
(This is a sample cover image for this issue. The actual cover is not yet available at this time.)

This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright


Author's personal copy

Behavioural Brain Research 241 (2013) 38– 49

Contents lists available at SciVerse ScienceDirect

Behavioural  Brain  Research

j ourna l ho me  pa ge: www.elsev ier .com/ locate /bbr

Research  report

Determining  shoal  membership  using  affinity  propagation
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� We  propose  using  the  affinity  propagation  clustering  for  detecting  multiple  shoals.
� A  soft  temporal  constraint  is  included  in  order  to detect  shoal  fusion  and  fission.
� We  explore  how  affinity  propagation  performs  on agent-based  simulated  shoals.
� We  compare  affinity  propagation  clustering  to human  clustering  of  the same  data.
� Affinity  propagation  is  an  appealing  approach  for  detecting  shoal  dynamics.
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a  b  s  t  r  a  c  t

We  propose  using  the  affinity  propagation  (AP)  clustering  algorithm  for  detecting  multiple  disjoint  shoals,
and we  present  an  extension  of  AP,  denoted  by STAP,  that  can  be applied  to  shoals  that  fusion and fission
across  time.  STAP  incorporates  into  AP  a soft  temporal  constraint  that  takes  cluster  dynamics  into  account,
encouraging  partitions  obtained  at  successive  time  steps  to  be consistent  with each  other.  We  explore  how
STAP performs  under  different  settings  of  its  parameters  (strength  of  the  temporal  constraint,  preferences,
and distance  metric)  by  applying  the  algorithm  to simulated  sequences  of  collective  coordinated  motion.
We study  the  validity  of STAP  by  comparing  its results  to  partitioning  of  the  same  data  obtained  from
human  observers  in  a controlled  experiment.  We  observe  that, under  specific  circumstances,  AP yields
partitions  that  agree  quite  closely  with  the  ones  made  by  human  observers.  We conclude  that  using
the  STAP  algorithm  with  appropriate  parameter  settings  is  an  appealing  approach  for  detecting  shoal
fusion–fission  dynamics.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Determining group membership is a main concern of scientists
studying animal collective behavior. Despite the growing body of
literature devoted to the subject, criteria for determining shoal
membership are still a matter of discussion. In particular, there is
a need for methods that determine which fish are in a shoal and
which are not. A common criterion to determine members of a shoal
is based on body length based distances: animals within a criterion
distance are considered to belong to the same shoal or group (in fish,
four body lengths [1,2]; in dolphins, 100 m [3]). However, given the
poor empirical evidence for validating that criterion, determining
the limits of the shoal by eye is also common [4].

∗ Corresponding author. Tel.: +34 933 125 088; fax: +34 934 021 359.
E-mail addresses: vquera@ub.edu (V. Quera), francesc.salvador@ub.edu

(F.S. Beltran), inmar@psi.utoronto.ca (I.E. Givoni), ruth.dolado@ub.edu (R. Dolado).

In this article, we  follow the definition of a shoal given by [5],
which permits quantification of this behavior, and is based on an
earlier definition by [2].  According to [5, p. 614], a shoal is a group
of individuals “presenting significant degree of cohesion, limited in
a relatively small portion of space, a consequence of social interac-
tion between these individuals”. However, defining a shoal, which
is a particular kind of social interaction, as being a consequence of
social interaction itself, is a circular definition; thus, “definitions
based on the geometrical or statistical distributions of individuals
(. . .)  are useful in the study of aggregation behaviours because
they are operationally objective and are independent of such
behaviours” [6, p. 487]. Therefore, an appropriate way  to define
shoals is to provide an objective method to quantify cohesion, while
characterizing them as consequences of social interaction seems
unnecessary.

Our current work focuses on cohesion, or aggregation, and
seeks to determine how to objectively characterize shoals. When
synchronisation of displacements is measured, it is typically
assumed that there exists a single group or shoal; however, when
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several shoals are detected they can have different degrees of
synchronisation and intra shoal aggregation. In such cases, it
is more sensible to measure synchronisation and aggregation
for each shoal separately. Therefore, a necessary first step in
the analysis of collective motion is that of determining how
many subgroups exist, and which individuals belong to each
group.

When studying aggregation in groups of fish, three statistical
methods have been proposed for determining which individuals
belong to a shoal and which are outsiders. Such methods aim to
detect a main cluster or shoal, and exclude outliers. These meth-
ods are based on momentary mean distances among individuals
(Miller and Gerlai’s 2008 method, MG08 for short, [7]), on tra-
jectories of nearest neighbor distances during a session (Miller
and Gerlai’s 2011 method, MG11 for short, [8]), and on momen-
tary nearest neighbor distances (Quera, Beltran and Dolado’s 2011
method, QBD11 for short, [9]). When the MG08 is applied over
several successive time units, the assignment of individuals to the
main cluster tends to be unstable in certain cases: as individuals
move, some of them may  be considered members of the shoal
at a certain time unit and excluded from it at the next, while for
a human observer no substantial differences in membership can
be distinguished. MG11 and QBD11, on the other hand, provide
more stable results across time units, though MG11 can only be
applied once all the data from a session have been gathered. None
of these methods aims to segment a group into more than two  dis-
joint subgroups or shoals. MG11 does segment a group into more
than two subgroups, but the subgroups are not necessarily dis-
joint. A comparative summary of the three methods is shown in
Table 1.

Animal group membership can be highly variable, as groups fuse
and fission [10]. Regarding the analysis of animal aggregations,
it is accepted that determining objectively the number of groups
present and which individuals are members of each group is a very
difficult task [6]; consequently, a quantitative method is needed to
detect multiple groups. Moreover, in order to determine the valid-
ity of such a method, its outcome should be compared to estimates
made by human observers, which would “ensure consistency and
objectivity across time and among different observers and studies”
[6, p. 483].

In this article we propose using the affinity propagation (AP)
clustering algorithm [11–14] for detecting multiple disjoint shoals.
We explore how AP performs under a variety of circumstances,
and we compare its output to partitioning results obtained from
human observers asked to perform the same task in a controlled
experiment. In addition, we propose a variant of the algorithm
(denoted by STAP) that takes into account cluster dynamics so
that the results are temporally consistent: that is, STAP can yield
partitions at time t that are related to those obtained at time
t − 1. This is in contrast to performing standard AP on each
time step, yielding independent and not necessarily consistent,
results. Unlike MG11, AP can be applied momentarily and not post
hoc.

