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Parrondo-like behavior in continuous-time random walks with memory
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The continuous-time random walk (CTRW) formalism can be adapted to encompass stochastic processes with
memory. In this paper we will show how the random combination of two different unbiased CTRWs can give rise
to a process with clear drift, if one of them is a CTRW with memory. If one identifies the other one as noise, the
effect can be thought of as a kind of stochastic resonance. The ultimate origin of this phenomenon is the same as
that of the Parrondo paradox in game theory.
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I. INTRODUCTION

The continuous-time random walk (CTRW) is the natural
generalization of the discrete-time random walk: a stochastic
process that shows changes of random magnitude at random
(rather than fixed) instants of time. Since their introduction
in 1965 by Montroll and Weiss in the physics literature [1,2],
CTRWs have stood out for their versatility in the description
of the random dynamics of a wide variety of systems. A quick
review of the bibliography reveals applications in fields as
diverse as transport in heterogeneous media [3–6], anomalous
relaxation in polymer chains [7], electron tunneling [8],
self-organized criticality [9], earthquake modeling [10–12],
random networks [13], transmission tomography [14,15],
hydrology [16,17], and tick-by-tick finance [18–25].

In the most ubiquitous version of the CTRW formalism
[26–29] the magnitudes of the steps (or jumps) and the time
intervals between them (also called sojourns) constitute a
two-dimensional set of independent and identically distributed
(i.i.d.) random variables. While in many cases this is a
convenient assumption, there are also examples in which
correlations between consecutive step sizes and/or waiting
times must be compulsorily considered. For instance, it has
been reported that for the dependence that shows the seismic
recurrence time on the magnitude of the last earthquake [12],
or in the field of quantitative finance (to which the author
has devoted a significant amount of his previous scientific
activity), it is well known [30] that the i.i.d. assumption is no
longer valid when the market is observed at the atomic level: At
this scale one typically finds that price changes are negatively
correlated [23,31].

A plausible mechanism that (at least in part) explains the
presence of this correlation is the so-called “bid-ask bounce.”
Financial markets are normally double-auction markets where
potential buyers and sellers simultaneously submit their bid
and ask prices, the limit orders, to the market. In the most
common situation, limit orders do not match previous limit
orders (bid prices are lower than ask prices) and thus they
are not executed, but recorded in the limit-order book. In fact,
transactions are completed usually only after a market order
(an order for buying or selling at the best available price)
is introduced into the market. The random alternation in the
arrival of buy and sell market orders makes the last traded
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price bounce back and forth from the cheapest demand price
to the highest offer price of the book. Thus, as long as bid and
ask prices do not vary, consecutive price changes will show
negative correlation.

All of this empirical evidence encouraged the development
of a new class of CTRWs based on the premise that the size of
jumps and sojourns should depend on the previous values of
these magnitudes [32]. The precise way in which the memory
is introduced into the formalism is by demanding that the
process increments satisfy the Markov property, which renders
the problem tractable. In general, these processes can be easily
connected with the broad family of the Markovian renewal
processes [33] and, in particular, the CTRW with memory
that we are going to analyze here is very similar to a Markov
chain with rewards [34],1 a random game with heterogeneous
payouts that may exhibit the Parrondo effect.

The Parrondo effect or paradox [35] is a counterintuitive
feature that appears when two negatively biased (losing) games
are combined to produce a positively biased (winning) game.
This sort of game, first devised by J. M. R. Parrondo, has played
a very relevant role in understanding the intriguing behavior
shown by many physical systems, wherein the addition of
disorder can lead to the emergence of some kind of order.
This is the case of Brownian-ratchet-related problems [36,37],
but Parrondo’s games may have further implications in very
diverse fields such as genetics [38] or finance [38,39].

In the original Parrondo setup, the system under consider-
ation had to show some degree of spatial inhomogeneity [35],
but further developments (partially) avoided this requirement
by the inclusion of memory [40–42], sometimes in a sophis-
ticated (non-Markovian) way [43]. In our case, by contrast,
we have reproduced the Parrondo effect by means of a single,
one-dimensional Markovian jump process, which establishes
the appearance of the paradox within the context of the CTRW.

