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ABSTRACT 

Generalization from single-case designs can be achieved by means of 

replicating individual studies across different experimental units and settings. 

When replications are available, their findings can be summarized using effect 

size measurements and integrated through meta-analyses. Several procedures 

are available for quantifying the magnitude of treatment’s effect in N = 1 

designs and some of them are studied in the current paper.  

Monte Carlo simulations were employed to generate different data patterns 

(trend, level change, slope change). The experimental conditions simulated 

were defined by the degrees of serial dependence and phases’ length. Out of 

all the effect size indices studied, the Percent of nonoverlapping data and 

standardized mean difference proved to be less affected by autocorrelation and 

perform better for shorter data series. The regression-based procedures 

proposed specifically for single-case designs did not differentiate between data 

patterns as well as simpler indices.   
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N = 1 designs have been criticized due to the problematic statistical 

generalizations. A possible solution of this problem consists in replicating 

across subjects and settings in order to establish the generality of the treatment 

effects. The quantitative integration of these replications can be accomplished 

by means of meta-analysis. A prior step to integration is summarizing the 

evidence from each study, a stage in which effect sizes are of maximum 

relevance. The measurements of the magnitude of effect have gained 

importance as they overcome p-values’ limitations (Cohen 1990; 1994; Kirk, 

1996; Rosnow & Rosenthal, 1989; Wilkinson & The Task Force on Statistical 

Inference, 1999). Effect size is an objective measurement of the strength of the 

intervention and provides clinical and social researchers more useful 

information than the significance level. In contrast with the latter, effect size 

are not systematically affected by sample size (Parker & Brossart, 2003) and 

focuses on the strength of association between the independent and the 

dependent variables, instead of centering on the null hypothesis (Kromrey & 

Foster-Johnson, 1996). Moreover, effect size allows comparing treatments and 

is useful for documenting results for posterior meta-analysis and power 

analysis (Parker & Hagan-Burke, 2007). Another advantage is the possibility 

to construct confidence intervals about the effect size (Kirk, 1996).    

One of the peculiarities of single-case designs is that they generally include 

few measurement times (Huitema, 1985). On the other hand, several surveys 

(e.g., Busk & Marascuilo, 1988; Matyas & Greenwood, 1991; 1996; Parker, 

2006) report that autocorrelation is a common feature of N = 1 designs. It has 



been claimed that even low and statistically non-significant levels of 

autocorrelation can have critical influence on the analytical techniques 

employed (Busk & Marascuilo, 1988; Sharpley & Alavosius, 1988; Suen, 

1987; Suen & Ary, 1987). Moreover, empirical findings suggest that 

autocorrelation affects a great variety of statistical techniques like ANOVA 

(Toothaker, Banz, Noble, Camp, & Davis, 1983), the binomial test and the 

split-middle method (Crosbie, 1987), randomization tests (Gorman & Allison, 

1996; Sierra, Solanas, & Quera, 2005) and also visual analysis (Jones, 

Weinrott, & Vaught, 1978; Matyas & Greenwood, 1990).   

The typical phase length and the likely presence of serial dependence have 

influenced the lack of consensus about the optimal effect size measurement in 

single-case research. The most frequent formulae such as standardized mean 

differences (e.g., Cohen’s d; Hedges’ g; Glass’ Δ) and correlations (e.g., η
2
; 

ω
2
; R

2
), have been conceptualized and developed for group designs and focus 

solely on the average level in the control and treatment conditions. There have 

also been proposed indices destined specifically to N-of-1 designs, such as the 

Percent of Nonoverlapping Data (PND) or the regression indices (Allison & 

Gorman, 1993; Center, Skiba, & Casey, 1985-86; Gorsuch, 1983; White, 

Rusch, Kazdin, & Hartmann, 1989). PND, as its name suggests, centers on a 

criterion frequently used in visual inspection, which is still the most 

commonly applied single-case data analysis technique (Parker, Cryer, & 

Byrns, 2006). The regression procedures take into account mean levels and the 

possible slope changes between conditions and also control for trends not 



associated with the intervention. The comparison between studies is enhanced 

by the possibility of converting one type of index into another (Friedman, 

1982).  

