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Zinc indium tin oxide (ZITO) transparent conductive oxide layers were deposited via radio frequency

(RF) magnetron co-sputtering at room temperature. A series of samples with gradually varying zinc

content was investigated. The samples were characterized with x-ray and ultraviolet photoemission

spectroscopy (XPS, UPS) to determine the electronic structure of the surface. Valence and conduction

bands maxima (VBM, CBM), and work function were determined. The experiments indicate

that increasing Zn content results in films with a higher defect rate at the surface leading to the

formation of a degenerately doped surface layer if the Zn content surpasses �50%. Furthermore, the

experiments demonstrate that ZITO is susceptible to ultraviolet light induced work function

reduction, similar to what was earlier observed on ITO and TiO2 films. VC 2011 American Institute of
Physics. [doi:10.1063/1.3647780]

INTRODUCTION

Transparent conductive oxides (TCOs) have attracted

considerable attention in recent years due to their high con-

ductivity, high transparency, and industrial process compati-

bility.1,2 In solar cells, TCOs are used as transparent

electrodes where band alignment matching with active layers

is important. Binary compounds like doped indium oxide,

zinc oxide, and tin oxide are widely used because they pres-

ent unique electrical and optical properties. Zinc indium tin

oxide (ZITO) alloys have been previously studied and

improvements in electrical3,4 and mechanical5 properties

compared to indium tin oxide (ITO) were reported for certain

compositions. The objective of the presented experiments

was to characterize the electronic structure (i.e., work func-

tion and band edge energies) of ZITO thin films in order to

assess their suitability for electrode applications.

In the presented experiments, six ZITO thin films ranging

from 17% to 67% Zn concentration, as well as pure ITO and

ZnO films, were investigated with x-ray and ultraviolet photo-

emission spectroscopy (XPS, UPS). The presented results

indicate the formation of a degenerately doped surface layer

for ZITO films with 50% Zn or higher. This surface layer is

caused by an increasing O defect density with increasing Zn

concentration.

A secondary focus of the experiments was directed

towards the investigation of the measurement technique

itself, in particular, the UPS measurements which are the

“standard” way to characterize the work function of surfaces

since absolute values can be obtained with this technique.

However, recent research demonstrated that UPS measure-

ments on metal oxide surfaces can result in a lowering of the

work function caused by the measurement itself.6–9 These

experiments suggested that this phenomenon is likely caused

by the formation of a surface dipole due photochemical

hydroxylation of the surface by UV photons during the UPS

measurement. While the artifact occurs instantaneously dur-

ing UPS characterization (i.e., cannot be detected by UPS

itself), it was possible to identify its magnitude through low

intensity x-ray photoemission spectroscopy (LIXPS), which

exposes the surface only to magnitudes lower photon fluxes,

while still enabling the determination of the work function.

Hence, another objective of the presented research was to

investigate whether ZITO surfaces are also prone to this arti-

fact. In this context, LIXPS measurements were performed

on all of the investigated films prior to the standard UPS

measurement. These experiments demonstrated that ZITO

films indeed show a comparable work function reduction as

was seen on other ex-situ cleaned metal oxide surfaces.

EXPERIMENTAL

ZITO samples were deposited at the University of Bar-

celona by radio frequency (RF) magnetron co-sputtering of

ZnO and ITO (In2O3 doped with 10% SnO2) at room temper-

ature. The equipment used was an ATC ORION sputtering

from AJA International, Inc. A Zn content ratio from 0 to

67% was achieved by increasing ZnO RF power from 0 to

150 W while keeping ITO RF power constant (50 W). A pure

ZnO sample was also deposited at 120 W. The sample to

substrate distance was kept at 12 cm with a rotation speed of

10 rpm and 3-inch target purity was of 99.995% for ZnO and

99.99% for ITO. This process yielded �210 nm thick films

on Corning glass (1737 F). More detail about the sample

preparation process can be found in Ref. 10. After deposi-

tion, the sample conductivity was measured by four-point

probe to ensure identical conductivity to the samples investi-

gated in Ref. 10.