The paper is organized as follows: In Sec. II we recall
the traditional CTRW formalism based on the assumption

1Two main aspects distinguish CTRWs with memory from Markov
renewal processes or Markov chains with rewards. In the first place,
our jump sizes may take continuous values, whereas the state space
of a Markov chain is usually finite. In the second place, here
the Markov property is satisfied not by the process but by the
random jumps. However, in the case that memory does not affect
the random occurrence of the time changes, the problem may recover
the Markovian nature just by increasing the dimension of the process.

051139-11539-3755/2011/84(5)/051139(7) ©2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.84.051139


MIQUEL MONTERO PHYSICAL REVIEW E 84, 051139 (2011)

of the independence between events. In Sec. III we outline
the fundamentals of the CTRWs with memory introduced in
Ref. [32], and devote special attention to the case in which
the correlation only affects the sign of consecutive jumps.
Section IV contains the main contribution of the paper, the
proof that within the framework of the CTRWs with memory
the mixture of two negatively biased processes may lead to
a positively biased one. The paper ends with Sec. V where
conclusions are drawn, and future perspectives are sketched.

II. CTRWs WITHOUT MEMORY

Let us begin with a short review of the theory of CTRWs; for
a more detailed explanation see, e.g., [25]. The CTRW Xa(t)
is a stochastic process that, at random instants of time, 0 =
t0 � t1 � · · · � tn−1 � tn, suffers random changes or jumps
of magnitude Jn,

Xa(t) =
∞∑

n=1

Jnθ (t − tn),

where θ (u) = 1 for u � 0, and zero otherwise. In the sim-
plest version of the formalism, the time intervals between
consecutive changes, τn ≡ tn − tn−1, and the random jumps
are independent and identically distributed random variables,
characterized by their corresponding probability density func-
tions (PDFs) ψa(·) and ha(·),

ψa(τ )dτ ≡ P {τ < τn � τ + dτ } ,

ha(ξ )dξ ≡ P {ξ < Jn � ξ + dξ} .

Henceforth we will use either Xa(t) or the term “process A”
whenever we want to refer to a CTRW that satisfies these
requirements.

Let us introduce now the propagator pa(x,t), the transition
probability of the process,

pa(x,t)dx ≡ P {x < Xa(t + tn) − Xa(tn) � x + dx}
= P {x < Xa(t) � x + dx},

which follows a renewal equation [44],

pa(x,t) = δ(x)
∫ ∞

t

ψa(t ′)dt ′

+
∫ t

0
dt ′ ψa(t ′)

∫ +∞

−∞
ha(ξ )pa(x − ξ,t − t ′)dξ,

(1)

thanks to the spatial and temporal invariance that the i.i.d.
assumption brings to the problem, at least just after a jump. It
is well known that one can straightforwardly solve Eq. (1) for
any choice of ψa(·) and ha(·) in the Fourier-Laplace domain:

ˆ̃pa(ω,s) = 1 − ψ̂a(s)

s

1

1 − ψ̂a(s)h̃a(ω)
, (2)

where here and hereafter the hat and/or the tilde over a function
denotes its Laplace and/or Fourier transform with respect to

its time and/or space variable, e.g.,

ψ̂a(s) ≡
∫ ∞

0
ψa(t)e−st dt,

h̃a(ω) ≡
∫ +∞

−∞
ha(ξ )eiωξ dξ,

and

ˆ̃pa(ω,s) ≡
∫ ∞

0
dt e−st

∫ +∞

−∞
pa(x,t)eiωx dx.

Then, the computation of pa(x,t) reduces to the inversion of
Eq. (2). To do this, however, the functional forms of ψa(·) and
ha(·) must be given.

