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SUMMARY. The present study explores the statistical properties of a randomization 

test based on the random assignment of the intervention point in a two-phase (AB) 

single-case design. The focus is on randomization distributions constructed with the 

values of the test statistic for all possible random assignments and used to obtain p-

values. The shape of those distributions is investigated for each specific data division 

defined by the moment in which the intervention is introduced. Another aim of the 

study consisted in testing the detection of inexistent effects (i.e., production of false 

alarms) in autocorrelated data series, in which the assumption of exchangeability 

between observations may be untenable. In this way, it was possible to compare 

nominal and empirical Type I error rates in order to obtain evidence on the statistical 

validity of the randomization test for each individual data division. The results suggest 

that when either of the two phases has considerably less measurement times, Type I 

errors may be too probable and, hence, the decision making process to be carried out by 

applied researchers may be jeopardized.   

 

Key words: Randomization tests, AB single-case design, random intervention point 
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Single-case designs are useful in psychological and educational research, as they permit 

examining the effects of a treatment over time for an individual subject or a group taken 

as a whole. An important distinction to be made is between single-case designs and case 

studies in terms of experimental rigor (Backman & Harris, 1999). Regarding data 

analysis of single-case designs, agreement among researchers has been found to be low 

(Ferron & Ware, 1995). The main concern commonly arises from the autocorrelated 

errors that are often assumed to exist in behavioral data. Autocorrelation (also referred 

to as “serial dependence”) concerns the existence of a relationship (i.e., lack of 

independence) between measurements sequentially ordered in time. When an applied 

study involves the registration of a single experimental unit, it is likely that its behavior 

at one moment is related to its previous behavior. Although it has been advocated that 

conventional statistical methods can be properly employed for analyzing single-case 

designs data (Huitema, 1985), empirical evidence suggests that the presence of serial 

dependence can be problematic for several analytical techniques. As regards visual 

inspection of graphed data, as the most commonly applied method for single-case data 

analysis (Parker, Cryer, & Byrns, 2006), serial dependence disturbs agreement between 

statistical and visual inference (Jones, Weinrott, & Vaught, 1978) and increases Type I 

error rates (Matyas & Greenwood, 1990). In relation to parametric statistical tests, t-test 

for level does not perform properly in presence of serial dependence (Greenwood & 

Matyas, 1990), as Type I empirical error rates are distorted, similar results being 

obtained for ANOVA (Toothaker, Banz, Noble, Camp, & Davis, 1983). Another 

strategy for analyzing behavioral data consists in statistically modeling the 

dependencies in the error structure, but this requires phase lengths that are uncommon 

in single-case designs (Ferron & Ware, 1995; Greenwood & Matyas, 1990).  
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Permutation or randomization tests have also been proposed as a way of statistically 

analyzing single-case experiments (Edgington, 1967; Edgington & Onghena, 2007). 

These permutation methods require some characteristic of the design to be randomized 

and a test statistic sensitive to the expected effect of the intervention to be chosen. 

Random assignment is an essential condition for a randomization test to meet internal 

and statistical validity (Edgington, 1980a). After conducting the experiment, the 

researcher computes the test statistic and determines statistical significance by locating 

where the obtained test statistic falls within the permutation or randomization 

distribution. This randomization test allows researchers to test both change in level and 

change in slope, the permutation procedure being identical apart from the definition of 

the statistic of interest (Wampold & Furlong, 1981).  

Randomization tests are supposed not to make any assumption about the shape of 

distributions and, as a consequence, have been considered distribution-free (Edgington, 

1980a; Marascuilo & Busk, 1988). However, comparing average performance in 

different experimental conditions can be obstructed by differences in variance (Gorman 

& Allison, 1997). Moreover, the precision of the results obtained by randomization tests 

depends on the exchangeability of observations (Good, 1994). That is, data 

permutations are only suitable when measurements’ order does not influence the value 

of the test statistic (Good, 1994; Randles & Wolfe, 1979). In cases where one 

observation is related to the previous one (i.e., when series are autocorrelated), the 

exchangeability of data points is dubious, as the sequence in which they are obtained is 

relevant (Good, 1994).  

The exchangeability of observations is important for preventing Type I error rates 

distortions and so for ensuring the validity of the randomization test. A statistical test is 

said to be statistically valid when the probability of committing a Type I error is less 
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than or equal to nominal alpha set by the applied researcher prior to conducting the 

experiment (Edgington, 1980a; Hayes, 1996). The need for the exchangeability 

assumption has been recognized in randomization tests, although it has often been 

established as the requirement for independence among data or nonautocorrelated errors 

(Levin, Marascuilo, & Hubert, 1978; Marascuilo & Busk, 1988). Regarding the serial 

dependence and statistical validity of randomization tests, it has been stated that these 

tests overcome autocorrelation problems (Crosbie, 1987; Levin et al., 1978; Wampold 

& Worsham, 1986). Nevertheless, some preliminary results of simulation studies have 

shown that randomization tests do not control Type I error rates if data are 

autocorrelated (Gorman & Allison, 1997). Recently, other simulation studies have 

found that at least some randomization tests do not control Type I error rates in the 

presence of serial dependence (Ferron, Foster-Johnson, & Kromrey, 2003; Sierra, 

Quera, & Solanas, 2000; Sierra, Solanas, & Quera, 2005). 