Each of the indices mentioned has its drawbacks: deficient performance in 

presence of outliers and trend, ignoring all phase A data points but one (PND); 

no account for changes in slope (Gorsuch’s Trend analysis and White et al.’s 

d); conservativeness, attainment of more than one magnitude of effect index 

and impossibility to obtain a negative d (Center, Skiba, & Casey’s procedure); 

possibility to produce unreliable estimates of trend due to short baseline and 

overestimation of effect size (Allison & Gorman’s procedure). Regarding the 

limitations of the latter, which appears to be the conceptually most appropriate 

one, too large effect sizes may potentially affect interpretability (Campbell, 

2004). With respect to that, Scruggs & Mastropieri (1998) point out that an 

effect size of d = 3.0 implies that percentile 50 of the treatment phase 

corresponds to percentile 99.9 of the baseline phase, making greater values of 

d practically useless. Finally, applied researchers have to keep in mind that 

when the parametric assumptions of regression-based procedures are not met 

the correctness of the effect sizes calculated is not guaranteed.  We performed 

a small revision of scientific literature and found that PND seems to be 

employed more frequently (e.g., Bellini, Peters, Benner, & Hopf, 2007; 

Mathur, Kavale, Quinn, Forness, & Rutherfod, 1998; Scruggs & Mastropieri, 

1994; Scruggs, Mastropieri, Forness, & Kavale, 1988) than regression-based 



methods (Allison, Faith, & Franklin, 1995; Skiba, Casey, & Center, 1986), 

probably due to the relatively greater complexity of the latter.  

The objective of the present investigation was to assess the performance of 

six proposed measures of effect sizes for AB designs in presence of different 

degrees of autocorrelation. The comparison between the indices was done in 

terms of R
2
 (except for PND) due to the fact that this indicator ranges from 0 

to 1 and is easily interpreted as “the variance of the dependent variable 

explained by the change in phase”. Due to the fact that estimating 

autocorrelation from real data, and testing it for significance, may be 

problematic (Huitema & McKean, 1991; Matyas & Greenwood, 1991), we 

decided to test the effect size procedures with data constructed with known 

parameters (i.e., serial dependence, trend, level change, slope change), a 

method that has already been applied in single-case effect size studies (Parker 

& Brossart, 2003). Another aim was to evaluate the influence of series length, 

as suggested by Campbell (2004).  

 

Method 

 

Design selection 

Two-phase AB designs with different total (N) and phase length (nA and 

nB) were studied.  Short series were chosen as they are more feasible in 

applied settings: a) N = 10; nA = nB = 5. b) N = 15; nA = 5; nB = 10. c) N = 15; 



nA = 7; nB = 8. d) N = 20; nA = 5; nB = 15. e) N = 20, nA = nB = 10. f) N = 30, 

nA = nB = 15. 

 

Data generation 

The data for the abovementioned series lengths were generated according 

to an expression that allows specifying level and slope changes, and trend. The 

statistical model was the same as in previous investigations (e.g., Huitema & 

McKean, 2000; 2007):   

yt = β0 + β1*Tt +  β2*Dt + β3*SCt + εt, where: 

yt: the value of the dependent variable at moment t; 

β0: intercept; 

β1, β2, β3: partial correlation coefficients;  

Tt: value of the time variable at moment t (takes values from 1 to N); 

Dt: dummy variable for level change (0 for phase A and 1 for phase B); 

SCt: value of the slope change variable. SCt = [Tt – (nA + 1)]*Dt. Takes 0 

for phase A, and values from 0 to (nB − 1) for phase B. 

εt: error term;  

The error term (εt) was generated following a first-order autoregressive 

model: εt = φ1* εt–1 + ut. The values of serial dependence (φ1) ranged from      

–0.9 to 0.9 in steps of 0.1. The ut term represents white noise at moment t and 

ε1 = u1.   

