFs were treated with HU or Aphidicolin (Aph) for 10h 

or with anisomycin (An) for 1h. Cells were harvested and JNK phosphorylation (P-

JNK) was analyzed by western blot. B) Asynchronously growing MEFs were treated 
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with anisomycin (An) for 1h or with HU for 10h and during the last 5h UCN01 (UCN) 

or SB203580 (SB) were added. Cell extracts were analyzed by western blot using 

antibodies to detect phosphorylated c-jun (P-c-jun). C) S-phase synchronized NIH3T3 

cells (14 h after activation from quiescence) were treated with indicated HU 

concentrations during 2h. Cell extracts were analyzed by western blot using antibodies 

to detect phosphorylated JNK (P-JNK). D) Asynchronously growing MEFs were treated 

with HU for the indicated time or 1h with anisomycin (An). Cell extracts were analyzed 

by western blot to detect phospho-MKK4 (P-MKK4), phospho-MKK7 (P-MKK7), total 

MKK4 and total MKK7. E) Asynchronously growing MEFs were treated with HU for 

5h, with caffeine for 6h, or with HU plus Caffeine (1h of caffeine pre-incubation prior 

to HU addition and 5h together with HU). Cell extracts were analyzed by western blot 

to detect P-JNK. F) S-phase synchronized NIH3T3 were treated with HU for the 

indicated times. Chk1, p38 and JNK phosphorylation, and total JNK1/2 were 

determined by western blot using the specific antibodies (P-Chk1, P-p38, P-JNK1/2, 

and JNK1/2). C: control, non–treated cells. GAP120 was used as loading control. 

 

Fig. 7. JNK collaborates to inhibit entry into mitosis and CycB1-associated kinase 

activity after HU treatment. 

A) Asynchronously growing wild type (WT) and JNK1/2 double knockout (JNK1/2 

DKO) MEFs were treated with HU for 10h and during the last 5h UCN01 (UCN) or 

SB203580 (SB) were added. Graph shows the percentage of P-H3 positive cells (mean 

± SEM) after each treatment analyzed by FACS. B) Asynchronously growing JNK1/2 

double knockout (JNK KO) MEFs were treated with anisomycin for 1h (An) or with 

HU for 10h and during the last 5h UCN01 (UCN) or SB203580 (SB) were added. Cell 

extracts were analyzed by western blot to detect phospho-JNK (P-JNK), phospho-p38 
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(P-p38), JNK and p38. C) Asynchronously growing wild type (WT) or JNK1/2 double 

knockout (JNK1/2 DKO) MEFs were treated with HU for 10h, during the last 5h 

UCN01 (UCN01) or SB203580 (SB) were added. Cells were lysed and Cyclin B1 

immunoprecipitated. Immunoprecipitated CycB1 and associated Cdk1 were analyzed by 

western blot (left panels). In parallel, an H1-kinase assay was performed in CycB1 

immunoprecipitated extracts (right panels). 
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