Photoemission spectroscopy characterization was per-

formed in a commercial ultra high vacuum (UVH) multi-

chamber system (SPECS GmbH) at the University of South

Florida. 1 cm� 1.5 cm sections of the ZITO coated glass

slides were directly screwed to sample holders ensuring
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electrical contact through the mounting screws. All samples

were cleaned in an ultrasonic bath for 10 min each in ace-

tone and isopropanol just before loading them into the vac-

uum system. No other cleaning treatment was performed in

order to achieve a similar surface condition as used at the

University of Barcelona lab for device preparation and

characterization.

The samples were characterized with XPS (Mg Ka,

1253.6 eV) and UPS (He I, 21.21 eV). Additional LIXPS

measurements were performed before and after each UPS

measurement to investigate the occurrence of UV-induced

work function lowering during UPS measurements. During

LIXPS measurements, the X-ray gun is operated in stand-by

mode, resulting in a photon exposure orders of magnitude

lower compared to XPS or UPS, while still allowing the

measurement of a well-resolved secondary edge. This allows

the determination of the work function of the sample prior to

UV exposure during UPS measurements. More details of the

technique are described in Ref. 8. During UPS and LIXPS

measurements, a �15 V bias voltage was applied to the sam-

ple to separate sample and analyzer spectral cutoffs. Analysis

of the photoelectrons was performed with a SPECS Phoibos

100 hemispherical analyzer. The spectrometer was calibrated

to yield the standard Cu 2p3/2 line at 932.66 eV and Cu 3p3/2

at 75.13 eV. Spectral analysis was done using IGOR pro soft-

ware (Wavemetrics, Inc.) where work function values were

determined by determining the intersect of secondary edge

with the baseline of the spectra. 0.1 eV was added to such

determined values to account for the analyzer broadening.11

The measurement protocol for all samples had four

steps: An initial LIXPS characterization was carried out

(“LIXPS A”) to measure the work function. Then, the sam-

ple was characterized with UPS. After the UPS measure-

ment, a second LIXPS measurement (“LIXPS B”) was

performed to investigate whether UPS caused any surface

modification affecting the work function. Finally, each sam-

ple was characterized with XPS to assess the stoichiometry

of the surface.

RESULTS

Eight samples were characterized: Pure ITO and ZnO

thin films, and ITO films with 17, 37, 49, 54, 63, and 67%

Zn (relative to the In content). Fig. 1 summarizes the results

from the UPS measurements on this set of samples. The bot-

tom spectra correspond to the pure ITO film, while the sub-

sequent spectra reflect the films with increasing Zn content,

with the top spectra corresponding to the pure ZnO film.

The center graph shows the raw UP-spectra as meas-

ured. The main spectral features include the Fermi energy at

0 eV binding energy, the valence bands density of states

below �3 eV and the secondary edge cutoff at about

17–18 eV. The valence bands spectra are shown in the graph

on the right with the inelastic background removed. These

spectra show that the valence bands maximum (VBM) bind-

ing energy changes depending on the Zn content. The ITO

film has a VBM at 3.3 eV, while the edge shifts by about

0.8 eV to higher binding energy with increasing Zn content

of the ZITO films. The pure ZnO film has a lower VBM

energy similar to the pure ITO film.

The graph on the left shows the normalized secondary

edge spectra measured with LIXPS before (LIXPS A) and af-

ter the UPS measurement (LIXPS B). The observed shift of

the order of 0.5 eV to higher binding energy from A to B

measurements is a result of the work function reduction of

the surface due to UV-induced surface hydroxylation during

the UPS measurement. However, it is also obvious that the

initial LIXPS A cutoffs shift to a higher binding energy

reflecting a real work function reduction as the Zn content

increases. The work function change between ITO and ZnO

is about 0.4 eV.