The AB single-case design is the most basic form of single-case phase design (see 

Bulté & Onghena, 2008, for a discussion on phase and alternation designs). It involves a 

succession of two experimental conditions – a baseline or control phase (designated by 

A) is followed by a treatment phase (B) which lasts until the end of the study without 

being withdrawn. An effective treatment implies that the level of behavior during phase 

B deviates from the projected level of baseline performance (Kazdin, 1978). The fact 

that there is only one change in the experimental conditions implies that internal validity 

is not guaranteed. History, maturation, testing, and instrumentation effects are common 

examples of threats to internal validity. Nevertheless, the AB single-case design is often 

used in applied research, both in clinical and nonclinical settings, especially for 

nonreversive behaviors, in spite of its drawbacks. That is why the present study focuses 

on a randomization test for analyzing the data resulting from the AB single-case design. 
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Random assignment of an intervention point 

 

Let us take for example a 30-point AB single-case design, in which the time of 

introduction of the intervention is randomly determined prior to collection of the data 

(Edgington, 1975). The selection of the intervention point determines the lengths of 

both phases, assigning the measurement times previous to that point to phase A and the 

remaining ones to phase B. The random choice of the point of intervention must be 

restricted to guarantee that neither of the two phases, A and B, has an excessively small 

number of data points – for instance, Edgington (1980b) suggests a minimum of five 

measurement times per phase, that is, k = 5. Therefore, considering the series’ length (n 

= 30), the intervention point could be randomly selected from the set of integers ranging 

from p = 6 to p = 26, p0 being used to denote the randomly chosen intervention point. 

Thus, there are 21 possible assignments (denoted by q) of the intervention point. q can 

be obtained through the following expression n−2k+1, which in the example presented 

is equal to 30−2(5)+1 = 21. The experimenter could randomly select one of the 

following bipartitions, where the first and second numbers in each parenthesis 

respectively correspond to the number of measurements in phases A and B: (5, 25), (6, 

24), …, (24, 6), (25, 5). It should be noted that (5, 25) is equivalent to p0 = 6, (6, 24) to 

p0 = 7, and so on. Note that any bipartition is equally probable before randomly 

choosing the intervention point. After randomly selecting the intervention point p0, the 

experiment is carried out. The value of the statistic that is relevant and sensitive to the 

purpose of the research is firstly calculated for the observed data, that is, taking into 

consideration the actually selected intervention point and the outcome (denoted by d0) is 

obtained. The same test statistic is then computed for all possible random assignments 
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of the point of intervention, which are represented by the remaining 20 (not selected) 

data bipartitions. The randomization distribution is then constructed by sorting all 21 

possible values of the statistic (denoted as d6, d7, …, d26) in an ascending order. Then, 

by means of the order statistic, the values of the statistic can be ordered. Thus, d(1) ≤ d(2) 

≤ … ≤ d(21). The value of the statistic for the data at hand (d0) is located in the 

randomization distribution. It has been assumed that the statistical significance 

associated with the outcome is the proportion of test statistics as large as or larger than 

the obtained value (Edgington, 1980b; Wampold & Furlong, 1981). At least 20 possible 

intervention points would be required to allow for the possibility of statistical 

significance at the .05 level. When q = 21, the minimal possible p-value is 1/21 = .0476. 

This way of determining the statistical significance of the outcome is founded on the 

common randomization distribution – a procedure that mixes all possible intervention 

points to generate the randomization distribution independently of the specific random 

intervention point that was selected by chance. The abovementioned procedure of 

obtaining p-values is based on the idea that the randomization distribution follows a 

discrete uniform or rectangular distribution for all admissible randomly chosen 

intervention points. Evidence suggests that mixing all possible data division actually 

leads to a uniform randomization distribution (Manolov & Solanas, 2008). However, 

when randomization distributions are investigated for each data division, shapes 

different from the rectangular appear (Manolov & Solanas, 2008; Sierra et al., 2005). 

Shapes’ variation is reflected in disparity in Type I error rates. Therefore, the statistical 

significance of the outcome ought to be determined individually for each specific data 

division (i.e., using data-division-specific randomization distributions).    

 The idea subjacent to the common randomization distribution can be expressed by 

Equation 1: 
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where Pr () corresponds to the p-value associated with the outcome, d denotes the test 

statistic of interest (e.g., mean difference between phases A and B) and card {·} denotes 

the number of set elements. 

On the other hand, the idea underlying data-division-specific randomization 

distributions can be expressed by Equation 2: 
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where the only difference with respect to Equation (1) is that the p-value (Pr) and the 

number of set elements (card {·}) are conditional to the intervention point, as the term 

“│p0” denotes.  

After randomizing the intervention point, the way in which the specific design will 

be carried out is absolutely determined. That is why the proper randomization 

distribution is that associated with the specific intervention point that was randomly 

chosen. Then, the data-division-specific randomization distribution is the appropriate 

distribution to determine the statistical significance, and not the common randomization 

distribution (Sierra et al., 2005).  

The main aim of the present study was to explore if the variation of distribution 

shapes and Type I error rates, in independent data series, across data divisions found for 

ABAB designs (Manolov & Solanas, 2008; Sierra et al., 2005) is also applicable to two-

phase designs. The influence of autocorrelation for each specific intervention point was 

also to be tested, while additional objectives consisted in proposing an explanation of 

the results and showing their practical importance for applied researchers.  
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Method 

 

A Monte Carlo simulation was conducted to estimate data-division-specific 

randomization distributions and to determine the effect of autocorrelation levels on the 

statistical decision-making process when the method of randomization involves the 

random assignment of an intervention point within the series of measurement times. The 

AB single-case design consisted of 30 observations, and at least five observations in 

each phase were planned, leading to 21 possible data bipartitions (Wampold & Furlong, 

1981). 

