Carbonate and organic matter sedimentation and isotopic signatures in Lake Chungář, Chilean Altiplano, during the last 12.3 kyr

Juan José Pueyo a,⁎, Alberto Sáez a, Santiago Giralt b, Blas L. Valero-Garcés c, Ana Moreno c, Roberto Bao d, Antje Schwalbe e, Christian Herrera f, Bogumila Klosowska b, Conxita Taberner g

a Universitat de Barcelona, Facultat de Geologia, c/Marià Franquès, s/n, 08028 Barcelona, Spain
b Institut de Ciencies de la Terra ‘Jaume Almera’, CSIC, c/Solé Sabarés, s/n, 08028 Barcelona, Spain
c Instituto Pirenaico de Ecología, CSIC, Avda. Montañana, 1000, 50192 Zaragoza, Spain
d Universidade de A Coruña, Facultade de Ciencias, Campus da Zapateira s/n, 15071 A Coruña, Spain
e Technische Universität Braunschweig, Institut für Umweltgeologie, Langer Kamp 15c, 38106 Braunschweig, Germany
f Universidad Católica del Norte, Avda. Angamos 0610, Antofagasta, Chile
g Shell International Exploration and Production B.V., 2288 GS Rijswijk (ZH), Netherlands

A R T I C L E I N F O

Article history:
Received 22 July 2010
Received in revised form 15 May 2011
Accepted 22 May 2011
Available online 30 May 2011

Keywords:
Carbonate precipitation
DIC speciation
Methanogenesis
Paleoenvironmental changes
Holocene record
Andean Altiplano

A B S T R A C T

Sediments in lakes in the Andean volcanic setting are often made up of diatomaceous ooze together with volcanioclastics and small amounts of carbonates. Despite their scarcity, carbonates along with organic matter provide significant paleoenvironmental information about lake systems. This study focuses on the carbonates in Lake Chungář, their morphologies, distribution and origin deduced from the isotopic markers. These markings reflected changes in the water and the biomass between the onset of the Holocene and around 9.6 cal kyr BP. These changes are marked by general increases in TOC, TN, and TN-δ15N, and by fluctuating values of TOC-δ13C in its sediments and are probably related to major shifts in the lake surface/volume associated with rises in lake level. An increase in salinity around 10 cal kyr BP is thought to be linked to a short dry period, giving rise to the onset of carbonate production. The mid-Holocene arid period between 7.3 and 3.5 cal ka BP, with a maximum of aridity around 6.0 cal kyr BP, was deduced from δ18O values in the endogenic carbonates. These results match the reconstructions in Lake Titicaca based on benthic diatoms and paleoshore levels.

Offshore sediments mainly consist of a diatomaceous ooze, laminated in the lower half (Unit 1), and banded-massive with tephra layers in the upper half of the sequence (Unit 2). TOC-δ13C and the C/N ratio confirm that phytoplankton was the main source of organic matter in these sediments. Shallower sediments (units 3 to 5) developed in platform and littoral settings, providing evidence of subaqueous macrophytes and, to a lesser extent, land plants. Carbonate content ranges between 0.1 and 6 wt.% in offshore settings (30 to 40 m water depth) and reaches the maximum values in the lower part of Unit 2. Carbonate minerals (low magnesium calcite and minor amounts of high magnesium calcite and aragonite) are scarce and are arranged in mm-thick layers, commonly forming cm-thick layers or bioclasts. Carbonate layers are made up of euhealral-to-subhealral spindle-shaped calcite crystals and, to a lesser extent, aragonite needles, all in the μm range. Aragonite spheroids coexist in littoral sediments with other carbonate shapes and charophyte remains, where carbonate reaches locally up to 20 wt.%. CO2 photosynthetic depletions related to seasonal phytoplankton blooms were responsible for the high frequency deposition of mm-thick carbonate layers. The average values for δ13C in lake water, plankton and sediments of Lake Chungář (as organic matter or as carbonate) are around 15‰ higher than commonly reported values in other lakes. This 13C enrichment is attributed to carbon assimilation from a DIC affected by methanogenesis, in which HCO3− is the dominant species. The δ13C and δ18O variations and their covariation in endogenic carbonates suggest that lake water volume and lake level increased along the Holocene.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Carbonates in lacustrine sediments provide paleoenvironmental information about biological and hydrological changes through time. Physicochemical changes in lake water cause biota modifications that are frequently associated with carbonate deposition. Moreover, lacustrine
carbonates contain mineralogical and geochemical markers, such as the isotopic composition of carbon and oxygen, furnishing quantitative data for paleoecological and paleohydrological approaches (Li and Ku, 1997; Utrilla et al., 1998; Valero-Garcés et al., 1999a; Ito, 2001; Shapley et al., 2005). Carbonate δ^{18}O_{VPDB} is dependent on temperature and on water δ^{18}O_{VSMOW} (Nelson and Smith, 1966). Shells of benthic organisms formed below the thermocline reflect changes in the isotopic composition of lake water whereas shells of planktonic organisms are mainly affected by variations in water temperature, both having positive offsets between 0 and +2‰ (von Grafenstein et al., 1999). Carbonate δ^{13}C_{VPDB} is related to carbon sources, biomass and biological processes in the catchment and DIC residence time in lake water (Mckenzie, 1985; Schwalb, 2003). The main controls of DIC-δ^{13}C_{VPDB} in lakes are groundwater and surface water inputs, remains of organic matter from the catchment area (reaching δ^{13}C_{VPDB} between 0 and +2‰ in the case of land plants), dissolution of older carbonate (0 to +2‰ in marine carbonates), equilibration with atmospheric CO₂, and ¹³C selective uptake by aquatic plants during photosynthesis.

Organic matter in recent lake sediments preserves its original δ¹³C, δ¹⁵N and C/N values practically without change for thousands of years (Meyers, 1994). This is essential for recognizing environmental signatures and limnological changes recorded in lacustrine sediments. Organic matter provenance and mixing patterns are well recognized because lacustrine algae (and plankton) have lower C/N values than eutrophic land plants. Moreover, the different photosynthetic types of plants can be recognized by their specific δ¹³C signatures (Meyers, 1994; Sifeddine et al., 2004). δ¹⁵N provides information about contributions of algae, aquatic macrophytes and land plants, and depends on whether nitrogen proceeds from NO₃⁻ (δ¹⁵N typically in the range +7 to +10‰) or directly from atmospheric N₂ (δ¹⁵N around 0‰). Meyers (2003) also used δ¹⁵N as an indicator of primary productivity.

Carbonates are minor components of sediments deposited in silicic-dominated lakes that are often located in active volcanic settings. However, they may provide significant additional information about lake evolution. Diatom dominated lake sediments are common in the Andean Altiplano and have been studied as paleoenviromental archives at different time scales (Servant-Vildary and Roux, 1990; Bao et al., 1999; Sáez et al., 1999; Sylvestre, 2002; Tapia et al., 2003; Sáez et al., 2007; Hernández et al., 2008, 2010). The present paper is focused on the Late Quaternary carbonate sedimentation in Lake Chungará (northern Chilean Altiplano). The lake is characterised by diatom-rich deposits, interbedding tephras layers, and a few carbonate-rich intervals. Earlier work on the Chungará sequence described the sedimentological evolution of the lake during the last 14 kyr and distinguished several lowstand lake stages, mostly based on the percentage of benthic diatoms (Sáez et al., 2007). A mid-Holocene dry episode has also been found using high resolution XRF-core scanner data (Moreno et al., 2007) and statistical analysis of mineralogical and chemical parameters (Giralt et al., 2008). Other approaches based on δ¹⁸O_{VSMOW} from diatom frustules (Hernández et al., 2008, 2010) provide a paleohydrological reconstruction for the pure diatomaceous ooze intervals, and offer insights into processes generating the high frequency laminations of sediments. Furthermore, an isotopic study of bulk carbonate and organic matter in the short-core 93S from the NW bay of the lake (Fig. 1; Valero-Garcés et al., 2003) showed wide variations in composition and hydrology in the last centuries. Research has also been undertaken on geochemical signatures in endogenic carbonates in other lakes in the area (Laguna Seca, Miscanti and Negro Francisco) in an attempt to reconstruct climatic changes since the Last Glacial Maximum (Grosjean, 1994; Grosjean et al., 1997; Schwalb et al., 1999; Valero-Garcés et al., 1999b; Grosjean et al., 2001; Valero-Garcés et al., 2003; Theissen et al., 2008).

The main aim of this paper is to evaluate the paleoenviromental information recorded in the isotopic markers in endogenic carbonates (δ¹³C_{VPDB} and δ¹⁸O_{VPDB}) and in the bulk organic matter (δ¹³C_{PDB} and δ¹⁵N_{AIR}) in the sedimentary record of Lake Chungará during the last 12.3 kyr. Although carbonates are discontinuous and although their amount is extremely low in the lowest part of the lacustrine sequence, our results highlight the advantage of a comprehensive study in an effort to better understand the geochemical signatures.

