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Chapter 3: Error Analysis and Threshold Values 

in WAL Rotational Invariants 

This chapter develops new procedures which were carried out on the error estimation of 

the invariants and the choice of their threshold values. To this end, it proposes a new method 

that allows the characterisation of geoelectric dimensionality in real situations.  

Two examples, with different levels of errors, are used to illustrate the problems that 

one must overcome in order to obtain an accurate dimensionality analysis, and thus, further 

modelling and interpretation. 

With the aim of introducing a tool to automatically perform dimensionality analysis 

from a dataset, a program was developed based on WAL criteria, considering noise in the data 

and its implications for dimensionality determination. 

Part of this work can also be found in Martí et al. (2004). 

3.1. Dimensionality Criteria Using Real Data 

The main problem when WAL invariants criteria are implemented on real, therefore 

noisy data is that the geoelectric dimensionality may be found to be 3D. Although, other 

evidence suggests a 1D or 2D interpretation would be valid for modelling. This is because 

invariant values for real data are, in general, never precisely zero. Weaver et al. (2000) address 

this problem by introducing a threshold value, beneath which the invariants are taken to be zero. 

The threshold value they suggest is 0.1, which, although subjective, has been tested using a 

synthetic model with 2% noise. Since experimental data usually have a higher percentage of 
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error (up 30% in some cases) which propagates to the invariants, it is necessary to redefine this 

threshold value, taking into consideration the invariant values and their errors. To date, no work 

has been done on the estimation of WAL invariant errors. 

Using WAL criteria with the threshold defined, if the dimensionality obtained is 2D or 

3D/2D (cases 2, 3a and 4 in table 2.2), the strike directions and distortion parameters must also 

be estimated with their errors. 

To address these matters, different tests were performed to estimate the invariants, 

related parameters, and their errors, and to choose an optimum threshold value. 

3.2. Estimation of the Invariants and their Errors 

The values and errors of the invariants and related parameters are dependant upon the 

values of the MT tensor components and their errors, which result from the estimation of the 

transfer functions in the spectral domain, after time series processing. In standard processing 

methods, these errors are obtained as variances, var(Mij), after assuming that noise is 

independent of the signals and stationary, and, consequently, that the components of M are 

statistically independent (Chapter 1, section 1.7, eq. 1.41). The errors of the real and imaginary 

parts of the MT tensor components have the same value and are determined as the square root of 

its variance: 

1/ 2(Re ) (Im ) ( ) (var( ))ij ij ij ijM M M M .        (3.1) 

Invariant errors reflect dimensionality uncertainties due to data errors. Hence, it is 

important to properly estimate both the invariants and their errors to have a consistent picture of 

how well determined the dimensionality of a MT tensors is. Similarly, the errors of the related 

parameters (strike angles and distortion parameters) indicate incorrect determinations of certain 

types of dimensionality. 

Because of the non-linear dependence of the invariants and related parameters on the 

MT tensor components, the relationships between their errors are highly complex. Given the 

role that the errors play in the determination of the dimensionality, three approaches were tested 

in order to obtain a high level of confidence in the estimation of the invariants and related 

parameters and errors: a. Classical error propagation, b. Random Gaussian noise generation and 

c. Resampling methods. The results and stability using these approaches were compared to 

determine which is the most suitable for the particular parameters. 
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3.2.1. Error Estimation Approaches 

a. Classical Error Propagation

The values of the invariants are computed directly from expressions 2.10 to 2.16, and 

are hereafter referred to as true values (I).

For small errors, the uncertainty of any function y=f(x1, x2,..., xn) can be obtained from a 

Taylor expansion in terms of the errors ( x1, x2,... xn) of the estimated variables x1, x2,..., xn.