Fig. 2 shows the corresponding XPS spectra. The three

graphs show the Zn 2p3/2, the O 1 s, and the In 3d5/2 lines

measured on the eight thin films. The Zn 2p3/2 sequence

shows an increase in intensity depending on the Zn content

of the samples. This is in direct agreement with the attenua-

tion of the In 3d5/2 emission line as the In content decreases

correspondingly. Both lines show a shift to higher binding

energy as the Zn content increases; however, the shifts are

different in magnitude. The In 3d5/2 line shifts by 0.35 eV,

while the Zn line exhibits a shift of 0.6 eV between the 17%

and the 67% films. The Zn peak of the final ZnO film has a

lower binding energy corresponding to only a 0.2 eV shift

relative to the initial 17% film.

The O 1 s spectra show a complex change of their spec-

tral features, which are composed of at least three lines. The

main line at about 530.5 eV corresponds to O2� bonded at

fully coordinated metal sites, while the line at about 532 eV

is related to sites with oxygen vacancies. The third (smaller)

emission feature at about 532.6 eV is related to surface con-

tamination (water, OH). As the Zn content increases the O

vacancies related component increases its intensity, indicat-

ing a higher defect density in these films. The final pure ZnO

film shows again a smaller 532 eV component. In addition to

these stoichiometric changes, the lines also shift to higher

binding energy similar to the two metal related lines. The

shift of the low binding energy O 1 s line between pure ITO

and ZnO is 0.7 eV.

The observed shift of each of the core level lines is most

likely a result of both stoichiometric and doping density

changes depending on the composition as well as the density

of O vacancies in the films.

DISCUSSION

The evaluation of the UP- and LIXP-spectra shown in

Fig. 1 yielded the work function and the VBM energy for

each of the investigated films. In addition, using the recently

published band gap energies for each of the investigated

ZITO compositions,10 the respective conduction bands min-

ima (CBM) can also be estimated for each of the films. The

results of this evaluation are shown in Fig. 3. The top part of

the figure shows the evolution of the work function depend-

ing on the composition of the films. The solid round markers

correspond to the work function values measured during the

initial LIXPS step before the UPS measurement was per-

formed on each sample. The open markers correspond to the

073711-2 Carreras et al. J. Appl. Phys. 110, 073711 (2011)
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work function values determined from the second LIXPS

measurement after the UPS characterization. The two dashed

lines correspond to least square fitted lines into each of the

two sets of values. The lines indicate that the overall work

function change caused by the UPS measurement appears

somewhat reduced as the Zn concentration is increased.

However, the overall values in the range of �0.4–0.6 eV are

in good agreement with values previously seen for this arti-

fact on ITO and TiO2 surfaces.6–9 In these previous studies,

it was found that UV or x-ray photons cause a photochemical

surface hydroxylation, resulting in a uniform dipole potential

across the surface. This lowers the work function since the

attached �OH groups are oriented with their positive hydro-

gen end away from the surface.

For the further evaluation of the electronic structure of

the investigated films the work function values of the LIXPS

A measurement will be used since they yield the “true” work

function of the samples before the UPS measurement caused

the work function to drop. It has been previously shown in

direct comparison with in-situ Kelvin probe measurements

that LIXPS measurements do not alter the work function sig-

nificantly during the short and weak x-ray exposure needed

for a single LIXPS scan.7 Fig. 3 shows that the work function

of the films drops by about 0.4 eV between pure ITO and

pure ZnO. The absolute values range from 4.74 eV for pure

ITO to 4.3 eV for pure ZnO.

These values fall into the range of work function values

established previously for these materials. The work function

value of the pure ITO sample is similar (60.1 eV) to values

previously measured on ex-situ cleaned thin films.6,7,12 Scan-

ning Kelvin probe measurements by Chen on ITO films

yielded values ranging from 4.28 to 4.86 eV depending on

the surface treatment.13 Previous work function measure-

ments on pure ZnO by Kelvin probe yielded values between

FIG. 1. (Color online) Work function and valence bands characterization. The center graph shows the raw UPS data. The strong feature at �17 eV binding

energy is the secondary edge cutoff, which allows the determination of the work function of the samples. The energy range between 0 and �10 eV corresponds

to the valence bands density of states of the samples. Part of this range is shown magnified and with the inelastic background removed on the right. A distinct

change of the density of states can be observed as the Zn concentration of the films changes. Also, a shift of the VBM to higher binding energy is observed. On

the left the secondary edge cutoff measured with low intensity XPS (LIXPS) before and after the UPS measurements is shown. The exposure to the UV light

during UPS data collection shifts the secondary edge to higher binding energy on all samples. This corresponds to a work function lowering, which is caused

by photochemical hydroxylation of the surface.
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4.45 and 4.50 eV,14 similar to the presented value of 4.3 eV.

