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Abstract. Let Q be a suitable real valued function onCwhich increases sufficiently rapidly as z→∞.
An n-Fekete set corresponding to Q is a subset {zn1, . . . , znn} of C which maximizes the weighted

Vandermonde determinant
∏n

i< j

∣∣∣zni − znj
∣∣∣2 e−n(Q(zn1)+···+Q(znn)). It is well known that there exists a

compact set S known as the ”droplet” such that the sequence of measures µn = n−1(δzn1 + · · · + δznn )
converges to the equilibrium measure ∆Q · 1S dA as n→∞. In this note we consider a related topic,
proving that Fekete sets are in a sense maximally spread out with respect to the equilibrium measure.
In general, our results apply only to a part of the Fekete set, which is at a certain distance away from
the boundary of the droplet. However, for the Ginibre potential Q = |z|2 we obtain results which
hold globally; we conjecture that such global results are true for a wide range of potentials.

In this paper we discuss equidistribution results for weighted Fekete sets in subsets of the
plane. More precisely, we show that Fekete sets are maximally spread out relative to a rescaled
version of the Beurling–Landau density, in the ”droplet” corresponding to the given weight. Our
method combines Landau’s idea to relate the density of a family of discrete sets to properties
of the spectrum of the concentration operator, with estimates for the correlation kernel of the
corresponding random normal matrix ensemble.

1. Fekete sets

1.1. Potentials and droplets. We recapture some notions and results from weighted potential
theory. Proofs and further results can be found in [25]. Cf. also [2] and [19] where the setting is
more tuned to fit the present discussion.

Let Q : C→ R ∪ {+∞} be a suitable function (the ”potential” or ”external field”) satisfying

lim inf
z→∞

Q(z)

log |z|2
= +∞.

(In detail: we require in addition that the function w := e−Q/2 satisfy the mild condition of being
an ”admissible weight” in the sense of [25], p. 26. This means that w is upper semi-continuous
and the set {w > 0} has positive logarithmic capacity.)

We associate to Q the ”equilibrium potential” Q̂ in the following way: Let SHQ be the set of all
subharmonic functions u : C→ R such that u(z) ≤ log+ |z|

2 + const. and u ≤ Q on C. One defines
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the equilibrium potential as Q̂(z) = sup{u(z) ; u ∈ SHQ}. The droplet associated to Q is the set

S = {z ∈ C; Q(z) = Q̂(z)}.

This is a compact set.
We will make the standing assumption that Q be C3-smooth and strictly subharmonic in

some fixed (small) neighbourhood Λ of S. In other words, we assume that the conformal metric
ds2(z) = ∆Q(z) |dz|2 is comparable to the Euclidean metric on Λ.

Under these circumstances, one has that ∆Q ≥ 0 on S and that the equilibrium measure

(1.1) dσ(z) = 1S(z)∆Q(z)dA(z)

is a probability measure on C. Here we agree that dA is normalized area measure dA = 1
πdxdy,

while ∆ = ∂∂ = 1
4 (∂2/∂x2 + ∂2/∂y2) is the normalized Laplacian; ∂ = 1

2 (∂/∂x − i∂/∂y) and ∂ =
1
2 (∂/∂x + i∂/∂y) are the complex derivatives.

1.2. Fekete sets. Consider the weighted Vandermonde determinant

Vn(z1, . . . , zn) =
∏
i< j

∣∣∣zi − z j

∣∣∣2 e−n(Q(z1)+···+Q(zn)), z1, . . . , zn ∈ C.

A set Fn = {zn1, . . . , znn} which maximizes Vn is called an n-Fekete set corresponding to Q. Notice
that Fekete sets are not unique.

Equivalently, the set Fn minimizes the weighted energy

(1.2) Hn(z1, . . . , zn) =
∑
i, j

log
∣∣∣zi − z j

∣∣∣−1
+ n

n∑
j=1

Q(z j)

over all configurations {z j}
n
j=1 ⊂ C. If we think of the points z j as giving locations for n identical

repelling point charges with total charge 1 confined to C under the influence of the external field
nQ, then Hn can be regarded as the the energy of the system.

The following classical result displays some fundamental and well-known properties of Fekete
sets.

Theorem 1.1. For any Fekete set Fn = {zn1, . . . , znn} holds:
(1) Fn ⊂ S
(2) Let σ be the equilibrium measure (1.1). We then have convergence in the sense of measures

1
n

n∑
j=1

δznj → σ, as n→∞.

A proof can be found in [25], theorems III.1.2 and III.1.3. (Notice that our assumptions on Q
imply that S = S∗ in the notation of [25].) The theorem 1.1 was generalized to line bundles over
complex manifolds in [9], [10].

We remark that the property (1) is essential to the analysis in this paper, and that the standard
proof of (1) (e.g. in [25]) depends on the ”maximum principle for weighted polynomials”, which
is reproduced in Lemma 2.8 below.

We will consider related questions concerning the distribution of Fekete points. In a sense, we
will prove that these points are maximally spread out with respect to the conformal metric. To
quantify this assertion, we introduce some definitions.
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Definition 1.2. Let F = {Fn}
∞

n=1 be a family of n-Fekete sets. Also let ζ = (zn)∞1 be a sequence of
points in S. We define the lower Beurling–Landau’s density of F with respect to ζ by

D− (F ; ζ) = lim inf
R→∞

lim inf
n→∞

#
(
Fn ∩D

(
zn; R/

√
n
))

R2∆Q(zn)
,

and we define the corresponding upper density by

D+ (F ; ζ) = lim sup
R→∞

lim sup
n→∞

#
(
Fn ∩D

(
zn; R/

√
n
))

R2∆Q(zn)
.

We also put

dn(ζ) = dist(zn,C \ S).

Here ”dist” denotes the Euclidean distance in the plane, and D(z; r) is the open disk with center
z and radius r.

We have the following theorem.

Theorem 1.3. Put δn = log2 n/
√

n, and suppose that dn(ζ) ≥ 3δn for all n. Then

(1.3) D− (F ; ζ) = D+ (F ; ζ) = 1.

A proof is given in §2.3.

Remark 1.4. The function %n(z)−2 defined by nσ(D(z; %n(z))) = 1 can be considered as a regularized
version of the Laplacian ∆Q(z). Replacing ∆Q(zn) by %n(zn)−2 in our definition of Beurling–
Landau’s densities, it becomes possible to extend our results to cover some situations in which
∆Q = 0 at isolated points of the droplet. We plan to return to this topic in a future publication.

1.3. The Ginibre case. The potential Q(z) = |z|2 is known as the Ginibre potential. It is easy to see
that for this potential, the droplet is S = D, i.e. the closed unit disk with center 0.

Theorem 1.5. Suppose that Q(z) = |z|2. Let ζ = (zn) be a sequence in D and assume that the limit
L = limn→∞

√
n(1 − |zn|) exists. Then

(1) If L = +∞, then (1.3) holds
(2) If L < +∞, then

(1.4) D− (F ; ζ) = D+ (F ; ζ) =
1
2
.

A proof is given in §2.4.

Remark 1.6. The condition that the limit L exists is really superfluous and is made merely for
technical convenience. Indeed, we can assert that lim infn→∞

√
n(1 − |zn|) = +∞ then (1.3) holds

while if lim supn→∞
√

n(1− |zn|) < +∞ then (1.4) holds. These somewhat more general statements
can be proved without difficulty by using the arguments below.
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1.4. A conjecture. The boundary of a droplet corresponding to a smooth potential is in general
a quite complicated set. However, owing to Sakai’s theory [26], it is known that the situation
is more manageable for potentials Q which are real-analytic in a neighbourhood of the droplet.
Namely, for a real analytic potential Q, the boundary of S is a finite union of real analytic arcs
and possibly a finite number of isolated points. The boundary of S may also have finitely many
singularities which can be either cusps or double-points. This result can easily be proved using
arguments from [20], Section 4.

Suppose that Q is real-analytic and strictly subharmonic in a neighbourhood of S, and assume
that ∂S has no singularities. Let S∗ denote the set S with eventual singularities and isolated points
removed. Also let ζ = (zn)∞1 be a sequence of points in S∗ and assume for simplicity that the limit
L = limn→∞

√
ndn(ζ) exists, where dn(ζ) is the distance of zn to ∂S. We conjecture that for any

sequence F = {Fn} of weighted Fekete sets, we have (i) if L = +∞, then D−(F , ζ) = D+(F , ζ) = 1
and (ii) if L < +∞, then D−(F , ζ) = D+(F , ζ) = 1/2.

To wit, the conjecture says that Fekete points are maximally spread out in the droplet, all the
way up to the boundary, while outside of the droplet there are no Fekete points whatsoever.
The statement that the Beurling–Landau density equals to one-half in the boundary regime thus
depends on that one-half is the average of one (inside the droplet) and zero (outside the droplet).

This intuitive picture is supported by the results of the forthcoming paper [5].

1.5. Earlier work and related topics. The topics considered in this note, as well as our basic strat-
egy, were inspired by the paper [21] by Landau, which concerns questions about interpolation and
sampling for functions in Paley–Wiener spaces. In particular, our ”Beurling–Landau densities”
can be seen as straightforward adaptations of the densities defined in [21], and our results are
parallel to those of Landau. The historically interested reader should also consult Beurling’s lec-
ture notes [11] where some of the basic concepts appeared earlier (1); in fact Landau’s exposition
depends in an essential way on Beurling’s earlier work.

In the one-component plasma (or ”OCP”) setting, one introduces a temperature 1/β, where
β > 0. The probability measure dPβn(z) = (Zβn)−1e−βHn(z)dVn(z) on Cn is known as the density of
states at the temperature 1/β. Here dVn is Lebesgue measure on Cn, Hn is the Hamiltonian (1.2),
and Zβn is a normalizing constant. One then considers configurations Ψ

β
n = {zi}

n
1 picked randomly

with respect to Pβn.
Intuitively, Fekete sets should correspond to particle configurations at temperature zero, or

rather, the ”limiting configurations” as 1/β → 0, although the latter ”limit” so far has been
understood mostly on a physical level. In this interpretation, the methods of the present note
prove that the Beurling–Landau density of temperature zero configurations is in fact completely
determined by properties at β = 1. (More precisely: it is determined by the one- and two-point
functions of P1

n.)
A more subtle problem is to characterise Fekete sets amongst all configurations of Beurling–

Landau density one. It is believed that a certain crystalline structure will manifest itself (known as
the ”Abrikosov lattice” or ”honeycomb lattice”). In the recent paper [27], this structure is analyzed
using very different methods, and the results obtained there are in a way complementary to ours;
cf. p. 12 of [27] for a comparison to our results. We refer to [16], [27] and the references therein

1In [21], Landau refers to an unpublished Princeton lecture series due to Beurling. The lecture notes in [11] are part
of a similar series of lectures by Beurling, conducted at the Mittag-Leffler institute.
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for further details on this topic. A survey of related questions for minimum energy points on
manifolds is found in [18].