Using a first order expansion, the error ( Ik) of each invariant (Ik) and the errors of the strike and 

distortion parameters can be expressed as functions of partial derivatives (of the corresponding 

invariant expressions) and the errors of the real and imaginary parts of the components of M:

1/ 2
2 2

2 2
2

1 1

·( ( ))
(Re ) (Im )

k k
k ij

i j ij ij

I I
I M

M M
.            (3.2) 

These expressions were obtained as functions of i and i, and are summarised in 

Appendix A. 

b. Random Gaussian Noise Generation 

This statistical approach is an alternative to the first, which can fail when the errors in M

are large. The problem lies in the lack of knowledge about the statistical distribution of M, since 

the only available data are the means and variances of their components. 

Some authors assume a Gaussian distribution of M in order to compute new parameters 

and study their stability (Jones and Groom, 1993; Weaver et al., 2000), or to obtain their 

probability functions and confidence limits (Lezaeta, 2002), both from synthetic and real data. 

Thus, one way to estimate the invariants and their errors is to generate a set of n 

possible values of M components, ( 1,2,..., )l
ijM l n , assuming Gaussian noise around their 

true values, with the variances of the MT tensor components: 

Re Re rndG( ); 1, 2,...,l
ij ij ijM M M l n ,        (3.3) 

Im Im rndG( ); 1, 2,...,l
ij ij ijM M M l n ,        (3.4) 

where rndG( Mij) are pseudo-random numbers that follow a Gaussian distribution with an 

average of zero and a standard deviation of Mij.
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From this set of values, the corresponding n possible values of the invariants can be 

obtained:

(Re , Im ; 1,2; 1,2); 1,2,...,
ij ij

l l l
kI f M M i j l n  .      (3.5) 

After obtaining this set of n realizations for each invariant at a determined site and 

period, its mean value (Ik´) and standard deviation ( 'kI ), which is taken as the error, are 

estimated as: 

1

1
'

n
l

k k
l

I I
n

,             (3.6) 

2

'
1

1
'

k

n
l

I k k
l

I I
n

.                 (3.7) 

The value of n must be chosen to avoid biases between the true value (Ik) and the mean 

value (Ik´) of the invariant. One criterion to fix the optimum value of n is to ensure that the bias 

between Ik and Ik´ is not greater than the standard deviation (i.e. not a significant bias): 

''
kk k II I .  (bias condition) .        (3.8) 

The same procedure can be used to obtain the mean value and standard deviation of the 

strike direction and distortion parameters. 

c. Resampling Methods 

Resampling methods are statistical procedures used to obtain confidence intervals for 

parameters whose probability distributions are unknown (Efron and Tibshirani, 1998). They are 

based on the construction of hypothetical populations derived from the measured data. No 

statistical distribution is assumed, although this distribution is preserved. It follows that the new 

populations can be analyzed individually to see how the statistics depend on random variations 

of the data. 

Two well-known resampling methods are the jackknife (Lupton, 1993), and the 

bootstrap (Efron, 1979). These two methods differ in how the hypothetical populations are 

constructed for an original dataset of n datapoints. The Jackknife method constructs n 

populations of n-1 data points, omitting one different point in each. Some robust data processing 

in MT are based on this technique (Jones and Jödicke, 1984; Thomson and Chave, 1991). In the 
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bootstrap method, also known as ‘resampling with replacement’, a large number of populations 

(or resamples) with n elements each can be constructed, allowing duplicates and triplicates of 

some points while allowing the absence of others. 

The bootstrap method searches for a good approximation of the unknown population 

distribution, such that the estimated parameters also resemble those of the original population. 

The bootstrap method has been demonstrated to provide optimal estimates of the distribution of 

many statistics under a wide range of circumstances (Efron and Tibshirani, 1998). For this 

reason, the bootstrap approach was chosen to test the estimation of the invariants and their 

errors.

The most common application of the bootstrap method is the nonparametric-bootstrap, 

in which all data points are given the same weight. In this case, the number of resamples (N) 

necessary to approximate the theoretical sampling distribution is on the order of n·(log n)2

(Babu and Singh, 1983). For every bootstrap sample, a statistical estimator and its confidence 

intervals are computed, recreating an empirical sampling distribution of the estimator. 