We will consider the issue of the waiting-time density in the
first place: A CTRW cannot be a Markov process unless the
time intervals between jumps are exponentially distributed.
Such a lack of Markovianity would affect, for instance, the
definition of the propagator and the scope of validity of Eq. (1).
The result is still tractable but, for a matter of simplicity in
the modeling (and in the mixing) of the processes, we will
simply consider that the number of changes (irrespective of
the CTRW under consideration) is Poisson distributed, i.e.,
that the waiting-time PDF is always

ψ(t) = λe−λt .

The choice of ha(·) is a far less delicate question. We
could proceed without specifying the functional form of
the jump-size distribution, but this would obscure most
of the expressions in the forthcoming sections, in particular,
the intermediate results. Thus, to prevent some key aspects
from being buried by the mathematical terminology, we have
decided to sacrifice a bit of generality for the sake of clarity,
but without falling into extreme simplicity: we have chosen
that the jump sizes follow an asymmetric double exponential
law,2

ha(ξ ) = q0γ0e
−γ0ξ θ (ξ ) + (1 − q0)η0e

η0ξ [1 − θ (ξ )], (3)

where the parameter q0 ∈ [0,1] gives us the probability of
having a non-negative jump, whereas γ0 > 0 and η0 > 0 are
the inverses of the mean values of the absolute jump sizes in
the upward and downward directions, respectively.

After all of the above premises, Eq. (2) reads

ˆ̃pa(ω,s) = 1

s + λ
[
1 − q0

γ0

γ0−iω
− (1 − q0) η0

η0+iω

] .

The explicit knowledge of the previous characteristic function
allows us to compute the mean value of the process, μa(t), in
a simpe way, since

μ̂a(s) = −i
∂

∂ω
ˆ̃pa(ω,s)

∣∣∣∣
ω=0

=
(

q0

γ0
− 1 − q0

η0

)
λ

s2
,

2Due to their mathematical convenience, asymmetric double ex-
ponential jump distributions are commonly used in the modeling of
financial processes with jumps, see, e.g., [45,46].
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and finally, after the Laplace inversion

μa(t) =
(

q0

γ0
− 1 − q0

η0

)
λt = μ0λt, (4)

where we have defined

μ0 ≡ q0

γ0
− 1 − q0

η0
, (5)

which is just the mean value of the jump sizes,

μ0 =
∫ +∞

−∞
ξha(ξ )dξ. (6)

In fact, one can easily prove that this result is valid for any
choice of ha(·), provided that the mean value μ0 does exist.

Returning to the case we are analyzing in detail, Eq. (5)
shows that one will obtain an unbiased process (μ0 = 0)
whenever one imposes on the positive parameters q0, γ0, and
η0 the constraint

q0 = γ0

γ0 + η0
, (7)

which is always feasible.

III. CTRWs WITH MEMORY

We will consider now a second process, the process B,

Xb(t) =
∞∑

n=1

Jnθ (t − tn),

a CTRW that belongs to the class of processes introduced
in [32]. The main idea behind the work developed in this
reference is the following: one can introduce memory effects
into the framework of the CTRW without paying too high
a price by demanding to the jump sizes Jn that satisfy the
Markov property,

P {ξ < Jn � ξ + dξ |Jn−1 = υ, . . . ,J0 = ζ }
= P {ξ < Jn � ξ + dξ |Jn−1 = υ} ≡ hb(ξ |υ)dξ.

In such a case the process itself is not Markovian, but even
then one can derive renewal equations for the propagator,
conditioned to the last-known jump value,

pb(x,t |υ)dx ≡ P {x < Xb(t) � x + dx|J0 = υ}.
Perhaps the simplest approach that one can adopt to intro-

duce this kind of short-ranged memory is through persistence
[43,47,48], i.e., that the dependence of the process on the
previous history is restricted to the last-jump sign:

hb(ξ |υ) = h1(ξ )θ (υ) + h2(ξ ) [1 − θ (υ)] , (8)

a model that, in spite of its simplicity, is of applied interest.
For instance, there is evidence that suggests that a model of
this kind is precise enough to accurately describe the behavior
of highly traded equities [23].