2. Weighted polynomials and triangular lattices

Our approach combines the method for characterizing Fekete sets and triangular lattices from
the papers [23] and [24] with correlation kernel estimates of the type found in [6], [1], [2], [4].
In the Ginibre case, we use the explicit representation of the correlation kernel available for that
potential, as well as estimates from the papers [29], [17], [14], and [12].

2.1. Weighted polynomials. Let Hn be the space of polynomials p of degree at most n−1, normed

by
∥∥∥p

∥∥∥2

nQ :=
∫
C

∣∣∣p(z)
∣∣∣2 e−nQ(z)dA(z). The reproducing kernel for Hn is Kn(z,w) =

∑n−1
j=0 e j(z)e j(w),

where {e j}
n−1
0 is an orthonormal basis for Hn.

For our purposes, it is advantageous to work with spaces H̃n of weighted polynomials f =
p · e−nQ/2, where p is a polynomial of degree ≤ n − 1, and one defines the norm in H̃n as the usual
L2(dA)-norm. By convention, the L2-norm of a function f will henceforth be denoted in either of
the following ways, ∥∥∥ f

∥∥∥2
=

∥∥∥ f
∥∥∥2

L2 =

∫
C

∣∣∣ f ∣∣∣2 =

∫
C

∣∣∣ f ∣∣∣2 dA.

More generally, whenever an unspecified measure space is indicated (such as in ”
∫

g” or ”Lp”) it
will by default be understood that the measure is area measure dA on the plane.

The reproducing kernel for H̃n is given by

Kn(z,w) = Kn(z,w)e−nQ(z)/2−nQ(w)/2.

The function Kn is known as the correlation kernel corresponding to the potential Q; the reproduc-
ing property means that

f (z) = 〈 f ,Kn,z〉, f ∈ H̃n, z ∈ C,

where Kn,z(ζ) = Kn(ζ, z), and the inner product is the usual one in L2 = L2(C,dA).
When ρn is not an integer, we interpret H̃ρn as the space Hk where k is the largest integer

satisfying k < ρn. All statements below shall be understood in terms of this convention; in
particular, Kρn(z,w) := Kk(z,w)e−k(Q(z)+Q(w))/2.

2.2. Triangular lattices. LetZ = {Zn}
∞

n=1 be a triangular lattice of points in C. We write

Zn = {zn1, zn2, . . . , znmn }.

It will be convenient to introduce some classes of lattices.
Fix a positive parameter ρ. We will only use values of ρ which are as close to ρ = 1 as we

please. In the following we can thus assume that ρ satisfies 1 − ε0 < ρ < 1 + ε0 where ε0 is some
number with 0 < ε0 < 1 whose exact value is not important. This convention is applied tacitly in
the rest of this paper.

A familyZ is said to be ρ-interpolating if there is some constant C such that, for all families of
values c = {cn}

∞

1 , cn = {cnj}
mn
j=1, such that

sup
n

1
nρ

mn∑
j=1

∣∣∣cnj

∣∣∣2 < ∞,
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there exists a sequence fn ∈ H̃ρn such that fn(znj) = cnj, 1 ≤ j ≤ mn, and∥∥∥ fn
∥∥∥2
≤ C

1
nρ

mn∑
j=1

∣∣∣cnj

∣∣∣2 .
We say that a family Z is uniformly separated if there is a number s > 0 such that for any two

distinct points z,w ∈ Zn we have |z − w| > s/
√

n. In this situation, we will also say that Z is
s-separated. The following simple lemma holds.

Lemma 2.1. Any interpolating family which is contained in S is uniformly separated.

A proof is given in §3.2.
Intuitively, an interpolating family should be ”sparse”. We will also need a notion which

implies the ”density” of a family contained in S. For this purpose, the following classes have
turned out to be convenient.

Definition 2.2. Write S+ = S + D(0; s/
√

n), where s is some fixed positive number. LetZ ⊂ S be
a triangular family. We say thatZ is of class MS,ρ ifZ is uniformly 2s-separated and∫

S+

∣∣∣ f ∣∣∣2 ≤ C
1

nρ

∑
znj∈Zn

∣∣∣ f (znj)
∣∣∣2 , f ∈ H̃nρ

for all large n.

Definition 2.3. Let δn = log2 n/
√

n and put Sn = {z ∈ S; dist(z, ∂S) ≥ 2δn} .We say that a triangular
familyZ ⊂ S is of class MSn,ρ ifZ is uniformly separated and∫

Sn

∣∣∣ f ∣∣∣2 ≤ C
1

nρ

∑
znj∈Zn

∣∣∣ f (znj)
∣∣∣2 , f ∈ H̃nρ

for all large n.

2.3. Results in the interior of the droplet. We have the following lemma.

Lemma 2.4. Let ζ = (zn) be a convergent sequence in S with dist(zn, ∂S) ≥ 3δn for all n. Then

(i) IfZ is of class MSn,ρ, then D−(Z; ζ) ≥ ρ,
(ii) IfZ is ρ-interpolating, then D+(Z; ζ) ≤ ρ.

A proof is given in Section 5.
When Fn is a Fekete set, we write F ′n = Fn ∩ Sn and F ′ = {F ′n }.

Lemma 2.5. One has that

(1) F is uniformly separated,
(2) F ′ is ρ-interpolating for any ρ > 1,
(3) F is of class MSn,ρ whenever ρ < 1.

A proof is given in Section 6.
Using lemmas 2.4 and 2.5, we infer that for ζ = (zn) with dist(zn, ∂S) ≥ 3δn, we have for any

ε > 0 that D−(F ; ζ) ≥ 1 − ε and D+(F ; ζ) ≤ 1 + ε. This finishes the proof of Theorem 1.3, since
evidently D− ≤ D+. q.e.d.
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2.4. The Ginibre case. Now let Q = |z|2 so that S = D, and fix a convergent sequence ζ = (z j) in
D such that the limit L = limn→∞

√
n(1 − |zn|) exists.

Lemma 2.6. Suppose that Q = |z|2, and letZ be a triangular family contained inD.
(1) IfZ is of class MD,ρ, then

D−(Z; ζ) ≥

ρ if L = +∞,

ρ/2 if L < +∞.

(2) IfZ is ρ-interpolating, then

D+(Z; ζ) ≤

ρ if L = +∞,

ρ/2 if L < +∞.

A proof is given in §8.3.

Lemma 2.7. Let F = {Fn} be a family of Fekete sets with respect to the potential Q = |z|2. Then F is of
class MD,ρ for any ρ < 1 and ρ-interpolating for any ρ > 1.

A proof is given in §8.5.
To finish the proof of Theorem 1.5 it suffices to combine Lemma 2.6 and Lemma 2.7. q.e.d.

2.5. Auxiliary lemmas. We state a couple of known facts which are used frequently in the
following. The following uniform estimate is well-known (see e.g. [25]).

Lemma 2.8. Let f ∈ H̃n and z ∈ C \ S. Assume that
∣∣∣ f ∣∣∣ ≤ 1 on S. Then

∣∣∣ f (z)
∣∣∣ ≤ e−n

(
Q(z)−Q̂(z)

)
/2, z ∈ C.

(Proof: Let f = p · e−nQ/2. The assumption gives that 1
n log

∣∣∣p∣∣∣2 is a subharmonic minorant of Q

which grows no faster than log |z|2 + const. as z→∞. Thus 1
n log

∣∣∣p∣∣∣2 ≤ Q̂.)
We will also use the following well-known pointwise-L2 estimate.

Lemma 2.9. Let f = ue−nQ/2 where u is holomorphic and bounded in D(z0; c/
√

n) for some c > 0.
Suppose that ∆Q(z) ≤ K for all z ∈ D(z0; c/

√
n). Then

(2.1)
∣∣∣ f (z0)

∣∣∣2 ≤ n · eKc2
c−2

∫
D(z0;c/

√
n)

∣∣∣ f ∣∣∣2 dA.

In particular, ifZ is 2s-separated and Ω ⊂ S, then for all f ∈ H̃n

(2.2)
1
n

∑
znj∈Ω

∣∣∣ f (znj)
∣∣∣2 ≤ Cs−2

∫
Ω+

∣∣∣ f (ζ)
∣∣∣2 dA(ζ),

where C depends only on the upper bound of ∆Q on S+ and Ω+ =
{
ζ ∈ C; dist(ζ,Ω) ≤ s/

√
n
}
.

A proof of (2.1) can be found e.g. in [2], Section 3. The estimate (2.2) is immediate from this.
We will also need the following lemma on uniform estimates and ”off-diagonal damping” for

correlation kernels.

Lemma 2.10. (i) There is a constant C such that for all z,w ∈ C,

|Kn(z,w)| ≤ Cne−n(Q(z)−Q̂(z))/2e−n(Q(w)−Q̂(w))/2.
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(ii) Suppose that z ∈ S and let δ = dist(z, ∂S). There are then positive constants C and c such that

|Kn(z,w)| ≤ Cn exp
(
−c
√

n min{|z − w| , δ}
)
· e−n(Q(w)−Q̂(w))/2, w ∈ C.

Part (i) is standard, see e.g. [2], Sect. 3. For a proof of (ii) we refer to [2], Corollary 8.2 (which
also shows that the constant c can be taken proportional to inf{

√
∆Q(z); z ∈ S}).

Remark 2.11. The following remark allows us to put ρ = 1 on several occasions in the sequel,
without losing generality.

In all of the above lemmas, the symbol ”n” can be replaced by ”nρ” without changing any of
the statements. It is moreover clear from the proofs that the constants appearing in the lemmas
can be taken independent of ρ for all ρ in a compact subinterval of R+.

We shall later on encounter many statements whose proofs are similar for all values of ρ. These
are statements whose proofs depend on the above lemmas and other arguments which easily are
seen to work with ”n” replaced by ”nρ”.

2.6. Notation. We use the same letter K to denote a kernel K(z,w) and its corresponding integral
operator K( f )(z) =

∫
C

f (w)K(z,w)dA(w). We will denote by the same symbol ”C” a constant
independent of n, which can change meaning as we go along. The notation ”An - Bn” means
that An ≤ CBn. Given positive numbers s and R with s < R, we shall write

(2.3) An(z) = D(z; R/
√

n) , A+
n (z) = D(z; (R + s)/

√
n) , A−n (z) = D(z; (R − s)/

√
n).

Furthermore, when a lattice Z is given, it will be (usually tacitly) assumed that 2s denotes a
suitable (sufficiently small) separation constant ofZ.

We shall in the following always denote by the letter Λ some ”sufficiently small”, fixed (i.e.
independent of n) neighbourhood of S. It is always assumed that Q is C3-smooth on Λ and that
∆Q is bounded below and above by positive constants on Λ. Under these assumptions, we are
free to chose Λ as small as we please.

3. Preliminary estimates

In this section, we discuss gradient estimates for weighted polynomials; these will be useful
in the following. In particular they imply that interpolating families are uniformly separated.