 

Data Generation 

 

FORTRAN programming was used to generate AB single-case designs with 30 

measurement times each and autocorrelations (φ1) of −.9, −.6, −.3, .0, .3, .6, and .9. 

These values are common in randomization tests simulations (e.g., Ferron et al., 2003; 

Ferron & Onghena, 1996; Ferron & Sentovich, 2002; Ferron & Ware, 1995). The 

program then computed values of the statistic of interest and its randomization 

distribution. In the data-generation process, NAG mathematical-statistical libraries were 

used to generate normal random values for the error term of the autoregressive model 

and to set the initial seeds for data simulation, respectively. Data were generated 

according to Equation 3: 

 

yt = φ1yt-1 + εt          (3) 
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where yt and yt−1 are data points corresponding to measurement times t and t−1, φ1 is 

the first order autoregressive parameter, and εt are N(0,1) random variables. For each 

call to the NAG libraries, 130 data (εt) were generated, and the first 100 were discarded 

to reduce artificial effects (Greenwood & Matyas, 1990), that is, to attenuate as far as 

possible the effect of anomalous initial values or seeds of the pseudorandom generator 

and to stabilize the series. The remaining 30 data points were used in the analysis. 

According to Robey and Barcikowski (1992), the number of iterations in a 

simulation needed for detecting deviations from the exact Type I error rates under the 

strong criterion α ± 1/10 α, a Type I error rate ω = .01, and a prior power 1 − β = .9, is 

29,600. The forty thousand iterations used in the present study amply satisfy those 

criteria. 

 

Test statistics 

 

Two statistics were computed for each simulated data series. One of them was the 

difference between the mean for phase A and the mean for phase B, called thereafter 

Statistic 1. Statistic 2 was computed as presented in Equation 4: 

 

 
2 2/ /

A B

A B

x x
t

s n s n





        (4) 

 

where s
2
, nA and nB, respectively, correspond to the pooled estimation of the variance, 

the number of observations in phase A and the measurement times in phase B. Both 

statistics were calculated, since empirical Type I error rates could depend upon how the 

statistic was defined. While Statistic 2 takes into account phase lengths and variability, 
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Statistic 1 does not. Data-division-specific randomization distributions for Statistic 2 

might be more similar to the discrete uniform distribution than those for Statistic 1. 

 

Simulation 

 

The steps in the simulation were as follows: data points were generated according to 

Equation (3) for a given φ1 and a random intervention point; the outcome was computed 

for the data series using both Statistic 1 and Statistic 2; admissible intervention points 

were permuted and the statistic is computed for each; values of the statistic are sorted to 

obtain the exact randomization distribution; the outcome was located in the 

randomization distribution and its rank (i.e., an integer between 1 and 21) is obtained. 

The abovementioned steps were repeated 40,000 times. These steps were repeated for 

each autoregressive parameter value and each possible random intervention point. In 

total, 147 experimental conditions were investigated, the combination of 21 possible 

random intervention points and 7 autocorrelation values.  

 

Results 

 

Randomization distributions in absence of autocorrelation 

 

Table 1 shows summary statistics for data-division-specific randomization distributions 

as a function of the randomly selected intervention point and the test statistics.  

 

TABLE 1 ABOUT HERE 
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Since data series were generated for φ1 = .0, the exchangeability condition was met. 

While the mean of the ranks associated with the outcome was close to 11 for all data-

division-specific randomization distributions, the variance of those ranks ranged from 

27.099 to 55.574 according to the intervention point. The mean of ranks corresponded 

to the mathematical expectancy expected in case the data-division-specific 

randomization distribution follows a discrete uniform distribution. However, the 

variance expected for that distribution shape, (21
2 
− 1)/12 ≈ 36.667, did not approximate 

the dispersion values obtained for all data bipartitions. As regards the two test statistics 

used, the main difference between them is that for some intervention points Statistic 1 

presented greater variability, while for others it was Statistic 2. All data-division-

specific randomization distributions showed an evident symmetry for both statistics, and 

that is why the mean ranks were close to the mathematical expectancy for each random 

intervention point. The kurtosis for a discrete uniform distribution ranging from 1 to 21 

is approximately equal to −1.202, but the simulation study showed that, in general, data-

division-specific randomization distributions had different kurtosis values. The two 

statistics also showed differences in their kurtosis values. Furthermore, considering the 

empirical Type I error rates, those values corresponding to the ranks 1 and 21 did not 

match 1/21 = .0476 (see Figure 1), which is the expected value for a discrete uniform 

distribution. Therefore, data-division-specific randomization distributions are not 

uniformly distributed for independent data series.   

 

FIGURE 1 ABOUT HERE 

 

In contrast, if no distinction is made regarding the intervention points and if the 

common randomization distribution is considered, all summary statistics resemble what 
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is expected for a discrete uniform distribution (see Table 1). Then, since data-division-

specific randomization distributions should be used to determine statistical significance, 

it can be concluded that, in general, the Type I error rate associated with the most 

extreme values of the statistic of interest was not equal to .0476. The minimal value of 

the Type I error rate depended upon the intervention point, respectively ranging from 

.1442 to .0256 and from .1100 to .0324 for Statistic 1 and Statistic 2. It should be noted 

that, regardless of how the statistic was computed, empirical Type I error rates were less 

than .05 for p0 ranging from 9 to 23. Then the statistical test was valid, when the null 

hypothesis was true, at the level of statistical significance equal to .05 for any value 

from the set of integers ranging from 9 to 23. That is to say, when an applied researcher 

uses the randomization test to obtain evidence of treatment effectiveness, there is an 

increased risk of false alarms (i.e., detecting inexistent effects) if the intervention is 

introduced at measurement times 6, 7, 8, 24, 25, and 26.  

