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Abstract 

 

One of the classic research topics in adaptive behavior is the collective 

displacement of groups of organisms such as flocks of birds, schools of fish, herds of 

mammals and crowds of people. However, most agent-based simulations of group 

behavior do not provide a quantitative index for determining the point at which the 

flock emerges. We have developed an index of the aggregation of moving individuals in 

a flock and have provided an example of how it can be used to quantify the degree to 

which a group of moving individuals actually forms a flock.  
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Measuring flocking behavior:  

An index for quantifying the coordinated movement of individuals  

 

Moving in a coordinated way is common behavior throughout nature. Flocks of 

birds, schools of fish, herds of mammals and even crowds of people are systems 

composed of a certain number of individual entities that coordinate their movements in 

order to achieve coherent displacement. All these systems share common properties that 

have been studied using mathematical models (Okubo, 1986; Tanner, Jadbabaie & 

Pappas, 2003) and rule-based models (Aoki, 1982; Huth & Wissel, 1994). The latter 

implement rules that generate complex behavior and use agent-based computer 

simulation to create an artificial world where virtual agents react in accordance with the 

signals of the environment and act by following simple low-level rules in order to 

achieve an established goal (Maes, 1997). 

In accordance with the framework proposed by the adaptive-behavior approach 

(Meyer & Guillot, 1991), the complex behavior patterns observed in organisms are the 

result of those organisms’ reaction to changes in their environment. Such reactions are 

guided by sets of simple low-level rules that result in the emergence of complex higher-

level behavior (Beer, 1990; Brooks, 1991; Holland, 1995). In a seminal paper, Reynolds 

(1987) postulated an explanation for steering in artificial birds (named boids) guided by 

three rules applied to each individual: (a) each boid attempted to avoid collisions with 

its neighbors, (b) each boid attempted to stay close to its neighbors, and (c) each boid 

attempted to match the velocity of its neighbors. These rules were based on the 

neighbors’ local behavior and did not include centralized coordination, but produced 

collective motion along a common heading (Werner & Dyer, 1992; Zaera, Cliff & 

Bruten, 1996; Camazine et al, 2001). 
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Based on Reynolds’ approach, agent-based simulation has been used to study the 

collective displacement patterns of a wide range of organisms, exploring factors such as 

the relationship between group behavior and low-level rules, body characteristics and 

the group’s environmental setting (Inada, 2001; Kunz & Hemelrik, 2003; Oboshi, Kato, 

Mutoh & Hito, 2002). Moreover, this approach is also applied to human displacements 

in order to understand and predict pedestrian flows and the movement of crowds of 

people (Schreckenberg & Sharma, 2002). 

However, when flocking behavior is studied using agent-based simulation, flock 

detection is sometimes carried out merely by observing the changes in the agents’ 

locations over time on the computer screen. Indicators based on the degree of 

parallelism of the agents’ orientation (e.g., polarity, often calculated as an aggregation 

of the deviation of each agent’s orientation from the average orientation) or those based 

on measures of inter-agent distance (often aggregations of nearest neighbor distance or 

distance to the flock center) have been used to analyze flock behavior (Kunz & 

Hemelrik, 2003; Parrish & Viscido, 2005). Other proposed indicators show properties 

of flock stability, shape or trajectory, but there is no simple index integrating different 

measures that indicates the degree of flocking behavior as a whole and that is easily 

applicable to agent-based simulations (Zaera, Cliff & Bruten, 1996).  