The value of the intercept parameter β0 was set to zero as it does not affect 

effect size calculation. On the other hand, our goal was to guarantee suitable 



comparisons between experimental conditions. Therefore, it was important 

that the two types of effects (i.e., level change associated with parameter β2, 

and slope change associated with β3) and trend (extraneous variable associated 

with parameter β1) produced comparable mean differences between phase B 

and phase A.  Firstly, two criteria were chosen: a) series length: the shortest 

design was chosen nA = nB = 5 in order to explore if longer series imply better 

effects detection; b) the partial correlation coefficient: level change (β2) was 

selected as it maintains constant throughout the whole intervention phase. As 

the ut term was generated following N(0,1), the phase A values approximate 

zero (yAi ≈ 0). Being present a level change of β2, yBi = yAi + β2 = 0 + β2 = β2. 

β2 = 0.3 was chosen as it proved to avoid floor and ceiling effects (i.e., R
2
 not 

approaching 0 nor 1, respectively). The change in slope produces (nB − 1) 

increments and it was necessary to find a β3 value so that the median phase B 

point be equal to β2, which will make the phase B mean also equal to β2. As 

2B Ay y   , a β3 value implying the same mean difference can be calculated 

as 

2
3 1

2
Bn


 


, which for β2 = 0.3 leads to 

3

0.3 0.6
0.15

5 1 4

2

   


  

As trend involves increments from the first observation, the accomplishment 

of the 
2B Ay y    criterion required meeting the following equality yBi - yAi = 

β2.  The needed β1 value can be found as  



2
1

2
A Bn n


 


, which for β2 = 0.3 leads to 

1

0.3 0.6
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5 5 10

2
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We could verify that the β1 and β3 values are appropriate for producing β2 

mean differences even for the most extreme levels of serial dependence (−0.9 

and 0.9), whenever nA = nB. In total there were eight data patterns studied, 

defined by the presence and combination of trend, level change, and slope 

change (i.e., β1, β2, and β3 being equal to or different from zero).   

It is likely that for series with high negative autocorrelation unstable 

baselines be obtained. Therefore, we used a large number of iterations in order 

to ensure that the indices’ comparison does not depend on few clinically 

improbable data sets.   

The 50 number previous to each simulated data series were eliminated in 

order to reduce artificial effects (Greenwood & Matyas, 1990) and to avoid 

dependence between successive data series (Huitema, McKean, & McKnight, 

1999).  

 

Analysis 

 

We calculated the effect size for each experimental condition using the 

following indices: 

Percent of Nonoverlapping Data 



1) Calculate the number of phase B data points that exceed the highest data 

point in phase A. Simulating increases in behavior with the introduction 

of treatment ensures that this step is appropriate.  

2) Divide the value obtained in step 1 by the number of observations in 

phase B and multiply by 100 in order to convert the proportion in 

percentage.  

Cohen’s d 

1)  Obtain the difference between the means of both phases: 
B Ay y . 

2) Calculate the standard deviation of each phase. 

3) Divide the value obtained in step 1 by the phase A standard deviation or 

by the pooled standard deviation (obtaining dA and dAB, respectively).  

4) Convert d to R
2
, using 

2
2

2 4

d
R

d



 . 

Gorsuch’s (1983) Trend analysis:  

1) Calculate a simple linear regression using time (T = 1, 2, …, n) as a 

predictor variable and the original dependent variable: Y = a + bt*T + ut  

2) Calculate a simple linear regression using the treatment variable (X = 0 

for phase A and  X = 1 for phase B) as a predictor and the residual of the 

step 1 regression as a dependent variable: residual(Y) = a + bx*X + ut  

3) Calculate R
2
 as the sum of squares explained by the step 2 model divided 

by the total sum of squares.  

White et al.’s d (1989, using the correction in Faith, Allison, & Gorman, 1996)  



1) Calculate a simple linear regression using phase A data and the time 

variable as predictor. 

2) Use the step 1 regression coefficients (intercept and slope) to obtain the 

predicted value of the dependent variable for the last day of the B phase 

– this value is called 
A

y . 

3) Calculate a simple linear regression using phase B data and the time 

variable as predictor. 

4) Use the step 3 regression coefficients (intercept and slope) to obtain the 

predicted value of the dependent variable for the last day of the B phase 

– this value is called 
B

y . 

5) Calculate the difference 
B A

y y  which represents the numerator in White 

et al.’s (1989) formula.  