Figure 2 shows the estimated mass probability for each possible rank associated 

with the outcome for Statistic 1. It is apparent that the distribution of the ranks 

depended upon the random intervention point. The mass probability function was 

approximately U-shaped for p0 = 6, shows two modes at the ranks 6 and 16 for p0 = 11 

and had one mode at the center for p0 = 16. It should be noted that the data-division-

specific randomization distributions were symmetric and their variance values were 

reduced as the random intervention point approached 16. A comparison between 

Figures 2 and 3, representing results for Statistics 1 and 2 respectively, reveals similar 

distribution shapes between both test statistics. 

 

FIGURES 2 AND 3 ABOUT HERE 
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The effect of autocorrelation 

 

The results described above suggest that empirical Type I error rates are equal or 

inferior to nominal ones (i.e., statistical validity is ensured) for the majority of data 

divisions – when the intervention point is between 9 and 23, both inclusive. For those 

cases, it was important to know whether the presence of autocorrelation in data (i.e., the 

violation of the assumption of exchangeability of observations) distorted the false alarm 

rates. Table 2 shows that positive serial dependence can lead to underestimation or 

overestimation of Type I error rates in comparison to independent data series, according 

to the data division. For an applied researcher, this would suppose increased probability 

of omitting an effective intervention or of a false alarm, respectively. Nonetheless, the 

effect of autocorrelation was only slight for the random intervention points ranging 

from 9 to 23, for which the randomization test is statistically valid. In the case of 

negative serial dependence (see Table 3), the results were similar to those found for 

positive autocorrelated data series. It should be noted that if the empirical Type I error 

rate is estimated regardless of the random intervention points, its value practically 

matches .0476, which is the value expected for a discrete uniform distribution with a 

total of 21 possible values. 

 

TABLES 2 AND 3 ABOUT HERE 
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Discussion 

 

The results of the present research suggest that applied researchers should be cautious 

when using the random intervention point randomization test studied here. 

Psychologists ought to know that if the data division randomly chosen contains 7 or less 

measurement times in either of the phases, there is high risk of labeling an ineffective 

treatment as effective. Therefore, in order to enhance the accuracy of the decision 

making process, applied researchers should be cautious if the selected intervention point 

is not between the 9th and the 23rd observation. There are two reasons for accepting 

only integers in the interval 9-23. First, if α is set equal to .05, the statistical test is valid. 

Second, although the exchangeability assumption has been violated in several 

experimental conditions of the simulation study, the randomization test is relatively 

robust for the random intervention points between the 9th and 23rd measurement. Also, 

note that this randomization test has zero power at α = .05 if p0 equals 6, 7, 8, 24, 25, or 

26. If the random intervention point was equal to one of those values, statistical 

decision-making process should not be conducted and only descriptive statistical 

analysis should be carried out. 

 The rationale of the abovementioned recommendations can be found in the shape of 

the randomization distribution, which is used to obtain the p-value of the observed test 

statistic. It is often supposed that the statistic of interest follows a discrete uniform 

distribution when randomization tests are used to analyze the data resulting from single-

case experiments. For example, if the number of possible random intervention points in 

an AB single-case design is equal to q, it is generally assumed that the minimal 

significance value equals 1/q (Edgington & Onghena, 2007). The present simulation 

study showed that this assumption is not met if data-division-specific randomization 
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distributions are taken into account for obtaining statistical significance. It would be 

suitable if the standard errors of the statistic were identical for each intervention point, 

but this does not hold for all random intervention points. The results of the present 

simulation suggest that, under the null hypothesis and for independent series, the 

minimal significance value does not equal 1/q if data-division-specific randomization 

distributions are considered. In other words, the shape of the distribution of the statistic 

depends upon the random intervention point being chosen, as the variance and kurtosis 

values showed. All data-division-specific randomization distributions were symmetrical 

and the mathematical expectancy equals the mean rank, the kurtosis values depending 

upon the random intervention point. That is, the randomization distribution of the 

statistic was conditioned to the random intervention point. 

The question remains of why the data-division-specific randomization distribution 

does not, in general, follow a discrete uniform distribution in the randomization test 

studied. Suppose that the random intervention point was chosen and the outcome was 

computed. It should be noted that in most cases the data-division-specific randomization 

distribution of the statistic will be generated by bipartitions of data that vary in size. 

Therefore, data-division-specific randomization distributions would be composed of 

mixing phase lengths, and the standard errors of the statistic would be different for 

distinct permutations. Thus, given that the null hypothesis is true, large departures of the 

statistic value from zero are likely to occur in permutations based on clearly unequal 

group sizes. The present simulation has verified that the variance of the rank associated 

with the statistic value was larger in clearly unequal bipartition sizes than in 

approximately equal bipartition sizes. Although the data-division-specific 

randomization distributions are symmetrical, the mass moved from the center of the 

distribution to the tails as the bipartition of data were more unequal. If the common 
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randomization distribution is considered, the results concur with those corresponding to 

other simulation studies in which the common randomization distribution is analyzed 

instead of data-division-specific randomization distributions (Ferron & Ware, 1995). 