Therefore, in order to objectively measure flocking behavior, we defined an 

index of the degree to which a set of agents actually forms a flock. A moving group as a 

whole is considered a flock when all the agents have similar headings and the distance 

between them is low enough; the heading of an agent at time t is defined as the vector 

connecting its location at t-1 with its location at t. For agents i and j at time t, we define 

an aggregation index as follows: 

( )  ( ( )) ( ( ))ij ij ijf t H t Z d tα= ∆ ⋅  
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Their aggregation is the product of H, a function of the difference between the agents’ 

headings at t (∆αij (t)), i.e., the difference, in degrees, between the vectors defining their 

headings, and Z, a function of their distance at t (dij (t)): 
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Both functions can yield values of between 0 and 1. Function H is equal to 1 when the 

agents’ headings are identical, i.e., ∆αij (t) = 0º, and is equal to 0 when the two agents 

face opposite directions, i.e., ∆αij (t) = 180º. Function Z is the inverse logistic function 

(γ > 0, 0 < δ < 1; m > 0); it tends toward 1 when the distance between the two agents is 

close to 0 (in which case the exponential function yields a high value), and it tends 

toward 0 when the distance is great (in which case the exponential function yields a 

value close to 0). Thus, at time t, the aggregation index for agents i and j approaches 1 

only when both H and Z approach 1, and approaches 0 when either H or Z approaches 

0. Therefore, the more agents face similar directions and the closer they are, the greater 

their aggregation index; on the other hand, if the agents have identical headings but are 

far away from each other, or if they are close to each other but their headings are 

opposite, their aggregation index is low. 

 The inverse logistic function is used to ensure that, when the distance between 

agents is either small or great, smooth changes in distance cause smooth changes in 

function Z; however, when the distance reaches a critical value, a smooth change in 

distance causes a big change in Z. Figure 1 shows three inverse logistic functions for 

specific parameters γ = 5 (flattest curve), γ = 10 and γ = 20 (steepest curve); for the 

three curves, δ = 0.5, m = 20. Note that Z decreases as the distance increases, and that 
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the sharpest descent occurs for distances of around δ·m = 10. The greater the γ value the 

more abrupt the descent. On the other hand, the distance at which the abrupt change 

occurs can be adjusted by changing the δ value; e.g., if δ = 0.8 and m = 20, the critical 

distance is 16. Parameter m is the maximum interagent distance that is judged to define 

them as a group, given the dimensions of the world. Then given m, setting δ at 0.5 sets 

the changing point at m/2. Given that extreme γ values produce radical discrimination or 

no discrimination at all, it would seem reasonable to assign it medium-range values. 

 A global aggregation index or flocking index for all the agents present is defined 

as the arithmetic mean of the fij(t) indices, N being the total number of agents: 

 
1

( ) ( )
( 1) / 2

ij

i j

F t f t
N N <

=
− ∑  

Values of F(t) range between 0 and 1; when F(t) = 1, the agents move in a coordinated 

and compact fashion in the same direction, and when F(t) = 0, they are scattered and 

move in a disorderly fashion. Thus, F(t) can be evaluated at each time unit t by 

computing the distances between the agents and the differences between their headings; 

values of F(t) are a time series that indicates when the agents move as a flock and 

whether the flock is maintained over time. If the agents’ behavior is governed by some 

rules that make the flock emerge from initial disorderly movement, then an abrupt 

increase in F(t) indicates such a phase transition. 

 Yet a group of agents moving randomly and not in a coordinated way might 

theoretically result in F(t) > 0. Therefore, in order to evaluate F(t) appropriately, we 

need to know the distribution function of the index for specific N, m, γ, and δ values in 

case the agents have random locations and headings. The distribution function can be 

estimated by assigning random coordinates and headings to the N agents repeatedly and 

independently many times (say, 10,000 times), and by calculating F each time; by 
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averaging the Fs, an estimate of their mathematical expectancy (E[F]) can be obtained. 

Thus, the index can be converted into a Cohen’s (1960) kappa coefficient: 

[ ]
[ ]
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F

F t E F
t

E F
κ

−
=

−
  

In other words, at each time step, the difference between the obtained F(t) and its 

expected value in the case of random movement is divided by the maximum possible 

difference. Therefore, kappa can be viewed as the degree to which agent interaction 

actually causes a flock: a flock exists when ( ) 0F tκ >  (i.e., the agents’ headings are 

similar and their distances are shorter than in the random case), and the closer ( )F tκ  is 

to 1, the more defined the flock is (i.e., the more similar the agents’ headings are and the 

shorter the distance between them). Converting F into a kappa coefficient makes it 

easier to interpret, because while actual values of F depend on the number of agents and 

the size of the world in which they move, kappa can be viewed as a sort of standardized 

index, making it possible to compare flocks with different group and world sizes. 