2. Hydrological and geological settings

Lake Chungará is located in the Chilean Altiplano (18°15’S, 69°09’W, 4520 masl) at the base of the Holocene Parinacota volcano (Fig. 1). The lake was generated by a partial collapse of the earlier Parinacota stratocone that dammed the Paleo-Lauca River between 15 and 17 cal kyr BP (Hora et al., 2007). The climate of the region is semi-arid (345–394 mm yr⁻¹) with an annual average temperature of 4.2 °C. Evaporation has been estimated to be about 1200 mm yr⁻¹ (Madlicin et al., 1987).

The lake has an irregular shape with a surface area of 22.5 km² and a water volume of 426×10⁶ m³. It has no surface outlets and the main inlet is the Chungará River (300–460 L s⁻¹) (Fig. 1). Lake Chungará is 40 m deep with the present water level being the highest in its history (Risacher et al., 1999; Herrera et al., 2006) as evidenced by the absence of emerged paleoshores and terraces. The lake can be regarded as a superficially closed hydrological system owing to its water residence time of around 15 years (Herrera et al., 2006) and owing to the absence of surface outlets (Leng et al., 2005). The cold polymeric lake is today moderately alkaline (pH between 8.99 and 9.30), well mixed (7.6 μL L⁻¹ O₂ at 34 m deep), with moderate salinity (1.3 g L⁻¹ TDS) and waters of the Na⁺−Mg²⁺−HCO₃⁻−SO₄²⁻ type. Concentrations of main solutes in mg L⁻¹ are Na⁺ 140, K⁺ 32, Ca²⁺ 50, Mg²⁺ 99, HCO₃⁻ 450, Cl⁻ 68, and SO₄²⁻ 354, and the molar Mg/Ca ratio is around 3.26 (Risacher et al., 1999; Herrera et al., 2006; Sáez et al., 2007). In the last two decades, Lake Chungará has undergone marked inter-annual changes in the water level (around 2 to 3 m) and significant oscillations in phytoplankton concentration (Durador et al., 2003). The phytoplankton community is made up of a few species, including diatoms and Chlorophyceae that are dominant during cold and warm seasons, respectively. Dense macrophytic vegetation patches and microbial colonies occur in the littoral zone, also contributing to primary productivity (Durador et al., 2003).

The seismic profiles indicate that the sedimentary succession is about 10 m thick and spans the last 12.3 kyr (Giralt et al., 2008). The sediments are dominated by diatomaceous ooze with interbedded tephra layers in offshore zones, and peaty diatomaceous sediments in shallow marginal zones. A detailed study using seismic and core data enabled us to define five lithostratigraphic units (Fig. 2) (Sáez et al., 2007):

Unit 1. Shallow to deep offshore deposits
Subunit 1a. Finely laminated green diatomaceous ooze (12.3–9.8 cal kyr BP).
Subunit 1b. Laminated and massive brown diatomaceous ooze with carbonate-rich intervals (9.8–8.3 cal kyr BP).
Unit 2. Deep offshore deposits (with a shallow event).
Subunit 2a. Brown massive to banded diatomaceous ooze interbedding carbonate-rich intervals and tephra layers (ca 8.3–3.5 cal kyr B).
Subunit 2b. Dark grey-black, massive to banded diatomaceous ooze (ca 3.5 cal kyr BP – recent).
Unit 3. Shallow platform deposits (8.3 cal kyr BP – present). This unit overlies Unit 1 deposits in the central lake areas, and changes laterally to offshore facies of Unit 2 towards the west, and to littoral facies of Unit 4 towards the east.
Unit 4. Shallow to very shallow littoral peaty, rich in charophyte remains (3.2 cal kyr BP – present). Unit 5. Alluvial-deltaic deposits.

Three main components in the lake sediments have been identified using a combination of mineralogical and XRF-core scanner
data (Moreno et al., 2007; Giralt et al., 2008): a) a biogenic component mainly derived from phytoplankton, b) volcanic material (ash layers) from the nearby Parinacota Volcano, and c) endogenic carbonates. Carbonate-rich intervals and layers occur in subunits 1b, 2a, 3 and 4.

3. Materials and methods

Lacustrine sediments were sampled from 15 Kullemberg cores, each up to 8 m long, recovered from Lake Chungará in November 2002 and stored at 4 °C (Sáez et al., 2007). Short gravity cores were also collected near the margins of the lake (cores 93L and 93S) and drag samples were taken near the sites of the large Kullemberg cores in order to obtain information about the first centimetres of sediment and the sediment-water interface.

Selected core sequences were sampled every 5 cm, each sample being 1 cm thick, for carbonate studies, smear slides, and elemental and stable isotope geochemistry. Samples for ostracode valves were taken every 20 cm. Carbonates were characterised by petrographic, mineralogical and geochemical analyses. A preliminary estimation of the morphology and amount of carbonates was made from the smear slides and was complemented by XRD and SEM-EDS analyses.

Samples for XRD were dried at 60 °C for 24 h and manually ground using an agate mill. The X-ray diffractions revealed that most samples were composed of a crystalline and an amorphous fraction (mostly opal), characterised by the presence of a broad peak centred between 20 and 25° 2θ. The identification and quantification of the main mineralogical species present in the crystalline fraction were carried out following a standard procedure (Chung, 1974). The amorphous fraction was quantified against artificial standards obtained by mixing pure diatomaceous ooze with increasing amounts of calcite.

A morphological description using a Jeol JSM-840 SEM-EDS and a Hitachi H-4100FE field emission SEM was made on selected samples. Owing to the high water content, samples were dried in two steps: first, most of the water was eliminated by capillarity using filter paper, and second, samples were freeze-dried and vacuum-stored prior to carbon coating. Secondary and backscattered electron images and X-ray emission spectra were used systematically to characterise the components.

![Fig. 1. Geological sketch of the Lake Chungará. Neighbouring volcanoes Ajoya and Parinacota, the Chungará River and the Cotacotani Lake district are included. Sites of all cores and the lake-bottom topography and morphology are also indicated.](image-url)
Isotopic compositions (δ^{13}C_VPDB and δ^{18}O_VPDB) of the carbonates were determined following two procedures: a) Carbonate-rich levels were analysed using bulk samples (about 10 mg) cleaned from organic matter with a concentrated sodium hypochlorite solution. A classic of flame method using phosphoric acid with a silver phosphate trap was used to eliminate sulphurous gas species that were present in small amounts. The carbonate content was quantified by XRD to determine the amount of sample to be processed. b) Bulk microsamples of sediment (with low content of endogenic carbonate) and microsamples (about 60 μg) of single carbonate components (Chara coatings, ostracode valves, isolated carbonate crystals) were analysed with a Kiel II online preparation device online connected to a MAT 252 IRMS. Analytical precisions (as σ) for δ^{13}C_VPDB and δ^{18}O_VPDB determinations were 0.03 and 0.06‰, respectively.

Isotopic composition DIC-δ^{13}C_VPDB was determined from filtered (0.45 μm) water samples. Inorganic species of carbon (DIC, dissolved inorganic carbon) were precipitated adding BaCl₂ excess in a basic media. Purified CO₂ was obtained from the precipitated Ba-carbonate in a conventional line using phosphoric acid. The amount of co-precipitated Ba-sulphate was previously estimated by XRD in order to define the sample weight for analysis. Analytical precision expressed as σ was 0.03‰.

TOC (total organic carbon) and TIC (total inorganic carbon) in sediments and biomass samples were determined directly and after treatment at 400 °C in a Leco SC-144DR. TN (total nitrogen) was determined in a Variomax C/N following the Dumas’ method (Ma and Gutterson, 1970).

Isotopic compositions (δ^{13}C_VPDB and δ^{15}N_AIR) of organic matter were measured in sediments and biomass. Sediments were treated with diluted (1:4) HCl to eliminate minor amounts of carbonate. Plankton was separated using silica filters (0.45 μm). An elemental analyser, connected on line to a continuous flux Finnigan MAT Delta Plus IRMS, was used to determine δ^{13}C_VPDB and δ^{15}N_AIR. Analytical precision (as σ) for δ^{13}C_VPDB and δ^{15}N_AIR determinations was 0.2‰, in both cases.

Isotopic compositions (δ^{13}C_VSMOW and δ^{18}O_VSMOW) of waters were also analysed by CO₂ and H₂ equilibration (using Pt as catalyst) in an automatic unit connected online to a double inlet Finnigan MAT Delta S IRMS. Analytical precision expressed as σ was 0.2 and 1.5‰, respectively.

Isotopic standards used as reference were NBS-19 for carbonate δ^{13}C_VPDB and δ^{18}O_VPDB and for water DIC-δ^{13}C_VPDB, IAEA-N1, IAEA-N2, IAEA-NO3 and USGS-40 for δ^{13}N_AIR and IAEA-CH6, IAEA-CH7 and USGS-40 for δ^{13}C_VPDB in organic matter; and VSMOW, SLAP and GISP for δ^{13}C_VSMOW and δ^{18}O_VSMOW in water samples.