2. Affinity propagation

Cluster analysis, or clustering, is the task of partitioning data
into disjoint subsets or groups. When groups also need to be asso-
ciated with a label, the task is known as classification. There exist
a wide variety of clustering and classification techniques, such as
hierarchical cluster analysis, nearest neighbor classification, and
techniques based on swarm intelligence algorithms (e.g., [15,16]).
An iterative, kth nearest neighbor, hierarchical cluster analysis for
detecting shoals was been proposed in [6]. However, results from
hierarchical cluster analysis require a cutoff criteria in order to
determine the actual clusters. k-Means clustering has been pro-
posed for detecting clusters in animal social networks [17], but,
similarly to many other methods, it requires specifying the number
of clusters a priori. In comparison, affinity propagation partitions
data into clusters without requiring a cutoff criteria or knowing
the number of clusters to find. However, like other data cluster-
ing methods, AP requires that some parameters must be specified
by the users; in this article we explore systematically how those
parameters affect AP performance. Affinity propagation was devel-
oped by Delbert Dueck and Brendan J. Frey and has become a
popular method in many research fields such as machine learn-
ing, bioinformatics, social networks analysis, computer vision, and
neuroscience [14, pp. 6–7]. In this article we  present an overview
of AP; for details, we  refer the reader to [11–14,18].

The affinity propagation algorithm takes as input a matrix of
pairwise similarities for n points (sij, i = 1 . . . n, j = 1 . . . n). In our
case, similarities are defined between individual fish represented
by their spatial coordinates. The algorithm partitions the points
into clusters so that each cluster contains exactly one prototypical
data point, known as the exemplar, to which the other points in the
cluster are associated. The similarity sij is a measure of how suitable
point j is to serve as the exemplar for point i; the similarity between
a point and itself, sjj, is known as the preference,  and is a measure
of the a priori suitability of point j is to serve as an exemplar.

The algorithm operates by an iterative message-passing mech-
anism; each data point can be thought of as a node in a network.
Nodes send and receive messages to and from other nodes along
the edges of the network. Each node i transmits its responsibility
(�ij) for recognizing other nodes j as candidate exemplars, and its
availability (˛ij) to be a candidate exemplar for other nodes and for
itself (self-availability, ˛jj). Respectively, these messages reflect the
accumulated evidence “for how well-suited point j is to serve as
the exemplar for point i, taking into account other potential exem-
plars for point i” and “for how appropriate it would be for point i to
choose point j as its exemplar, taking into account the support from
other points that point j should be an exemplar” [13, p. 972]. Mes-
sage passing is an iterative process in which responsibilities and
availabilities are updated as functions of similarities and previous
responsibilities and availabilities. After a certain number of itera-
tions the process typically converges, and the messages no longer
change between iterations. At that point, the messages can be used
to compute the subset of points that are the exemplars, as well as

Table 1
Comparative summary of existing methods for detecting one single shoal vs. outliers. MG08, [7]; MG11, [8];  QBD11, [9].

Methods

MG08 MG11 QBD11

Measure Mean inter-individual distances kth nearest neighbor distances kth nearest neighbor distances
Analysis Momentary Post hoc Momentary
Segmentation criterion Arbitrary (square root of global mean distance) Distribution-based and arbitrary (percentile) Arbitrary (square root of global

mean distance, and percentile)
Result Main cluster/outliers Main clusters/“k-type excursions” Main cluster/outliers
Size  of main cluster Liberal More conservative as total group size increases Conservative
Stability of segmentations Fairly unstable Fairly stable Moderately stable
Computational cost Low High Low
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Fig. 1. An example of the affinity propagation algorithm. (a) Data points from a snapshot of our program MovAgent, which simulates coordinated collective motion [20]. (b)
Clusters  found by the algorithm, with each exemplar point connected to the other points in its cluster. (c) Minimum spanning tree connecting the data points; the geodesic
distance between points 1 and 7 is the total length of the segments connecting 1-2, 2-3, 3-4, 4-5, 5-6, and 6-7, and is greater than their Euclidean distance; geodesic distances
tend  to maximize between-cluster distances.

the association of every other data points to an exemplar. It can
be shown that AP is an approximate method for finding exemplars
such that the sum of similarities between the data points and their
exemplars is maximized.

While AP finds exemplars in the data points themselves, meth-
ods like k-means clustering generate exemplars, which are averages
of the data points. Thus it is unlikely that a data point becomes an
exemplar itself. Also, contrary to k-means and other methods, AP
does not require the number of clusters to be specified a priori;
in AP, the number of clusters that finally emerge depends on the
preference: the greater the preference, the greater the number of
clusters that tend to emerge [11,13]. Given a matrix of similarities,
the range of sensible preference values is bounded by a maximum
and a minimum preference, which are the values that cluster the
n points into n clusters or into a single cluster, respectively; these
bounds can be computed as functions of maximal values in the
similarity matrix [19].

When points represent spatial positions, as in the case consid-
ered here, similarities can be computed from their distances dij.
For example, sij = −d2

ij
[13], and thus all similarities take negative

values; the closer to zero the higher the similarity. Usually, the
preference is set to some percentile of the distribution of simi-
larities among the points. The AP algorithm starts by setting all
availabilities to zero, ˛ij← 0. In each iteration, responsibilities and
availabilities are updated as follows:

�ij ← sij − max
k /=  j
{˛ik + sik} (1)

˛ij ← min{0, �jj +
∑
k /=  i,j

max{0, �kj}} (2)

˛jj ←
∑
k /=  i

max{0, �ki} (3)

The quantities are computed iteratively until ˛ij and �ij do not
vary between iterations. Upon convergence, each point k that sat-
isfies ˛kk + �kk > 0 is deemed to be an exemplar. Fig. 1 shows a set
of 40 data points and how AP partitions them into three disjoint
clusters.

Usually, similarities are converted from Euclidean distances.
However, AP can fail when the data points form structures that
are linearly non-separable. In that case using geodesic distances
appears to be preferable [21]. The geodesic distance is a graph-
based metric. The distance between two data points is the length of
the shortest path connecting the points when traveling along graph
edges. In image processing, the geodesic metric has been proposed

as an appropriate alternative to the Euclidean one for describing
the topological structure of groups of pixels because measuring
distance based on shortest paths better represents connectivity
[22]. Given data points and Euclidean distance, a graph can be
constructed in multiple ways, and we have chosen to use the min-
imum spanning tree. Given the point coordinates, we  first compute
the minimum spanning tree (for example, using Prim’s algorithm
[23]), and then compute for every pair of points the geodesic dis-
tance by summing the lengths of the edges along the only path
connecting the points (using Floyd’s algorithm [24]). Fig. 1c shows
the minimum spanning tree for the data points in Fig. 1a.