For the same reasons given in the previous section, we will
assume here that the conditional distribution of the jumps are

two asymmetric double exponential functions:

h1(ξ ) = q1γ1e
−γ1ξ θ (ξ ) + (1 − q1)η1e

η1ξ [1 − θ (ξ )],

h2(ξ ) = q2γ2e
−γ2ξ θ (ξ ) + (1 − q2)η2e

η2ξ [1 − θ (ξ )],

with q1,2 ∈ [0,1], and γ1, η1, γ2, and η2 positive.
In concordance with Eq. (8), the conditional propagator

pb(x,t |υ) can be reduced to two different functions, depending
on whether the previous change of the process had a positive
sign, pb(x,t |+), or a negative sign, pb(x,t |−).3 As we have
stated above, we can write down renewal equations for these
magnitudes: specifically a set of two coupled Volterra integral
equations of the second kind,

pb(x,t |+) = δ(x)e−λt +
∫ t

0
dt ′ λe−λt ′

×
{
q1

∫ +∞

0
γ1e

−γ1ξpb(x − ξ,t − t ′|+)dξ

+ (1 − q1)
∫ 0

−∞
η1e

η1ξpb(x − ξ,t − t ′|−)dξ

}
,

(9)

and

pb(x,t |−) = δ(x)e−λt +
∫ t

0
dt ′ λe−λt ′

×
{
q2

∫ +∞

0
γ2e

−γ2ξpb(x − ξ,t − t ′|+)dξ

+ (1 − q2)
∫ 0

−∞
η2e

η2ξpb(x − ξ,t − t ′|−)dξ

}
.

(10)

We may explain how Eqs. (9) and (10) were derived
by analyzing their common three-piece structure. The first
term in both expressions takes into account the possibility
that the process remains unchanged throughout the time
interval t . In the second and third terms at least an event
occurred at time t ′, 0 � t ′ � t : the difference among these
two contributions comes from the fact that, in the second
term the jump was upward, ξ > 0, and the process renews
from that point, pb(x − ξ,t − t ′|+), whereas in the third
term the jump was downward, ξ < 0, and therefore the
subsequent propagator is pb(x − ξ,t − t ′|−). Note that Eq. (9)
will differ from Eq. (10) as long as h1(·) is not coincident
with h2(·).

To solve the posed problem we will resort back to the
Fourier-Laplace transform. The two integral equations (9) and
(10) turn into a set of two algebraic equations when moved
into the Fourier-Laplace domain,

ˆ̃pb(ω,s|+) = 1

λ + s
+ λ

λ + s

{
q1

γ1

γ1 − iω
ˆ̃pb(ω,s|+)

+ (1 − q1)
η1

η1 + iω
ˆ̃pb(ω,s|−)

}

3We can include the zero-amplitude jump within the positive case,
or just ignore it since it is of null measure.
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and

ˆ̃pb(ω,s|−) = 1

λ + s
+ λ

λ + s

{
q2

γ2

γ2 − iω
ˆ̃pb(ω,s|+)

+ (1 − q2)
η2

η2 + iω
ˆ̃pb(ω,s|−)

}
,

whose solution reads

ˆ̃pb(ω,s|+) =
s + λ

[
1 + (1−q1)η1

η1+iω
− (1−q2)η2

η2+iω

]
ˆ̃�b(ω,s)

, (11)

ˆ̃pb(ω,s|−) =
s + λ

[
1 − q1γ1

γ1−iω
+ q2γ2

γ2−iω

]
ˆ̃�b(ω,s)

, (12)

with

ˆ̃�b(ω,s) =
(

s + λ − λq1γ1

γ1 − iω

) (
s + λ − λ(1 − q2)η2

η2 + iω

)

− λ2(1 − q1)q2
γ2

γ2 − iω

η1

η1 + iω
. (13)

We can now compute the unconditional transition PDF,

ˆ̃pb(ω,s) = β ˆ̃pb(ω,s|+) + (1 − β) ˆ̃pb(ω,s|−), (14)

where β is the likelihood that a given jump takes the positive
sign, which follows from the total probability theorem:

β = βq1 + (1 − β)q2 ⇒ β = q2

1 − q1 + q2
. (15)

The unconditional mean value of the process can be obtained
from the differentiation of Eq. (14) with respect to ω, for
ω = 0, and in the Laplace domain reads

μ̂b(s) = λ

s2

[
β

(
q1

γ1
− 1 − q1

η1

)
+ (1 − β)

(
q2

γ2
− 1 − q2

η2

)]

= λ

s2
[βμ1 + (1 − β)μ2], (16)

where we have denoted by μ1 and μ2 the first moments of the
PDFs h1(·) and h2(·), respectively,

μ1 ≡ q1

γ1
− 1 − q1

η1
,

μ2 ≡ q2

γ2
− 1 − q2

η2
.

The inverse Laplace transform of Eq. (16) is straightforward
and yields

μb(t) = [βμ1 + (1 − β)μ2]λt, (17)

and therefore process B will become unbiased whenever

βμ1 + (1 − β)μ2 = 0. (18)

Like in Eq. (7), condition (18) can be met by selecting q1

and/or q2 in a proper way. For instance,

q2 = 1

1 + η2
(

1
γ2

− 1
η1

+ 1
γ1

q1

1−q1

)

will remove the bias from process B for any choice of q1, γ1,
η1, γ2, and η2, provided that γ2 � η1. If γ2 > η1, one must
request q1 to satisfy the supplementary constraint:

q1 >

1
η1

− 1
γ2

1
η1

− 1
γ2

+ 1
γ1

.

Let us conclude the analysis of process B by noting that
the result in Eq. (17) is more general than what it could be
presumed. The expression is still valid if one considers any
alternative for the PDFs h1(·) and h2(·) in Eq. (8), with the
sole condition that their mean values μ1 and μ2 are bounded.
One must be aware, however, that expression (15) for β should
be recomputed.

IV. ALTERNATION OF PROCESSES

In this section we will analyze the outcome of the
combination of the two previous processes, A and B, which
will lead to the new process AB, a process that also belongs to
the class of CTRWs with memory. To do this, we will assume
that the mixing procedure is random: we will have a probability
r that the next process increment follows Eq. (3) and 1 − r ,
that the change is driven by Eq. (8).4 The renewal equations
for the conditional propagators have a structure that is very
similar to that in Eqs. (9) and (10), but where hb(ξ |υ) has been
replaced by

h(ξ |υ) = rha(ξ ) + (1 − r)hb(ξ |υ), (19)

namely,

p(x,t |+) = δ(x)e−λt +
∫ t

0
dt ′ λe−λt ′

×
{∫ +∞

0
dξ K++(ξ )p(x − ξ,t − t ′|+)

+
∫ 0

−∞
dξ K−+(ξ )p(x − ξ,t − t ′|−)

}
,

p(x,t |−) = δ(x)e−λt +
∫ t

0
dt ′ λe−λt ′

×
{∫ +∞

0
dξ K+−(ξ )p(x − ξ,t − t ′|+)

+
∫ 0

−∞
dξ K−−(ξ )p(x − ξ,t − t ′|−)

}
,

with

K++(ξ ) = rq0γ0e
−γ0ξ + (1 − r)q1γ1e

−γ1ξ ,

K−+(ξ ) = r(1 − q0)η0e
η0ξ + (1 − r)(1 − q1)η1e

η1ξ ,

K+−(ξ ) = rq0γ0e
−γ0ξ + (1 − r)q2γ2e

−γ2ξ ,

K−−(ξ ) = r(1 − q0)η0e
η0ξ + (1 − r)(1 − q2)η2e

η2ξ .