The common randomization distribution suppresses the marked deviations from the 

discrete uniform distribution that can be clearly identified in data-division-specific 

randomization distributions. The main reason for this fact is the differential kurtosis in 

data-division-specific randomization distributions. If the random starting point divides 

data into two markedly different series lengths, the distribution of the statistic becomes 

more platykurtic than the discrete uniform distribution. When the phase lengths are 

approximately equal, the data-division-specific randomization distribution is less 

platykurtic than the discrete uniform distribution. 

  The conclusions of the present study are restricted by the experimental conditions 

explored and its generalization to another set is not suggested. An AB design composed 

of 30 observations was considered because 21 possible random intervention points are 

required to reach a statistical significance value less than or equal to .05 if the 

intervention point is constrained to ensure that there will be at least five observations in 

A and B phase. 

Future research could be directed towards studying whether the present results can 

be verified for larger data series and to analyze the power of this randomization test. In 

any case, the present simulation suggests that data-division-specific randomization 

distributions should be analyzed when the validity and power of randomization tests are 

studied. 

 



 18 

References 

 

Backman, C. L., & Harris, S. R. (1999). Case studies, single-subject research, and N of 

1 randomized trials: Comparisons and contrasts. American Journal of Psychical 

Medicine & Rehabilitation, 78, 170-176.  

Bulté, I., & Onghena, P. (2008). An R package for single-case randomization tests. 

Behavior Research Methods, 40, 467-478.  

Crosbie, J. (1987). The inability of the binominal test to control Type I error with 

single-case data. Behavioral Assessment, 9, 141−150. 

Edgington, E. S. (1967). Statistical inference from N = 1 experiments. The Journal of 

Psychology, 65, 195−199. 

Edgington, E. S. (1975). Randomization tests for one-subject operant experiments. The 

Journal of Psychology, 90, 57−68. 

Edgington, E. S. (1980a). Validity of randomization tests for one-subject experiments. 

Journal of Educational Statistics, 3, 235−251. 

Edgington, E. S. (1980b). Random assignment and statistical tests for one-subject 

experiments. Behavioral Assessment, 2, 19−28. 

Edgington, E. S., & Onghena, P. (2007). Randomization tests (4th ed.). Boca Raton, FL: 

Chapman & Hall/CRC. 

Ferron, J., Foster-Johnson, L., & Kromrey, J. D. (2003). The functioning of single-case 

randomization tests with and without random assignment. The Journal of 

Experimental Education, 71, 267−288. 

Ferron, J., & Onghena, P. (1996). The power of randomization tests for single-case 

designs. The Journal of Experimental Education, 64, 231−239. 



 19 

Ferron, J., & Sentovich, C. (2002). Statistical power of randomization tests used with 

multiple-baseline designs. The Journal of Experimental Education, 70, 165−178. 

Ferron, J., & Ware, W. (1995). Analyzing single-case data: The power of randomization 

tests. The Journal of Experimental Education, 63, 167−178. 

Good, P. (1994). Permutation tests. A practical guide to resampling methods for testing 

hypotheses. New York: Springer-Verlag. 

Gorman, B. S., & Allison, D. B. (1997). Statistical alternatives for single-case designs. 

In R. D. Franklin, D. B. Allison, & B. S. Gorman (Eds.), Design and analysis of 

single-case research (pp. 159−214). Mahwah, NJ: Erlbaum. 

Greenwood, K. M., & Matyas, T. A. (1990). Problems with the application of 

interrupted time series analysis for brief single-subject data. Behavioral Assessment, 

12, 355−370. 

Hayes, A. F. (1996). Permutation test is not distribution-free: Testing H0: ρ = 0. 

Psychological Methods, 1, 184-198. 

Huitema, B. E. (1985). Autocorrelation in applied behavior analysis: A myth. 

Behavioral Assessment, 7, 107−118. 

Jones, R. R., Weinrott, M. R., & Vaught, R. S. (1978). Effects of serial dependency on 

the agreement between visual and statistical inference. Journal of Applied Behavior 

Analysis, 11, 271−283. 

Kazdin, A. (1978). Methodological and interpretive problems of single-case 

experimental designs. Journal of Consulting and Clinical Psychology, 46, 629-642.  

Levin, J. R., Marascuilo, L. A., & Hubert, L. J. (1978). N = nonparametric 

randomization tests. In T. R. Kratochwill (Ed.), Single subject research: Strategies 

for evaluating change (pp. 167−196). New York: Academic Press. 



 20 

Manolov, R., & Solanas, A. (2008). Randomization tests for ABAB designs: Comparing 

data-division-specific and common distributions. Psicothema, 20, 291-297.  

Marascuilo, L. A., & Busk, P. L. (1988). Combining statistics for multiple-baseline AB 

and replicated ABAB designs across subjects. Behavioral Assessment, 10, 1−28. 

Matyas, T. A., & Greenwood, K. M. (1990). Visual analysis of single-case time series: 

Effects of variability, serial dependence, and magnitude of intervention effects. 

Journal of Applied Behavior Analysis, 23, 341−351. 

Parker, R. I., Cryer, J., & Byrns, G. (2006). Controlling baseline trend in single-case 

research. School Psychology Quarterly, 21, 418-443. 