The estimation of the invariants and related parameters and their errors using the 

bootstrap method can be done departing from a set of n elements as the initial population. These 

elements are generated as random Gaussian noise (as in approach b) (one set for each invariant 

or parameter). N resamples with n elements each are then constructed. The mean and standard 

deviation of the parameter is obtained from the mean and standard deviation of each of the 

bootstrap populations. 

This application of the bootstrap method has the limitation that the original datasets are 

constructed assuming a probability distribution (Gaussian, from approach b), and are not raw 

data. A more rigorous use of bootstrap could be done if the original cross-spectra of the MT 

tensor were available, such that n estimates of the invariants could be obtained, and thus be used 

as the initial population. In many cases, it is not possible to do so, since the only available data 

after time series processing are the final estimates of the MT transfer functions, their coherences 

and related parameters. However, it is worth testing as an additional alternative to estimate the 

invariant values and their errors. 

The following subsections present the comparisons and results of the estimations of the 

invariants and their errors using the three approaches described. Two data examples are used, 

for which invariants I3 to I7 and Q (the ones used in the dimensionality determination) were 

considered.
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3.2.2 Example 1 

The first example is site 85_314 from the COPROD2 dataset (Jones, 1993) acquired in 

Saskatchewan and Manitoba (Canada). It has been widely employed by the MT community to 

test 2D inversion codes, since the data clearly display 2D features, with a well determined NS 

strike direction (Jones et al., 2005). The location and MT responses at this site are presented in 

Appendix B. The  measured  MT  tensor components, with periods ranging from 0.002 s to 

1000 s, are of good quality. Diagonal components are one or two orders of magnitude smaller 

than the non-diagonal ones, this ratio decreasing as the period increases. The average level of 

noise is 5%, with a minimum of 1% between 5 s and 500 s. This minimum is a result of the high 

quality of the acquisition system, Phoenix MT-16, within this period band. 

Determination of n and N values in Random Gaussian Noise and Bootstrap approaches 

Prior to the estimation of the parameters and their errors from approaches b (Random 

Gaussian Noise Generation) and c (Bootstrap), some tests were carried out on the number of 

realizations (n) (approach b) and on the size of the samples and the number of resamplings 

(approach c), using this data example. 

- Random Gaussian Noise

Several values of n (n=10, n=100 and n=1000) were tested to evaluate the dispersion of 

the invariants, their means and standard deviations, and were compared to their true values and 

classical errors in order to check whether the bias condition is satisfied or not. Invariants I5 and 

Q were chosen as representatives of simple and complex dependencies on M components, 

respectively. 

Figure 3.1 illustrates the realizations of I5 and Q, their means and their standard 

deviations for three periods, T=0.67 s, T=0.0208 s and T=21.32 s, with high, medium and low 

noise levels respectively in the MT tensor components, using n=10 and n=100. These are 

compared to the true values and their errors obtained using approach a (n=1000 is not shown for 

simplicity and because it presents similar results to those of n=100). The numerical values of 

these estimations, including n=1000 and the results from the bootstrap, are shown in table 3.1. 

For these three periods, the following can be inferred: 

At T=0.67 s (high noise level: 10% error in M non-diagonal components and up to 

200% in the diagonal ones), I5 and Q present a large dispersion and consequently large error 

bars. Errors of I5 are similar to the classical errors and those of Q are smaller, independent of the 

value of n. The realisations and statistical estimations of Q are up-biased and, for small values 

of n (n=10), this bias is, in fact, significant (equation 3.9 is not satisfied). The estimations of I5

are biased also, although, due to the small values, it is only appreciable numerically (Table 3.1). 
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Figure 3.1: Plots of n=10 and n=100 realizations (diamonds) of invariants I5 and Q at periods T=0.67 s 

(high noise level, upper panel), T=0.0208 s (medium noise level, middle panel) and T=21.32 s (low noise 

level, lower panel) from site 85_314 (COPROD2 dataset). The mean and standard deviations of these 

realizations are displayed at the right end of each plot (dot with error bar). Horizontal lines at each plot 

indicate the true value of the invariant. The shaded areas correspond to the confidence intervals, as 

obtained from classical error propagation (approach a).