The chronological model of Lake Chungarà was based on 17 radiocarbon AMS dates and on one 239U/230Th date (Giralt et al., 2008). The present day reservoir effect of the lake water was determined by dating the dissolved inorganic carbon (DIC) present in the surface lake water, and an apparent age of 2320±20 radiocarbon years BP was obtained. This apparent reservoir effect age was corrected to offset the contamination of the thermonuclear tests carried out in the 1950s and 1960s (see Giralt et al., 2008 for further details). The calibration of the radiocarbon dates was performed using the CALIB 5.02 software and the INTCAL98 curve (Stuiver et al., 1998; Reimer et al., 2004). The software described in Heegaard et al. (2005) was employed to construct a reliable age-depth model, furnishing a corrected age for each calibrated date.
4. Results

4.1. Carbonate types

A detailed petrographic study of the carbonates in Lake Chungará allowed the identification of several occurrences (Fig. 3):

4.1.1. Euhedral to subhedral calcite crystals

Crystals may show flat faces but commonly display a fibrous inner structure with fibres (approximately 1 μm thick) arranged in the [001] direction (Fig. 3A). Only in a very few cases was high magnesium calcite observed. Calcite crystals display euhedral, spindle-shaped, and fibre-bundle (Fig. 3B) morphologies, the last two shapes being predominant. Crystal sizes vary from 6×10 to 80×200 μm with the most common sizes ranging between 10×30 and 50×80 μm. Subunit 2a has the highest numbers of calcite crystals, but calcite already occurs at the top of subunit 1b. Subunits 1a (the oldest lacustrine sediments), 2b, 3 and 4 have very low endogenic carbonate contents. Calcite crystals are scattered among other components (diatoms and siliciclastics) or are concentrated forming white mm-thick levels of almost pure calcite. Similar morphologies in calcite (and high-Mg calcite) have been extensively described in the literature (Fernández-Díaz et al., 1996; González-Muñoz et al., 2000; Braissant et al., 2003; Jiménez-López et al., 2003). The origin of these crystals is attributed to biologically induced precipitation in the epilimnion (Robbins and Blackwelder, 1992; Thompson et al., 1997).

4.1.2. Needle-shaped aragonite crystals

Some calcium carbonate-rich white layers (mm-thick; see cores 11 and 15; Fig. 2) are scattered in the sedimentary sequence and are made up of aragonite needle cumulates. Aragonite needles are crystals elongated after [001], commonly around 2×10 μm in size (Fig. 3C). Aragonite needles have been described in the literature and are related to whittings. They are also produced by calcareous algae and

Fig. 3. Carbonate components in the Lake Chungará sediments: A) Fibre-bundle calcite crystals. B) Subhedral fibre-bundle calcite crystal. C) Needle-shaped aragonite crystals. D) Aragonite spheroids. Aragonite spheroids coexist with calcite crystals (C). E) Inner fibrous-radiated structure of an aragonite spheroid. Ostracoda valves (Linnoicythere sp; F), gastropoda (Biomphalaria; G) and bivalvia (Pisidium; H) shells and charophyta (Chara; I) stems and gyrogonites are the main bioclasts in Lake Chungará sediments. J) Calcite seudomorphs (after ikaité?) in core 14.
microorganisms in marine and lacustrine environments (Lowenstam, 1955; Lowenstam and Epstein, 1956; Macintyre and Reid, 1992; Pedone and Folk, 1996), or precipitated experimentally (Callame and Dupuis, 1972; Zhou and Zheng, 2003).

4.1.3. Aragonite spheroids

Aragonite is also present as spheroids (Fig. 3D) commonly mixed with calcite crystals. Spheroids display variable diameters between 70 and 400 μm and an inner fibrous-radiated structure (Fig. 3E) with radial fibres of aragonite about 0.5 μm thick. Aragonite spheroids are very compact and are yellowish in colour with a pearl-like aspect. Spheroids of aragonite and other CaCO₃ minerals (calcite, vaterite, and nesquehonite) have been precipitated under experimental conditions (Bischoff and Fyfe, 1968; Suess and Fütterer, 1972; Fernández-Díaz et al., 1996; Zhou and Zheng, 2003; Wu et al., 2008; Xiang et al., 2008) and have been described in marine and lacustrine environments (Monaghan and Lytle, 1956; Oppenheimer, 1961; Giralt et al., 2001).

4.1.4. Bioclasts

Calcareous skeletal components consist of ostracode valves (Limno-cythere sp.; Fig. 3F), gastropod (Biompahlaria; Fig. 3G) and bivalve (Psittium; Fig. 3H) shells and corticated charophyte stems (Chara sp.) (Fig. 3I). Ostracode, gastropod and bivalve remains are distributed in varying amounts throughout the entire sequence. Charophyte stems and gyrogonites are restricted to littoral sites. Bivalve shells and ostracode valves are composed of low-Mg calcite, and gastropod shells of aragonite. Charophyte stems commonly consist of low- and sometimes high-Mg calcite.

4.1.5. Calcite cement

Calcite cements that trap other components and replace previous minerals are 1 to 2 mm in size (Fig. 3J), and were found in core 15. Carbonate cement shows grain sizes from 20 to 50 μm. Some of these pseudomorphs resembled those described by Grosjean (1994) in sediments from Laguna Lejía and were interpreted as calcite pseudomorphs versus ikaite.

4.2. Carbonate distribution

Carbonate displays a very heterogeneous distribution through the sequence and along an offshore-littoral transect (Fig. 2A and B). Carbonate bioclasts are scattered throughout the sequence, being more abundant in the dark green levels (rich in green algae, C facies in Sáez et al., 2007) and almost absent in the finely laminated diatomaceous ooze (A facies) of subunit 1a. Calcite crystals and aragonite needles and spheroids are commonly concentrated in white to grey thin layers. These layers are present in the entire series but frequently form discrete carbonate-rich intervals in subunit 1b (B facies) and mainly in subunit 2a.

The shallow to deep offshore deposits of Unit 1 are poor in carbonate. The lowest part (subunit 1a), which consists of a finely laminated green diatomaceous ooze, is practically devoid of carbonate crystals and ostracode remains (0.15 wt.% CaCO₃). The only carbonates are shells of gastropods and bivalves. The upper part of the unit (subunit 1b), which is made up of a laminated and massive brown diatomaceous ooze, contains some carbonate-rich cm-thick intervals (2.25 wt.% CaCO₃) composed of mm-thick carbonate layers of calcite (mostly) or aragonite. Euhedral, 50 μm long, calcite crystals and acicular aragonite crystals, 10 μm long and 2 μm wide, are scattered in the diatomaceous ooze. The upper part of subunit 1b also contains whole and fragmented shells of bivalves and gastropods, but ostracode valves are absent. The interval from 2.56 to 2.66 m, at the top of Unit 1 in core 11, includes two carbonate layers.

The deep offshore deposits of Unit 2 contain higher amounts of carbonate than unit 1. The lower part (subunit 2a) is formed by brown massive diatomaceous ooze and tephras and includes some cm-thick carbonate-rich levels, and ostracode, bivalve and gastropod remains. Carbonate-rich levels account for up to 5% of the total thickness of subunit 2a (reaching around 6 wt.% CaCO₃) and are mostly concentrated in the lower half of the unit. Many levels are bunched of discrete whitish to pinkish mm-thick layers that are composed of calcite, minor amounts of high magnesium calcite and aragonite, and some traces of dolomite. The proportion of the carbonate mineral varies in the same carbonate-rich level throughout the basin. A change from calcite to aragonite was detected (with an accuracy around 1 cm) along several carbonate levels between cores located about 4 km from each other at water depths between 10 and 25 m (Fig. 4). Calcite-rich levels are composed of fibre-bundle crystals (Fig. 3A), spindle-shaped aggregates, rice-shaped crystals and dumbbells (10 to 200 μm long and 6 to 80 μm wide), euhedral crystals (50 to 100 μm in size) and irregular aragonite spheroids (70 to 140 μm diameter). Aragonite-rich levels show needle-shaped crystals 10 μm long and 1 to 3 μm wide. A carbonate-brecia recorded as a unique layer in core 14 (279 to 321 cm depth) with an erosive contact with the underlying sediments is composed of angular shaped, cm-thick carbonate clasts in a diatomaceous brown matrix. The upper part of the unit (subunit 2b, 3.55 cal kyr BP to recent) is formed by a massive dark grey diatomaceous ooze practically devoid of endogenic carbonate crystals (0.24 wt.% CaCO₃ for total endogenic carbonate). Ostracode valves are relatively abundant. Bivalve and gastropod shells are also present in some levels. The chlorophycean Botryococcus braunii records the highest concentration in the whole sequence, which is consistent with an offshore deposition around 30–40 m water depth for this unit (Sáez et al., 2007).

Shallow platform deposits of Unit 3 are composed of dark green diatomaceous ooze with abundant macrophyte remains and tephra levels. These sediments display gastropod and bivalve shells in discrete, mm- to cm-thick layers and carbonate-rich levels equivalent to the ones described in subunit 2a.

Shallow to very shallow littoral deposits of Unit 4 (less than 5 m depth) mainly consist of macrophytic peaty deposits rich in diatoms, some intercalated fine-grained tephra layers and carbonate-rich, charophyte-dominated deposits with gastropod and bivalve shells. Carbonates consist of calcite and Mg-calcite, and reach up to 25 wt.% in charophyte-rich levels. Carbonate components are mainly constituted by mineralized intercellular areas and calcite-covered charophyte stems. Ostracode and gastropod remains are also abundant.