Klein et al.15 investigated a variety of in-situ deposited ZnO

layers at room temperature, measuring work function values

ranging from 4.3 to 5.2 eV depending on the oxygen defi-

ciency of the films. The same paper gives values between 3.8

and 4.7 eV (Ref. 15) for in-situ prepared 10% Zn and 30%

Sn co-doped In2O3, which is in good agreement with the

range found here (4.4–4.7 eV). Finally, a similar range of

work function values was found on Al-doped ZnO films

through scanning Kelvin probe measurements.16

The bottom part of Fig. 3 shows a graph where the

VBM and CBM energies of the films are plotted vs. the Zn

concentration. The full markers show the VBM values as

determined from the valence bands edge cutoff of each of

the spectra shown in Fig. 1. The corresponding CBM ener-

gies were determined using the optical band gap values

determined earlier on these films via UV-VIS spectros-

copy.10 The graph shows that, as the Zn concentration is

increased in the ITO films, the VBM shifts to higher binding

energy. This corresponds to an upwards shift of the Fermi

level in the band gap. The Fermi level position is indicated

as dashed line in the graph. The graph suggests that the

Fermi level enters the conduction bands at the 50% concen-

tration point. As the concentration further increases, the

Fermi level advances deeper into the conduction bands. In

the case of the pure ZnO film the Fermi level is again close

to the CBM. This observation corresponds to the increase of

the O-vacancy related O 1s peak in Fig. 2, suggesting that

the defect density rises in tandem with the Zn concentration

resulting in degenerate doping levels. This interpretation is

supported by experimental results on ZnO surfaces where it

was found that defect densities commensurate with degener-

ate doping levels can exist, which result in a highly conduc-

tive surface layer.17 Additionally, recent data by Klein

et al.,15 where ZnO films were prepared by magnetron sput-

tering with varying oxygen content, demonstrated that highly

oxygen deficient films show degenerate doping levels.

The question that arises from this interpretation is why

the UP-spectra do not show emissions at the Fermi energy

(i.e., right below 0 eV). If the Fermi level is located above

the CBM, then occupied states exist directly below the Fermi

level, which should be observable with photoemission spec-

troscopy. The absence of notable emissions can be tenta-

tively explained by the unique band structure of ITO and

FIG. 2. (Color online) Core level photoemission spectra measured with XPS. The graph on the left shows the Zn 2p3/2 peak, which increases proportionally to

the Zn concentration in the films. The center graph shows the corresponding O 1s emission features. The feature is composed of three main features related to

oxygen atoms at fully coordinated metal sites (� 530.4 eV), sites with oxygen vacancies (� 532 eV), and in the surface contamination layer (� 532.6 eV). As

the Zn concentration rises in the ZITO films the vacancy-related component strongly increases in intensity, pointing towards an increased vacancy density.
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ZnO. Both materials (and likely their ZITO alloys—unfortu-