Randles, R. H., & Wolfe, D. A. (1979). Introduction to the theory of nonparametric 

statistics. New York: John Wiley & Sons. 

Robey, R. R., & Barcikowski, R. S. (1992). Type I error and the number of iterations in 

Monte Carlo studies of robustness. British Journal of Mathematical and Statistical 

Psychology, 45, 283−288. 

Sierra, V., Quera, V., & Solanas, A. (2000). Autocorrelation effect on Type I error rate 

of Revusky’s Rn test: A Monte Carlo study. Psicológica, 21, 91−114. 

Sierra, V., Solanas, A., & Quera, V. (2005). Randomization tests for systematic single-

case designs are not always appropriate. The Journal of Experimental Education, 

73, 140−160. 

Toothaker, L. E., Banz, M., Noble, C., Camp, J., & Davis, D. (1983). N = 1 designs: 

The failure of ANOVA-based tests. Journal of Educational Statistics, 4, 289-309.  

Wampold, B. E., & Furlong, M. J. (1981). Randomization tests in single-subject 

designs: Illustrative examples. Journal of Behavioral Assessment, 3, 329−341. 

Wampold, B. E., & Worsham, N. L. (1986). Randomization tests for multiple-baseline 

designs. Behavioral Assessment, 8, 135−143. 



 21 

TABLES 

 

TABLE 1. Estimated mean, variance, skewness, and kurtosis for the data-division-specific 

randomization distribution as a function of the randomly chosen intervention point. Statistics were 

calculated for the rank associated with the test statistic for the data at hand. Empirical Type I error 

rates for the data-division-specific randomization distribution are provided for both extreme ranks 

(Rank 1 and Rank 21), and their averages. When data are averaged for all random intervention 

points, the results correspond to the common randomization distribution. Data series were 

simulated with 30 observations, a minimum of 5 observations per phase, and φ1 = .0. 

Intervention 

point 

Test 

statistic 

 

Mean 

 

Variance 

 

Skewness 

 

Kurtosis 

 

Rank 1 

 

Rank 21 

(Rank 1+Rank 21) 