3. Affinity propagation with a soft temporal constraint
(STAP)

When AP is applied independently at successive time steps to
points in motion, some pairs of points that, according to AP, belong
in the same cluster at time step t may  be assigned to two  different
clusters at t + 1. They can then be assigned yet again to the same
cluster at t + 2. Visual inspection of the data may sometimes sug-
gest that the points should remain together in the same cluster
throughout these time-steps. Several extensions to AP have been
proposed in which constraints are included in order to enforce
some dependency of clustering solutions over time [25–27].

Here, we  derive a variation of the AP algorithm that includes
a soft temporal constraint when applied at successive time steps.
We denote this variant by STAP. We  use the idea of hard constraints
along time introduced in [27], in which points that were assigned
to the same cluster at some time step were assigned mandatorily to
the same cluster at subsequent time steps. However, we  relax this
constraint to be a soft constraint so that clusters can break; using a
hard temporal constraint would force the algorithm to maintain
the same clusters at successive time steps, thus preventing the
detection of possible shoal fissions and fusions. We  used the binary
variable model for AP, proposed by [18], which permits deriving
variations of the algorithm using a factor graph [28]. We  omit the
details of the derivation and present here final formulas for updat-
ing the availabilities when the temporal constraint is taken into
account.

Let us denote by Gt−1
j

the group of points that were in the same
cluster as point j in the previous time step; if i and j were in the
same cluster at t −1, then Gt−1

i
= Gt−1

j
. Also, let us denote by c

a non-negative soft temporal constraint that reinforces assigning
two points to the same exemplar if in the previous time step both
points were in the same cluster (whose exemplar was  either point,
or a third one). Note that the setting c = 0 degenerates to regular
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Fig. 2. An example of how STAP (AP with a soft temporal constraint) detects subgroup fusion and fission. Results shown were sampled from a sequence every five time
steps.  Three clusters were found at t = 10 and t = 15, two clusters at t = 20 through 30; one cluster at t = 35 through 45; and two  clusters at t = 50 and 55. Exemplar points are
connected to the other points in their clusters. The temporal constraint is set to c = 4000, the preference is set equal to the median of the distribution of similarities, and the
geodesic distance metric was used to compute similarities. Each cluster is represented by a different color.

Fig. 3. A comparison between affinity propagation without and with a soft temporal constraint applied to a group of 40 points in motion for four consecutive time steps,
from  a MovAgent simulation. (a) Regular AP is used, yielding six clusters at each time step; note that some points in the lower right that were in different clusters at t = 1
are  assigned to the same cluster at t = 2, to different clusters at t = 3, and again to the same cluster at t = 4. (b) AP with a soft temporal constraint is used (c = 4000), yielding
two  temporally consistent clusters at the four time steps; the preference was set equal to the median of the distribution of similarities, and the geodesic distance metric was
used  to compute similarities. In both cases, exemplar points are connected to the other points in their clusters. Each cluster is represented by a different color.

AP [13]. Based on the binary variable model, we derive the fol-
lowing availability updates, which now depend on the temporal
constraint:

For the case i = j:

˛jj ← max{−c  + �ij, �ij} (4)

For the case i /= j and i /∈ Gt−1
j

:

˛ij ← min{0, max(−c + �jj + �ij, �jj + �ij)} (5)

For the case i /= j and i ∈ Gt−1
j

:

˛ij ← max{−c  + �jj + �ij, �jj + �ij} − max{0, −c + �jj + �ij} (6)

where:

�ij =
∑
k /=  i,j

max{0, �kj} (7)

�ij =
∑

k /=  i,j

k∈Gt−1
j

�kj +
∑

k /=  i,j

k/∈Gt−1
j

max{0, �kj} (8)

Note that as it turns out, responsibilities in this model are
updated as in regular AP. As can be seen, the temporal constraint c

is subtracted from the availabilities and responsibilities, which in
turn are functions of the similarities among data points. Therefore,
in order to have effect on the clustering process, the temporal con-
straint should be assigned a value on the same scale as the square
of the distances among the data points. Fig. 2 shows an exam-
ple of subgroup fusion and fission as detected by AP with the soft
temporal constraint.

Fig. 3 demonstrates how STAP is affected by the value assigned
to temporal constraint c. It being a constraint, we expect that the
greater its value the more similar the partitions obtained when the
algorithm is applied at successive time steps to a group of points
in motion whose speed is moderate1. We  are also interested in the
overall relationships between the temporal constraint values, and
the two additional parameters of the algorithm: the preference
values, and the choice of distance metric. As mentioned before, it
is expected that the greater the preference the greater the number
of clusters detected by AP at a given time step; we are interested in
exploring how varying the preference actually affects the number

1 In contrast, if points move at high speed and their positions are sampled at
large intervals, the partitions obtained at successive intervals may  not be necessarily
similar.
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of clusters, and whether this effect is independent or not from
the temporal constraint in STAP. Regarding the similarities, we
are interested in investigating which distance metric, Euclidean or
geodesic, can yield partitions that are more similar to how human
observers would partition the data points.

Our objective is twofold: first, we wish to test the performance
of STAP on several sequences of data points by exploring dif-
ferent combinations of the parameter settings (varying temporal
constraint strength, preference strength, and choice of distance
metric). Second, we wish to evaluate how STAP performs by com-
paring its results using a variety of parameter settings with those
obtained by human observers who are asked to partition the same
groups of data points in a controlled task. Only through such exper-
imental comparison we can conclude how well the STAP clustering
method partitions data.

4. Experiments with affinity propagation

Using our agent-based simulation software MovAgent
(http://www.ub.edu/gcai/movagent), we simulated several
sequences of coordinated motion in a group of 40 virtual fish,
which moved on a bounded two dimensional lattice of size
120 ×120. Each fish is represented by a point occupying a lattice
cell at each time step. The program makes coordinated motion
emerge in a group from initial random movements by applying
local interaction rules among the agents that make them adapt
their movements to each other’s; coordination can be achieved at
a global level. Alternatively, several subgroups, each with its own
coordination, can emerge, split, or fusion. Usually, coordinated
motion can be seen on the computer screen after several hundreds
of time steps. The rules are similar but not identical to those in Huth
& Wissel’s shoaling and schooling model [29]; for details about
MovAgent, see [20,9].  Like Huth & Wissel’s model, the graphical
display of the simulated motion is perceived to be similar to that
of real fish.