As regards the paleogeographic distribution, carbonates predominate in littoral settings. Apart from core 93L, located on the eastern lacustrine shelf (Fig. 1), cores 14 and 15 (westwards and towards the eastern platform, respectively) contain more carbonate and its crystals are larger. Thus, the only carbonates recorded in core 11 are calcite (as fibre-bundle crystals) and aragonite needles. Aragonite spheroids are only present in littoral settings, being abundant in core 14 and, to a lesser extent, in core 15. Short-core 93S retrieved in the western sub-basin at 19 m water depth describes the most recent centuries of sedimentation in shelf settings in Lake Chungará. Sediments are composed of black, diatomaceous and organic-rich (up to 25% OM) laminated mud with a low carbonate content (6–8%). Two cm-thick levels show a high carbonate content (up to 50%) composed of euhedral calcite crystals and charophyte fragments (Valero-Garcés et al., 2003).

4.3. Isotopic markers of Lake Chungará

4.3.1. Recent water isotopic compositions (δDPSMOW, δ¹⁸OPSMOW and DIC-δ¹³CVPeb)

The water in Lake Chungará is significantly heavier than the water inputs (Chungará River, springs) and the rain and snow in the Lauca Basin (Herrera et al., 2006). All the samples of the lake surface and deep lake waters (November 2002 survey) display homogeneous values in δDPSMOW (–43‰ in average, ranging from −46 to −40‰)
and $\delta^{13}O_{\text{VSMOW}} (-1.6\%$ in average, −1.76 to −1.49% in range), showing $\delta^{18}O_{\text{VSMOW}}$ and $\delta^{18}O_{\text{VSMOW}}$ enrichments of +80 and +15%, with respect to average meteoric waters in the area. Values from an earlier survey (January 2001) show similar values for Chungará lake waters. Isotopic composition of inorganic carbon species dissolved in lake water ($\delta^{13}C_{\text{VPDB}}$) is also significantly heavier than the water inputs (Table 1). Fifteen samples of lake water, 1 sample from the Chungará River and 5 samples from the springs around the lake were also analysed. The Dic $\delta^{13}C_{\text{VPDB}}$ average values are $+4.7\%$ (range between +3.21 and +5.97) for Chungará lake water, -1.1% for Chungará River and -7.14% (-10.14 to -2.69%) for the springs.

4.3.2. Recent and old organic matter C/N atomic ratio and isotopic compositions ($\delta^{13}C_{\text{VPDB}}$ and $\delta^{15}N_{\text{AIR}}$)

Land plant samples in the catchment and aquatic plants, plankton and sediments in the lake were analysed for C/N, $\delta^{13}C_{\text{VPDB}}$ and $\delta^{15}N_{\text{AIR}}$ (Table 2; Fig. 5) to obtain information about biomass provenances in the lake. The C/N ratio of recent biomass in Lake Chungará yields values between 40 and 80 for land plants, between 4 and 25 for aquatic plants, and around 8.7 for plankton. Carbon isotope composition ranges from values around -25% for land plants, -6% for aquatic plants (between -10 and -4%), and around -13% for plankton. Nitrogen isotope composition ranges between -1 and $+5\%$ for land plants, around 0% for cyanobacterial mats, and between 0 and $+12\%$ for aquatic plants.

Recent sediments (2 cm below the water-sediment interface) from short cores, and core 15 show C/N values between 12 and 14, $\delta^{13}C_{\text{VPDB}}$ values around -15% and $\delta^{15}N_{\text{AIR}}$ between $+5$ and $+7\%$. Recent offshore sediments from short-core 93S (Valero-Garcés et al., 2003) show $\delta^{13}C_{\text{VPDB}}$ values between -14 and -20%. Older sediments from core 15 show C/N ratios between 12 and 17, $\delta^{13}C_{\text{VPDB}}$ around -16%, and $\delta^{15}N_{\text{AIR}}$ from $+4$ to $+7\%$ close to the short-core values. Core 11 sediments display lower values of $\delta^{13}C_{\text{VPDB}}$ (between -16 and -22%), $\delta^{15}N_{\text{AIR}}$ between $+10$ and $+11\%$, and C/N values between 8 and 17.

4.3.3. Isotopic compositions ($\delta^{13}C_{\text{VPDB}}$ and $\delta^{18}O_{\text{VPDB}}$) of carbonates

Carbonates were selected from four cores (11, 14, 15 and 93L; Fig. 1). Endogenic carbonates from cores 11, 14 (in offshore areas of the lake) and 15 (on the eastern platform) consist of calcite crystals and aragonite spheroid and, in smaller amounts, needle-like aragonite. All these materials were analysed either as bulk samples (mixed with diatomaceous ooze) when separation of the carbonate fraction was not possible, or as individual components (calcite crystals, spheroids, and aragonite needles). Moreover, bivalve shells and ostracode valves were analysed in offshore core 15. Carbonate samples from core 93L in the eastern shallow platform, which is dominated by Chara gyrogonites and stem incrustations, were also analysed.

Bulk samples containing endogenic carbonate crystals from cores 10, 11, 14, 15 and 93L, show varying isotopic compositions (Fig. 6A). Core 11 located in the central area of the lake (28 m deep) displays values of $\delta^{13}C_{\text{VPDB}}$ between $+3$ and $+5\%$, and $\delta^{18}O_{\text{VPDB}}$ ranging between -0.5 and 0%. Core 14, also in a deeper area (27 m, but close to the NW shore) shows higher $\delta^{13}C_{\text{VPDB}}$ values ($+3.5$ to $+6\%$) and lower $\delta^{18}O_{\text{VPDB}}$ values (-2 to 0%). Samples from core 93L show even more clearly the shift to higher and lower values in both $\delta^{13}C_{\text{VPDB}}$ ($+7$ to $+11\%$) and $\delta^{18}O_{\text{VPDB}}$ (-2 to 0%) at around 5 m depth. The available bulk samples from core 15 (Fig. 6A), which are located on the eastern platform at an intermediate depth of 24 m, show the highest values of $\delta^{13}C_{\text{VPDB}}$ (i.e.: $+14$, $+23\%$) found in the lake. The bulk samples from recent off shore sediments show greater variation...
5. Discussion

5.1. Origin of organic matter

Organic matter in recent sediments in Lake Chungará (upper 2 cm of short-core samples) displays TOC-δ13CVPDB values close to plankton (−15 and −13‰, respectively; Table 2, Fig. 6A). These δ13CVPDB Values are higher than those commonly attributed to plankton (Fig. 5B; Meyers, 1994, 2003) and are related to high values of TOC-δ13CVPDB and δ18OVPDB of carbonates. They are also consistent with the +4‰ DIC-δ13CVPDB values measured in the recent lake water (about 20‰ heavier) (Table 1). The high δ13CVPDB Values along the whole carbon cycle in lakes (DIC, biomass, TOC in sediments and endogenic plankton)

Table 1 Isotopic composition (δ18OVMOW, δ13CVMOW and DIC-δ13CVPDB) of surface waters and springs at Chungará–Cotacotani (November 2002 survey; Herrera et al., 2006).