At T=0.0208 s (medium noise level: 5% error in M non-diagonal components and up to 

100% in the diagonal ones), the noise level of the invariants is about 40%. Both I5 and Q show a 

uniform distribution of the random values around the true values, with similar errors, and there 

is not an appreciable bias between the true and statistical values. 
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At T=21.32 s (low noise: 0.5% error in the non-diagonal components, and 8% in the 

diagonal ones) the dispersion of both I5 and Q is much smaller (note the different vertical scales 

on the plots). Error bars are similarly small and in all cases the bias condition (equation 3.9) is 

satisfied.

T=0.67 s T=0.0208 s T=21.32 s 

I5 Q I5 Q I5 Q 

True 0.0067
0.0696

0.0492
0.0717

0.0972
0.0422

0.1057
0.0428

0.0171
0.0052

0.2231
0.0052

n=10 0.0140
0.0769

0.1039
0.0414 *

0.0935
0.0446

0.1148
0.0432

0.0179
0.0054

0.2211
0.0051

n=100 0.0034
0.0639

0.1005
0.0529

0.0913
0.0407

0.1229
0.0396

0.0170
0.0048

0.2230
0.0045

R
an

d
o

m
 

n=1000 0.0034
0.0639

0.1005
0.0529

0.0966
0.0414

0.1145
0.0399

0.0172
0.0049

0.2231
0.0050

n=10
N=10

0.0070
0.0668

0.1098
0.0392 *

0.0979
0.0599

0.0824
0.0337

0.0178
0.0050

0.2203
0.0050

n=100
N=400

0.0036
0.0637

0.1009
0.0527

0.0996
0.0397

0.1094
0.0394

0.0171
0.0047

0.2230
0.0044

B
o

o
ts

tr
ap

 

n=1000
N=9000 

0.0036
0.0637

0.1009
0.0527

0.0967
0.0443

0.1150
0.0405

0.0170
0.0052

0.2231
0.0048

Table 3.1: Estimations of I5 and Q and their errors at two periods from the COPROD2 dataset. True: True 

values and classical error propagation. Random: means and standard deviations from Random Gaussian 

generation (approach b), for n=10, n=100 and n=1000. Bootstrap: N resamplings of the initial samples 

from the Random approach. *: Cases with a significant bias between statistical and true values. 

At all periods, the values of 'kI  are similar for n=100 and n=1000. Although errors are 

not much larger, n=10 is not representative enough of all possible values of an invariant. Tests 

with other invariants and periods, using a broader range of values of n show a stable pattern of 

'kI  using n=100 to n=1000. Consequently, values of n=100 or greater are recommended to 

perform approach b.

- Bootstrap 

A similar test was carried out for the same three periods with different values of n (size 

of the initial samples), and N (number of resamples  n·(log n)2). The samples of I5 and Q 

generated in the previous test, with n=10, n=100 and n=1000, were resampled N n·(log n)2

times (N=10, N=400 and N=9000 respectively) and their means and standard deviations 

estimated. 



                                                 Chapter 3. Error analysis and threshold values in WAL rotational invariants

79

The results (both statistical values and standard deviations), shown in Table 3.1, do not 

differ significantly to the ones with the corresponding value of n from approach b, especially 

when the noise level is moderate or low (T= 0.0208 s and T=21.32 s). 

At T=0.67 s, with n=10, there is also a significant bias between the bootstrap and the 

true values of Q. This bias disappears for n=100 and n=1000. 