We selected ten fragments (named A, B, . . .J, ranging from 83 to
159 time steps, with 140.5 consecutive time steps on average) from
the simulated sequences and extracted the two-dimensional coor-
dinates of each virtual fish at every time step; the onset of each
fragment corresponded to a time step when coordinated motion
had already emerged. The criterion to select the fragments was  that
the sequence dynamics exhibited both group fusion and fission.
We developed APAsoft, a computer program written in C language
for Windows, that reads the two dimensional coordinates at suc-
cessive time steps and applies STAP at every step. The program’s
performance (with the temporal constraint set to zero) was vali-
dated by comparing its results for a sample of time steps with those
provided by Frey and Dueck’s apcluster C code [13] and by the R
apcluster package [30], both of which implement regular AP, and
no differences were found.

For a given segment, APAsoft was run 132 times, once for every
combination of the following parameters: (a) temporal constraint
c = 0, 2000, 4000, 6000, 8000 and 10,000 (6 conditions); (b) pref-
erence = minimum similarity, or percentiles 5, 10, 15, . . .,  50 (by
5) of the distribution of similarities (11 conditions); (c) similari-
ties converted from either distance metric, Euclidean or geodesic (2
conditions). At every time step, the similarity between two  virtual
fish was computed as minus the (Euclidean or geodesic) squared
distance between them; given the size of the lattice, the mini-
mum  possible similarity was −2 ·1202 = −28, 800 when Euclidean
distances were used, and lower than it when geodesic distances
were; therefore, for the reasons given previously, we assigned the
constant values in the thousands.

We  observed that in some occasions AP failed to converge when
the number of iterations of the algorithm reached the default used

in Frey and Dueck’s apcluster program (500 iterations). In those
cases APAsoft increased the number of iterations and simulta-
neously the damping factor,  a variable that moderates the updating
of availabilities and responsibilities at each iteration of the algo-
rithm in order to prevent sudden oscillations [13]. We  also observed
that the difference in the number of clusters found by AP in two
successive time steps was  in some cases disproportionate, while
visual inspection suggested that the change in number of clusters
should be much smoother; to avoid that, an upper admissible limit
Lt was defined for the number of clusters at t, Nt, given the number
of clusters found at t − 1, Nt−1: Lt = 2 + Nt−1 + Nt−1 mod  2; if Nt > Lt,
then the partition found by AP at t was ignored, and the data points
were assigned to the same clusters as in t − 1. For two  sample frag-
ments AP was applied 41,448 times (314 time units in total ×132
runs) under the different conditions, Nt > Lt occurring only in 105
instances (0.253%).

4.1. Comparing clusterings

Results obtained when STAP was  applied to the same fragment
while varying the parameters were compared using Hamming
distances. The Hamming distance [31] is a measure of how dif-
ferent are two code sequences of the same length for which a
point to point correspondence can be assumed. It is defined as
the number of positions where codes in one sequence differ from
codes in the other; for example, the Hamming distance between
sequences 01001001111001000101 and 11000101101001010100
(length 20) is HD = 6, and their normalized Hamming distance is
NHD = 6/20 = 0.3. Many distance and similarity indices have been
proposed for comparing results obtained using different cluster-
ing methods (e.g., [32–36]). The statistical properties of many of
those indices have been studied, and equivalences between some
of them have been found [37,38]. In particular, the NHD between
two clusterings equals one minus the Rand index [32], a similarity
measure commonly used in cluster validation [37,39]; a correction
for chance has been proposed for the Rand index [34], and there-
fore for the NHD, but our interest is using the latter as a simple
descriptor without reference to its probability distribution.

In order to compute the Hamming distance between alternative
clustering solutions of the same n data points obtained by STAP
under two  different conditions, we must know how many pairs
of points were assigned to the same cluster in both cases (n11),
how many pairs were assigned to the same cluster in one case but
to different clusters in the other (n10 + n01) and how many pairs
were assigned to different clusters in both cases (n00). The Ham-
ming distance between the two  clustering solutions is then HD
= n10 + n01, and the normalized distance is obtained by dividing it by

the total number of pairs of points,

(
n
2

)
= n11 + n10 + n01 + n00,

that is, NHD = (n10 + n01)/

(
n
2

)
. Obviously, if the two  clusterings

are identical, their distance is equal to zero. The NHD can attain
its maximum (1) only when in the first clustering all points are
together in a single cluster and in the second clustering every point

is a cluster, or vice versa; in that case, n10 =
(

n
2

)
.

For example, suppose that, given n = 6 data points, two  different
clustering solutions were obtained, with two and three clusters,
respectively. Cells in Table 2 contain labels indicating the clus-
ter number to which points were assigned. In Table 3, pairs of
points sharing cluster labels are represented by ones in the trian-
gular matrices and pairs of points belonging to different clusters
are represented by zeroes. The Hamming distance between the
two clusterings is obtained by counting how many cells in the left
matrix differ from their corresponding cells in the right one; in this
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Table  2
A  hypothetical example of two different clustering solutions of a group of six data
points. Table cells are cluster labels to which the points were assigned.

Data points

1 2 3 4 5 6

Clustering 1 2 2 1 1 1 1
Clustering 2 1 2 2 1 1 3

example, HD = n10 + n01 = 9 and NHD = 9/15 = 0.6 (number of pairs is(
6
2

)
= 15).

4.2. STAP results

Fig. 4a shows how varying the temporal constraint and the pref-
erence affect the number of clusters that are detected by STAP,
using either Euclidean or geodesic distances among the virtual fish
for computing their similarities. When no temporal constraint is
applied (c = 0, regular AP) the higher the preference, the greater
the number of detected clusters using either distance metric. This
result is in accordance with what was predicted by [13]. In gen-
eral, using the Euclidean metric tends to yield more clusters than
using the geodesic one irrespective of the preference; only for frag-
ment I the number of clusters detected does not seem to depend
on the metric. When a temporal constraint is applied, the effect of
the preference values on the number of clusters detected is greatly
attenuated, a result that holds for the ten fragments we analyzed.