3.1. Inequalities of Bernstein type. The following lemma is analogous to Lemma 18 in [22].

Lemma 3.1. Let p be a polynomial of degree at most n. Fix a point z such that p(z) , 0 and |∆Q(z)| < K.
Then

(3.1)
∣∣∣∣∇ (∣∣∣p∣∣∣ e−nQ/2

)
(z)

∣∣∣∣ ≤ C
√

n
∥∥∥pe−nQ/2

∥∥∥
L∞ ,

and

(3.2)
∣∣∣∣∇ (∣∣∣p∣∣∣ e−nQ/2

)
(z)

∣∣∣∣ ≤ Cn
∥∥∥pe−nQ/2

∥∥∥
L2 ,

where the constant C depends only on K.

Proof. Let Hz(ζ) = Q(z) + 2∂Q(z) · (ζ − z) + ∂2Q(z)(ζ − z)2 and hz(ζ) = Re Hz(ζ), so that

Q(ζ) = hz(ζ) + ∆Q(z) |ζ − z|2 + O(|z − ζ|3).

In particular, there is a constant C such that

(3.3) n |Q(ζ) − hz(ζ)| ≤ C when |ζ − z| ≤ 1/
√

n,
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where C depends only on K.
Now observe that,

(3.4)
∣∣∣∣∇ (∣∣∣p∣∣∣ e−nQ/2

)
(ζ)

∣∣∣∣ =
∣∣∣p′(ζ) − n · ∂Q(ζ) · p(ζ)

∣∣∣ e−nQ(ζ)/2,

and ∣∣∣∣∇ (∣∣∣p∣∣∣ e−nhz/2
)

(ζ)
∣∣∣∣ =

∣∣∣p′(ζ) − n · ∂hz(ζ) · p(ζ)
∣∣∣ e−nhz(ζ)/2 =

=

∣∣∣∣∣ d
dζ

(pe−nHz/2)(ζ)
∣∣∣∣∣ .(3.5)

The expressions (3.4) and (3.5) are identical when ζ = z.
By Cauchy’s estimate applied to the circle C1/

√
n(z) with center z and radius 1/

√
n,

(3.6)
∣∣∣∣∣ d
dζ

(pe−nHz/2)(z)
∣∣∣∣∣ =

1
2π

∣∣∣∣∣∣∣
∫

C1/
√

n(z)

p(ζ)e−nHz(ζ)/2

(z − ζ)2 dζ

∣∣∣∣∣∣∣ ≤ n
2π

∫
C1/

√
n(z)

∣∣∣p(ζ)
∣∣∣ e−nhz(ζ)/2

|dζ| .

In view of (3.3), the right side can be estimated by a constant depending only on K, times

(3.7) n
∫

C1/
√

n(z)

∣∣∣p(ζ)
∣∣∣ e−nQ(ζ)/2

|dζ| .

To prove (3.1), it suffices to notice that (3.7) can be estimated by 2π
√

n
∥∥∥pe−nQ/2

∥∥∥
L∞ .

Next notice that, by Lemma 2.9,∣∣∣p(ζ)
∣∣∣2 e−nQ(ζ)

≤ C′n
∫

D(ζ;1/
√

n)

∣∣∣p(ξ)
∣∣∣2 e−nQ(ξ)dA(ξ) ≤ C′n

∥∥∥pe−nQ/2
∥∥∥2

L2

with another constant C′ depending only on K. We conclude that∣∣∣∣∇ (∣∣∣p∣∣∣ e−nQ/2
)

(ζ)
∣∣∣∣ - n

√
n
∥∥∥pe−nQ/2

∥∥∥
L2

∫
C1/

√
n(z)
|dζ| - n

∥∥∥pe−nQ/2
∥∥∥

L2 ,

with a constant depending only on K. This proves (3.2). �

3.2. Proof of Lemma 2.1. LetZ be an interpolating family contained in S. (W.l.o.g. put ρ = 1, cf.
Remark 2.11.)

Fix an index j, 1 ≤ j ≤ mn. Since Z is interpolating, we can find a function f = fn ∈ H̃n such
that f (znj′ ) = δ j j′ and ‖ f ‖2 ≤ C/n. Let δ > 0 be small enough that D(znj; δ) ⊂ Λ, where Λ is a
suitable small neighbourhood of S, see §2.6.

Also assume w.l.o.g. that a point znj′ satisfies
∣∣∣znj − znj′

∣∣∣ < δ; if there is no such j′ there is
nothing to prove.

Now join znj and znj′ by a smooth curve γ which does not contain any points ofZn except for
the end-points. We can choose a curve γ of length at most (1 + ε)

∣∣∣znj − znj′
∣∣∣, where ε > 0 is at our

disposal.
Integrating ∇

∣∣∣ f ∣∣∣ with respect to arclength over γ we find

1 =
∣∣∣∣∣∣ f (znj)

∣∣∣ − ∣∣∣ f (znj′ )
∣∣∣∣∣∣ ≤ ∥∥∥∇ ∣∣∣ f ∣∣∣∥∥∥L∞(Λ)

(1 + ε)
∣∣∣znj − znj′

∣∣∣ .
Thus by the estimate (3.2) in Lemma 3.1, we have

1 ≤ C1n
∥∥∥ f

∥∥∥ (1 + ε)
∣∣∣znj − znj′

∣∣∣ ≤ CC1(1 + ε)
√

n
∣∣∣znj − znj′

∣∣∣ .
This proves thatZ is s-separated with s = 1/(CC1). �
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4. The spectrum of the concentration operator

Let Ω be a measurable subset of the plane. The concentration operator KΩ
nρ is defined by

KΩ
nρ( f )(z) =

∫
Ω

f (w)Knρ(z,w)dA(w) = Knρ(1Ω · f )(z).

This is a positive contraction on H̃nρ.
In this section, we apply a technique which relates the spectrum of the concentration operator

to the number of points in Ω ∩Zn whenZ is either an interpolating family or an M-family; the
technique essentially goes back to Landau’s paper [21]. We here follow the strategy in [24], in a
suitably modified form.

We first turn to M-families. We will consider the cases of MS and of MSn families separately.

4.1. MS,ρ-families. Fix a point z ∈ S and let λnρ
j = λ

nρ
j (z) denote the eigenvalues of KAn(z)

nρ : H̃nρ →

H̃nρ, taken in decreasing order. Let φnρ
j be corresponding eigenvectors of norm one. Given a

2s-separated latticeZ, we write

N+
nρ = N+

nρ(z) = #
(
Zn ∩ A+

n (z)
)
.

(See (2.3) for the definitions of the sets An and A+
n .)

Lemma 4.1. Suppose thatZ ⊂ S is of class MS,ρ. There is then a constant γ < 1 and a number n0 such
that for all z ∈ S and n ≥ n0, we have λnρ

N+
nρ(z)+1 < γ.

Proof. W.l.o.g. put ρ = 1 (see Remark 2.11).
Fix z ∈ S and suppose that f ∈ H̃n is such that f (znj) = 0 when znj ∈ A+

n (z). Since Z is
2s-separated, we have (see Lemma 2.9, (2.2))

(4.1)
∫

S+

∣∣∣ f ∣∣∣2 ≤ C
1
n

∑
znj∈S\A+

n (z)

∣∣∣ f (znj)
∣∣∣2 ≤ Cs−2

∫
S+\An(z)

∣∣∣ f ∣∣∣2 .
Now define f =

∑N+
n +1

j=1 cn
jφ

n
j , where the numbers cn

j (not all zero) are chosen so that f (znj) = 0
for all znj ∈ A+

n (z). This is possible for all large n, because the separation ofZ ensures that N+
n ≤ C

for some constant C = C(R, s).
Since the operator Kn is the orthogonal projection of L2 onto H̃n, we have

N+
n +1∑
j=1

λn
j

∣∣∣∣cn
j

∣∣∣∣2 =
〈
KAn(z)

n f , f
〉

=
〈
1An(z) ·Kn( f ),Kn( f )

〉
=

∫
An(z)

∣∣∣ f ∣∣∣2 dA.(4.2)

We infer by means of (4.1) and (4.2) that

λn
N+

n +1

N+
n +1∑
j=1

∣∣∣∣cn
j

∣∣∣∣2 ≤ N+
n +1∑
j=1

λn
j

∣∣∣∣cn
j

∣∣∣∣2 =

(∫
S+

−

∫
S+\An(z)

) ∣∣∣ f ∣∣∣2 dA

≤

(
1 −

s2

C

) ∫
S+

∣∣∣ f ∣∣∣2 ≤ (
1 −

s2

C

) ∥∥∥ f
∥∥∥2
≤

(
1 −

s2

C

) N+
n +1∑
j=1

∣∣∣∣cn
j

∣∣∣∣2 ,
which proves that λn

N+
n +1 ≤ 1 − s2/C. �
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Notice that the separability of Z implies that #(Zn ∩ (D(z; (R + s)/
√

n) \ D(z; R/
√

n))) ≤ CR.
Therefore Lemma 4.1 implies the estimate

(4.3) #(Zn ∩D(z; R/
√

n)) ≥ #{ j; λnρ
j ≥ γ} + O(R),

where the O-constant is independent of n.

4.2. MSn,ρ-families. We now modify the construction in the previous subsection.
Recall that Sn = {z ∈ S; dist(z, ∂S) ≥ 2δn} where δn = log2 n/

√
n. Fix a sequence (zn) with

zn ∈ Sn satisfying

dist(zn, ∂S) ≥ 3δn.

As before, we consider the eigenvalues λnρ
j (decreasing order) and corresponding eigenfunctions

φ
nρ
j of the concentration operator KAn(zn)

nρ . We will use the following lemma.

Lemma 4.2. For any positive integer K there is a constant CK and a number n0 = n0(R) such that for all j

λ
nρ
j

∫
C\Sn

∣∣∣∣φnρ
j

∣∣∣∣2 ≤ CKn−K, n ≥ n0.

Proof. W.l.o.g. let ρ = 1 (cf. Remark 2.11).
Choose n0 such that dist(An(zn),C \ Sn) ≥ δn/2 when n ≥ n0. By Lemma 2.10, we then have an

estimate

|Kn(ζ,w)| ≤ Cne−c log2 ne−n(Q(w)−Q̂(w))/2, w ∈ C \ Sn, ζ ∈ An(zn),

where c and C are positive constants. This gives (where we write φ j := φn
j )∣∣∣∣∣∣

∫
C\Sn

∫
An(zn)

φ j(w)Kn(ζ,w)φ j(ζ)dA(ζ)dA(w)

∣∣∣∣∣∣ ≤ Cne−c log2 n
(∫ ∣∣∣φ j(z)

∣∣∣ e−n(Q(z)−Q̂(z))/2

)2

≤

≤ CKn−K
‖φ j‖

2 = CKn−K,

where we have used the Cauchy-Schwarz inequality and that
∫

e−n(Q−Q̂) = 1 + o(1). �

Lemma 4.3. Suppose that Z ⊂ S is of class MSn,ρ. There is then a constant γ < 1 and a number
n0 = n0(R) such that for all z ∈ S satisfying dist(z, ∂S) ≥ 3δn and all n ≥ n0, we have λnρ

N+
nρ(z)+1 < γ.