4When similar problems have been analyzed in the context of game
theory, by “process AB” one may refer to the deterministic alternation
of the two games. This is not the case here.
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The solution of the newly posed problem in the Fourier-
Laplace domain also mimics Eqs. (11)–(13),

ˆ̃p(ω,s|+) =
s + λ

{
1 + (1 − r)

[ (1−q1)η1

η1+iω
− (1−q2)η2

η2+iω

]}
ˆ̃�(ω,s)

,

ˆ̃p(ω,s|−) =
s + λ

{
1 − (1 − r)

[
q1γ1

γ1−iω
− q2γ2

γ2−iω

]}
ˆ̃�(ω,s)

,

and

ˆ̃�(ω,s) = λ2

[
s

λ
+ 1 − rq0γ0

γ0 − iω
− (1 − r)q1γ1

γ1 − iω

]

×
[

s

λ
+ 1 − r(1 − q0)η0

η0 + iω
− (1 − r)(1 − q2)η2

η2 + iω

]

− λ2

[
rq0γ0

γ0 − iω
+ (1 − r)q2γ2

γ2 − iω

]

×
[
r(1 − q0)η0

η0 + iω
+ (1 − r)(1 − q1)η1

η1 + iω

]
.

As in the previous section, we can recover the unconditional
propagator ˆ̃p(ω,s) by means of ˆ̃p(ω,s|±),

ˆ̃p(ω,s) = α ˆ̃p(ω,s|+) + (1 − α) ˆ̃p(ω,s|−), (20)

and the new stationary probability of having a positive change,
α. This probability is now the result of the combined effect of
the two individual processes:

α = rq0 + (1 − r)[αq1 + (1 − α)q2] ⇒
α = rq0 + (1 − r)q2

1 − (1 − r)(q1 − q2)
. (21)

We will differentiate Eq. (20) one more time and eventually
obtain the unconditional mean value of the process AB,

μ(t) = rμa(t) + (1 − r)[αμ1 + (1 − α)μ2]λt, (22)

which is not the linear superposition of the individual mean
values of processes A and B,

μ(t) �= rμa(t) + (1 − r)μb(t), (23)

unless α = β. The ultimate origin of this nonlinearity lies in
the fact that, as Eq. (19) shows, the correlation of process B is
affected by the inclusion of process A. Therefore, even in the
case in which μa(t) = 0 and μb(t) = 0, the composite process
will exhibit a clear drift if α �= β, as can be seen in Fig. 1,
where we plot a possible realization of processes A, B, and
AB.

Since α is a function of r , we can tune this parameter to
amplify the paradoxical effect. Let us search the value of r

for which the drift is maximum, by direct differentiation of
Eq. (22), under the assumptions (7) and (18):

∂μ(t)

∂r
= − [q0μ1 + (1 − q0)μ2](r − r+)(r − r−)

[1 − (1 − r)(q1 − q2)]2
λt, (24)

with

r± =
√

1 − q1 + q2 ± (1 − q1 + q2)

q1 − q2
.
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t
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FIG. 1. (Color online) Sample paths of the processes analyzed in
the text. The parameter values are λ = 20, q0 = 1/2, q1 = q2 = 4/5,
γ0 = η0 = η1 = γ2 = η2 = 1, γ1 = 16, and r = 1/2, which render
μa(t) = μb(t) = 0 and μ(t) = 9t/8, represented in the plot by (black)
dotted lines.

Equation (24) has three possible zeros. The first one corre-
sponds to

q0μ1 + (1 − q0)μ2 = 0 ⇒ q0 = β,

but in this case α = β as well, and μ(t) = 0, irrespective of r .
The second one, r = r+, is not valid because, as can be shown,
it is either smaller than zero or greater than 1. The last one will
provide us with the optimal drift enhancement, r = r−. The
value of r− can always be interpreted as a mixing probability,
as it fulfills r− ∈ [0,1] for any given choice of q1 and q2, and
gives r− = 1/2 for q1 = q2. This is just the case considered in
Fig. 1.