<table>
<thead>
<tr>
<th>Sample</th>
<th>Site</th>
<th>δD</th>
<th>δ18O</th>
<th>δ13C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Choqueuil</td>
<td>Rain 6-10-02</td>
<td>−132.3</td>
<td>−19.40</td>
<td></td>
</tr>
<tr>
<td>RIO-1</td>
<td>Chungarí river</td>
<td>−113.1</td>
<td>−16.09</td>
<td>−1.15</td>
</tr>
<tr>
<td>MAN-1</td>
<td>Spring Ajata</td>
<td>−105.9</td>
<td>−15.28</td>
<td>−6.86</td>
</tr>
<tr>
<td>MAN-2</td>
<td>Spring CONAF</td>
<td>−121.9</td>
<td>−17.04</td>
<td>−8.97</td>
</tr>
<tr>
<td>MAN-3</td>
<td>Spring</td>
<td>−115.6</td>
<td>−16.49</td>
<td>−7.04</td>
</tr>
<tr>
<td>MAN-4</td>
<td>Spring basalt Parinacota</td>
<td>−112.1</td>
<td>−16.23</td>
<td>−2.69</td>
</tr>
<tr>
<td>MAN-5</td>
<td>Spring N of Ajata</td>
<td>−121.7</td>
<td>−17.12</td>
<td>−10.14</td>
</tr>
<tr>
<td>CHU-1</td>
<td>Chungarí lake, isolated</td>
<td>−144.0</td>
<td>−12.82</td>
<td>−7.65</td>
</tr>
<tr>
<td>CHU-2</td>
<td>Chungarí lake, harbour</td>
<td>−144.4</td>
<td>−12.05</td>
<td>−4.18</td>
</tr>
<tr>
<td>CHUN-1A</td>
<td>Chungarí lake</td>
<td>−142.0</td>
<td>−15.42</td>
<td>−4.96</td>
</tr>
<tr>
<td>CHUN-1B</td>
<td>Chungarí lake</td>
<td>−142.6</td>
<td>−16.62</td>
<td>−4.26</td>
</tr>
<tr>
<td>CHUN-2A</td>
<td>Chungarí lake</td>
<td>−139.9</td>
<td>−15.56</td>
<td>−3.21</td>
</tr>
<tr>
<td>CHUN-2B</td>
<td>Chungarí lake</td>
<td>−143.4</td>
<td>−15.54</td>
<td>−5.17</td>
</tr>
<tr>
<td>CHUN-2C</td>
<td>Chungarí lake</td>
<td>−143.4</td>
<td>−15.57</td>
<td>−4.56</td>
</tr>
<tr>
<td>CHUN-100</td>
<td>Chungarí lake</td>
<td>−144.0</td>
<td>−15.54</td>
<td></td>
</tr>
<tr>
<td>CHUN-101</td>
<td>Chungarí lake</td>
<td>−144.7</td>
<td>−15.84</td>
<td>−4.62</td>
</tr>
<tr>
<td>CHUN-103</td>
<td>Chungarí lake</td>
<td>−143.0</td>
<td>−15.74</td>
<td>−3.86</td>
</tr>
<tr>
<td>CHUN-104A</td>
<td>Chungarí lake</td>
<td>−143.2</td>
<td>−15.53</td>
<td>−5.52</td>
</tr>
<tr>
<td>CHUN-104B</td>
<td>Chungarí lake</td>
<td>−144.4</td>
<td>−15.58</td>
<td>−5.34</td>
</tr>
<tr>
<td>CHUN-105A</td>
<td>Chungarí lake</td>
<td>−144.2</td>
<td>−15.42</td>
<td>−4.53</td>
</tr>
<tr>
<td>CHUN-105B</td>
<td>Chungarí lake</td>
<td>−145.8</td>
<td>−16.11</td>
<td>−3.55</td>
</tr>
<tr>
<td>CHUN-106A</td>
<td>Chungarí lake</td>
<td>−144.3</td>
<td>−14.99</td>
<td>5.97</td>
</tr>
<tr>
<td>CHUN-106B</td>
<td>Chungarí lake</td>
<td>−141.7</td>
<td>−17.66</td>
<td>−3.68</td>
</tr>
<tr>
<td>CHUN-107</td>
<td>Chungarí lake</td>
<td>−143.0</td>
<td>−17.54</td>
<td>−5.52</td>
</tr>
<tr>
<td>COT-1</td>
<td>Cotacotani, Laguna verde</td>
<td>−12.3</td>
<td>−3.02</td>
<td>−7.43</td>
</tr>
<tr>
<td>COT-2</td>
<td>Cotacotani, Laguna verde</td>
<td>−100.2</td>
<td>−12.82</td>
<td>−5.45</td>
</tr>
<tr>
<td>COT-3</td>
<td>Cotacotani lake</td>
<td>−65.8</td>
<td>−5.20</td>
<td>−4.67</td>
</tr>
<tr>
<td>COT-4</td>
<td>Cotacotani lake</td>
<td>−79.4</td>
<td>−7.93</td>
<td>−3.94</td>
</tr>
<tr>
<td>COT-5</td>
<td>Cotacotani lake</td>
<td>−68.4</td>
<td>−7.23</td>
<td>−2.13</td>
</tr>
<tr>
<td>COT-6</td>
<td>Cotacotani, isolated pool</td>
<td>−52.0</td>
<td>−2.19</td>
<td>−6.65</td>
</tr>
<tr>
<td>COT-8</td>
<td>Cotacotani, isolated pool</td>
<td>−9.6</td>
<td>+9.46</td>
<td>−2.88</td>
</tr>
</tbody>
</table>

(+1 to −13‰ for δ18OVPDB and +8 to −25‰ for δ13CVPDB; Valero-Garcés et al., 2002).

Apart from the bulk samples, microsamples of individual components (ostreacid, gastropod and bivalve remains, calcite crystals, aragonite needles and spheroids; Table 3, Fig. 6A) were analysed in the same cores. Excluding charophyte stems from core 93L, δ13CVPDB and δ18OVPDB range from −2 to +6 and from −1 to +4‰, respectively. As a rule, bivalve shells show widespread values and are always rather depleted in 13C (about −5‰) and enriched in 18O (about +3‰) with respect to crystals (calcite or aragonite), spheroids (aragonite) or ostreacid remains. Ostreacid values analysed from core 11 display a pattern similar to that of the bulk samples (δ13CVPDB between +1 and +5‰, and δ18OVPDB between −0.5 and +2‰). Aragonite and calcite crystals, and aragonite spheroids from cores 11 and 14 also show values similar to those of the bulk samples (Fig. 6A).

Likewise, isolated Chara stems show the same isotopic dispersion as bulk samples (strongly dominated by Chara remains) from core 93L.
carbonates) have been ascribed to internal or external causes. Internal causes are high algal productivity and selective 13C uptake linked to persistent eutrophic conditions (Hollander and McKenzie, 1991; Schelske and Hodell, 1995; Gu and Schelske, 1996; Brenner et al., 1999; Meyers, 2003), elimination of light carbon by methanogenesis (Talbot, 1990; Talbot and Kelts, 1990) or high lake water pH and alkalinity (Bade et al., 2004) in lakes with high reservoir effect (Wu et al., 2010). External sources of heavy carbon have been attributed to older carbonate recycling or thermal (and magmatic) CO2 inputs (Valero-Garcés et al., 1999a; Wu et al., 2010).

$\delta^{13}C$ values of plankton and aquatic plants in Lake Chungará (4 to +12$\%$o) are in the range of reported values (Meyers, 2003), reflecting the assimilation of nitrate as NO3$^-$, about +8$\%$ enriched with respect to atmospheric N2. The C/N ratio of plankton and aquatic plants is similar (around 9), being close to that of the recent sediments in the lake bottom (around 11) and far from local land plants (50 on average) (Table 2). These data provide evidence that the main source of organic matter in recent sediments is phytoplankton with minor contributions of aquatic macrophytes (Fritz et al., 2006).

Older sediments show variable isotopic compositions depending on the depositional environment. Higher $\delta^{13}C$ values on the shallow platform (core 15) than in deeper offshore sediments (core 11) may be ascribed to a greater contribution of aquatic plants (macrophytes) and cyanobacterial colonies from littoral environments. The sediments of core 15 show similar $\delta^{13}C_{\text{VPDB}}$ values and slightly higher C/N values than the recent sediments and are about 3$\%$o lighter than plankton, reflecting a macrophytic contribution. Organic matter in offshore sediments (core 11) is mainly derived from phytoplankton. Its low $\delta^{13}C_{\text{VPDB}}$ values cannot be attributed to mixing with land plants (enriched in 13C), as is demonstrated by their C/N ratios (Table 2). It seems more reasonable to suggest that these $\delta^{13}C_{\text{VPDB}}$ values (−17$\%$o in the more recent to −22$\%$o in the oldest sediments) together with C/N ratios between 8 and 17 (12.7 on average) reflect the algal contribution to the total organic matter in the lake sediments (Meyers, 1997; Meyers and Teranes, 2001).

TOC−$\delta^{13}C_{\text{VPDB}}$ (and to a lesser extent $\delta^{13}C$ in carbonates) of Lake Chungará displays increasing values throughout the sedimentary sequence (Fig. 7). A similar trend from lower to higher $\delta^{13}C_{\text{VPDB}}$ has been reported in other lake systems and ascribed to increases in aquatic productivity (Hollander and McKenzie, 1991; Meyers, 2003). Isotopic fractionation produced in the early stages of microbial degradation due to a partial oxidation of organic matter (Lehmann et al., 2002) should be ruled out in the absence of significant changes in the C/N ratio with depth (Table 2). Therefore, other heavy carbon inputs are necessary to account for all the $\delta^{13}C_{\text{VPDB}}$ values in Lake Chungará.

The highest DIC−$\delta^{13}C_{\text{VPDB}}$ values in natural lacustrine environments reported in the literature are around +26$\%$o and correspond to pore-water affected by methanogenesis in Lake Bosumtwi (Ghana; Talbot and Kelts, 1986) and Lake Apopka (Florida, USA; Gu et al., 2004) (Fig. 8). $\delta^{13}C$ enrichment is smaller in the water column (Lake Apopka DIC−$\delta^{13}C_{\text{VPDB}}$ from +5 to +13$\%$o) and has been attributed to advection of heavy carbon through the water−sediment interface and to the DIC speciation at high pH values (−8.3) where HCO3$^-$ is the dominant ionic form (Deuser and Degens, 1967; Hassan et al., 1997; Keeley and Sandquist, 2006). The high $\delta^{13}C_{\text{VPDB}}$ values in Lake Chungará (in DIC, endogenic carbonate and TOC; Tables 1, 2 and 3) are similar to those reported in Lake Apopka. DIC−$\delta^{13}C_{\text{VPDB}}$ pore-water values, calculated from endogenic carbonate sediments of Lake Chungará, are in the highest range (around +23$\%$o). Moreover, the DIC system is currently dominated by HCO3$^-$ (Mühlhauser et al., 1995; Herrera et al., 2006). Recent DIC−$\delta^{13}C_{\text{VPDB}}$ values in the water column (+3 to +6$\%$o) and $\delta^{13}C_{\text{VPDB}}$ values in endogenic carbonate crystals (+3 to +6$\%$o in cores 11 and 14, and +12$\%$o in core 93I, this last core located in a littoral setting) are similar to those reported in Lake Apopka (Gu et al., 2004; Fig. 8).