Proof. W.l.o.g. put ρ = 1 (see Remark 2.11).
Assume that f ∈ H̃n is such that f (znj) = 0 for all znj ∈ Zn∩A+

n (z). Then sinceZ is 2s-separated
for a sufficiently small s,∫

Sn

∣∣∣ f ∣∣∣2 ≤ C
1
n

∑
znj∈S\A+

n (z)

∣∣∣ f (znj)
∣∣∣2 ≤ Cs−2

∫
S+\An(z)

∣∣∣ f ∣∣∣2 dA.(4.4)

(Cf. (2.2) of Lemma 2.9 for the proof of the second inequality.)
We again define f =

∑N+
n +1

j=1 cn
jφ

n
j ,where the numbers cn

j (not all zero) are chosen so that f (znj) = 0
for all znj ∈ Zn ∩ A+

n (z).
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This time, observe that Lemma 4.2 and the Cauchy-Schwarz inequality implies

λn
N+

n +1

∫
C\Sn

∣∣∣ f ∣∣∣2 ≤ N+
n +1∑

j,k=1

√
λn

jλ
n
k

∫
C\Sn

∣∣∣∣cn
jφ

n
j · c

n
kφ

n
k

∣∣∣∣ ≤
≤ CKn−K

N+
n +1∑

j,k=1

∣∣∣∣cn
j cn

k

∣∣∣∣ ≤ CKn−K(N+
n + 1)

N+
n +1∑
j=1

∣∣∣∣cn
j

∣∣∣∣2 ≤ C′n−k
N+

n +1∑
j=1

∣∣∣∣cn
j

∣∣∣∣2 .
In view of (4.4), we now conclude that

λn
N+

n +1

N+
n +1∑
j=1

∣∣∣∣cn
j

∣∣∣∣2 ≤ N+
n +1∑
j=1

λn
j

∣∣∣∣cn
j

∣∣∣∣2 =

(∫
S+

−

∫
S+\An(z)

) ∣∣∣ f ∣∣∣2 dA

≤

(
1 −

s2

C

) ∫
Sn

∣∣∣ f ∣∣∣2 +

∫
S+\Sn

∣∣∣ f ∣∣∣2 ≤ (
1 −

s2

C

) ∥∥∥ f
∥∥∥2

+

∫
S+\Sn

∣∣∣ f ∣∣∣2 ≤
≤

1 −
s2

C
+

CKn−K

λn
N+

n +1

 N+
n +1∑
j=1

∣∣∣∣cn
j

∣∣∣∣2 ,
where CK depends only on K, R, and s.

With α = 1 − s2/C, this implies λn
N+

n +1 <
√
α2 + 4CKn−K. Thus if we define γ as any number in

the interval (α, 1), we obtain λn
N+

n +1 ≤ γ for all n large enough. �

As a corollary, we obtain the following estimate: Let Z be as in Lemma 4.3. Then for all
n ≥ n0(R)

(4.5) #(Zn ∩D(z; R/
√

n)) ≥ #{ j; λnρ
j ≥ γ} + O(R),

where the O-constant is independent of n.

4.3. Interpolating families. Assume that Z be a ρ-interpolating sequence contained in S, and
let 2s be a separation constant forZ. We can w.l.o.g. assume that ρ = 1 (Remark 2.11).

Fix z ∈ S. We define In as the set of indices j such that znj ∈ A−n (z) and let N−n = N−n (z) be the
cardinality of In. By the separation we have a uniform bound N−n ≤ C = C(R, s).

Now let {c j}
mn
1 be a sequence with c j = 0 when j < In. SinceZ is interpolating we can choose

fnj ∈ H̃n such that fnj(znj′ ) = δ j j′ and
∥∥∥ fnj

∥∥∥2
≤ C/n for all n and j. The functions fnj, j ∈ In are

linearly independent and span an N−n -dimensional subspace of H̃n. We denote this subspace by

F = span
{

fnj; j ∈ In

}
.

Note that an arbitrary f =
∑

j∈In
c j fnj ∈ F satisfies∥∥∥ f

∥∥∥2
≤ CN−n

1
n

∑
j∈In

∣∣∣c j

∣∣∣2 ≤ C′
1
n

∑
j∈In

∣∣∣ f (znj)
∣∣∣2 .

Applying (2.2) now gives ∥∥∥ f
∥∥∥2
≤ C

∫
An(z)

∣∣∣ f ∣∣∣2 = C
〈
KAn(z)

n f , f
〉
.
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With δ = 1/C, we have shown that

〈KAn(z)
n f , f 〉
〈 f , f 〉

≥ δ, f ∈ F, f . 0.

Let λn
j be the eigenvalues of the operator KAn(z)

n on H̃n arranged in decreasing order. By the
Weyl–Courant lemma (see [15], p. 908) we have

λn
j−1 ≥ inf

g∈E j

〈KAn(z)
n g, g〉
〈g, g〉

,

where E j ranges over all j-dimensional subspaces of H̃n. Since dim F = N−n , we obtain λn
N−n−1 ≥ δ.

The construction can obviously be carried out for ρ , 1 as well. We have proved the following
lemma.

Lemma 4.4. Suppose that Z is ρ-interpolating, and let λnρ
j be the eigenvalues of the operator KAn(z)

nρ on
H̃nρ, where z ∈ S. Also let N−nρ be the number of points in Zn ∩ A−n (z). Then there is a number δ > 0
independent of n and z such that

#{ j; λnρ
j ≥ δ} ≥ N−nρ − 1.

Next notice that sinceZ is 2s-separated (Lemma 2.1), there is a constant C such that

#(Zn ∩D(z; R/
√

n)) −N−nρ ≤ C(R2
− (R − s)2)/s2.

Using Lemma 4.4, we conclude that

(4.6) #(Zn ∩D(z; R/
√

n)) ≤ O(R) + #{ j; λnρ
j ≥ δ}, as R→∞,

where the O-constant is independent of n.

5. Beurling–Landau densities ofM families and of interpolating families

In this section, we prove Lemma 2.4. Our proof depends partly on trace estimates for the
concentration operator, which are proved in Section 7.

5.1. Proof of Lemma 2.4(i). Let Z ⊂ S be of class MSn,ρ, and let ζ = (zn) be a sequence with
dist(zn,C \ S) ≥ 3δn.

Consider the eigenvalues λnρ
j = λ

nρ
j (zn) of the concentration operator KAn(zn)

nρ , and put µn =∑mn
j=1 δλnρ

j
where δz is the Dirac measure at z. We then have

trace
(
KAn(zn)

nρ

)
=

∫ 1

0
x dµn(x) , trace

(
KAn(zn)

n ◦KAn(zn)
n

)
=

∫ 1

0
x2dµn(x).

Let γ and n0 be given by Lemma 4.3. We then have, for all n ≥ n0(R),

#{ j;λnρ
j > γ} =

∫ 1

γ
dµn(x) ≥

∫ 1

0
x dµn(x) −

1
1 − γ

∫ 1

0
x(1 − x)dµn(x) =

= trace
(
KAn(zn)

nρ

)
−

1
1 − γ

[
trace

(
KAn(zn)

nρ

)
− trace

(
KAn(zn)

nρ ◦KAn(zn)
nρ

)]
.
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By the estimate (4.5) followed by the trace estimates in lemmas 7.1 and 7.3, we now get

lim inf
n→∞

#(Zn ∩D(zn; R/
√

n))
R2∆Q(zn)

≥ lim inf
n→∞

#{ j;λnρ
j > γ} + O(R)

R2∆Q(zn)
≥

≥ lim inf
n→∞

 trace
(
KAn(zn)

nρ

)
R2∆Q(zn)

−
1

1 − γ

trace
(
KAn(zn)

nρ

)
− trace

(
KAn(zn)

nρ ◦KAn(zn)
nρ

)
R2∆Q(zn)

 + O(1/R) =

= ρ(R + s)2/R2 + O(1/R).

Sending R→∞, we obtain D−(Z; ζ) ≥ ρ, and the proof of Lemma 2.4(i) is finished. �

5.2. Proof of Lemma 2.4(ii). LetZ be a ρ-interpolating family and let ζ = (zn) be a sequence with
zn ∈ Sn for all n. Again let λnρ

j be the eigenvalues of the concentration operator KAn(zn)
nρ .

Let µn be the measure µn =
∑mn

j=1 δλnρ
j

. Then for any δ ∈ (0, 1)

#{ j;λnρ
j ≥ δ} =

∫ 1

δ
dµn(x) ≤

∫ 1

0
x dµn(x) +

1
δ

∫ 1

0
x(1 − x) dµn(x).

In view of the estimate (4.6), we can pick δ = δ(R, s) > 0 so that

#(Zn ∩D(z; R/
√

n)) ≤ O(R) + trace
(
KAn(zn)

nρ

)
+

1
δ

[
trace

(
KAn(zn)

nρ

)
− trace

(
KAn(zn)

nρ ◦KAn(zn)
nρ

)]
.

For zn ∈ Sn, the trace estimates in lemmas 7.3 and 7.1 now imply

lim sup
n→∞

#(Zn ∩D(zn; R/
√

n))
R2∆Q(zn)

≤

≤ lim sup
n→∞

trace(KAn(zn)
nρ )

R2∆Q(zn)
+

1
δ

lim sup
n→∞

trace
(
KAn(zn)

nρ

)
− trace

(
KAn(zn)

nρ ◦KAn(zn)
nρ

)
R2∆Q(zn)

+ O(1/R) = ρ + O(1/R).

Letting R→∞ now shows that D+(Z; ζ) ≤ ρ, which finishes the proof of Lemma 2.4(ii). �

6. Equidistribution of the bulk part of a Fekete set

In this section we prove Lemma 2.5. The proof is given modulo some estimates for the
correlation kernel, which are postponed to the next section.

6.1. Proof of Lemma 2.5(1). Let Fn = {zn1, . . . , znn} be a Fekete set and consider the Lagrange
interpolation polynomials

lnj(z) =
∏
i, j

(z − zni)/
∏
i, j

(znj − zni).

To avoid bulky notation, from now on write z j := znj etc.
Now consider the Leja–Siciak function corresponding to Fn,

Φn(z) = max
{∣∣∣l j(z)

∣∣∣2 enQ(z j); j = 1, . . . ,n
}
.

It is known that for all z ∈ C

(6.1) Φn(z)1/n
≤ eQ̂(z) and Φn(z)1/n

→ eQ̂(z), as n→∞.

We refer to [25], §III.5, notably eq. (5.3) and Corollary 5.3, for proofs of these statements.
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Let us write

(6.2) ` j(z) = l j(z)e−n(Q(z)−Q(z j))/2,

and notice that (6.1) implies that

(6.3)
∣∣∣` j(z)

∣∣∣ ≤ e−n(Q(z)−Q̂(z))/2.

The following lemma concludes our proof for part (1) of Lemma 2.5.

Lemma 6.1. Let F = {Fn} be a family of Fekete sets. Then F is uniformly separated.