Table 3
Binary matrices indicating which pairs of points belonged to the same cluster (1) or
to  different clusters (0) according to the two clustering solutions defined in Table 2.

Clustering 1

2 3 4 5 6

1 1 0 0 0 0
2 0 0 0 0
3  1 1 1
4 1  1
5  1

Clustering 2

2 3 4 5 6

1 0 0 1 1 0
2  1 0 0 0
3  0 0 0
4 1  0
5 0

The number of clusters tends to increase only when the preference
value approaches the median, and not by as much as in the absence
of the temporal constraint.

Although replications with more fragments would be necessary
in order to generalize these results, they indicate that the temporal
constraint tends to neutralize the effect of the preference on the
number of clusters. In other words, deciding which preference to
use is largely irrelevant when the temporal constraint is applied.
Fig. 4b shows that the number of clusters detected by STAP at

Fig. 4. (a) Mean number of clusters detected by STAP in ten fragments (A through J), for all parameter settings of the soft temporal constraint c, the preference, and the
distance metric. Preference 0 stands for the minimum similarity among data points. (b) Number of clusters detected in fragments A and B when different values of the soft
temporal constraint are used (preference = 50, geodesic metric).
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Fig. 5. Coordinates of the first component from a principal component analysis on a global, averaged symmetrical matrix of mean Hamming distances between the STAP
clustering results of all different parameter settings; distances measured along that component represent distances between clustering solutions. Results are shown for all
parameter settings of the soft temporal constraint c, the preference, and the distance metric; preference 0 stands for the minimum similarity among data points. Solutions
that  are equivalent have close values on the vertical axis (e.g., c = 4000, Euclidean metric; preferences = 45 and 50). See text for explanation.

successive time units in fragments A and B is considerably less
stable when c = 0 than otherwise; similar results were found for
other combinations of preference values and distance metrics.

For every time step within a fragment, we computed NHDs
among the STAP solutions for each of the 132 parameter value
settings. The NHDs were averaged for all the time steps of a frag-
ment, and arranged in a 132 × 132 symmetrical matrix, one per
fragment; a global 132 × 132 matrix was then obtained by averag-
ing the ten matrices. A principal component analysis of the global
matrix was performed using R’s cmdscale and setting the maximum
number of dimensions of the space to two. The first two  eigenvalues
obtained were 2.355 and 0.240, indicating that distances along the
first component adequately represent the observed NHDs between
clusterings in both fragments. Therefore, in Fig. 5 we present the
coordinates of only the first component for the 132 combinations
of soft temporal constraint, preference value, and distance metric.

Points with similar or identical coordinates indicate that the par-
titions yielded by STAP given their associated parameter settings
are very similar or identical on average. For example, when STAP
was applied with the temporal constraint c = 4000 using Euclidean
distance, the same or very similar partitions were obtained with a
preference setting of 40, 45 or 50, on average. Therefore, the points
that represent those parameter settings have identical or nearly

identical coordinates in the first component. Clusterings found
when the preference is small are very similar across different values
of the temporal constraint; however, as the preference approaches
50, results found under different values of the constraint are more
similar when c > 0 but different from those when c = 0. Thus, using
a non-zero temporal constraint tends to make clusterings depend-
ent only on the preference and the distance metric. When c = 0,
increasing the preference has a clear effect on the clusterings, for
both Euclidean and geodesic distances: very different results are
obtained when the preference is equal to the minimum similarity
than when it is equal to the median similarity. On average, across
all fragments, the effect of the preference is attenuated when the
temporal constraint is increased. These results are consistent with
the results for the mean number of clusters (Fig. 4a).

If the soft temporal constraint has the desired effect on the
clusterings detected by STAP, then the NHD between clusterings
obtained at time steps t and t + 1 should be smaller when the tem-
poral constraint is big as opposed to when it is small or zero. That
is precisely what the results in Fig. 6 indicate. In that figure, mean
NHDs between clusterings detected at consecutive time steps,
averaged for the ten fragments analyzed, are represented as a func-
tion of temporal constraint, preference and distance metric. Mean
NHDs between results at two consecutive time steps decrease

Fig. 6. Mean normalized Hamming distance between STAP clusterings at t and t + 1, averaged for ten fragments, for all parameter settings of the soft temporal constraint c,
the  preference, and the distance metric. Preference 0 stands for the minimum similarity among data points.
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drastically as the temporal constraint is increased, compared to
c = 0. This decrease is more clear and systematic when geodesic
distances are used. Therefore, when the temporal constraint
is applied, the clusterings obtained by STAP in two successive
time units tend to be similar, whereas when c = 0 there are often
considerable differences between the clusterings. We  conclude
that when the objective is detecting fusions and fissions of shoals
that occur gradually, STAP proves to be a useful algorithm.

5. Comparing affinity propagation clustering with human
clustering

Analyzing the quality of clustering results is known as clus-
ter validation,  which can be internal (how well the results fit the
data), external (how well they fit a pre-specified structure) or rela-
tive (how well they fit results from other clustering methods) [40].
According to [6],  objectivity of the clustering results can be ensured
by comparing them with how human observers partition the same
data. Thus, by comparing to human observers, we  obtain a type of
relative validation in which human performance is considered as if
it were an alternative clustering method.

We cannot assume, however, that all human observers will
agree about partitioning when presented the same data sets, and
therefore a sample of observers is necessary. In this section we
describe an experiment in which samples of the data points already
used in Section 4 were presented to human participants. Partition-
ing results obtained by STAP and by humans on same data were
compared using normalized Hamming distances.

5.1. Participants

Thirty-four participants (eight men  and 26 women) volunteered
for the experiment (M = 23.18, SD = 3.83, age range: 19–33 years).
Twenty-five participants were undergraduates and nine were grad-
uate students from the Department of Psychology at the University
of Barcelona. The participants were recruited at an ordinary class
session.

5.2. Material

Fragments A and B, which were previously analyzed using APA-
soft (see Section 4), were sampled regularly every six time steps.
Two subsets of two-dimensional coordinates data were obtained
(fragments A’ and B’), 27 time steps each. Images representing the
coordinates at each time step were displayed on a computer screen
as experimental stimuli by the program Segment [41], written in
C#.NET 3.5 and running on Windows. The program displayed the
images on a 19-in. touch screen according to a predefined experi-
mental plan, and recorded the participants’ responses. A snapshot
of a stimulus used in the experiment is shown in Fig. 7a.