nately no band structure calculations have been carried out

to date for these materials) have only weakly dispersive va-

lence bands resulting in a high density of states at the band

edge. This is in agreement with the strong VBM features

observed in the UP-spectra in Fig. 1. In contrast, the bottom

of the conduction bands is formed by only a single band with

a large dispersion.18–21 This results in a very weak and grad-

ual density of states onset spread over several eV. The conse-

quence of this gradual onset is that the density of states in

the relevant �1 eV energy interval above the CBM is magni-

tudes lower than at the VBM, resulting in a vanishingly

weak signal at the band edge. This interpretation is supported

by the results of Klein et al.,15 whose UPS data also did not

show significant conduction bands emissions on degenerate

films, and also by previous photoelectron spectroscopy

measurements on single crystalline ZnO surfaces, where a

VBM energy of 3.6 eV was found, while conduction band

related emissions were absent.22

Fig. 4 shows the O 1 s emission feature fitted with three

individual lines reflecting O 1s emissions related to fully

coordinated metal ion sites (�530.4 eV), sites with oxygen

vacancies (�532 eV), and oxygen related to environmental

contaminants (�532.6 eV) present on the sample surface af-

ter the ex-situ solvent cleaning step (this assignment is

inspired by a discussion of O 1 s spectra measured on ITO

surfaces by Fan and Goodenough23). It is obvious that with

increasing Zn concentration the oxygen vacancies related

component increases strongly relative to the 530.4 eV peak.

This is shown in Fig. 5 where the oxygen/metal intensity

ratios are plotted for the 530.4 eV and the 523 eV peaks. The

ratios are relative to the combined Zn-In metal peak intensity

(except for the pure films). These curves clearly show that

the oxygen deficiency rises as the Zn component is getting

stronger, which is in good agreement with the concurrent

Fermi level rise in the band gap determined above. It is inter-

esting to note that the defect level is considerably lower in

FIG. 3. (Color online) Work function values determined from the spectra

shown in Fig. 1. The top graph shows the work function values derived from

the LIXP-spectra measured before (full circles) and after (open circles) the

UPS measurement. Generally, the work function of the films decreases as

the Zn concentration rises. All samples showed a strong work function

reduction between 0.63 and 0.43 eV caused by the UPS measurement. The

bottom graph shows the corresponding values for the VBM binding energy

(full circles) as determined from the low binding energy cutoff position of

the UP-spectra. The associated CBM energies are also shown (open circles).

They were calculated by using the optical band gap energy. As the Zn con-

centration increases the VBM binding energy increases, causing the Fermi

level to enter the conduction bands (dashed line).

FIG. 4. (Color online) Least squares fit of the O 1s emission feature. Three

individual lines were fitted reflecting oxygen atoms at fully coordinated

metal sites (� 530.4 eV), sites with oxygen vacancies (� 532 eV), and in the

surface contamination layer (� 532.6 eV). The main peaks show a shift of

about 0.7 eV to higher binding energy.
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for the ZnO film, which is probably related to the fact that

alloys typically have higher defect densities than their asso-

ciated pure compounds. The contamination related emission

component remains fairly stable throughout the experimental

series, which is reasonable due to the identical cleaning pro-

cedure applied to all samples.

Peak fits to the corresponding Zn 2p and In 3d peaks

revealed a constant full width at half maximum (FWHM)

across the compositional spectrum. The peaks had widths of

1.9 eV for the Zn 2p peak and 1.8 eV for the In 3d line. This

result is in agreement with earlier measurements on In2O3

and ITO films with varying O vacancy density, where the

metal peaks’ FWHM also remained unaffected by the stoi-

chiometry. This was related to the presence of mobile O 5s

electrons equally shared by all metal ions, which smoothens

out the charge density on the metal sites.23

It is interesting to note that all observed core level peaks

showed significant shifts to higher binding energy with

increasing Zn concentration. The Zn 2 p peak shifted by

0.6 eV between 17% and 67% Zn concentration, while the In

3d peak shifted by 0.35 eV between pure ITO and the 67%

ZITO film. The sample-related oxygen lines on the other

hand exhibited a gradual shift from pure ITO to pure ZnO of

about 0.7 eV. It is clear that part of the shift is related to the

change of the average charge localized on the O and metal

sites due to the changing chemical environment, and the

varying oxygen vacancy density depending on the Zn con-

centration. A second effect that plays a role is most likely

the vacancy density related Fermi-level shift into the conduc-

tion bands, which increases the binding energy of the core

levels of all atomic species present in the samples.

Unfortunately, it is difficult to separate these effects

since they occur simultaneously. An assessment of the bind-

ing energy changes caused by the Fermi level shift is difficult

due to the associated changes in the density of states at the

VBM, which makes it impossible to separate a realignment

of the band edge due to a different chemical environment

from a shift caused by the changing charge carrier density.