In this approach, n=100 and n=1000 (and, consequently N  400 and N  9000) are 

valid to estimate the invariants and their errors using the bootstrap approach, although N  400 

is sufficient and is the value that will be used in the following comparison. 

Comparison of the three approaches 

Figure 3.2 shows the invariant values and error bars after using the three approaches a,

b and c, at all the recorded periods of site 85_314. Approach b uses n=1000 and approach c

utilises N=400, from an initial sample containing n=100 elements each. 

Using the three approaches, invariants I3, I4, I5 and I6 present similar values and errors. 

Error bars are proportional to the noise level of the recorded data (note small error bars between 

T=5 s and T=500 s), and no appreciable biases are observed between the true values, a, and the 

statistical values of approaches b and c.

I7 is characterised by large error bars, which only decrease between 5 s and 500 s, when 

Q becomes large, that is, when I7 (which is inversely proportional to Q) is well determined. The 

differences between the estimations of I7 using the three approaches are evident, especially seen 

in the sizes of the error bars. From approach a the error bars present an irregular distribution, 

with extremely large values at certain periods. Approaches b and c provide a smoother 

distribution of the errors, but introduce important biases with respect to the true values (note the 

differences in I7 between (g), (h) and (i) in Figure 3.2). Invariant Q, on the contrary, presents 

similar estimations using any of the three methods, with small values and error bars, 

proportional to the data noise level. 
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Figure 3.2: Invariant values at site 85_314 from the COPROD2 dataset and their errors computed in three 

ways: classical error propagation, Random Gaussian Noise (1000 realizations) and bootstrap resampling 

(400 realizations from an original sample with 100 elements for each invariant). I3 and I4 (a), (b) and (c); 

I5 and I6 (d), (e) and (f), I7 (g), (h) and (i) and Q (j), (k) and (l). 
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3.2.3 Example 2 

The second example illustrates a case with more complex dimensionality and higher 

noise levels. It corresponds to site b23, from the Betic Chain magnetotelluric dataset. The 

variances in the magnetotelluric tensor components, with the non-diagonals slightly larger than 

the diagonals, correspond approximately to 1% noise for the shortest periods, and increase up to 

30% for the longest ones. 

Comparison of the three approaches 

The invariants and their errors were estimated using approaches a, b and c. In 

approaches b and c the values of n and N were the same as in COPROD2: n=1000 in approach 

b and N=400 (from an initial sample with n=100) in approach c.

Employing the three approaches, the values of I3, I4, I5 and I6 (Figure 3.3) are 

comparable and the errors resemble those of the components of the magnetotelluric tensor, 

which increase with the period. However, at long periods, biases between the values computed 

from the different approaches are appreciable and the statistical errors (approaches b and c)

present extremely large values which were not observed in the COPROD2 example, due to the 

low noise level in the MT tensor components in this long period band. 

I7 and Q have the same behaviour as in the first example, with the small values and error 

bars of Q and the extremely large error bars and biases of I7. Between 3s and 30s, as Q becomes 

large, I7 becomes more precise, as in site 85_314. Hence, the estimation of I7 depends not only 

on the noise level, but also on the value of Q. 

3.2.4 Concluding remarks on error estimation 

After these comparisons, having obtained similar estimations of the invariants and their 

errors, it can indeed be concluded that the three approaches can be used to estimate the 

invariants values and their errors, except for cases with large error levels or small values of Q. 

However, in order to avoid the possible biases that appear with approaches b and c, the use of 

classical error propagation (approach a) is preferred. 

A similar test was performed for the estimation of the strike directions and distortion 

parameters. In these cases, errors are better estimated using random noise generation (approach 

b). Using classical error propagation, since these errors depend on the derivatives of 

trigonometric functions, the error bars would be considerably large, especially for high noise 

levels in the MT tensor components. 