6) Calculate the pooled standard deviation of phases A and B. 

7) Calculate the Pearson product-moment correlation coefficient between 

the dependent variable and the time variable.  

8) Calculate d through the expression 
2 2 2(1 )* ( ) / 2

B A

A B

y y
d

r s s




 

.  

9) Convert d to R
2
.  

Allison & Gorman (1993). 

1) Calculate a simple linear regression using phase A data and the time 

variable as predictor.: YA = b0 + b1*TA + e  

2) Calculate the predicted values for Y and the residuals for both phases. 



3) Calculate zero-order correlations between the treatment variable X (X = 

0 for phase A and X = 1 for phase B) and residual(Y), on one hand, and 

between X*T and residual(Y), on the other. If both correlations share the 

same sign, then proceed with step 4. Otherwise, go to step 6. 

4) Calculate a multiple linear regression with the treatment variable X and 

the X*T as predictors: residual(Y) = b0 + b1*X + b3*X*T + e 

5)  Obtain the adjusted R
2
 for the step 4 equation.  

6)  In case the zero-order correlations associated with level and slope have 

different signs, it is only necessary to estimate the effect of the treatment 

variable X through a simple linear regression, as the change in slope will 

attenuate this effect. Obtain the adjusted R
2
.  

 

Simulation 

The specific steps that were implemented in the Fortran programs (one for 

each of the six series length) were the following ones:  

1)  Systematic selection of each of the 19 degrees of serial dependence. 

2)  Systematic selection of the (β1, β2, and β3) parameters for data generation: 

2
3
 = 8 data patterns – autoregressive model; trend; level change; slope 

change; trend and level change; trend and slope change; level and slope 

change; trend, level and slope change. 

3)  100,000 iterations of steps 4 through 17. 

4)  Generate an array with 50+N data following a normal distribution with 

mean zero and unitary standard deviation by means of NAGfl90 



mathematical-statistical libraries (specifically external subroutines 

nag_rand_seed_set and nag_rand_normal).  

5)  Eliminate the first 50 numbers. 

6)  Assign the following N numbers to array ut. 

7)  Establish ε1 = u1. 

8)  Obtain the array of εt using the equation εt = φ1* εt–1. 

9)  Obtain the time array Tt = 1, 2, …, N.  

10) Obtain the dummy treatment variable array Dt, where Dt = 0 for phase A 

and Dt = 1 for phase B. 

11) Obtain the slope change array according to Huitema & McKean’s (2007) 

expression: SCt = [Tt – (nA + 1)]*Dt used for data generation. 

11) Obtain the slope change array Tt*Dt according to Allison & Gorman’s 

(1993) procedure used in the effect size computation. 

12) Obtain the yt array containing measurements (i.e., dependent variable) 

following Huitema & McKean’s (2007) model: yt = β0 + β1*Tt + β2*Dt + 

β3*SCt + εt.  

13) Calculate the Percent of Nonoverlapping Data. 

14) Calculate effect size according to the two versions of Cohen’s d (dA and 

dAB). Convert d to R
2
. 

15) Calculate effect size (R
2
) according to Gorsuch’s (1983) Trend analysis.  

16) Calculate White et al.’s (1989) d and convert to R
2
.  

17) Calculate effect size (adjusted R
2
) according to Allison & Gorman’s 

(1993) procedure. NAGfl90 libraries external subroutine 



nag_mult_lin_reg was used to obtain the multiple regression 

coefficients. 

18) Average the obtained R
2
 from the 100,000 replications of each 

experimental condition.   

During program elaboration the appropriate performance of the programs 

was verified through comparisons with the output of statistical packages and 

with the examples presented in Faith, Allison, & Gorman (1996).  

 

 

Results 

Due to the low magnitude of effect estimates produced by Gorsuch’s 

(1983) Trend analysis, this procedure will not be commented in the following 

sections. The values, ranging from 0.01 to 0.06 for all experimental conditions 

and concurring with Parker & Brossart’s (2003) results, show the influence of 

autocorrelation and the zero sensitivity to the differential data patterns. 