$\delta^{15}N_{\text{AIR}}$ values show a contrasting behaviour with respect to $\delta^{13}C_{\text{VPDB}}$. The values are more positive in offshore (core 11) than in littoral sediments (core 15; Fig. 5A) of Lake Chungará. Lower marginal $\delta^{15}N_{\text{AIR}}$ values probably reflect cyanobacterial activity and land inputs. The gradual increase in $\delta^{15}N_{\text{AIR}}$ (from +1 to +10$\%$o) and TN between 12.3 and 7.2 cal yr BP (Fig. 7) may be linked to an increase in algal productivity, matching approximately the behaviour of carbon (Meyers and Teranes, 2001).

From 12.3 (the beginning of the sequence) to 10.2 cal yr BP, in subunit 1a, the increase in TOC, TN, TOC−$\delta^{13}C_{\text{VPDB}}$ and TN−$\delta^{15}N_{\text{AIR}}$ suggests a rise in productivity with a maximum around 11 cal yr BP (Fig. 7). This increase in productivity could be related to external inputs associated with runoff during a lake level rise (Sáez et al., 2007).
Furthermore, this change could have increased the surface of the photic zone of the lake, reflecting higher contributions of cyanobacterial colonies and other algae (*Botryococcus*) as biological producers. This matches the values reported for living macrophytes of Lake Chungará (Table 2, Fig. 5) and other alitiplanic lakes (Lake Titicaca, in the Peru–Bolivia border; Fritz et al., 2006). The low TN-δ15N values, which are close to 0‰ in the early and shallower stages of the recorded sedimentary sequence, suggest a biomass dominated by cyanobacteria (Meyers, 2003).

5.2. Origin of carbonates

The carbon isotopic composition of carbonates from the Lake Chungará sediments increases from offshore towards the littoral sediments (Fig. 6A). Charophyte-rich sediments in the eastern margin (core 93L, about +9‰ in average) and calcite-rich laminae in recent sediments (+9 to +5‰; Valero-Garcés et al., 2003) record the heaviest values. Isotopic analyses (δ13CVPDB and δ18OVPDB) were performed along the same carbonate keybed, identified in cores 11 and 14 (both located in offshore settings), displaying similar values around +4‰ for δ13CVPDB and from 0 to −2‰ for δ18OVPDB (Fig. 4). Slightly higher δ13CVPDB in core 14 than in core 11 can also be ascribed to the local influence of higher productivity in a more littoral setting. Evaporation in littoral areas and the local effect of photosynthesis associated with macrophytes would account for the increase in δ13CVPDB. Nevertheless, values exceeding +7‰ suggest other sources of heavy carbon. In Lake Chungará, where there is evidence of anoxia and gas accumulation in the bottom sediments, synsedimentary methanogenesis has to be considered as a possible origin for heavy isotopic carbonate compositions. Evidence of trapped gas (methane?) has been interpreted in the seismic profiles of the eastern platform, where core 15 is located (Sáez et al., 2007). Two carbonate samples from core 15, on the eastern platform of the lake, show the highest values of δ13CVPDB (+13 and +23‰) (Table 3, Fig. 6A). Both samples are the only ones that show an incipient early cementation that replaces earlier minerals (probably CaCO3 precursors such as ikaite) (Fig. 3I). Calcite spherulites with similar methanogenic signatures have been described in Lake Bosumtwi (Talbot and Kelts, 1986). Methanogenic fermentation in the sediments may have caused methane releases to the water column, thus increasing the pore-water DIC, rich in 13C, resulting in Ca-carbonate local replacements. These higher δ13CVPDB values in early diagenetic cements are evidence of bacterial methanogenesis (Turner and Fritz, 1983). The general trend towards higher δ13CVPDB values in carbonates along the whole sequence (Fig. 7) would be a consequence of changes in biological (increase in organic productivity) and chemical (increase in pH and alkalinity) parameters causing higher DIC-δ13CVPDB. The influence of geothermal and volcanic CO2 and degassing during groundwater discharge has been proposed in the shallow lakes of the Andean Altiplano as a 13C enrichment mechanism (Schwalb et al., 1999; Valero-Garcés et al., 1999a, 2000; Gibert et al., 2008). Nevertheless, these processes cannot be applied here. Lake Chungará is neither a saline nor a shallow lake, and it provides no evidence of thermal inputs. Moreover, it is a young lake without a long history of interactions with the surrounding volcanic environment.

The oxygen isotopic composition of carbonates depends on the isotopic composition and on the temperature of the host water. In high-altitude Andean lakes, the isotopic water composition is the main factor that is dependent on the input waters (rainfall, groundwater and runoff) and on evaporative enrichment (Aravena et al., 1999). The Lake Chungará waters are heavier than inputs (springs, rivers, and rainfall) due to the strong evaporation in the Altiplano and environment (Table 1; Fig. 7 in Herrera et al., 2006). The δ18OVPDB values of carbonates, ranging roughly from +4 to −4‰ (Table 3, Fig. 6A) show a clear relationship with the depositional environment: samples from littoral zones of the lake are isotopically lighter than those from offshore areas. Although the variability of the bulk sediment samples is very large, the calcite-rich levels from the short-core 93S show a range similar (0 to −4‰) to that of the separated charophyte stems (−1 to −5‰). Lower isotopic compositions of carbonates suggest inputs of lighter waters and the effect of warmer temperatures in coastal settings. The most likely source is freshwater input and seepage of groundwater in the NE basin.

5.3. Controls on carbonate precipitation

Changes in the carbonate content and mineralogy in the sediments of Lake Chungará record variations in the water chemistry and also in
the type and productivity of biomass in space and time. Thus, a low calcium concentration in waters during the early stages of lake evolution would be responsible for the negligible amount of calcium carbonate precipitation (i.e. in Unit 1, 12.3 to 8.3 cal kyr BP, Figs. 2 and 9). A possible explanation for relatively Ca-poor waters during the early lake stage could be the short leaching time of volcanic rocks in the catchment after the collapse that had dammed the River Lauca, creating the lake. Thereafter, the availability of calcium in waters could have increased with time, giving rise to conditions that favoured a higher (although never dominant) calcium carbonate precipitation, mainly in subunit 2a, 8.3 to 3.55 cal kyr BP. The rise in calcium in lake waters is also consistent with the marked increase in tephra intercalations starting from the beginning of Unit 2 (Sáez et al., 2007). In fact, the onset of a significant precipitation of carbonates can be related to extreme photosynthetic activity associated with massive diatom blooms during a short dry period from 10.0 to 9.6 cal yr BP.

Fig. 6. Isotopic compositions (δ^{13}C$_{VPDB}$ and δ^{18}O$_{VPDB}$) in the carbonate fraction in sediments of Lake Chungará. A) Samples are separated by cores and components. Gastropods are not plotted. B) Samples are separated by stratigraphic units.
Table 3
Isotopic compositions (δ13C\textsubscript{Carb}, δ18O\textsubscript{Carb}) of the carbonate fraction in the Lake Chungará sediments. Results are grouped by cores (10, 11, 14, 15 and 19). The kind of analysed samples (bulk samples, microsamples, isolated components) is indicated in the 'Compo' column. Gastropods are aragonite, bivalves and ostracods are calcite, carbonate crystals are calcite (only one aragonite level has been analysed) and spheroids are aragonitic.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Depth—cm</th>
<th>δ13C\textsubscript{Carb}</th>
<th>δ18O\textsubscript{Carb}</th>
<th>Compo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core 10</td>
<td>Core 11</td>
<td>Core 14</td>
<td>Core 15</td>
<td></td>
</tr>
<tr>
<td>10a1–24</td>
<td>11a2–3</td>
<td>14a1–15</td>
<td>15a1–37</td>
<td></td>
</tr>
<tr>
<td>10a1–44</td>
<td>11a4–5</td>
<td>14a2–14</td>
<td>15a2–30</td>
<td></td>
</tr>
<tr>
<td>10a4–13</td>
<td>11a4–14</td>
<td>14a3–6</td>
<td>15a3–34</td>
<td></td>
</tr>
<tr>
<td>10a4–96</td>
<td>11a4–18</td>
<td>14a3–8</td>
<td>15a3–34</td>
<td></td>
</tr>
<tr>
<td>10a4–112</td>
<td>11a4–18</td>
<td>14a3–9</td>
<td>15a3–34</td>
<td></td>
</tr>
<tr>
<td>10a4–114</td>
<td>11a4–18</td>
<td>14a3–12</td>
<td>15a3–34</td>
<td></td>
</tr>
<tr>
<td>10a4–118</td>
<td>11a4–18</td>
<td>14a3–12</td>
<td>15a3–34</td>
<td></td>
</tr>
</tbody>
</table>

Table 3 (continued)