Chapter 3. Error analysis and threshold values in WAL rotational invariants 

82

Figure 3.3: Invariant values corresponding to site b23 from the Betic dataset and their errors computed 

using the three approaches. For random Gaussian Noise, n=1000. In the bootstrap 400 realizations from 

an original sample with 100 elements for each invariant were used. I3 and I4 (a), (b) and (c); I5 and I6 (d), 

(e) and (f), I7 (g), (h) and (i) and Q (j), (k) and (l). 
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3.3. The Threshold Value 

For the determination of the dimensionality using WAL invariants, it is necessary to 

decide if an invariant can be considered null or not. This is a compromise between the threshold 

value (  hereafter) and the error bar of each invariant. After considering the possible 

relationships between the thresholds and the confidence intervals of the invariants, the following 

criteria were adopted: 

1) Ascertaining whether I7 is undefined or not, by observing the values of Q, which is 

controlled by a threshold Q (below which Q is regarded as too small a quotient of I7), and the 

value of I7:

1.a) Q < Q and/or I7 > 1 I7 is undefined, 

1.b) Q > Q and I7 < I7  0,

1.c) Q > Q and I7 > I7  0. 

Given that I7 is highly sensitive to the data errors, its validity has been limited to its 

dependence on the value of Q. Otherwise, the errors of I7 would dominate the dimensionality 

estimation, which would be always undetermined. 

2) The rest of the invariants, I3 to I6, are considered null or not depending on the 

possible values of Ik and k (Figure 3.4): 

2.a) Ik - k and Ik + k < Ik  0 (Figure 3.4a),

2.b) Ik >  and Ik - k > Ik  0 (Figure 3.4b), 

2.c) Ik < and Ik + k > Ik  0 (Figure 3.4c), (Note that Ik would be regarded null 

had the error not been taken into account), 

2.d) Ik >  and Ik - k < Ik  0 (Figure 3.4d), 

2.e) Ik + k > 1 Ik is undefined (Figure 3.4f), 

which can be reduced to the conditions: 

Ik + k < Ik  0,            (3.9) 

< Ik + k Ik  0,         (3.10) 

and Ik is undefined for the rest of the cases. 
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If any of the invariants I3 to I6 are undefined (Figure 3.4e) the dimensionality of the 

corresponding tensor cannot be determined. 

Figure 3.4: Different possibilities for the invariant values and their errors ( = threshold value). (a) Ik - k<

and Ik+ k <  (b) Ik - k > and Ik + k > (c) Ik < and Ik + k > (d) Ik > and Ik - k < and (e) Ik + k >1. 

Only in case (a) is invariant Ik considered to be zero. 

The choice of the threshold value is a subjective decision, but it is important to have 

an appropriate range of values that works for a correct dimensionality analysis. A high value of 

produces invariants that are considered null, resulting in too simple a structure (1D for all sites 

and periods). On the contrary, a small value of  implies that the invariants cannot be 

considered null and it gives rise to a more complex structure (3D in general). 

An exhaustive study was carried out with the aim of determining the optimum range of 

threshold values that provides a stable and consistent dimensionality pattern, taking into account 

the errors of the invariants. This task was performed using the examples from the previous 

section, site 85_314 from COPROD2 and site b23 from the Betics, plus two additional Betics 

sites.

In both examples, the WAL dimensionality analysis was performed for different 

threshold values and the results were compared to determine those most appropriate. The 

threshold values tested were 0.08, 0.10, 0.12, 0.15, 0.20 and 0.30. In the second example, using 

three sites from the Betics dataset, a more detailed study was done, including an analysis on the 

determination of the strike directions and distortion parameters, and a comparison with 

decomposition techniques. 

With regard to the threshold for invariant Q, Q, which conditions the determination of 

invariant I7, its value was fixed to 0.10. Posterior tests changing the value of Q resulted in small 
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changes in the dimensionality. Nevertheless, I recommend not using a Q value lower than 0.1, 

as the value of I7 would be considered undefined even if it was much smaller than unity. 