/2 

6 
1 
2 

11.000 
11.000 

55.574 
49.205 

.000 

.001 
−1.551 
−1.443 

.1436 

.1085 
.1449 
.1110 

.1443 

.1098 

7 
1 

2 

11.008 

10.998 

49.263 

45.479 

.000 

.003 

−1.507 

−1.427 

.0726 

.0647 

.0744 

.0664 

.0735 

.0656 

8 
1 

2 

11.005 

11.009 

43.605 

41.796 

.001 

.000 

−1.441 

−1.381 

.0515 

.0524 

.0533 

.0539 

.0524 

.0532 

9 
1 
2 

10.996 
11.004 

39.286 
38.829 

−.001 
.001 

−1.368 
−1.330 

.0416 

.0443 
.0423 
.0450 

.0420 

.0447 

10 
1 
2 

10.995 
10.987 

35.756 
36.341 

−.001 
.001 

−1.276 
−1.262 

.0365 

.0410 
.0343 
.0397 

.0354 

.0404 

11 
1 

2 

10.992 

10.989 

32.966 

34.310 

−.002 

.000 

−1.173 

−1.185 

.0341 

.0391 

.0319 

.0378 

.0330 

.0385 

12 
1 

2 

10.989 

10.982 

30.648 

32.526 

−.001 

−.002 

−1.076 

−1.113 

.0285 

.0350 

.0286 

.0343 

.0286 

.0347 

13 
1 
2 

11.009 
11.007 

28.939 
31.184 

−.005 
−.003 

−.969 
−1.035 

.0283 

.0344 
.0269 
.0336 

.0276 

.0340 

14 
1 

2 

11.017 

11.018 

28.171 

30.607 

−.003 

−.003 

−.907 

−.987 

.0257 

.0327 

.0270 

.0345 

.0264 

.0336 

15 
1 

2 

11.013 

11.014 

27.282 

29.809 

.007 

.006 

−.838 

−.932 

.0258 

.0324 

.0264 

.0334 

.0261 

.0329 

16 
1 
2 

11.022 
11.021 

27.099 
29.730 

−.001 
−.003 

−.822 
−.927 

.0261 

.0324 
.0267 
.0330 

.0264 

.0327 

17 
1 

2 

10.995 

10.997 

27.456 

30.030 

−.001 

−.001 

−.858 

−.951 

.0256 

.0328 

.0260 

.0320 

.0258 

.0324 

18 
1 

2 

10.993 

10.933 

28.023 

30.513 

.002 

.007 

−.909 

−.993 

.0257 

.0320 

.0254 

.0329 

.0256 

.0325 

19 
1 
2 

11.004 
11.004 

28.957 
31.137 

.001 

.006 
−.973 

−1.037 
.0277 
.0329 

.0263 

.0325 
.0270 
.0327 

20 
1 

2 

11.012 

11.008 

30.691 

32.547 

.004 

.004 

−1.073 

−1.109 

.0294 

.0355 

.0297 

.0354 

.0296 

.0355 

21 
1 

2 

10.995 

10.996 

32.989 

34.216 

.002 

.002 

−1.181 

−1.191 

.0319 

.0370 

.0319 

.0371 

.0319 

.0371 

22 
1 
2 

10.984 
10.987 

35.734 
36.280 

.005 

.004 
−1.277 
−1.264 

.0358 

.0403 
.0367 
.0404 

.0363 

.0404 

23 
1 

2 

10.985 

10.991 

39.140 

38.634 

.000 

−.002 

−1.358 

−1.321 

.0439 

.0462 

.0415 

.0438 

.0427 

.0450 

24 
1 

2 

10.965 

10.978 

43.523 

41.724 

.011 

.008 

−1.440 

−1.383 

.0520 

.0510 

.0512 

.0514 

.0516 

.0512 

25 
1 
2 

11.011 
11.007 

48.965 
45.220 

−.001 
−.001 

−1.506 
−1.423 

.0708 

.0641 
.0717 
.0657 

.0713 

.0649 

26 
1 

2 

11.004 

11.014 

55.729 

49.266 

.000 

−.002 

−1.553 

−1.444 

.1435 

.1100 

.1444 

.1103 

.1440 

.1102 

Mean 1 

2 

11.000 

11.000 

36.657 

36.637 

.001 

.001 

−1.193 

−1.197 

.0476 

.0476 

.0477 

.0478 

.0476 

.0477 

Standard 
Deviation 

1 
2 

.013 

.012 
9.181 
6.353 

.003 

.003 
.250 
.182 

.0339 

.0222 
.0344 
.0227 

.0342 

.0224 
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TABLE 2. One-sided empirical Type I error rates as a function of the random intervention point. 

When data are averaged for all random intervention points, the results correspond to the common 

randomization distribution. Data series were simulated with 30 observations, a minimum of 5 

observations per phase, and several positive values for the first order autoregressive parameter. 

   

φ = .3 

 

φ = .6 

 

φ = .9 

Intervention 

point 

Test 

statistic 

 

Rank 1 

 

Rank 21 

 

Rank 1 

 

Rank 21 

 

Rank 1 

 

Rank 21 

6 
1 

2 

.1569 

.1218 

.1563 

.1220 

.1735 

.1374 

.1754 

.1386 

.2141 

.1730 

.2126 

.1739 

7 
1 

2 

.0627 

.0591 

.0641 

.0601 

.0555 

.0539 

.0565 

.0525 

.0499 

.0457 

.0476 

.0449 

8 
1 

2 

.0478 

.0477 

.0491 

.0472 

.0428 

.0430 

.0435 

.0450 

.0381 

.0382 

.0385 

.0376 

9 
1 
2 

.0406 

.0445 
.0409 
.0440 

.0362 

.0400 
.0382 
.0402 

.0304 

.0347 
.0336 
.0359 

10 
1 

2 

.0355 

.0399 

.0342 

.0391 

.0332 

.0370 

.0344 

.0376 

.0286 

.0328 

.0298 

.0352 

11 
1 

2 

.0324 

.0365 

.0325 

.0377 

.0310 

.0359 

.0312 

.0363 

.0272 

.0321 

.0277 

.0332 

12 
1 
2 

.0304 

.0355 
.0294 
.0349 

.0291 

.0335 
.0294 
.0350 

.0262 

.0318 
.0271 
.0322 

13 
1 

2 

.0281 

.0328 

.0287 

.0338 

.0283 

.0337 

.0281 

.0340 

.0253 

.0318 

.0249 

.0308 

14 
1 

2 

.0268 

.0332 

.0271 

.0336 

.0272 

.0334 

.0283 

.0333 

.0243 

.0299 

.0239 

.0299 

15 
1 
2 

.0267 

.0318 
.0262 
.0320 

.0266 

.0331 
.0277 
.0330 

.0244 

.0313 
.0245 
.0310 

16 
1 

2 

.0267 

.0324 

.0256 

.0319 

.0275 

.0327 

.0274 

.0331 

.0246 

.0314 

.0244 

.0317 

17 
1 

2 

.0254 

.0323 

.0265 

.0325 

.0264 

.0323 

.0264 

.0313 

.0233 

.0297 

.0249 

.0314 

18 
1 
2 

.0267 

.0326 
.0262 
.0322 

.0267 

.0320 
.0269 
.0316 

.0226 

.0295 
.0254 
.0314 

19 
1 

2 

.0283 

.0346 

.0276 

.0333 

.0282 

.0330 

.0285 

.0340 

.0245 

.0309 

.0245 

.0306 

20 
1 

2 

.0290 

.0349 

.0310 

.0354 

.0276 

.0334 

.0300 

.0352 

.0256 

.0314 

.0265 

.0318 

21 
1 

2 

.0330 

.0385 

.0317 

.0359 

.0316 

.0363 

.0320 

.0366 

.0289 

.0321 

.0276 

.0323 

22 
1 

2 

.0359 

.0400 

.0341 

.0389 

.0339 

.0386 

.0343 

.0381 

.0297 

.0342 

.0288 

.0331 

23 
1 

2 

.0405 

.0430 

.0397 

.0423 

.0371 

.0408 

.0358 

.0404 

.0319 

.0345 

.0302 

.0348 

24 
1 
2 

.0473 

.0476 
.0475 
.0488 

.0438 

.0456 
.0426 
.0441 

.0352 

.0387 
.0385 
.0390 

25 
1 

2 

.0626 

.0574 

.0631 

.0576 

.0536 

.0524 

.0545 

.0533 

.0479 

.0452 

.0501 

.0447 

26 
1 

2 

.1566 

.1217 

.1560 

.1242 

.1741 

.1382 

.1749 

.1383 

.2133 

.1733 

.2135 

.1742 

Mean 1 
2 

.0476 

.0475 
.0475 
.0475 

.0473 

.0474 
.0479 
.0477 

.0474 

.0472 
.0478 
.0476 

Standard 

Deviation 

1 

2 

.0370 

.0253 

.0370 

.0258 

.0419 

.0300 

.0421 

.0300 

.0544 

.0411 

.0541 

.0412 
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TABLE 3. One-sided empirical Type I error rates as a function of the random intervention point. 