Proof. By (6.3) we have ‖` j‖L∞ ≤ 1 for all j. Hence Lemma 3.1 implies that there is a neighbourhood
Λ of S such that

(6.4)
∣∣∣∣∇ (∣∣∣` j

∣∣∣)∣∣∣∣ ≤ C
√

n on Λ \ Fn,

for some constant C independent of n and j.
Fix znj ∈ Fn and assume that a point znk ∈ Fn is sufficiently close to znj. We claim that

(6.5) 1 =
∣∣∣∣∣∣` j(znj)

∣∣∣ − ∣∣∣` j(znk)
∣∣∣∣∣∣ ≤ C

√
n
∣∣∣znj − znk

∣∣∣ ,
which implies that F is uniformly separated with best separation constant ≥ 1/C.

To prove (6.5) we can (as in the proof of Lemma 2.1) join znk to znj by a smooth curve γ which
does not contain any other points of Fn and integrate ∇

∣∣∣` j

∣∣∣ with respect to arclength over that
curve. Observing that length of γ can be chosen arbitrarily close to

∣∣∣znj − znk

∣∣∣ and using (6.4), we
conclude that the inequality in (6.5) holds. �

6.2. Proof of Lemma 2.5(2). We now modify the weighted Lagrangian polynomials ` j (6.2), by
multiplying by certain ”peak polynomials”, to localize to a small neighbourhood of z j. (We
remind the reader that {z j}

n
j=1 = Fn denotes an n-Fekete set throughout this section.)

Take ε > 0 small; consider the corresponding kernel Kεn(z,w), and put

(6.6) L j(z) =

(
Kεn(z, z j)
Kεn(z j, z j)

)2

· ` j(z).

These are weighted polynomials of degree (1 + 2ε)n; evidently L j(zk) = δ jk. We remind the reader
that Sn denotes the subset of S consisting of all points whose distance to the boundary of S is at
least 2δn.

Lemma 6.2. There is a constant C depending on ε but not on n such that for all z j ∈ Fn ∩ Sn, we have∥∥∥L j

∥∥∥
L1 ≤

C
n
.

Proof. Fix z j ∈ Fn ∩ Sn. By (6.3) we have

∣∣∣L j(z)
∣∣∣ ≤ ∣∣∣Kεn(z, z j)

∣∣∣2
Kεn(z j, z j)2 e−n(Q(z)−Q̂(z))/2.

The estimate (7.2) implies that there is c > 0 such that

(6.7) Kεn(z j, z j) ≥ cεn, z j ∈ Sn ∩ Fn.
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Applying this estimate and using that Q̂ ≤ Q, we conclude that∥∥∥L j

∥∥∥
L1 ≤

C
(εn)2

∫
C

∣∣∣Knε(z, z j)
∣∣∣2 dA(z) =

C
(εn)2 Knε(z j, z j) ≤

C′

εn
.

�

Lemma 6.3. Let
Fn(z) =

∑
z j∈Sn

∣∣∣L j(z)
∣∣∣ .

There are then constants C = C(ε, s) and n0 = n0(ε) such that ‖Fn‖L∞ ≤ C when n ≥ n0.

Proof. Using Lemma 2.10 and the estimate (6.7), we find that∣∣∣L j(z)
∣∣∣ ≤ CV j(z), z j ∈ Sn, z ∈ C,

where

(6.8) V j(z) = exp
(
−c
√

nεmin
{∣∣∣z − z j

∣∣∣ , δn

})
,

where c is a positive constant.
Observe that V j(z) ≤ e−c

√
ε log2 n

≤ 1/n when
∣∣∣z − z j

∣∣∣ ≥ δn and n is large enough. This gives that
there is n0 = n0(ε) such that

Fn(z) ≤ C
∑

z j∈D(z;δn)

V j(z) + 1, n ≥ n0.

Now when z j ∈ D(z; δn) we have V j(z) = e−c
√

nε|z−z j|. Hence when
∣∣∣w − z j

∣∣∣ ≤ s/
√

n we have
V j(z) ≤ Ce−c

√
nε|z−w|, where C = ecs

√
ε. This gives that

V j(z) ≤ C
n
s2

∫
D(z j;s/

√
n)

e−c
√

nε|z−w|dA(w).

By the separation, we then obtain that, when n ≥ n0,

Fn(z) ≤ 1 + C
n
s2

∫
C

e−c
√

nε|z−w|dA(w) = 1 + C
1

s2ε

∫
C

e−c|ζ|dA(ζ) < ∞.

The proof of the lemma is finished. �

The following lemma concludes our proof for part (2) of Lemma 2.5.

Lemma 6.4. Let F = {Fn}
∞

n=1 be a sequence of Fekete sets. Then the triangular family F ′ given by
F
′

n = Fn ∩ Sn is (1 + 2ε)-interpolating for any ε > 0.

Proof. Write Fn ∩ Sn = {zn1, . . . , znmn } and take a sequence c = (c j)mn
j=1. Consider the operator

T : Cmn → L1 + L∞ defined by T(c) =
∑

j c jL j, where L j are given by (6.6). In view of Lemma 6.2

‖T‖`1
mn→L1 ≤ sup ‖L j‖L1 ≤ C/n,

and by Lemma 6.3,
‖T‖`∞mn→L∞ ≤ ‖Fn‖L∞ ≤ C.

By the Riesz–Thorin theorem, we conclude that

‖T‖`2
mn→L2 ≤ C/

√
n.
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We have shown that, if f = T(c), then f ∈ H̃n(1+2ε), f (znj) = c j for all j ≤ mn and∫ ∣∣∣ f ∣∣∣2 ≤ C
n

mn∑
j=1

∣∣∣ f (znj)
∣∣∣2 .

I.e., F ′ is (1 + 2ε)-interpolating. �

6.3. Proof of Lemma 2.5(3). Let F = {Fn} where the Fn are n-Fekete sets. We will prove that F
is of class MSn,1−2ε whenever 0 < ε < 1/2 (for the definition of this class, see Definition 2.3).

Fix a function f ∈ H̃n(1−2ε) with ε > 0 small and a point z ∈ Sn, and consider the weighted
polynomial

gz(ζ) = f (ζ) ·
(

Knε(ζ, z)
Knε(z, z)

)2

∈ H̃n.

By Lagrange’s interpolation formula,

gz(ζ) =

n∑
j=1

gz(z j)` j(ζ),

where ` j is given by (6.2). It follows that

f (z) = gz(z) =

n∑
j=1

f (z j)L̃ j(z) where L̃ j(z) =

(
Knε(z j, z)
Knε(z, z)

)2

` j(z).

This gives (by (6.3)) ∣∣∣ f (z)
∣∣∣ ≤ n∑

j=1

∣∣∣ f (z j)
∣∣∣ Bnε(z; z j)

Knε(z, z)
e−n(Q(z)−Q̂(z))/2,

where Bnε(z; w) := |Knε(z,w)|2 /Knε(z, z) is the ”Berezin kernel” (see the next section).

Lemma 6.5. Suppose that z j ∈ S and let

Ṽ j(z) :=
∣∣∣L̃ j(z)

∣∣∣ =
Bnε(z; z j)
Knε(z, z)

∣∣∣` j(z)
∣∣∣ .

There are then constants C = C(ε) and n0 = n0(ε) such that

(6.9)
∥∥∥Ṽ j

∥∥∥
L1(Sn)

≤ C/n, n ≥ n0.

Proof. We shall consider two cases: (i) dist(z j, ∂S) ≥ δn and (ii) dist(z j, ∂S) ≤ δn.
In case (i) we use the estimates in eq. (7.3) and (6.7), to conclude

(6.10)
∫

D(z j;δn/2)

Bnε(z; z j)
Knε(z, z)

dA(z) -
∫

e−nε∆Q(z)|z−z j|
2

dA(z) ≤
C
εn
,

because ∆Q is bounded below by a positive constant on D(z j; δn/2).
Now let z j ∈ S be arbitrary and use the off-diagonal damping in Lemma 2.10 coupled with the

asymptotic estimate Kn(z, z) ∼ n for z ∈ Sn (Lemma 7.4) to conclude that there are C and c > 0
such that

(6.11) Ṽ j(z) ≤ CV j(z), z ∈ Sn,

where V j is given in (6.8).
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We conclude that

(6.12)
∫

Sn\D(z j;δn/2)
Ṽ j(z)dA(z) ≤ Ce−

1
2 c
√
ε log2 n

≤ 1/n,

provided that n is large enough. In case (i), the estimate (6.9) follows from (6.10) and (6.12); case
(ii) is immediate from (6.12). �

By Lemma 6.3 and the estimate (6.11), one immediately deduces the following lemma.

Lemma 6.6. Let

F̃n(z) =

n∑
j=1

Ṽ j(z).

There are then constants C = C(ε) and n0 = n0(ε) such that ‖F̃n‖L∞(Sn) ≤ C when n ≥ n0.

We can now conclude the proof of Lemma 2.5.
By (6.9) and (6.3), the operator T̃ : (c j)n

1 7→
∑

c jL̃ j(z) is bounded from `1
n to L1(Sn), of norm

≤ C/n; by Lemma 6.6 it is also bounded from `∞n to L∞(Sn), of norm ≤ C. By interpolation it is
bounded by C/

√
n from `2

n to L2(Sn), i.e., we have∫
Sn

∣∣∣ f ∣∣∣2 ≤ C
n

n∑
j=1

∣∣∣ f (z j)
∣∣∣2 , f ∈ H̃n(1−2ε).

We have shown that the family F is of class MSn,1−2ε, which concludes our proof of Lemma
2.5. �

7. Trace estimates for the concentration operator

In this section, we fill in the gaps in the hitherto discussion, i.e. we prove trace formulas for
the concentration operator. These follow from estimates for the correlation kernel of a type which
is at this point well-known (see e.g. [6],[1],[2],[4]). However, the estimates used here are more
elementary, so it has seemed worthwhile to include a brief account of them.

Fix a point z in a small neighbourhood Λ of S. The trace of the concentration operator
KAn(z)
ρn : H̃ρn → H̃ρn is given by

trace
(
KAn(z)
ρn

)
=

∫
An(z)

Kρn(ζ, ζ)dA(ζ),

while the trace of the composition of this operator with itself is

trace
(
KAn(z)
ρn ◦KAn(z)

ρn

)
=

∫
An(z)×An(z)

∣∣∣Kρn(ζ,w)
∣∣∣2 dA(ζ)dA(w).

Recall that Sn = {z ∈ S; dist(z, ∂S) ≥ 2δn} and δn = log2 n/
√

n. We shall prove the following
lemmas.

Lemma 7.1. Let z ∈ Sn. Then, as n→∞,

trace(KAn(z)
nρ ) = R2ρ∆Q(z) + O(εn),

where εn = log6 n/
√

n.

In the rest of this section, we keep the notation εn = log6 n/
√

n.
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Lemma 7.2. Let z ∈ Sn. There is then a constant C such that

(7.1) trace
(
KAn(z)

nρ ◦KAn(z)
nρ

)
≥ R2ρ∆Q(z) (1 − Cεn) − CR4εn + O(R),

as n→∞, where the O(R) constant is independent of n.