Now, once we have shown that the interaction of two
unbiased processes can bring a new process with positive
drift, it is not difficult to reduce the probabilities q0, q1,
and q2 by a small quantity ε, in such a way the mean
value of any one of the two individual processes is negative,
but the combined process presents a positive growth. If we
use the values reported in the caption of Fig. 1 above as
a starting point, that is, q0 = 1/2 − ε, q1 = q2 = 4/5 − ε,
γ0 = η0 = η1 = γ2 = η2 = 1, γ1 = 16, and r = 1/2, we will
find that

μa(t) = −2ελt < 0,

μb(t) = −8ε + 15ε2

16
λt < 0,

μ(t) = 36 − 833ε − 340ε2

640
λt.

The last expression is positive for ε � 0.0425. Therefore, if we
set ε = 0.02, as in Fig. 2, we will achieve the desired behavior,
that the bias of process AB is in the opposite direction of those
of process A and process B.

Note, however, that we can examine the physical meaning
of process AB from another interesting perspective: we may
understand that process A is a noise source affecting process
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FIG. 2. (Color online) Sample paths of the biased processes. The
parameters coincide with those in Fig. 1, except that q0, q1, and q2

were diminished by the same quantity ε = 0.02, i.e., q0 = 12/25 and
q1 = q2 = 39/50. The (black) dotted lines show the mean value of
each process.

B. This identification is even more natural when q0 = 1/2
and γ0 = η0, as in Fig. 1 above, because then the increments
of process A constitute a zero-mean, symmetric white noise.
In that case, one can see how the intensification of the
noise steadily increases the mean output of the process, until
it reaches a maximum, like in the case of the stochastic
resonance.

But we can go further in the exploration of the possible
implications of the paradoxical behavior. Let us consider the
following values for the parameters of our example: q0 = 1/2,
q1 = q2 = 39/50, γ0 = η0 = η1 = γ2 = η2 = 1, and γ1 = 16.
The corresponding mean values of the three processes, now as
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FIG. 3. (Color online) Sample paths of the process AB with
variable bias. The parameters are λ = 20, q0 = 1/2, q1 = q2 =
39/50, γ0 = η0 = η1 = γ2 = η2 = 1, and γ1 = 16. With this setup
μa(t) = 0, μb(t) < 0, and the sign of μ(t) depends on the value of
the noise level r , as is shown by the superimposed (black) dotted
lines.

a function of r , are

μa(t) = 0,

μb(t) = − 83

8000
λt < 0,

μ(t) = (1 − r)
1638r − 83

8000
λt,

and therefore μ(t) > 0 for r > 83/1638 ≈ 0.05. This shows
that we can modify the sign of the output of the system AB

by changing the level of the noise, as is shown in Fig. 3.
This broadens the fields for which one may find practical
applications of this formalism: from game theory to stochastic
control.

V. CONCLUSIONS

We have shown with a particular but illuminating example
how we can obtain a growing stochastic process by alternating
two unbiased CTRWs, one of them with memory. The clue to
an understanding of this effect is in the fact that the mixing of
the two processes distorts the inner correlation of the CTRW
with memory.

The phenomenon is related to the Parrondo paradox in game
theory where the alternative play of two losing games may
give winnings to the player. In our case, we can modify the
parameters controlling the two CTRWs in such a way that
each separate process acquires a negative drift but that their
interplay still produces a positive bias.

The peculiarities of the analyzed process and its noticeable
connections with the outcome of a gambling game do not
limit the scope of our results, however. In the first place,
the assumption that the only relevant past information is
confined into the jump signs does not seem to be essential
for obtaining the Parrondo effect: we have selected it because
it is convenient from a mathematical point of view, given
its simplicity, and proves to be a plausible mechanism for
modeling actual systems, at least in the realm of finance. And
in the second place, as in the case of the original analysis
by Parrondo, the paradox has consequences on problems far
away from game theory: in our case we have shown how
to control the sign of the (average value of the) output of a
system by increasing or decreasing the intensity of a noise
source.

Therefore, we think that the search for the emergence of
this Parrondo-like behavior in CTRWs with more sophisticated
memory functions, and the suggestion of alternative interpreta-
tions of the paradox in these new contexts, can be very fruitful
from both the theoretical and the applied points of view. In any
case, this will be the matter of a future work.
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