We will show that ( )F tκ  makes it possible to distinguish between different kinds 

of flocking behavior (i.e., compact, disperse, etc.). Using agent-based simulation, we 

will generate groups of agents that act according to specific low-level rules of 

interaction (see below), and will check if the apparent flocks shown on the computer 

screen match the results indicated by ( )F tκ  over time. 

Method 

In order to show that the index ( )F tκ  distinguishes between flocking and non-

flocking behavior, and between different kinds of flocks, we generated flocks using an 

agent-based software, P-flock, written in Borland C language. It is based on P-space, a 

program that simulates spatial behavior and has been presented elsewhere (see Quera, 

Beltran, Solanas, Salafranca & Herrando, 2000; Quera, Solanas, Salafranca, Beltran & 
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Herrando, 2000; Beltran, Salas & Quera, 2006)
1
. In P-flock, agents move on a two-

dimensional torus world sized 120 x 90 cells; each cell can only be occupied by one 

agent at a given time step. Agents have a scope of attention (a circular sector which is 

defined as an area to which the agent pays attention at time t, so that only the other 

agents within that area are taken into account) and move according to a general rule: 

each agent moves within its local neighborhood of cells in order to minimize its local 

dissatisfaction. At each time unit, agent dissatisfaction depends on the discrepancy 

between the real distances it actually maintains from the other agents and the ideal 

distances it wants to keep from them. Thus, at each time unit, an agent moves to that 

location within its current neighborhood for which its dissatisfaction is minimum. Ideal 

distances change dynamically, and their change is caused by the outcomes of the 

interactions between the agents.  

The model describing how ideal distances change is a set of low-level rules, 

which we call the Flock Synthesis Rules (FSR). According to this model, agent i 

initially moves without bearing in mind any other agent j, until its real distance from 

agent j is less than some critical value A. When this value is reached, the FSR are 

activated in agent i with respect to agent j; from that moment on, the ideal distance 

experiences two different kinds of change: smooth and abrupt. A smooth change is 

caused by agent i adapting to agent j's movements, which may cause the ideal distance 

to increase or decrease by constant amount C at each time step; an abrupt change can 

occur when the ideal distance remains constant during a certain time period B, in which 

case the ideal distance is increased by a large amount, and later on it will be decreased 

to the value it was prior to the change. Smooth changes in the ideal distance are 

governed by discrepancies between what agent i predicts regarding its future real 

distance to agent j and the actual change in real distance once both agents have moved. 
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Table 1 details how decisions regarding the increase or decrease in the ideal distance are 

made at each time step; these decisions are made for each agent i with respect to each 

other agent j if the FSR are activated for agent i towards agent j, and if agent j is within 

the scope of attention of agent i (i, j = 1 to N).  

In a set of simulations, we defined N = 20 agents and initially assigned them 

random coordinates and headings. The agents’ scope of attention was set at 180º and the 

parameters for calculating the F index were set at γ = 10, δ = 0.5 and m = 20. The scope 

of attention and world settings remained constant for all conditions. We varied 

parameters A, B and C of the FSR systematically through three conditions: A = 60, B = 

6, C = 0.01; A = 6, B = 6, C = 0.01; and A = 6, B = 100, C = 0.01. These conditions 

were chosen because previous simulations showed clear differences in the behavior of 

the agents on the computer screen. The three conditions produced, respectively, a 

compact flock (the agents remained very close to each other and had approximately the 

same headings), a scattered flock (the agents remained at greater distances from each 

other than in the preceding condition but had very similar headings) and no flocking 

behavior. We compared the flocking behavior observed on the computer screen and the 

F(t) index. For each condition we ran program P-flock for 20,000 time steps. At each 

time step of the simulation, the program calculated both F(t) and its corresponding 

( )F tκ .  