<table>
<thead>
<tr>
<th>Sample</th>
<th>Depth—cm</th>
<th>δ13C\textsubscript{Carb}</th>
<th>δ18O\textsubscript{Carb}</th>
<th>Compo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core 14</td>
<td>Core 15</td>
<td>CORE 10</td>
<td>CORE 11</td>
<td></td>
</tr>
<tr>
<td>14a1–14</td>
<td>15a1–3</td>
<td>16</td>
<td>63</td>
<td></td>
</tr>
<tr>
<td>14a1–44</td>
<td>15a4–5</td>
<td>17</td>
<td>64</td>
<td></td>
</tr>
<tr>
<td>14a1–96</td>
<td>15a4–13</td>
<td>18</td>
<td>65</td>
<td></td>
</tr>
<tr>
<td>14a1–112</td>
<td>15a4–16</td>
<td>19</td>
<td>66</td>
<td></td>
</tr>
<tr>
<td>14a1–114</td>
<td>15a4–16</td>
<td>20</td>
<td>67</td>
<td></td>
</tr>
<tr>
<td>14a1–118</td>
<td>15a4–16</td>
<td>21</td>
<td>68</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- Calendar years BP.
- Bulk samples mostly contain carbonate crystals with diatomitic ooze. Nevertheless, some mixing with bioclasts is possible. In core 93L, bulk microsamples contain charophyte remains and diatomitic ooze.
- Bulk microsamples contain carbonate crystals mixed with diatomitic ooze.
- Charophyte samples are commonly stems and mixtures of LMC and HMC.
Volume of Lake Chungará. High increases in productivity and in % of benthic diatoms. Start of significant endogenic carbonate precipitation. e) Decrease in productivity following trends and events are indicated: a) Increase in algal productivity. b) Peak productivity attributed to inputs of nutrients (Sáez et al., 2007). c) Marked changes in surface/depth distribution of carbonates and endogenic carbonate crystals and ostracode remains) until the aridity maximum (around 6 kyr). e) Decrease in productivity.

(Bao et al., 2010). The absence of calcium was probably the limiting factor in the early stages of lake evolution (Fig. 7) when phytoplankton productivity was dominant.

Changes in type and distribution of carbonates were attributed to the type and amount of biomass and to hydrologic gradients generated by surface streams in the lake. These gradients and surface streams were controlled by dominant winds, and by surface and underground water inputs to the lake. The deposition of mm-thick carbonate layers covering the whole or a considerable part of the lake must be interpreted as an endogenic bioinduced (due to bacterial and algal activity) and hydrologically controlled precipitation. Experimental studies have shown that differences in calcite (and high-Mg calcite) grain shape and size are generated by growth in a bacterial exopolysaccharide matrix with varying contents of amino acids (Braissant et al., 2003): (a) in the presence of varying concentrations of proteins (lysozyme; Jiménez-López et al., 2003), (b) in gel bacterial cultures (González-Muñoz et al., 2000) or (c) in a gelatinous matrix with varying amounts of Mg2+ (Fernández-Díaz et al., 1996). The changes in morphology and mineralogy observed in the carbonates of Lake Chungará may be the result of variations in the Mg/Ca in the water body and the influence of organic matrices. Aragonite precipitation has been attributed to the loss of CO2 in waters with Mg/Ca ratios exceeding 3 (Bischoff and Fyfe, 1968; Müller et al., 1972; Barkan et al., 2001). This is consistent with the almost monomineral nature (aragonite or calcite) of single offshore carbonate levels. The most recent offshore sediments of Lake Chungará lack aragonite levels, indicating that the Mg/Ca molar ratio in the lake waters was commonly under this value. A single change from calcite (in the deeper part of the lake) to aragonite needle-shaped crystals (on the eastern platform of the lake) was observed along an individual cm-thick carbonate-rich level at a distance of about 4 km. This can be explained by local simultaneous or quasi-simultaneous changes in the water inputs. Both minerals are usually mixed as calcite crystals and aragonite spheroids in marginal areas of the lake (Fig. 3). This is due to the mixing of benthic aragonite spheroids with bloom-related calcite crystals. Similar spheroids in aragonite showing inner radial structure were shown that differences in calcite (and high-Mg calcite) grain shape and size are generated by growth in a bacterial exopolysaccharide matrix with varying contents of amino acids (Braissant et al., 2003): (a) in the presence of varying concentrations of proteins (lysozyme; Jiménez-López et al., 2003), (b) in gel bacterial cultures (González-Muñoz et al., 2000) or (c) in a gelatinous matrix with varying amounts of Mg2+ (Fernández-Díaz et al., 1996). The changes in morphology and mineralogy observed in the carbonates of Lake Chungará may be the result of variations in the Mg/Ca in the water body and the influence of organic matrices. Aragonite precipitation has been attributed to the loss of CO2 in waters with Mg/Ca ratios exceeding 3 (Bischoff and Fyfe, 1968; Müller et al., 1972; Barkan et al., 2001). This is consistent with the almost monomineral nature (aragonite or calcite) of single offshore carbonate levels. The most recent offshore sediments of Lake Chungará lack aragonite levels, indicating that the Mg/Ca molar ratio in the lake waters was commonly under this value. A single change from calcite (in the deeper part of the lake) to aragonite needle-shaped crystals (on the eastern platform of the lake) was observed along an individual cm-thick carbonate-rich level at a distance of about 4 km. This can be explained by local simultaneous or quasi-simultaneous changes in the water inputs. Both minerals are usually mixed as calcite crystals and aragonite spheroids in marginal areas of the lake (Fig. 3). This is due to the mixing of benthic aragonite spheroids with bloom-related calcite crystals. Similar spheroids in aragonite showing inner radial structure were shown that differences in calcite (and high-Mg calcite) grain shape and size are generated by growth in a bacterial exopolysaccharide matrix with varying contents of amino acids (Braissant et al., 2003): (a) in the presence of varying concentrations of proteins (lysozyme; Jiménez-López et al., 2003), (b) in gel bacterial cultures (González-Muñoz et al., 2000) or (c) in a gelatinous matrix with varying amounts of Mg2+ (Fernández-Díaz et al., 1996). The changes in morphology and mineralogy observed in the carbonates of Lake Chungará may be the result of variations in the Mg/Ca in the water body and the influence of organic matrices. Aragonite precipitation has been attributed to the loss of CO2 in waters with Mg/Ca ratios exceeding 3 (Bischoff and Fyfe, 1968; Müller et al., 1972; Barkan et al., 2001). This is consistent with the almost monomineral nature (aragonite or calcite) of single offshore carbonate levels. The most recent offshore sediments of Lake Chungará lack aragonite levels, indicating that the Mg/Ca molar ratio in the lake waters was commonly under this value. A single change from calcite (in the deeper part of the lake) to aragonite needle-shaped crystals (on the eastern platform of the lake) was observed along an individual cm-thick carbonate-rich level at a distance of about 4 km. This can be explained by local simultaneous or quasi-simultaneous changes in the water inputs. Both minerals are usually mixed as calcite crystals and aragonite spheroids in marginal areas of the lake (Fig. 3). This is due to the mixing of benthic aragonite spheroids with bloom-related calcite crystals. Similar spheroids in aragonite showing inner radial structure were shown that differences in calcite (and high-Mg calcite) grain shape and size are generated by growth in a bacterial exopolysaccharide matrix with varying contents of amino acids (Braissant et al., 2003): (a) in the presence of varying concentrations of proteins (lysozyme; Jiménez-López et al., 2003), (b) in gel bacterial cultures (González-Muñoz et al., 2000) or (c) in a gelatinous matrix with varying amounts of Mg2+ (Fernández-Díaz et al., 1996). The changes in morphology and mineralogy observed in the carbonates of Lake Chungará may be the result of variations in the Mg/Ca in the water body and the influence of organic matrices. Aragonite precipitation has been attributed to the loss of CO2 in waters with Mg/Ca ratios exceeding 3 (Bischoff and Fyfe, 1968; Müller et al., 1972; Barkan et al., 2001). This is consistent with the almost monomineral nature (aragonite or calcite) of single offshore carbonate levels. The most recent offshore sediments of Lake Chungará lack aragonite levels, indicating that the Mg/Ca molar ratio in the lake waters was commonly under this value. A single change from calcite (in the deeper part of the lake) to aragonite needle-shaped crystals (on the eastern platform of the lake) was observed along an individual cm-thick carbonate-rich level at a distance of about 4 km. This can be explained by local simultaneous or quasi-simultaneous changes in the water inputs. Both minerals are usually mixed as calcite crystals and aragonite
covariance of Unit 1 (6 and 9 δ units for carbon and oxygen, and $r = 0.9$ in subunit 1a) show that Lake Chungará was shallower and smaller, which is consistent with the sedimentological data. Units 2 and 3 show smaller variability (near 6 δ units for carbon and oxygen) and a weak and negative covariance (r around -0.4). This negative covariance can be ascribed to the recycling of older carbon due to methanogenesis. Unit 4 (which corresponds to the 93L core samples) shows the narrower range of isotopic values along the lake evolution (around 5 δ units) and a weak covariance ($r = 0.36$). The progressive decrease in the range may be due to the fact that Lake Chungará...
reached its highest level during the later evolutionary stages. The weak and positive covariance probably reflects the water inputs and evaporation in the shallow and coastal setting where core 93L is placed.