In order to generate training stimuli we selected an additional
fragment 40 time steps long from a sequence of coordinated motion
exhibiting group fission and fusion, simulated by MovAgent. We
regularly sampled the fragment every six time steps, obtaining a
total of eight training images.

5.3. Procedure

Participants were randomly divided into two  groups. In one
group (18 participants) the images for both fragments A’ and B’
were displayed sequentially in temporal order (sequential group),
while for the other group (16 participants) images were displayed
at random (random group). This division allowed us to determine
whether presenting the images sequentially or at random could
have an effect on how points were partitioned. All participants

Fig. 7. (a) Snapshot of a stimulus displayed on a touch screen and (b) an example of
how a participant encircled the points.

observed all the images from the two  fragments, 54 images in total.
Thus, a two-factor mixed experimental design was  used.

Each participant was tested individually. The experimental pro-
cedure was as follows. First, the Segment program displayed text
with instructions on the touch screen. The instructions informed
the participant that several images containing black points were
to follow. The task was  to encircle points that made up a group,
according to the participant. One or several groups of points could
be encircled. The participant simply drew a circle with her or his
finger on the screen and the program displayed it as a red line (see
Fig. 7b). It was  also possible to correct the response by clicking
on a undo button located at the bottom left of the screen. In such
cases, the circles drawn by the participant on the current image
were erased, and the participant could try again. Once the task for
each image was  completed, the participant touched a button on the
bottom right on the screen, and the next image was shown.

The instructions emphasized that each point could only be
assigned to a single group, that is, groups should be disjoint. In
addition, participants were asked to assign every point to some
group, where groups were allowed to contain a single point. All
participants performed the task with the eight training images.
After training, the experimenter asked the participants whether
they had any questions, and made sure that they had understood
the task correctly. Then, the participants performed the task first
with the 27 experimental images for one of the fragments, and
then with the 27 experimental images for the other fragment. A
blank screen was  displayed for three seconds following the first
27 images, indicating that the images for the first fragment had
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Fig. 8. Mean NHD (normalized Hamming distance) between clusterings for each stimulus in fragments A’ and B’ according to the participants. Results for between and within
group  comparisons are shown. Peaks in the graphs indicate disagreement among the participants. Three stimuli about which the participants had various levels of agreement
are  shown for each fragment.

been completed. The order in which the two fragments were pre-
sented was counterbalanced across the participants; that is, in each
group of participants half performed the task first with fragment
A’ then with fragment B’, and the other half performed it first with
fragment B’ then with fragment A’. For each image, the program
recorded which groups of points were encircled by the partici-
pant, and automatically assigned them the same label. Thus, results
for each time step within a fragment consisted of a labels vector
with as many elements as the number of points (40). The labels
identified the groups to which elements belonged according to the
participant.

5.4. Results

In order to compare the participants’ performance with that
of the STAP algorithm, we must first determine whether there
exists a substantial agreement on partitioning results among the
human participants. In cases where such agreement was  found, we
used the participants’ responses as a criterion for evaluating STAP.
Stimuli for which there was  little to no agreement were discarded.

For both fragments, we  averaged the NHDs over all pairs of par-
ticipants for each of the 27 stimuli. Results are shown in Fig. 8
separately for within and between group comparisons; peaks in the
figure indicate participants’ disagreement on partitioning. As the
graph indicates, for fragment A’ agreements (and disagreements)
were fairly similar regardless of the group to which the participants
had been assigned. In other words, displaying the images sequen-
tially or at random was largely inconsequential as far as agreement
or disagreement is concerned.

In fragment A’, there was a high agreement about how to par-
tition stimuli 1 through 4; then, disagreement increased until
stimulus 10, decreased until stimulus 15, and so on. In fragment
B’, very low agreement was observed among the participants for
stimuli 5, 6, 20, 21 and 22, for which the mean NHD was much

larger than for any other stimuli (greater than 0.15 in at least one
of the between and within group comparisons). For this reason, we
discarded the data of these five stimuli from subsequent analyses.
Six snapshots of the stimuli in fragments A’ and B’ can be seen at
the bottom left of Fig. 8 for various levels of agreement.

For each of the remaining stimuli, we computed the mean
NHDs between the clusterings according to the participants, and
those obtained by STAP under different combinations of the
parameters (soft temporal constraint = 0, 2000, 4000, 6000, 8000,
10,000; preference = minimum similarity, percentiles 25, 50; met-
ric = Euclidean, geodesic). Given the fact that the mean NHDs for
both between and within group comparisons were similar, as Fig. 8
indicates, we pooled the data over the two  groups, for each frag-
ment separately. All 27 stimuli in fragment A’ and 22 stimuli in
fragment B’ were used in this analysis. Results are shown in Fig. 9.

For both fragments, when the preference used in STAP equals the
minimum similarity among points, varying the temporal constraint
has no remarkable effect on the distance between the participants’
and the algorithm’s clusterings. However, when the preference is
set equal to the 25th or 50th percentiles of the similarity distri-
bution, using a non-zero temporal constraint highly decreases the
distance when compared with c = 0, and more so when similari-
ties are computed using the geodesic metric. When the temporal
constraint is zero, the greater the preference the greater the mean
distance between the participants’ and the algorithm’s clusterings.
On the other hand, when the preference is at the minimum, the
type of metric used has little effect on the mean NHD. However,
when a temporal constraint greater than zero is specified and the
preference is equal to the 25th or 50th percentiles, the mean NHD
is smaller when the geodesic metric is used, an effect that is clearly
evident when the preference is equal to the median similarity
among points.

In summary, for the fragments we  explored, results
obtained by STAP are mostly in agreement with how humans
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Fig. 9. Mean NHD (normalized Hamming distance) between clusterings according to the participants and clusterings obtained by STAP for combinations of soft temporal
constraint (0, 2000, 4000, 6000, 8000 and 10,000), preference (minimum, percentiles 25, 50), and distance metric. Preference 0 stands for the minimum similarity among
data  points. Results for fragments A’ and B’ are shown.

(on average) partition the same data when a big temporal con-
straint, a non-minimum preference and the geodesic distance
metric are used. However, when the preference is minimal, some
results from fragment A’ contradict those from fragment B’,
because when the Euclidean metric is used the partitions obtained
are as close to those obtained by humans as when the preference
is non-minimum and the temporal constraint is greater than zero.