Combining the lemmas, we obtain our main auxiliary result on trace estimates in the bulk.

Lemma 7.3. Let z ∈ Sn. There is a constant C such that

trace
(
KAn(z)

nρ

)
− trace

(
KAn(z)

nρ ◦KAn(z)
nρ

)
≤ C

(
R2ρ∆Q(z) + R4

)
εn + O(R),

where the O(R) constant is independent of n.

Proofs. Define

ψ(z, ζ) = Q(z) + ∂Q(z) · (ζ − z) +
1
2
∂2Q(z) · (ζ − z)2,

and put
K#

nρ(z,w) = nρ∆Q(z)enψ(z,w̄)−n(Q(z)+Q(w))/2.

Our proofs of lemmas 7.1–7.3 uses the following asymptotic formula for the correlation kernel.

Lemma 7.4. Suppose that z ∈ Sn. There is then a positive number C independent of z and n such that for
all w ∈ D(z; δn), ∣∣∣Knρ(z,w) −K#

nρ(z,w)
∣∣∣ ≤ C

(
nρ

)2 δ3
n.

The statement is a suitably modified version of [4], Theorem 3.2, but it does not follow
immediately because the regularity assumption on Q is relaxed in our situation. A short proof is
given in the appendix. Related bulk expansions for correlation kernels are well known, see [6],
[1] and the references given there.

It is useful to note that it follows from Lemma 7.4 that there is a positive constant c such that

(7.2) Kn(z, z) ≥ cn, z ∈ Sn.

Observe that Lemma 7.1 is immediate from Lemma 7.4. It remains to prove Lemma 7.2. To
this end, we can apply arguments from [4], §3.2. To avoid unnecessary repetition, we shall be
brief.

The Berezin kernel rooted at a point ζ ∈ C is given by

w 7→ Bρn(ζ; w) :=

∣∣∣Kρn(ζ,w)
∣∣∣2

Kρn(ζ, ζ)
.

Notice that
∫
C

Bρn(ζ; w)dA(w) = 1, and that we can write

trace
(
KAn(z)
ρn ◦KAn(z)

ρn

)
=

∫
An(z)

Kρn(ζ, ζ)
[∫

An(z)
Bρn(ζ; w)dA(w)

]
dA(ζ).

Now consider the ”heat kernel”

Gnρ(ζ; w) = nρ∆Q(ζ)e−nρ∆Q(ζ)·|ζ−w|2 .

Using Lemma 7.4, one easily proves that

(7.3) Bnρ(z; w) = Gnρ(z; w) ·
(
1 + O(nδ3

n)
)

+ O(n2δ3
n), w ∈ D(z; δn).
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Next notice that w 7→ Gnρ(ζ; w) is a probability density on (C,dA) and that
∫

D(ζ;R/
√

n) Gnρ(ζ; w)dA(w) =

1 − e−R2ρ∆Q(ζ). Combining with (7.3) we then have, for ζ ∈ Sn.∫
D(ζ;R/

√
n)

Bnρ(ζ; w)dA(w) ≥
(
1 − e−R2ρ∆Q(ζ)

)
(1 − Cεn) + R2

·O(εn).

We can now continue to estimate

trace
(
KAn(z)

nρ ◦KAn(z)
nρ

)
≥

∫
An(z)

Knρ(ζ, ζ)
[∫

D(ζ;R/
√

n−|z−ζ|)
Bnρ(ζ; w)dA(w)

]
dA(ζ) =

=

∫
D(z;R/

√
n)

(nρ∆Q(ζ) + O(nεn))
[∫

D(ζ;R/
√

n−|z−ζ|)

(
Gnρ(ζ; w) · (1 + O(εn)) + O(nεn)

)
dA(w)

]
dA(ζ) =

=

∫
D(z;R/

√
n)

(nρ∆Q(ζ) + O(nεn))
(
1 − e−(R−

√
n|z−ζ|)2

ρ∆Q(z) + R2
·O(εn)

)
dA(ζ).

Changing variables by ω =
√

n(ζ− z) and writing r = |ω|, we conclude that the dominating term,
as n→∞, in the last integral is

ρ∆Q(z)
∫ R

0
2r

(
1 − e−(R−r)2ρ∆Q(z)

)
dr = ρ∆Q(z)

(
R2 + O(R)

)
.

The estimate (7.1) follows from this. �

8. The Ginibre case

In this section we prove lemmas 2.6 and 2.7, and, as a consequence, Theorem 1.5. We start
with some preliminaries on real analytic potentials.

8.1. Real analytic potentials. Let Q be real-analytic in some neighbourhood of the droplet.
Consider the function (”joint intensity k-point function”)

Rk
nρ(ξ1, . . . , ξk) = det(Knρ(ξi, ξ j))k

i, j=1.

We now fix a convergent sequence (zn)∞1 in S and consider the rescaled functions

R̂k
nρ(ζ1, . . . , ζk) =

1
(nρ)k

Rk
nρ(zn + ζ1/

√
nρ, . . . , zn + ζk/

√
nρ).

We also define the function (Ginibre(∞)-correlation kernel)

k(ζ, η) = eζη̄−|ζ|
2/2−|η|

2
/2.

We will use the following lemma.

Lemma 8.1. Assume that limn→∞
√

n dist(zn, ∂S) = +∞. Then for each k ≥ 1,

(8.1) lim
n→∞

R̂k
nρ(ζ1, . . . , ζk) = det(k(ζi, ζ j))k

i, j=1

with uniform convergence on compact subsets of Ck.

Proof. In the case when zn converges to a point of the interior of S, the lemma follows from Lemma
7.4. The same is true if zn converges to a point of ∂S and dist(zn, ∂S) ≥ log2 n/

√
n. In the general

case we can use the sharper asymptotic estimate for the correlation kernel corresponding to a
real analytic potential from the proof of Lemma 4.4 of [4] (or Theorem 2.1 of [1]), together with
the rescaling argument in [3], §7.5. Details are omitted. �
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8.2. Trace estimates near the boundary: Ginibre case. We now specialize to Q(z) = |z|2. We
shall write

sn(ζ) =

n−1∑
k=0

ζk

k!
.

It is well known that Kn(z,w) = nsn(nzw̄)e−n |z|
2+|w|2

2 .We fix a point z0 ∈ T and consider the function

R̃k
nρ(ζ1, . . . , ζk) =

1
(nρ)k

Rk
nρ(z0(1 + ζ1/

√
nρ), . . . , z0(1 + ζk/

√
nρ)).

We will denote by

Φ(z) =
1
2

erfc
(
−

z
√

2

)
.

This is the analytic continuation to C of the d.f. of a standard normal random variable. Also let

F(z,w) = ezw̄−|z|2/2−|w|2/2Φ(−z − w̄).

Lemma 8.2. Suppose that Q = |z|2 and that z0 ∈ T. Then for each k ≥ 1,

(8.2) lim
n→∞

R̃k
nρ(ζ1, . . . , ζk) = det

(
F(ζi, ζ j)

)k

i, j=1

with uniform convergence on compact subsets of Ck.

A proof is given in [14], Theorem C.1(2).

Remark 8.3. Since F is the correlation kernel of a determinantal process, we have |F(z,w)|2 ≤
F(z, z)F(w,w), which implies |F(z,w)| < 1. (A correlation kernel of a det-process in the plane is a

Hermitian function F satisfying det
(
F(λi, λ j)

)k

i, j=1
≥ 0 for all configurations {λ j}

k
j=1 ∈ C, k ≥ 0, cf.

e.g. [13].)

Remark 8.4. Let D+ = D + D(0; s/
√

n) where s > 0. We can then assert that there is a positive
constant c such that Kn(z, z) ≥ cn for all z ∈ D+. (To see this, let r = |z|2, so that Kn(z, z) = n f (nr)
where f (t) =

∑n−1
j=0

t j

j! e
−t. We have f ′(t) = −tn−1e−t/(n − 1)! so f is decreasing on [0,∞). Also, by

Lemma 8.2, f (n(1 + s/
√

n)2)→ Φ(−2s) > 0 as n→∞.)

By the preceding lemmas, we conclude the following.

(i) Suppose that
√

n(1 − |zn|)→ +∞. Then

(8.3) lim
n→∞

trace(KAn(z)
nρ ) = R2ρ and lim

n→∞
trace(KAn(z)

nρ ◦KAn(z)
nρ ) = R2ρ + O(R).

(ii) If
√

n(1 − |zn|)→ L < +∞, then

lim
n→∞

trace(KAn(z)
nρ ) = ρ

∫
D(L;R)

Φ(−2
√
ρRe ζ)dA(ζ),

lim
n→∞

trace(KAn(z)
nρ ◦KAn(z)

nρ ) = ρ2
"

D(L;R)×D(L;R)
e−ρ|ζ−η|

2
∣∣∣∣Φ (
−
√
ρ(ζ + η̄)

)∣∣∣∣2 dA(ζ)dA(η).
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Clearly Lemma 8.1 implies (i) while (ii) follows from Lemma 8.2.
We need to compare the integrals in (ii). To this end, fix a sequence z = (zn) ∈ D and suppose

that the limit L = limn→∞
√

n(1 − |zn|) exists and is finite. Observe that

lim
R→∞

lim
n→∞

trace(KAn(z)
nρ )

R2 = lim
R→∞

ρ

R2

∫
D(L;R)

Φ(−2
√
ρRe ζ)dA(ζ).

To compute the integral in the right hand side, we apply the change of variables ω = (ζ − L)/R.
It yields

ρ

R2

∫
D(L;R)

Φ(−2
√
ρRe ζ)dA(ζ) = ρ

∫
D

Φ
(
−2
√
ρRω − 2

√
ρL

)
dA(ω).

As R→∞ the right hand side above converges to ρ
∫
D

1{Reω<0}dA(ω) =
ρ
2 . We have shown that

(8.4) lim
R→∞

lim
n→∞

trace(KAn(z)
nρ )

R2 =
ρ

2
.

We also need to calculate the trace of the composition of KAn(z)
nρ with itself. For this purpose, it

will be convenient to use the Dawson’s function

F(t) := e−t2
∫ t

0
ex2

dx, t ∈ R.

Lemma 8.5. For all z,w ∈ C holds

(8.5) |F(z,w)| ≤ e−|z−w|2/2 + e−[Re(z−w)]2/2 1
√
π

F
(

Im(z − w)
√

2

)
.

In particular, F(z,w) ≤ C/(1 + |z − w|).

Proof. We have |F(z,w)| = e−|z−w|2/2
|Φ (−z − w̄)| . By Cauchy’s theorem we can unambiguously

write Φ(z) = 1
√

2π

∫ z

−∞
e−ζ

2/2dζ. Let −z − w̄ = a + ib with a = −Re(z + w) and b = Im(w − z), and put
Γ = (−∞, a] ∪ [a, a + ib]. An obvious estimate of the integral over Γ gives

|Φ (−z − w̄)| ≤ Φ(a) +
1
√

2π

∫ b

0
et2/2dt,

so, since Φ(a) ≤ 1,

|F(z,w)| ≤ e−c2/2 + e−c2/2 1
√

2π

∫ b

0
et2/2dt, c = |z − w| .