Results and discussion 

In the first condition (A = 60, B = 6, C = 0.01), the agents remained very close to 

each other and had approximately the same headings throughout the simulation. 

Correspondingly, kappa reached values near 1 almost from the beginning of the 

simulation. In the second condition (A = 6, B = 6, C = 0.01) the agents remained at 

greater distances from each other than in the preceding condition but had very similar 
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headings; in this case, kappa values oscillated in a range of medium values 

(approximately between 0.30 and 0.60) from time unit 4,000 onward. Finally, in the 

third condition (A = 6, B = 100, C = 0.01) no flocking behavior was observed on the 

computer screen, i.e., the agents remained far away from each other and their headings 

did not appear to be coordinated; accordingly, kappa values remained very close to zero 

throughout the simulation (see Figure 2). Snapshots of the group of agents as observed 

on the screen can be seen in Figure 3. 

We have presented a simple and potentially useful index for measuring flocking 

behavior. The results provide an overview of its aim and usefulness: the F index 

(converted into a Cohen’s kappa index for ease of interpretation) has proved to be 

sensitive to the different flocking patterns that can be generated by our FSR model, 

since it reached nearly the maximum value (around 1) for a compact flock, medium 

values (around 0.5) for a scattered one, and minimum values (around 0) when no 

flocking behavior was apparent. The index can therefore be effectively used to quantify 

the aggregation of moving individuals as the degree to which they move along a 

common heading while keeping the distance between them short. The index can also be 

useful to compare the data from different flocking-behavior studies. 
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Footnotes 

1. Both P-flock and P-space can be downloaded from 

www.ub.es/comporta/gcai/Paginas/gcai_Downloads.htm 
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Table 1 

Decision table describing smooth changes at the ideal distance, in accordance with the Flock Synthesis Rules 

Agent i’s prediction at t of its real distance 

to agent j at t+1 

 Outcome at t+1 after both agents i and j 

have moved 

Smooth change in the ideal distance of agent i 

with respect to agent j at t+1 

Approach:  

Real distance at t+1 will be less than at t, 

because agent i is moving towards agent j’s 

current location at t. 

  

Actual approach > predicted 

Ideal distance decreases; prediction is 

positively rewarded 

 Actual approach = predicted  Ideal distance does not change 

 Actual approach < predicted Ideal distance increases; prediction is 

negatively rewarded  

No change: 

Real distance at t+1 will be equal to that at 

t, because agent i is not moving. 

 Real distance has changed Ideal distance does not change 

 Real distance remains the same Ideal distance is increased or decreased, with 

probability 0.50 

Distancing:  

Real distance at t+1 will be greater than at t, 

because agent i is moving away from agent 

j’s current location at t. 

  

Actual distancing > predicted 

Ideal distance increases; prediction is positively 

rewarded 

 Actual distancing = predicted Ideal distance does not change 

 Actual distancing < predicted Ideal distance increases; prediction is 

negatively rewarded 
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Figure Captions 

Figure 1. Inverse logistic function used to calculate aggregation index F. It describes the 

effect of the real distance d between two agents on the Z(d) function. The curves 

correspond to parameters γ = 5 (flattest curve), γ = 10 and γ = 20 (steepest curve); for 

the three curves, δ = 0.5, m = 20 . 

 

Figure 2. Evolution over time of aggregation index F (converted into a kappa 

coefficient), for each of the three simulation conditions under the FSR model: (a) A = 

60, B = 6, C = 0.01; (b) A = 6, B = 6, C = 0.01; (c) A = 6, B = 100, C = 0.01. Kappa 

values are shown smoother using an average moving window 100 time units wide. 

 

Figure 3. Snapshots of the graphic output of the simulation at approximately time unit 

10,000 for each of the three simulation conditions under the FSR model: (a) A = 60, B = 

6, C = 0.01 (left); (b) A = 6, B = 6, C = 0.01 (middle); (c) A = 6, B = 100, C = 0.01 

(right). The arrows indicate the location and heading of each agent. 
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Figure 1. 
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Figure 2 
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Figure 3. 

 

          

 