6. Discussion

The first objective of our research was to test the performance
of affinity propagation with a soft temporal constraint (STAP) by
exploring different values for the algorithmic parameters: tempo-
ral constraint, preference values, and the choice of distance metric
(Euclidean versus geodesic). As expected, results showed that when
no temporal constraint was applied, the higher the preference,
the greater the number of clusters detected. Moreover, the use
of geodesic distances tended to yield a smaller number of clus-
ters compared to Euclidean distances. When a temporal constraint
was applied the effect of the preference on the number of clusters
was neutralized, and no clear differences were observed between
Euclidean and geodesic metrics.

Moreover, a principal component analysis on the average of the
NHDs among the results obtained by STAP under the 132 conditions
of the parameters was consistent with the results for the mean
number of clusters detected. That analysis showed that when no
temporal constraint is used, increasing the preference has an effect
on the clusterings, regardless of the choice of distance metrics,
but that this effect is attenuated as the temporal constraint value
increases. Finally, mean NHDs between clusterings at two  con-
secutive time steps drastically decreases when using a temporal
constraint compared to no temporal constraint, an effect that is
most pronounced when using the geodesic distance metric.

The second objective of the present research was to deter-
mine which values of the STAP parameters yield results that best
match results obtained by human observers. The mean NHDs
over all pairs of participants for each experimental stimuli image
showed that a substantial agreement regarding the clusterings
exists among human observers in almost all images, regardless of
whether images are displayed sequentially or at random (only six
images of one of the fragments had to be discarded as a conse-
quence of low agreement). The globally high agreement observed in
the human performances allowed us to compare the data obtained
in the human observers experiment with the data obtained in

the APAsoft simulations. The mean NHDs between the clusterings
according to the participants and those of STAP showed that the
best agreement between human observers’ and STAP’s results was
obtained when a large value of the temporal constraint and a non-
minimum preference were used. Results regarding the best choice
for the distance metrics are non-conclusive. Even though in general
the agreement observed between human observers and STAP was
higher when using geodesic metric, an exception was  observed in
one of the fragments, where combining minimum preferences and
Euclidean metric resulted in an agreement similar to that obtained
when combining non-minimum preferences and geodesic metric.

In general, the non-zero values that we  chose for the soft tem-
poral constraint (2000, 4000, 6000, 8000 and 10,000) had slight
effects on the agreement between results obtained by humans
and those obtained by STAP. As mentioned before, values in the
thousands were assigned because of the size of the lattice used in
the simulations, though it is also possible (and perhaps desirable)
to use values with a larger spread. Although further explorations
are required, the results suggest that, once an appropriate range of
values is decided upon, according to the lattice order of magnitude
(tens, hundreds, thousands, etc.) the exact value of the temporal
constraint is largely unimportant.

However, some questions still remain to be investigated in
future studies. Firstly, in our experiments, we  only used two dif-
ferent fragments each containing a series of images. Consequently,
our results allow us to achieve only some preliminary conclusions.
In order to achieve more definitive results, partitions obtained
from STAP should be compared with the performance of human
observers on a larger number of fragments showing a variety of
fusion and fission dynamics. Regardless, our results do indicate a
trend that should be tested more exhaustively.

In addition, if the main objective is to automatically detect which
fish belongs to which shoal, then the experimental setting proposed
to the human observers should include information both about the
individuals’ locations (points) and headings (head-to-tail vectors),
which would allow the observers to predict their future direction
of displacements. Thus, in future experiments, images of real fish
should be used, and STAP should be furnished with similarities con-
verted from both distances and differences in polarity among real
fish. One option could be using the F index of flocking or schooling
developed by [42], which is a function of both distances and head-
ing differences between individuals; it is itself a similarity index,
which approaches 1 when the individuals are close and have simi-
lar headings, and approaches 0 when they are either far away, have
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opposite headings, or both. In addition, the data used to test both
STAP and human observers should be obtained from dynamics of
real shoals. Although the data obtained using our MovAgent sim-
ulation program is useful for testing shoal detection methods (see
[9,20]), empirical validity based on real shoal data should also be
of concern.

Finally, as mentioned previously, in addition to fusion and fis-
sion detection, a concern in shoal behavior studies is to determine
which individuals belong to a shoal and which are outsiders. A
method for detecting fusions and fissions in shoal dynamics should
also incorporate a criterion of shoal membership to determine
which fish do not belong to any shoal at a given time unit. A
starting point could be applying one of the previously proposed sta-
tistical methods for detecting outsiders, such as MG08 [7],  MG11
[8], or QBD11 [9].  That is, at each time step, outsiders would be
first detected by one of those methods, and then STAP would be
applied to the rest of the fish that are not considered outsiders.
Alternatively, and possibly more preferably, STAP could incor-
porate the ability to easily create clusters that contain a single
member, or detect outsiders. In that case, STAP would be able to
detect both shoal fusion and fission and at the same time dis-
card individuals that do not belong to any shoal at a given time
step.

6.1. Conclusion

Our results show that applying a soft temporal constraint affects
how the STAP algorithm detects shoal membership. Compared to
regular AP, which has no temporal constraint, using such a con-
straint: (a) neutralizes the effect of the preferences, both on the
number of shoals that the algorithm detects and on the differences
between the clusterings, when non-minimum percentiles are cho-
sen as preferences, and (b) decreases the differences between the
clusterings at two consecutive time steps, thus preventing incon-
sistencies in shoal membership detection across time. In general
these effects are clearer when geodesic distances among fish are
used.

Regarding clustering validation, the results obtained by STAP
agree well with those made by human observers, giving con-
sistency to the results across studies and observers. Thus, when
appropriate parameter values are chosen, the use of the STAP algo-
rithm is an appropriate option for detecting fusions and fissions of
shoals.

Acknowledgements

This project was supported by grants from the Directorate
General for Research of Catalonia (2009SGR-1492) and from the
Ministry of Science and Innovation of Spain (PSI2009-09075). The
authors thank Salvador Herrando and Olatz López for their help in
running experiments and data analysis.

Appendix A. Supplementary Data

Supplementary data associated with this article can be found, in
the online version, at http://dx.doi.org/10.1016/j.bbr.2012.11.031

References

[1] Pitcher T, Magurran AE, Allan JR. Shifts of behaviour with shoal size in cyprinids.
In: Proceedings of the 3rd British freshwater fisheries conference. 1983. p.
220–8.