This is equivalent to (8.5).
It remains to be shown that |F(z,w)| → 0 as |z − w| → ∞. It is well-known that F has asymptotic

expansion F(t) = 1/2t + 1/4t3 + · · · as t → ∞ (see [28], p. 406), so F(t) → 0 as t → ∞. Writing
s = |Re(z − w)| and t = |Im(z − w)|, we notice that it follows from (8.5) that

|z − w| |F(z,w)| ≤ |z − w| e−|z−w|2/2 + se−s2/2F
(
t/
√

2
)

+ e−s2/2
· tF

(
t/
√

2
)
≤ C,

with a C independent of z and w. This finishes the proof, since |F| < 1 (Remark 8.3). �

Lemma 8.6. For any z ∈ C we have

ρ2
∫
C

e−ρ|z−w|2
∣∣∣∣Φ (
−
√
ρ(z + w̄)

)∣∣∣∣2 dA(w) = ρΦ(−2
√
ρRe z).
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Proof. By an obvious change of variables, we can assume that ρ = 1. Thus consider the integral

I(z) =

∫
C

e−|z−w|2
|Φ(−z − w̄)|2 dA(w).

Putting w = z + reiθ gives

(8.6) I(z) =
1
π

∫ 2π

0

[∫
∞

0
re−r2

∣∣∣∣Φ (
−2 Re z − re−iθ

)∣∣∣∣2 dr
]

dθ.

Let J(z) be the inner integral, J(z) =
∫
∞

0 re−r2
∣∣∣∣Φ (
−2 Re z − re−iθ

)∣∣∣∣2 dr.An integration by parts gives

J(z) =
[
−

1
2

e−r2
∣∣∣∣Φ (
−2 Re z − re−iθ

)∣∣∣∣2]∞
r=0

+
1
2

∫
∞

0
e−r2 ∂

∂r

∣∣∣∣Φ (
−2 Re z − re−iθ

)∣∣∣∣2 dr.

By Lemma 8.5, we have for all θ

lim
r→∞

e−r2
∣∣∣∣Φ (
−2 Re z − re−iθ

)∣∣∣∣2 = 0.

This shows that

(8.7) J(z) =
1
2

Φ(−2 Re z) +
1
2

∫
∞

0
e−r2 ∂

∂r

∣∣∣∣Φ (
−2 Re z − re−iθ

)∣∣∣∣2 dr.

But

∂
∂r

∣∣∣∣Φ (
−2 Re z − re−iθ

)∣∣∣∣2 = −
1
ir
∂
∂θ

∣∣∣∣Φ (
−2 Re z − re−iθ

)∣∣∣∣2 .(8.8)

Using (8.7) and (8.8) in (8.6) we get

I(z) = Φ(−2 Re z) +
1

2π

∫
∞

0
e−r2 i

r

[∫ 2π

0

∂
∂θ

∣∣∣∣Φ (
−2 Re z − re−iθ

)∣∣∣∣2 dθ
]

dr.

The inner integral in the right hand side clearly vanishes, so I(z) = Φ(−2 Re z), as desired. �

Suppose now that L = limn→∞
√

n(1 − |zn|) < ∞. By the last lemma, then

(8.9) lim
n→∞

trace(KAn(z)
nρ ◦KAn(z)

nρ ) = ρ

∫
D(L;R)

Φ(−2 Re
√
ρζ)(1 + o(1))dA(ζ) = lim

n→∞
trace(KAn(z)

nρ ) + o(R2).

We now have the trace estimates needed for our discussion of Beurling–Landau densities close
to the boundary.

8.3. Proof of Lemma 2.6. LetZ be a triangular family contained inD. Fix a sequence ζ = (zn) in
D and let L := limn→∞

√
n(1 − |zn|).

Assume first that Z is of class MD,ρ. Using the estimate (4.3) and the trace estimates in the
preceding subsection, one can finish the argument exactly as in Section 5 above. More precisely,
if L = +∞ we use the estimates in (8.3) to obtain that D−(Z, ζ) ≥ ρ, and if L < ∞ we use instead
the estimates in equations (8.4) and (8.9) to obtain D−(Z, ζ) ≥ ρ/2.

Similarly, ifZ is ρ-interpolating, we repeat the argument in Section 5 using the trace estimates
above. It yields that D+(Z, ζ) ≤ ρ if L = ∞ and D+(Z, ζ) ≤ ρ/2 if L < ∞. �
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8.4. Off-diagonal damping in the Ginibre case. The aim of this subsection is to prove the
following proposition, which will be used in the next subsection to prove Lemma 2.7.

Proposition 8.7. Let Q = |z|2 be the Ginibre potential. There exists a constant C such that

(8.10) |Kn(z,w)| ≤ Cn
1

1 +
√

n |z − w|
, z,w ∈ D+ = D(0; 1 + s/

√
n).

We may w.l.o.g. assume that the separation constant s has s ≤ 1, this will be done below.
Our proof consists of checking a number of cases. The argument is somewhat lengthy, but

straightforward.
It will facilitate to note that we have rotational symmetry Kn(z,w) = Kn(eiθz, eiθw), so we may

w.l.o.g. assume that w = r is real and non-negative when proving (8.10).
Also notice that we trivially have

(8.11) |Kn(z,w)| ≤ Cn ≤ C(1 + M)n
1

1 +
√

n |z − w|
, |z − w| ≤M/

√
n.

We shall dispose of another simple case.

Lemma 8.8. Suppose that z, r ∈ D+ and r ≥ 1/2. Then |z − r| ≤ 2 |zr − 1| + 4s/
√

n.

Proof. First assume that z, r ∈ D. Let z = x + iy. The inequalities

(x − r)2
≤ (rx − 1)2, (−1 ≤ x ≤ 1) and y2

≤ 4(ry)2

show that |z − r|2 ≤ (rx − 1)2 + 4(ry)2
≤ 4 |zr − 1|2 .

It is now straightforward to check the cases when z and/or r are inD+
\D; we omit details. �

The lemma implies that |Kn(z, r)| ≤ Cn 1
1+
√

n|z−r|
when z, r ∈ D+ are such that r ≥ 0 and |zr − 1| ≤

M/
√

n.
In the following we can thus assume that |zr − 1| ≥ M/

√
n where the constant M is at our

disposal. We make the following observation.

Fact 8.9. If M ≥ 8s, then for all z, r ∈ D+ such that r ≥ 1/2 and |z − r| ≥ M/
√

n we have that
|z − r| ≤ 4 |zr − 1|.

Proof. The hypothesis gives that 4s/
√

n ≤ |z − r| /2. Hence Lemma 8.8 shows that |z − r| ≤
2 |zr − 1| + |z − r| /2. �

Lemma 8.10. There are constants δ > 0 and C such that for all z,w ∈ D(0; 2) such that M/
√

n ≤

|zw̄ − 1| ≤ δ, we have |Kn(z,w)| ≤ Cn
(
e−n|z−w|2/2 + 1

1+
√

n|zw̄−1|

)
.

Proof. Let φ(ζ) = ζ − 1 − log ζ for ζ close to 1, with the principal branch of the logarithm. It was
observed in [12], Appendix B, that φ has an analytic square-root ξ =

√
φ, which is moreover

conformal in a neighbourhood of 1. We fix ξ(z) by requiring it to be negative for real z ∈ (0, 1).
We will now apply [12], Theorem B.1, which yields that there exists δ > 0 such that for any

M > 1 and all ζwith M/
√

n ≤ |ζ − 1| ≤ δ, we have the following, partially overlapping, asymptotic
expansions:

sn(nζ)e−nζ =

1 − 1
2
√

2ξ′(ζ)
erfc(−

√
nξ(ζ))(1 + O(1/

√
n)),

∣∣∣arg(ζ − 1) − π
∣∣∣ ≤ 2π/3,

1
2
√

2ξ′(ζ)
erfc(

√
nξ(ζ))(1 + O(1/

√
n)),

∣∣∣arg(ζ − 1)
∣∣∣ ≤ 2π/3.
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Applying the asymptotic expansion (found in [12], eq. (B.36))

erfc(−z) = −
e−z2

√
πz

(1 + O(1/z2)) as z→∞,
∣∣∣arg(z − 1) − π

∣∣∣ < 3π/4 − ε,

and the fact that erfc(−z) + erfc(z) = 2, we obtain in both cases∣∣∣sn(nzw̄)e−nzw̄
∣∣∣ ≤ C

(
1 +
|zw|n+1 e−n Re(zw̄)+n

√
n |zw̄ − 1|

)
, M/

√
n ≤ |zw̄ − 1| ≤ δ.

We have shown that

|Kn(z,w)| = n
∣∣∣sn(nzw̄)e−nzw̄

∣∣∣ ∣∣∣∣∣enzw̄−n |z|
2+|w|2

2

∣∣∣∣∣ ≤ Cn
(
e−n|z−w|2/2 +

|zw|
√

n |zw̄ − 1|
|zw|n e

−n
(
|z|2+|w|2

2 −1
))
.

Using that xne−n(x−1)
≤ 1 for x > 0 we find that

|Kn(z,w)| ≤ Cn
(
e−n|z−w|2/2 +

1
√

n |zw̄ − 1|

)
, M/

√
n ≤ |zw̄ − 1| ≤ δ.

This finishes the proof of the lemma. �

If z, r ∈ D+ and M/
√

n ≤ |zr − 1| ≤ δ, then |z| , r ≥ 1/2 provided that δ is sufficiently small.
Hence Lemma 8.10 and Fact 8.9 show that, provided M ≥ 8s, we have the estimate

|Kn(z, r)| ≤ Cn
(
e−n|z−r|2/2 +

1
√

n |z − r| /4

)
.

Since xe−x2/2 < 1, it yields that |Kn(z, r)| -
√

n/ |z − r|.
There now only remains to handle the case when |zr − 1| ≥ δ. To this end, we shall use the

following lemma.

Lemma 8.11. If z,w ∈ D(0; 2) satisfy |1 − zw̄| ≥ δ > 0 then |Kn(z,w)| ≤ C
√

n
(
1 + 1

|z−w|

)
where C

depends only on δ.

Proof. We shall use some classical asymptotic estimates due to Szegő. Namely, by [29], Hilfssatz
1, it holds that for all ζ ∈ C with |ζ − 1| ≥ δ we have two partially overlapping possibilities. Viz.
there are open sets Ω1,Ω2 with Ω1 ∪Ω2 = C \ {1} such that

sn(nζ)e−nζ =

 1
√

2πn
(ζe1−ζ)n ζ

1−ζ (1 + ε(1)
n (ζ)), ζ ∈ Ω1,

1 + 1
√

2πn
(ζe1−ζ)n ζ

1−ζ (1 + ε(2)
n (ζ)), ζ ∈ Ω2.

where ε( j)
n (ζ) denotes a quantity converging to zero, uniformly on compact subsets of Ω j.