 

Autocorrelation effect 

To explore the effect produced by the presence of serial dependence in 

data, we constructed figures crossing each of the six effect size indices with 

the eight data patterns. In each of these 6 * 8 = 48 figures the degree of 

autocorrelation is placed on the abscissa and the index value (R
2
 or 

percentage) on the ordinate, superimposing the different phase lengths. Visual 

inspection for simpler data patterns (i.e., when none or only one type of effect 



is present) showed that negative serial dependence is associated with lower R
2
 

values, while positive one correlates with higher effect size estimates. There 

appears to be an approximately linear relation between φ1 and R
2
. Figure 1 

compares several techniques and illustrates the fact that for Cohen’s d we 

observed a greater increment in R
2
 for positive (0.0 ≤ φ1 ≤ 0.9) than for 

negative autocorrelation (−0.9 ≤ φ1 ≤ 0.0). As Figure 2 shows, for PND there 

is a nonlinear relation between autocorrelation and the effect size 

measurement which in this case, due to the peculiarities of the index, is the 

percentage itself rather than an R
2
.  

 

INSERT FIGURE 1 ABOUT HERE 

INSERT FIGURE 2 ABOUT HERE 

 

Comparing the differences in R
2
 between high negative (φ1 = −0.9) and 

zero autocorrelation, on one hand, and high positive (φ1 = 0.9) and zero 

autocorrelation, on the other, it appears that White et al.’s d and Allison & 

Gorman’s procedure are the most affected ones, while Cohen’s d and PND are 

less sensitive to serial dependence. When the data pattern is more complex 

(i.e., including different types of effect and/or trend) the effect of 

autocorrelation becomes curvilinear and the R
2
 variation diminishes for all 

indices.  

 

Effect of data pattern 



The exploration of data patterns’ detection was carried out by constructing 

graphs combining the six procedures (PND, Cohen’s dA and dAB, Gorsuch’s 

Trend analysis, White et al.’s d, Allison & Gorman’s procedure) for 

computing the magnitude of effect with the six series lengths. In each of these 

6 * 6 = 36 graphs we put data patterns in the abscissa and the effect size index 

(R
2
 or percentage) in the ordinate, superimposing several autocorrelation 

levels. The ideal pattern of effects’ detection would be represented by greater 

effect sizes for combined level and slope change, followed by second greater 

values for each of those effects separately and smaller values for data with no 

effect. A perfect index would not be affected by general trend not related to 

treatment’s introduction. Therefore, greater discrepancy in R
2
 or percentage 

between effects of interest and the remaining conditions meant better 

differentiation and indicated a more desirable performance.  

The visual inspection carried out following those criteria suggests that the 

regression-based indices differentiate data patterns only for long and balanced 

series (nA = nB = 10 or 15), while also producing greater R
2
. dA and dAB 

differentiate more than White et al.’s and Allison & Gorman’s indices, being 

dAB the index that produces lower estimates of the magnitude of effect. PND 

proved to be the measurement that detected the most the differences between 

patterns even for short series (nA = nB = 5). A common problem of PND and 

the standardized mean differences is that they produce greater effect sizes in 

presence of trend (extraneous variable) than in presence of level change 



(intervention effect). As expected, complex patterns are associated with 

greater effect sizes for all indices.  

As shown on Figure 3, Cohen’s d are more sensitive to differential 

patterns. Nevertheless, the effect size values obtained through dA and dAB are 

smaller than the ones obtained via the regression-based procedures. Thus, the 

former indices have a lower probability to produce great effect sizes in 

absence of effects, a finding that becomes more evident in longer series. 

Figure 4 illustrates the higher differentiation between patterns accomplished 

by PND – the index that seemed to approximate better the ideal pattern 

described above. The figures show examples for φ1 = 0.3, as it represents a 

level of serial dependence likely to be found in behavioral data (Parker, 2006), 

but the abovementioned tendencies were found for all φ1 values simulated.  
  