5.4. Mid-late Holocene paleoenvironmental changes from the carbonate record

Core profile 11 combines low magnesium calcite crystals (‘inorganic’ carbonate) and ostracode low magnesium calcite valves (biogenic carbonate). In the absence of experimental data on the vital effects for *Limnocythere sp* and in order to be able to combine the two carbonates, three samples in which both carbonates coexisted were used to calculate the vital effects (Table 3). δ13C and δ18O relative enrichments of *Limnocythere* carbonate with respect to the coexisting inorganic carbonate was determined in −0.70 and +0.90‰, respectively. Calcite endogenic crystals and ostracode valves (corrected for the vital effect) display similar isotopic values in the Lake Chungará offshore area (i.e. cores 11 and 14), reflecting the DIC-δ13CVPDB values (now around +4 to +6‰; Table 1) in the lake waters. By contrast, bivalve remains vary considerably more because of greater vital effects and the inheritance of aquatic plants that are common in their diets (Keith et al., 1964). This prompted us to use the isotopic data from endogenic carbonate crystals and ostracode valves (corrected of vital effects) from core 11 to obtain the δ13CVPDB and δ18OVPDB vertical profiles of the carbonate fraction (Fig. 7). These profiles were used to characterise the environmental fluctuations of Lake Chungará over the last 10.2 kyr.

The early stages of carbonate precipitation through the upper part of subunit 1a and in the lower part of subunit 1b (between 10.2 and 9.0 cal kyr BP) vary considerably in the δ13CVPDB values, between +7 and −2‰, and in δ18OVPDB, from −3‰ to 0‰ (Figs 7 and 9). This isotopic variability coincided with significant changes in the lake surface/volume ratio (Sáez et al., 2007). First, a flooding of extensive shallow areas of the eastern platform occurred (Hernández et al., 2008). The low δ18OVPDB values at these times (around −3‰) indicate that lake waters had scarcely evaporated. After the flooding, a major peak of benthic diatoms exceeded 40% between 10.0 and 9.6 cal kyr BP, indicating a shallow water environment. During this dry period, lake waters progressively evaporated, and an increase in photosynthetic activity related to the development of extraordinary diatom blooms (Bao et al., 2010) could have triggered the endogenic precipitation of carbonate crystals. Moreover, variations in seasonality giving rise to calcium inputs into the lake linked to short humid seasons during arid periods (such as the recent ‘Bolivian or altiplanic winter’ in the Andes due to changes in the location of the Bolivian High; Vuille, 1999) could have caused intermittent carbonate precipitation (Shapley et al., 2005).

Along the upper part of subunit 1b and in the lower part of subunit 2a (between 9.0 and 7.5 cal kyr BP), δ13CVPDB and δ18OVPDB vary less with higher values between +6 and +2‰ and between −1 and +1‰, respectively. Endogenic carbonate precipitation (mainly as low magnesium calcite crystals) increases significantly in this period, with a strong peak around 8.3 kyr (Fig. 9), which matches the increases in both δ13CVPDB and δ18OVPDB, indicating the evolution towards more evaporated lake waters.

Finally, in subunit 2a and in the lower part of subunit 2b (between 7.0 and 1.5 cal kyr BP) δ13CVPDB values are stable and vary around ±4‰, and δ18OVPDB between ±2 and −1‰, respectively. The trend in subunit 2a towards higher δ18OVPDB values (Figs 7 and 9) reflects the increase in evaporation (and salinity) and the reduction of the lake water volume and depth, coeval with the highest carbonate precipitation, between 8.3 and 6.4 cal kyr BP. The fact that higher δ18OVPDB values occurred during the middle and upper part of subunit 2a and the end of the main carbonate event seems to confirm this evolution: Between the onset of carbonate precipitation at 10.2 kyr and the arrival of the mid-Holocene arid period at 7.3 kyr, carbonates show relatively low δ18OVPDB values. The δ18OVPDB, which increased in carbonates during the development of the arid event, shows that lake waters became more evaporated. In the uppermost carbonate sediments (subunit 2b) the trend reverses, around 6 cal kyr BP, to lower δ18OVPDB values with a drop around 2.2 cal kyr BP, which is interpreted as the final decrease in aridity (Figs 7 and 9).

The increase of about 3‰ between the base of subunit 1b and the centre of subunit 2a followed by a decline until reaching subunit 2b should be interpreted as reflecting an arid period between 7.3 and 3.5 cal kyr BP, with an aridity maximum of around 6.0 cal kyr BP (Fig. 9). An arid period in the mid-Holocene has been suggested on the basis of high resolution XRF and mineralogical data (Moreno et al., 2007) and on the basis of water availability quantified using a statistical approach (Giralt et al., 2008). Furthermore, increases in benthic diatoms at 6.9 (20%), 5.7 (10%) and 4.1 cal kyr BP (Fig. 9) reflect shallower periods along the evolution of the Chungará paleolake (Sáez et al., 2007). This arid period is coeval with the aridity crisis observed in other paleoclimatic records of the Altiplano (Paco Cocha and Titicaca lakes, Abbot et al., 2003; Tapia et al., 2003; and Salar de Uyuni, Baker et al., 2001a) (Fig. 9).

6. Conclusions

Both the sedimentary record and the isotopic markers indicate that phytoplankton is the main source of organic matter in the offshore sediments of Lake Chungará. Lower Unit 1 (12.3 to 8.3 cal kyr BP) is a diatomaceous ooze and the upper Unit 2 (8.3 cal kyr BP to present) is a diatomaceous sediment interbedded with volcanic tufa. Phytoplankton, macrophytes and, to a lesser extent, land plants are the main organic contributions to the littoral sediments.

TOC-δ13CVPDB values reflect the organic provenance (phytoplankton vs. macrophytes and land plants) and changes in productivity. The increase in TN-δ15Nmax in the early stages of lake evolution reflects the increase in aquatic productivity. Changes in TOC along the sedimentary record provide evidence of the increase in biological productivity and in the macrophytic contribution. Low values of δ15Nmax are 0‰, in the lowermost lacustrine sediments are probably due to the dominance of cyanobacterial biomass.

Carbonate content in the Lake Chungará sediments is commonly below 1 wt.% but is higher in the upper part of subunit 1b and the lower part of subunit 2a. In addition to its presence as bioclasts (small molluscs and ostracodes), carbonates consist of endogenic calcite (or aragonite) crystals arranged as cm-thick layers. Seasonal CO2 photosynthetic depictions of lake water DIC may have been responsible for the mm-thick carbonate layer deposition. The long-term carbonate deposition seems to be controlled by changes in seasonality.

Euhedral to subhedral calcite and aragonite crystals and spheroids, micrometric in size, are the most common shapes. Many crystal shapes are similar to those obtained by induced precipitation in gels or exopolysaccharide and proteinic matrix, suggesting similar processes in the sediments of Lake Chungará that account for the coexistence of calcite crystals and aragonite spherules. The presence of calcite vs. aragonite has been attributed to the Mg/Ca ratio in the water and to the precipitation in an organic matrix. Lateral changes in mineralogy (calcite crystals vs. aragonite needles) detected at the same level in locations at a distance of some km were ascribed to contemporary (or quasi-contemporary) chemical changes in the water inputs into the lake.

δ13CVPDB in endogenic carbonate crystals and ostracode valves increased while δ18OVPDB decreased from basin to shore, reflecting the relative contribution of the organic producers (phytoplankton and macrophytes), the DIC inputs, and the residence time. The δ18OVPDB depends on the isotopic composition of water inputs into the lake and its water balance. The variations and covariation of δ13CVPDB and δ18OVPDB indicate that the lake was shallower in the early stages of its evolution and that the water level and volume increased with time. Bacterial methanogenesis in the bottom sediment gave rise to carbonate cements with very high δ13CVPDB values. Heavy carbon
advection to the water column is with DIC speciation (HCO$_3^-$ dominant at pH around 9) responsible for the high δ^{13}C$_{VPPB}$ values (around 15% higher than commonly reported values) in the whole carbon reservoirs of Lake Chungará.

Lake Chungará underwent major changes between the onset of the Holocene and around 9.6 cal kyr BP, which is evidenced by an overall increase in TOC, TN, and TN-δ^{13}C. These changes were probably linked to major shifts in the lake surface/volume ratio, associated with the rise and fall in lake level. A pulse of aridity at around 10 kyr BP in addition to the increased calcium content in the lake water favoured the onset of carbonate precipitation. δ^{18}O$_{PDB}$ values in ostracode valves and endogenic carbonate crystals, combined with other proxies (benthic/planktonic diatoms ratio, water availability inferred from the statistical treatment of magnetic susceptibility and geochemical data) demonstrate an arid period in the middle-Holocene, between 7.3 and 3.5 kyr B.P., and an aridity maximum around 6.0 kyr BP.

Acknowledgements

This work has been funded by the Spanish Ministry of Science and Education through the projects: ANDESTER (BTE2001-3225), LAVOLTTER (CGL2004-00683/BTE) and GEOBILA (CGL2007, 60932/BTE), and by the Catalan Autonomous Government through the 2009SGR1451 project. A. Moreno also acknowledges the funding from the Marie Curie fellowship, OIF proposal 021673. We are also indebted to the fellows of the OIF proposal 021673.

References