The dimensionality pattern corresponding to all the registered periods from site 85_314, 

for the different threshold values, is illustrated in Figure 3.5. Those cases undetermined as a 

consequence of the errors are also included, the number of which decreases as the threshold 

value increases. In general, and apart from the extreme values, 0.08 and 0.3, the dimensionality 

is stable among different threshold values, especially for the longest periods. Some particular 

changes are observed between the intermediate values, which are a consequence of the error 

bars crossing the threshold values. The same dimensionality analysis but, without considering 

errors, would result in the same dimensionality pattern, although without any undetermined 

cases. 

Figure 3.5: Dimensionality cases for site 85_314 from the COPROD2 dataset using different threshold 

values: 0.08, 0.10, 0.12, 0.15, 0.20 and 0.30, considering data errors. 

Figure 3.6 shows the dimensionality cases obtained for each threshold value for the 

three sites from the Betics dataset, b01, b23 and b40. Independent of the threshold value, 

dimensionality remains undetermined for those periods with relative errors in the MT tensor 

components greater than approximately 30%. 

The extreme values =0.08, =0.20 and =0.30 provide dimensionality patterns which 

are inconsistent. On the contrary, intermediate values,  0.1, 0.12 and 0.15, give a quite stable 

pattern and a characteristic behaviour can be observed at each site. Site b01 reflects a 3D/2D 

dimensionality for some periods up to 0.12s using  0.1, 0.12 and 0.15. Site b23 appears as 2D 

up to 0.2 s, for any threshold value, and as 3D/2D for longer periods up to 50 s, using 0.12, 

0.15 and even 0.2. Site b40 shows a 1D dimensionality at short periods (up to 1 s) for the 

three intermediate  values. 
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Figure 3.6: Dimensionality cases for sites b01, b23 and b40 from the Betics MT dataset using different 

threshold values: 0.08, 0.10, 0.12, 0.15, 0.20 and 0.30. 

In order to confirm whether this description is valid or not, another test was performed, 

considering the determination of the strike angles and the distortion parameters. For all the 

periods of these three sites, two types of analysis were performed: 

Analysis A: the strike directions and errors corresponding to a 2D structure were 

determined ( 1 and 2 in equation 2.19, equivalent to Swift’s angle, equation 2.5). 

Analysis B: a 3D/2D structure was assumed, computing the strike and distortion 

angles and their errors ( 3 in equation 2.23 and t and e in equations 2.24 and 2.25, 

equivalent to Groom and Bailey decomposition). 

The strikes and errors obtained using both analyses made it possible to constrain 

frequencies for which a strike direction and/or distortion parameters could be determined. If 1

and 2 are similar with constant values and small error bars, the structure can be considered 2D. 
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If 3 is the angle with small error bars and constant values of distortion angles, it can be 

considered 3D/2D. For the analysed sites the main results are: 

Site b01 (Figure 3.7): Analysis A (Figure 3.7a) gives a good determination of the strike 

directions up to 200 s, where the errors in 1 and 2 become large. However, since values 1 and 

2 are dissimilar, it cannot correspond to a 2D structure. Analysis B (Figure 3.7b) shows large 

error bars, except for the period range between 0.02 s and 0.2 s, which can be described as 

3D/2D because 3 and the distortion angles have a constant value. 

Figure 3.7: Strike directions and distortion parameters for site b01: (a) analysis A, (b) analysis B. 

Site b23: Analysis A gives a good determination of the strike for the lowest periods up 

to 0.2s, which have the same value 1= 2 (Figure 3.8a). Analysis B shows that constant strike 

direction and twist and shear angles can be inferred between 5 s and 50 s (Figure 3.8b). 
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Figure 3.8: Strike directions and distortion parameters for site b23: (a) analysis A, (b) analysis B. 