 

 

INSERT FIGURE 3 ABOUT HERE 

INSERT FIGURE 4 ABOUT HERE 

 

Series length effect 

Results’ analysis revealed that incrementing series length leads to a higher 

differentiation between the data patterns. This, however, does not imply 

obtaining greater R
2
. Actually we found that simple patterns (containing only 

one type of effect) produce higher estimations for nA = nB = 5 and nA = 5, nB = 

15 than for nA = nB = 10 and 15. Consistent with the data simulation method, 



greater effect sizes we obtained for the (incremental) change in slope than for 

the (constant) change in level. As mentioned earlier, for the regression-based 

indices the values of nA and nB (and the relation between those) are relevant as 

it affects patterns distinction.  

 

Discussion 

 

      The purpose of the present study was to explore the performance of 

different effect size indices applied to data with known parameters. In applied 

settings it is frequent to have only few behavioral measurements which can be 

sequentially related. Therefore, the most useful indices to summarize the 

magnitude of the treatment effect will be the ones sensitive to effects in short 

data series, while being less affected by serial dependence. Out of the indices 

studied, the ones that performed better in the aforementioned terms were PND 

and standardized mean differences (dA and dAB). Other advantages of these 

indices are calculus easiness and the fact that they are more widely known 

(especially, d) in comparison to regression-based procedures – a feature that 

might make them more attractive to applied researchers with lower degree of 

expertise in statistics. These indices differentiate better between the distinct 

data patterns and appear to have lower probability of false alarms in absence 

of treatment effect, but their results are distorted by trend. Hence, visual 

inspection can be used to detect trend and outliers prior to deciding whether 

the d and PND are appropriate effect size measures. A modification in the 



latter index will enable its application in cases when reduction rather than 

increment in the behavior of interest is expected. Recent proposals, related to 

the PND are the Percentage of data points exceeding the mean (Ma, 2006) and 

the Percentage of all non-overlapping data (Parker, Hagan-Burke, & Vannest, 

2007) and their properties require further research.   

It was surprising to find that the more sophisticated indices conceptualized 

for single-case designs (i.e., taking into account trend, level and slope change) 

performed worse than simpler and theoretically less appropriate strategies. 

Thus, future investigation is necessary to improve regression-based indices. 

Meanwhile, the use of simpler indices in N = 1 designs can be recommended 

whenever complementary information about trend is also taken into 

consideration. A possible source for additional information is visual analysis, 

which can enhance the choice of an appropriate effect size index and validate 

the results obtained by it (Parker, Cryer, & Byrns, 2006).  

Among the limitations of the study we have to mention that only AB 

designs were studied due to their applicability in non-reversal behaviors. 

Nevertheless, the results presented here can be useful also for multiple-

baseline designs for which there can be an effect size computed for each 

baseline (Busse, Kratochwill, & Elliott, 1995).  

It has to be commented that the values of β1, β2, and β3 were not extracted 

from a previously published investigation due to the lack of indication in 

scientific literature. Apart from the β values discussed, we also tried β2 = 0.6 

and β2 = 0.9, varying the β1 and β3 values according to the formulae presented. 



Very similar results were obtained and, as expected, all procedures showed 

greater discrimination between patterns (Figure 4 shows an example for one of 

the best performing indices). Nevertheless, future studies may continue 

exploring the optimal values of β1, β2, and β3 for simulating different 

magnitudes of different data patterns. Another possible line of research is the 

application of the effect size indices to more-phased designs (e.g., ABAB) 

which are more suitable for controlling extraneous variables. In such a study it 

would be interesting to explore the variations in effect size as a function of 

how it was calculated: a) from phases A1 and B1; b) from phases A1 and B2; c) 

using the means of both A and both B phases; d) calculating an effect size for 

each change in phase.   
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Figure 1. Autocorrelation effect on different effect size measures.  

No effects or trend. nA = 5, nB = 10.
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Figure 2. Autocorrelation effect on the effect size calculated through the 

Percent of Nonoverlapping Data.  

No effects or trend. nA = 5, nB = 10.
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Figure 3. Effect sizes calculated for different data patterns through two 

regression-based indices and one standardized mean difference index.  

Autocorrelation = 0.3. nA = 5, nB = 10.
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Figure 4. Effect sizes calculated for different data patterns by means of 

the Percent of Nonoverlapping data.    

PND. Autocorrelation = 0.3. nA = 5, nB = 10.
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