When data are averaged for all random intervention points, the results correspond to the common 

randomization distribution. Data series were simulated with 30 observations, a minimum of 5 

observations per phase, and several negative values for the first order autoregressive parameter. 

   

φ = −.3 

 

φ = −.6 

 

φ = −.9 

Intervention 

point 

Test 

statistic 

 

Rank 1 

 

Rank 21 

 

Rank 1 

 

Rank 21 

 

Rank 1 

 

Rank 21 

6 
1 

2 

.1363 

.1026 

.1357 

.1019 

.1334 

.0992 

.1326 

.0992 

.1777 

.1311 

.1796 

.1343 

7 
1 

2 

.0812 

.0704 

.0820 

.0710 

.0907 

.0760 

.0900 

.0755 

.0863 

.0699 

.0870 

.0706 

8 
1 

2 

.0544 

.0536 

.0532 

.0529 

.0546 

.0535 

.0557 

.0548 

.0465 

.0513 

.0443 

.0506 

9 
1 
2 

.0436 

.0458 
.0441 
.0471 

.0442 

.0472 
.0425 
.0465 

.0418 

.0439 
.0410 
.0450 

10 
1 

2 

.0358 

.0409 

.0355 

.0404 

.0358 

.0412 

.0353 

.0408 

.0270 

.0350 

.0265 

.0349 

11 
1 

2 

.0324 

.0381 

.0323 

.0384 

.0300 

.0371 

.0311 

.0384 

.0299 

.0362 

.0285 

.0349 

12 
1 
2 

.0293 

.0356 
.0284 
.0343 

.0279 

.0349 
.0268 
.0342 

.0199 

.0277 
.0200 
.0289 

13 
1 

2 

.0271 

.0336 

.0269 

.0343 

.0265 

.0346 

.0254 

.0327 

.0240 

.0320 

.0239 

.0324 

14 
1 

2 

.0243 

.0321 

.0249 

.0313 

.0223 

.0303 

.0245 

.0317 

.0170 

.0251 

.0170 

.0270 

15 
1 
2 

.0243 

.0318 
.0248 
.0318 

.0226 

.0307 
.0239 
.0316 

.0222 

.0305 
.0223 
.0308 

16 
1 

2 

.0237 

.0312 

.0247 

.0319 

.0229 

.0308 

.0222 

.0304 

.0168 

.0249 

.0161 

.0256 

17 
1 

2 

.0252 

.0326 

.0256 

.0334 

.0227 

.0308 

.0230 

.0316 

.0225 

.0308 

.0226 

.0303 

18 
1 
2 

.0246 

.0325 
.0237 
.0310 

.0233 

.0314 
.0244 
.0315 

.0184 

.0269 
.0161 
.0251 

19 
1 

2 

.0271 

.0340 

.0264 

.0336 

.0247 

.0327 

.0246 

.0323 

.0244 

.0319 

.0246 

.0325 

20 
1 

2 

.0282 

.0351 

.0285 

.0352 

.0268 

.0340 

.0286 

.0354 

.0216 

.0293 

.0199 

.0273 

21 
1 

2 

.0325 

.0387 

.0317 

.0371 

.0307 

.0364 

.0297 

.0362 

.0288 

.0351 

.0286 

.0345 

22 
1 

2 

.0365 

.0410 

.0367 

.0407 

.0359 

.0414 

.0354 

.0410 

.0265 

.0352 

.0260 

.0360 

23 
1 

2 

.0432 

.0458 

.0438 

.0458 

.0438 

.0472 

.0431 

.0467 

.0417 

.0437 

.0424 

.0446 

24 
1 
2 

.0527 

.0525 
.0542 
.0525 

.0545 

.0532 
.0535 
.0520 

.0458 

.0512 
.0457 
.0512 

25 
1 

2 

.0789 

.0690 

.0808 

.0700 

.0919 

.0766 

.0900 

.0757 

.0863 

.0708 

.0862 

.0713 

26 
1 

2 

.1330 

.1001 

.1348 

.1012 

.1332 

.0993 

.1342 

.0985 

.1783 

.1320 

.1781 

.1345 

Mean 1 
2 

.0473 

.0475 
.0476 
.0474 

.0475 

.0478 
.0475 
.0475 

.0478 

.0474 
.0474 
.0477 

Standard 

Deviation 

1 

2 

.0326 

.0207 

.0329 

.0209 

.0341 

.0211 

.0338 

.0210 

.0464 

.0301 

.0468 

.0309 
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FIGURE 1. Empirical Type I error rates for independent data series as a function of the random 

intervention point and the test statistic used. The proportion values correspond to the most extreme 

ranks in the data-division-specific randomization distributions.  
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FIGURE 2. Estimated mass probability functions for three data-division-specific randomization 

distributions (random intervention points po = 6, po = 11, and po = 16) for Statistic 1 and 

nonautocorrelated data series. 
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FIGURE 3. Estimated mass probability functions for three data-division-specific randomization 

distributions (random intervention points po = 6, po = 11, and po = 16) for Statistic 2 and 

nonautocorrelated data series. 

 

 

 

 

 

 

 

 


