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ABSTRACT. By theorems of Ferguson and Lacey (d = 2) and Lacey and Terwilleger (d > 2),
Nehari’s theorem is known to hold on the polydisc Dd for d > 1, i.e., if Hψ is a bounded Hankel
form on H2(Dd) with analytic symbol ψ, then there is a function ϕ in L∞(Td) such that ψ is the
Riesz projection of ϕ. A method proposed in Helson’s last paper is used to show that the constant
Cd in the estimate ‖ϕ‖∞ ≤ Cd‖Hψ‖ grows at least exponentially with d; it follows that there is
no analogue of Nehari’s theorem on the infinite-dimensional polydisc.

This note solves the following problem studied by H. Helson [2, 3]: Is there an analogue of
Nehari’s theorem on the infinite-dimensional polydisc? By using a method proposed in [3], we
show that the answer is negative. The proof is of interest also in the finite-dimensional situation
because it gives a nontrivial lower bound for the constant appearing in the norm estimate in
Nehari’s theorem; we choose to present this bound as our main result.

We first introduce some notation and give a brief account of Nehari’s theorem. Let d be a
positive integer, D the open unit disc, and T the unit circle. We letH2(Dd) be the Hilbert space of
functions analytic in Dd with square-summable Taylor coefficients. Alternatively, we may view
H2(Dd) as a subspace of L2(Td) and express the inner product of H2(Dd) as 〈f, g〉 =

∫
Td fg,

where we integrate with respect to normalized Lebesgue measure on Td. Every function ψ in
H2(Dd) defines a Hankel form Hψ by the relation Hψ(fg) = 〈fg, ψ〉; this makes sense at least
for holomorphic polynomials f and g. Nehari’s theorem—a classical result [6] when d = 1 and
a remarkable and relatively recent achievement of S. Ferguson and M. Lacey [1] (d = 2) and M.
Lacey and E. Terwilleger [5] (d > 2) in the general case—says that Hψ extends to a bounded
form on H2(Dd) × H2(Dd) if and only if ψ = P+ϕ for some bounded function ϕ on Td; here
P+ is the Riesz projection on Td or, in other words, the orthogonal projection of L2(Td) onto
H2(Dd). We define Cd as the smallest constant C that can be chosen in the estimate

‖ϕ‖∞ ≤ C‖Hψ‖,

where it is assumed that ϕ has minimal L∞ norm. Nehari’s original theorem says that C1 = 1.

Theorem. For even integers d ≥ 2, the constant Cd is at least (π2/8)d/4.

The theorem thus shows that the blow-up of the constants observed in [4, 5] is not an artifact
resulting from the particular inductive argument used there.
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2 J. ORTEGA-CERDÀ AND KRISTIAN SEIP

Since clearly Cd increases with d and, in particular, we would need that Cd ≤ C∞ should Ne-
hari’s theorem extend to the infinite-dimensional polydisc, our theorem gives a negative solution
to Helson’s problem.

Nehari’s theorem can be rephrased as saying that functions in H1(Dd) (the subspace of holo-
morphic functions in L1(Td)) admit weak factorizations, i.e., every f in H1(Dd) can be written
as f =

∑
j gjhj with fj , gj in H2(Dd) and

∑
j ‖gj‖2‖hj‖2 ≤ A‖f‖1 for some constant A. Tak-

ing the infimum of the latter sum when gj , hj vary over all weak factorizations of f , we get an
alternate norm (a projective tensor product norm) on H1(Dd) for which we write ‖f‖1,w. We let
Ad denote the smallest constant A allowed in the norm estimate ‖f‖1,w ≤ A‖f‖1. Our proof
shows that we also have Ad ≥ (π2/8)d/2 when d is an even integer.

Proof of the theorem. We will follow Helson’s approach [3] and also use his multiplicative nota-
tion. Thus we define a Hankel form on T∞ as

Hψ(fg) =
∞∑

j,k=1

ρjkajbk;

here (aj), (bj), and (ρj) are the sequences of coefficients of the power series of the functions
f , g, and ψ, respectively. More precisely, we let p1, p2, p3, ... denote the prime numbers; if
j = pν11 · · · p

νk
k , then aj (respectively bj and ρj) is the coefficient of f (respectively of g and

ψ) with respect to the monomial zν11 · · · z
νk
k . We will only consider the finite-dimensional case,

which means that the coefficients will be nonzero only for indices j of the form pν11 · · · p
νd
d . The

prime numbers will play no role in the proof except serving as a convenient tool for bookkeeping.
We now assume that d is an even integer and introduce the set

I =

n ∈ N : n =

d/2∏
j=1

qj and qj = p2j−1 or qj = p2j

 .

We define a Hankel form Hψ on Dd by setting ρn = 1 if n is in I and ρn = 0 otherwise.
We follow [3, pp. 81–82] and use the Schur test to estimate the norm of Hψ. It suffices

to choose a suitable finite sequence of positive numbers cj with j ranging over those positive
integers that divide some number in I; for such j we choose

cj = 2−Ω(j)/2,

where Ω(j) is the number of prime factors in j. We then get∑
k

ρjkck = 2d/2−Ω(j) · 2−(d/2−Ω(j))/2 = 2d/4cj,

so that ‖Hψ‖ ≤ 2d/4 by the Schur test.
If f is a function in H1(Dd) with associated Taylor coefficients an, then

Hψ(f) =
∑
n

anρn.
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We choose

(1) f(z) =

d/2∏
j=1

(z2j−1 + z2j)

for which an = ρn and thus Hψ(f) = 2d/2. On the other hand, an explicit computation shows
that

‖f‖1 = (4/π)d/2

so that Hψ, viewed as a linear functional on H1(Dd), has norm at least (π/2)d/2. This concludes
the proof since it follows that we must have (π/2)d/2 ≤ ‖ϕ‖∞ and we know from above that
‖Hψ‖ ≤ 2d/4. �

It is worth noting that our application of the Schur test shows that in fact ‖Hψ‖ = 2d/4 since
‖f‖2 = 2d/4. The fact that |Hψ(f)| = ‖Hψ‖‖f‖2 implies that

‖f‖1,w = ‖f‖2.

In other words, the trivial factorization f · 1 is an optimal weak factorization of the function f
defined in (1).
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