These relations imply

|Kn(z,w)| ≤ n
(
e−n|z−w|2/2 + C

1
√

n |zw̄ − 1|

)
≤ n

(
e−n|z−w|2/2 + Cδ−1 1

√
n

)
,

for (z,w) in a compact subset of C2
\ {(z,w); |zw̄ − 1| ≤ δ}. The lemma follows. �

The lemma shows that |Kn(z, r)| ≤ Cδ−1√n when z, r ∈ D+ satisfy |1 − zr| ≥ δ and r ≥ 0.
Thereby, Proposition 8.7 is completely proved. �
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8.5. Proof of Lemma 2.7. Let F = {Fn} be a family of Fekete sets corresponding to Q = |z|2. Also
fix a small ε > 0. We will prove that F is of class MD,1−3ε and that F is (1 + 3ε)-interpolating.

To this end, write Fn = {z1, . . . , zn} and introduce the auxiliary functions

` j(z) =

∏
i, j

(z − zi)/
∏
i, j

(z j − zi)

 e−n(Q(z)−Q(z j))/2,

as well as

L j(z) =

(
Kεn(z, z j)
Kεn(z j, z j)

)3

` j(z) , L̃ j(z) =

(
Kεn(z j, z)
Kεn(z, z)

)3

` j(z).

By general results, we have that F ⊂ D, F is uniformly separated, and
∣∣∣` j

∣∣∣ ≤ 1 onC (see Theorem
1.1 and Lemma 6.1). We also recall:

(i) To prove that F is (1 + 3ε)-interpolating it suffices to show that the operator T : (c j)n
j=1 7→∑n

j=1 c jL j(z) is bounded from `n
2 to L2, of norm at most C/

√
n. (Consider the weighted polynomial

f = T(c) ∈ H̃n(1+3ε).)
(ii) Similarly, to prove that F is of class MD,1−3ε it suffices to show that the operator T̃ :

(c j)n
j=1 7→

∑n
j=1 c jL̃ j(z) is bounded from `n

2 to L2(D+), of norm at most C/
√

n. This follows from the
representation f = T̃(c), f ∈ H̃n(1−3ε), where c j = f (z j). (See §6.3.)

Next observe that since Knε(z, z) ≥ cnε for z ∈ D+ (Remark 8.4), and since
∣∣∣Kn(z j, z)

∣∣∣ ≤ Cn, we
have ∣∣∣L j(z)

∣∣∣ ≤ C
n2ε3

∣∣∣Knε(z j, z)
∣∣∣2, z ∈ C

and ∣∣∣L̃ j(z)
∣∣∣ ≤ C

n2ε3

∣∣∣Knε(z j, z)
∣∣∣2, z ∈ D+.

Since ∫
C

∣∣∣Knε(z j, z)
∣∣∣2 dA(z) = Kεn(z j, z j) ≤ Cnε,

we conclude that ‖L j‖L1 ≤ C/(nε2) and ‖L̃ j‖L1 ≤ C/(nε2). We have shown that ‖T‖`1
n→L1 ≤ C/(nε2)

and ‖T̃‖`1
n→L1(D+) ≤ C/(nε2).

Next notice that by Proposition 8.7 and Remark 8.4 we have∣∣∣L j(z)
∣∣∣ ≤ CV j(z) and

∣∣∣L̃ j(z)
∣∣∣ ≤ CV j(z), z ∈ D+,

where
V j(z) =

1

(1 +
√

nε
∣∣∣z − z j

∣∣∣)3
.

Let us introduce the function

Fn(z) =

n∑
j=1

V j(z).

Since

V j(z) ≤ Cns−2
∫

D(z j,s/
√

n)
V j(w)dA(w), z ∈ D+,

with a constant C depending only on s and ε, the separation implies that

Fn(z) ≤ Cns−2
∫
D+

1
(1 +

√
nε |z − w|)3

dA(w) ≤ Cε−1s−2
∫
C

1
(1 + |ζ|)3 dA(ζ) < ∞, z ∈ D+.
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This implies ‖Fn‖L∞(D+) ≤ Cε−1s−2, which gives ‖T‖`∞n →L∞(D+) ≤ Cε−1s−2 and ‖T̃‖`∞n →L∞(D+) ≤ Cε−1s−2.
We now recall that the bound ‖T‖`∞n →L∞(D) ≤ C means that, for all (c j)n

1 ,∥∥∥∥∥∥∥∥
n∑

j=1

c jL j

∥∥∥∥∥∥∥∥
L∞(D)

≤ C max
∣∣∣c j

∣∣∣ .
But by the maximum principle (Lemma 2.8), the weighted polynomial

∑
c jL j(z) assumes its

maximum onD, which means that ∥∥∥∥∥∥∥∥
n∑

j=1

c jL j

∥∥∥∥∥∥∥∥
L∞

≤ C max
∣∣∣c j

∣∣∣ .
We have shown that ‖T‖`∞n →L∞ ≤ Cε−1s−2.

By interpolation we now infer that ‖T‖`2
n→L2 ≤ C/

√
n and ‖T̃‖`2

n→L2(D+) ≤ C/
√

n with a constant
depending on ε and s. The proof of the lemma is finished. q.e.d.

Appendix: The proof of Lemma 7.4

Let Q be C3-smooth in some neighbourhood of S; we assume that ∆Q ≥ const. > 0 there. To
prove Lemma 7.4, we shall use a simplified form of the argument used in the appendix of [4].

To simplify the discussion we put ρ = 1; for the general case one needs simply to replace ”n”
by ”nρ”.

It will be useful to keep in mind the following elementary properties of the equilibrium
potential Q̂: (i) Q̂ is C1-smooth on C and the gradient of Q̂ is Lipschitz continuous on C, (ii) Q̂ is
harmonic on C \ S, (iii) one has that

(8.12) Q̂(ζ) = log |ζ|2 + O(1) as z→∞.

For proofs of these statements, we refer to [25], Theorem I.4.7 and [19].
Fix a point z ∈ S with dist(z, ∂S) ≥ 3δn. We can here take δn = M

√
log n/n for some large M,

but any fixed positive sequence with nδ3
n → 0 and lim infn→∞ nδ2

n/ log n large enough will also
work. (So δn = log2 n/

√
n will work, which is the choice made throughout the rest of this paper;

in particular, in our statement and proof of Theorem 1.3.)
Recall that

ψ(z, ζ) = Q(z) + ∂Q(z) · (ζ − z) +
1
2
∂2Q(z) · (ζ − z)2.

Put
k#

z(ζ) = n∆Q(z)enψ(z,ζ̄).

Observe that, by Taylor’s formula,

(8.13) k#
z(ζ)e−nQ(ζ) = n∆Q(z)e−nHz(ζ)−n∆Q(z)|z−ζ|2 enεz(ζ),

where

Hz(ζ) = ∂Q(z)(ζ − z) +
1
2
∂2Q(z)(ζ − z)2

and εz(ζ) = O(|z − ζ|3).
Let χz = χz,n be a sequence of cut-off functions with χz = 1 in D(z; 3δn/2) and χz = 0 outside

D(z; 2δn), and also ‖∂χz‖L2 ≤ C. Recall the notation ‖ f ‖2nQ =
∫
C

∣∣∣ f ∣∣∣2 e−nQdA.
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Let f be holomorphic in D(z; 2δn). Observe that (since ex = 1 + O(x) as x→ 0)

〈χz · f , k#
z〉nQ =

(
1 + O(nδ3

n)
)

n∆Q(z)
∫
χz · Fne−n∆Q(z)|ζ−z|2 dA(ζ),

where we have put
Fn = f · e−nHz .

It yields

〈χz · f , k#
z〉nQ = −(1 + O(nδ3

n))
∫

χz(ζ) · Fn(ζ)
ζ − z

· ∂ζ
(
e−n∆Q(z)|ζ−z|2

)
dA(ζ),

or by Cauchy’s formula,

〈χz · f , k#
z〉nQ = (1 + O(nδ3

n))

Fn(z) +

∫
|ζ−z|≥δn

∂χz(ζ) · Fn(ζ)
ζ − z

e−n∆Q(z)|ζ−z|2 dA(ζ)

 .
Since Fn(z) = f (z), it yields (using Cauchy–Schwarz)∣∣∣ f (z) − 〈χz · f , k#

z〉nQ

∣∣∣ ≤ Cnδ3
n

∣∣∣ f (z)
∣∣∣ + δ−1

n e−nδ2
n

∥∥∥∥∂χz

∥∥∥∥
L2
·

(∫
D(z;2δn)

|Fn(ζ)|2 e−n∆Q(z)|z−ζ|2 dA(ζ)
)1/2

.

But in view of Lemma 2.9, we have an estimate∣∣∣ f (z)
∣∣∣ - √n

∥∥∥ f
∥∥∥

nQ enQ(z)/2.

Observing that |Fn(ζ)|2 e−n∆Q(z)|z−ζ|2 -
∣∣∣ f (ζ)

∣∣∣2 e−nQ(ζ)enQ(z) when ζ ∈ D(z; 2δn), we conclude

(8.14)
∣∣∣ f (z) − 〈χz · f , k#

z〉nQ

∣∣∣ ≤ Cn3/2δ3
n‖ f ‖nQenQ(z)/2.

Let kw(z) = Kn(z,w) be the reproducing kernel for the subspace Hn of L2
nQ = L2(e−nQ,dA)

consisting of all analytic polynomials of degree≤ n−1; let Pn f (z) = 〈 f , kz〉nQ and P#
n f (z) = 〈 f , k#

z〉nQ.
Then

P#
n [χz · kw] (z) = 〈χz · kw, k#

z〉nQ = 〈χzk#
z , kw〉nQ = Pn

[
χz · k#

z

]
(w).

This gives (since kz(w) = kw(z))∣∣∣∣kz(w) − Pn

[
χz · k#

z

]
(w)

∣∣∣∣ =
∣∣∣kw(z) − P#

n [χz · kw] (z)
∣∣∣ ,

and, since ‖kw‖nQ -
√

nenQ(w)/2, we get from (8.14) that

(8.15)
∣∣∣∣kz(w) − Pn

[
χz · k#

z

]
(w)

∣∣∣∣ ≤ Cn2δ3
nenQ(z)/2enQ(w)/2.

To finish the proof of Lemma 7.4, fix z ∈ Sn and w ∈ D(z; δn) and let

u(ζ) = χz(ζ)k#
w(ζ) − Pn

[
χzk#

w

]
(ζ).

By a well known version of Hörmander’s estimate for the L2-minimal solution to the ∂-equation
(see [6] or [1], §5.2) we have a pointwise estimate

|u(z)| ≤ Cne−cnδ2
n en(Q(z)+Q(w))/2,

where C and c are positive constants.
Since ne−cnδ2

n = o(1), we obtain∣∣∣Kn(z,w) − k#
w(z)

∣∣∣ e−n(Q(z)+Q(w))/2
≤ Cn2δ3

n.
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To finish the proof of Lemma 7.4, it now suffices to recall that

Kn(z,w) = Kn(z,w)e−n(Q(z)+Q(w))/2 and K#
n(z,w) = k#

z(w)e−n(Q(z)+Q(w))/2.
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