Likewise, the observed core level shifts are caused by both

chemical changes and Fermi level shifts.

While a full analysis therefore is not possible, a few

observations can still be made. The rise of the O-vacancies

related O 1s component in conjunction with increasing Zn

content suggests that a majority of the O vacancies are local-

ized at Zn sites. Hence, the difference between the Zn 2p and

the In 3d shifts (0.6 eV vs. 0.35 eV) appears to be related to

the changing chemistry of the Zn sites, while the 0.35 eV

shift of the In 3d line can be reasoned to be related mostly to

the binding energy increase due to the Fermi level shift.

From the bottom graph in Fig. 3, it is obvious that the

Fermi energy relative to the VBM shifts by about 0.8 eV

between pure ITO and the 67% ZITO film. Considering the

0.35 eV shift of the In 3d line, it can then be reasoned that

the balance between these shifts, 0.45 eV, is actually related

to a lowering of the VBM (or in other words an increase of

the ionization energy) of the ZITO film. This is supported by

the fact that the work function is lowered by only about

0.3 eV between ITO and 67% ZITO, which is in close agree-

ment to the 0.35 eV In 3d shift.

The final point of this discussion focuses on a compari-

son of the surface related data presented here with the previ-

ous investigation of the bulk properties of these films.10

These previous investigations yielded that the carrier density

was reduced with increasing Zn content. This is in direct dis-

agreement with the Fermi level shift into the conduction

band observed here, which suggests a strong increase in the

carrier density. Furthermore, it was found that the absorption

edge of the ZITO alloys is reduced by about 0.4 eV between

the pure ITO film and the 67% ZITO layer. The results pre-

sented here would suggest that the absorption edge of those

films where the Fermi level entered the conduction bands

should actually shift to larger energies (or shorter wave-

lengths, respectively) due to the Burstein effect24 where

occupied states at the CBM prevent transitions from the

VBM to the CBM resulting in a larger apparent band gap.

FIG. 5. (Color online) Ratio between oxygen and metal emissions depend-

ing on the Zn concentration. The lower graph (open circles) plots the ratio

between the oxygen line at �532.4 eV and the total metal atom emissions

vs. the Zn concentration. It is obvious that the number of fully coordinated

sites drops strongly as the Zn concentration increases. Only for the pure

ZnO film the ratio recovers to a near stoichiometric value. The top graph

shows the ratio between the entire O 1s feature and the metal peaks.

FIG. 6. Electronic structure at ZITO film surface. A high oxygen vacancy

density at the surface causes the Fermi level to enter the conduction bands.

073711-6 Carreras et al. J. Appl. Phys. 110, 073711 (2011)

Downloaded 13 Oct 2011 to 161.116.79.46. Redistribution subject to AIP license or copyright; see http://jap.aip.org/about/rights_and_permissions



The only way to explain this discrepancy is to realize

that the results in Ref. 10 reflect bulk properties, while the

photoemission spectroscopy data presented here relates to

surface properties. This allows the conclusion that the va-

cancy density of the investigated ZITO films is higher at the

surface than in the bulk, which gives rise to a highly conduc-

tive surface layer on top of a less conductive bulk phase.

This is shown schematically in Fig. 6. The Fermi level enters

the conduction band in the surface layer resulting in a thin

degenerately doped layer.

CONCLUSIONS

ZITO transparent conductive thin films with varying Zn

concentration were investigated with XPS, UPS. The meas-

urements showed that with increasing Zn concentration the

oxygen vacancy concentration of the surface increased,

resulting in a degenerately n-doped surface layer. The work

function at the same time decreased due to this effect, result-

ing in a lower ionization energy of the surface. Comparison

with bulk optical absorption and carrier density measure-

ments previously published allowed the conclusion that the

degenerately doped region is confined to a thin surface layer.

Additionally, the experiments demonstrated that the work

function of ex-situ cleaned ZITO surfaces is reduced by

about 0.5 eV during UPS measurements, similar to what was

observed earlier on other metal oxide surfaces.
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