[2] Pitcher TJ, Parrish JK. Functions of shoaling behavior in teleosts. In: Pitcher TJ,
editor. Behaviour of teleost fishes. 2nd ed. Chapman & Hall; 1993. p. 363–440.

[3] Lewis JS, Wartzok D, Heithaus MR.  Highly dynamic fission–fusion species
can  exhibit leadership when traveling. Behavioral Ecology and Sociobiology
2011;65(5):1061–9.

[4] Krause J. Positioning behaviour in fish shoals: a cost–benefit analysis. Journal
of Fish Biology 1993;43:309–14.

[5] Delcourt J, Poncin P. Shoals and schools: back to the heuristic defini-
tions and quantitative references. Reviews in Fish Biology and Fisheries
2012;22(3):595–619.

[6] Strauss RE. Cluster analysis and the identification of aggregations. Animal
Behaviour 2001;61:481–8.

[7] Miller NY, Gerlai R. Oscillations in shoal cohesion in zebrafish (Danio rerio).
Behavioural Brain Research 2008;193(1):148–51.

[8] Miller NY, Gerlai R. Redefining membership in animal groups. Behavior
Research Methods 2011;43(4):964–70.

[9] Quera V, Beltran FS, Dolado R. Determining shoal membership: a compar-
ison between momentary and trajectory-based methods. Behavioural Brain
Research 2011;225(1):363–6.

[10] Sueur C, King AJ, Conradt L, Kerth G, Lusseau D, Mettke-Hofmann C, et al. Col-
lective decision-making and fission–fusion dynamics: a conceptual framework.
Oikos 2011;120(11):1608–17.

[11] Dueck D. Affinity propagation: clustering data by passing messages [disserta-
tion]. Graduate Department of Electrical and Computer Engineering, University
of  Toronto; 2009.

[12] Dueck D, Frey B. Non-metric affinity propagation for unsupervised image cate-
gorization. In: IEEE International Conference on Computer Vision (ICCV). 2007.
p.  1–8.

[13] Frey BJ, Dueck D. Clustering by passing messages between data points. Science
2007;315(5814):972–6.

[14] Givoni IE. Beyond affinity propagation: message passing algorithms for clus-
tering [dissertation]. Graduate Department of Computer Science, University of
Toronto; 2012.

[15] Jain AK, Murty MN, Flynn PJ. Data clustering: a review. ACM Computing Surveys
1999;31:264–323.

[16] Abraham A, Das S, Roy S. Swarm intelligence algorithms for data clustering.
In: Maimon O, Rokach L, editors. Soft Computing for Knowledge Discovery and
Data Mining. Germany: Springer Verlag; 2007. p. 279–313.

[17] Haddadi H, King AJ, Wills AP, Fay D, Lowe J, Morton AJ, et al. Determining
association networks in social animals: choosing spatial–temporal criteria and
sampling rates. Behavioral Ecology and Sociobiology 2011;65(8):1659–68.

[18] Givoni IE, Frey BJ. A binary variable model for affinity propagation. Neural
Computation 2009;21(6):1589–600.

[19] He Y, Chen Q, Wang X, Xu R, Bai X, Meng X. An adaptive affinity propagation
document clustering. In: 2010 The 7th International Conference on Informatics
and Systems (INFOS). 2010. p. 1–7.

[20] Quera V, Beltran FS, Dolado R. Flocking behaviour: agent-based sim-
ulation and hierarchical leadership. Journal of Artificial Societies
and Social Simulation 2010;13(2) [about 19 pp.] Available from:
http://jasss.soc.surrey.ac.uk/13/2/8.html

[21] Zhang L, Du Z. Affinity propagation clustering with geodesic distances. Journal
of  Computational Information Systems 2010;6(1):47–53.

[22] Huang Y, Huang K, Tan T. Computational primitives of visual perception. In: In:
2009 16th IEEE International Conference on Image Processing (ICIP). 2009. p.
1793–6.

[23] Prim C. Shortest connection networks and some generalizations. The Bell Sys-
tem Technical Journal 1957;36:1389–401.

[24] Floyd RW.  Algorithm 97. Shortest path. Communications of the ACM
1962;5(6):345.

[25] Leone M, Sumedha, Weigt M. Unsupervised and semi-supervised clustering
by  message passing: soft-constraint affinity propagation. European Physical
Journal B 2007;66(1).

[26] Reeder CC. A novel computational method for inferring dynamic genetic
regulatory trajectories [dissertation]. Massachusetts Institute of Technology;
2008.

[27] Yang J, Wang Y, Somya A, Xiu J, Li Z, Zhang B. Spatial–temporal affinity propaga-
tion  for feature clustering with application to traffic video analysis. In: Kimmel
R,  Klette R, Sugimoto A, editors. Lecture Notes in Computer Science. ACCV’10
Proceedings of the 10th Asian conference on Computer Vision, Part II. vol. 6493.
Springer; 2011. p. 606–18.

[28] Kschischang FR, Frey BJ, Loeliger H. Factor graphs and the sum–product algo-
rithm. IEEE Transactions on Information Theory 2001;47(2):498–519.

[29] Huth A, Wissel C. The simulation of fish schools in comparison with experi-
mental data. Ecological Modelling 1994;75–76:135–45.

[30] Bodenhofer U, Kothmeier A, Hochreiter S. APCluster: an R package for affinity
propagation clustering. Bioinformatics 2011;27:2463–4.

[31] Hamming RW.  Error detecting and error correcting codes. The Bell System
Technical Journal 1950;29(2):147–60.

[32] Rand WM.  Objective criteria for the evaluation of clustering methods. Journal
of  the American Statistical Association 1971;66(336):846–50.

[33] Okabe A. Statistical analysis of the pattern similarity between two sets of
regional clusters. Environment and Planning A 1981;13(5):547–62.

[34] Hubert L, Arabie P. Comparing partitions. Journal of Classification
1985;2:193–218.

[35] Vinh NX, Epps J, Bailey J. Information theoretic measures for clusterings com-
parison: variants, properties, normalization and correction for chance. Journal
of Machine Learning Research 2010;11:2837–54.

[36] Meilă M.  Comparing clusterings – an information based distance. Journal of
Multivariate Analysis 2007;98:873–95.

[37] Steinley D. Properties of the Hubert–Arabie Adjusted Rand Index. Psychological
Methods 2004;9(3):386–96.



Author's personal copy

V. Quera et al. / Behavioural Brain Research 241 (2013) 38– 49 49
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