Site b40: neither analyses A and B nor the computation of 1, 2 and 3 (Figures 3.9a 

and 3.9b) give good determination of a possible 2D or 3D/2D structure. However, up to periods 

of about 1s, the MT tensor corresponds to a 1D case (Mxy = -Myx and Mxx = Myy = 0), and the 

computed apparent resistivities (Figure 3.9c) and phases (Figure 3.9d) have the same value for 

xy and yx modes. These values are the same as those obtained from invariants I1 and I2

(equations 2.23 and 2.24). This is consistent with a 1D interpretation of the data for the short 

and middle periods of this site. 

The results from these analyses correspond to the dimensionality obtained using 

threshold values between 0.1 and 0.15. Hence, this threshold range is appropriate for a 

dimensionality analysis of data with up to 30% noise in the impedance tensor components. 
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Figure 3.9: Strike directions and distortion parameters for site b40: (a) analysis A, (b) analysis B, (c) and 

(d): xy and yx apparent resistivities and phases computed directly from the MT tensor and I1 and I2

invariants. 
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3.4. Practical Criteria 

After performing these tests on the error treatment and the threshold value, these final 

recommendations are given: 

(1) Determine the errors of the invariants using any of the described approaches, a, b or 

c. However, classical error propagation (approach a) is recommended to avoid 

biases.

(2) Determine the dimensionality using WAL criteria with a threshold value between 

0.1 and 0.15, letting I7 be undetermined if Q is below Q, and giving consideration 

to the error bars. Note that dimensionality will be well determined when relative 

errors in M are not greater than approximately 30%. 

(3) Compute the strike directions and/or distortion angles corresponding to 2D and 

3D/2D cases and their errors, using Random Gaussian Noise generation. 

3.5. WALDIM Program 

A Compaq Visual Fortran 2000® application, termed WALDIM, was created. It is a tool 

to automatically obtain the dimensionality analysis from a set of raw or synthetic MT data, 

based on WAL criteria while considering noise in the data. 

The main functions of this program are to compute WAL invariants, related parameters 

and errors corresponding to each MT tensor and to determine the dimensionality, following  

WAL criteria, and according to the errors and the threshold value. In those cases related to two-

dimensional structures and/or the presence of distortion, apart from the dimensionality, the 

strike and distortion parameters with their errors are provided as relevant information. 

The strike angles are all determined in the first quadrant. As stated in chapter 1, the 90o

ambiguity should be solved using the tipper information. 

The program also solves some inconsistencies that can appear regarding two-

dimensionality and strike directions: On some occasions, WAL criteria indicate 2D 

dimensionality, whereas 1 and 2 strike angles have significantly different values. This is a 

consequence of having defined a lower than required threshold value. The program solves this 

by changing the dimensionality of these cases into 3D/2D and assigning 3, 1 and 2 as the 

strike direction and distortion parameters respectively. The difference between 1 and 2 is set to 
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a maximum of 10o, or a minimum of 80o, given that one of the angles can have a 90o ambiguity, 

although these values may be modified. 

A broad range of parameters and options remain open for the user, which may be 

chosen depending on the quality or type of data, or to continue investigating the threshold 

values and error analysis. The values of thresholds  and Q can be chosen by the user. Data 

errors can be those in the MT tensor components, or can be computed as a noise level specified 

by the user. The error estimation in the computed parameters can be done as in approach a

(classical error propagation) or as in b (1) (Random Gaussian Noise generation), which in the 

program is referred to as “statistical approach”. Bootstrap resampling can be performed by 

calling an external program.  

Another option of WALDIM is to classify the dimensionality into groups of periods for 

each site such as to have a more general image of the dimensionality therein. In this 

classification, a specific period range is divided into groups made up of multiples or fractions of 

the decades contained within this range. For each site, the dimensionality of a group is the mode 

of the data in the group. In the case that the mode has more than one dimensionality type, 

priority is given to that which is less complex. If the dimensionality of the group needs 

computation of strike and distortion parameters, these and their errors are the average and 

standard deviation of the group data with that type of dimensionality. If inconsistencies in the 

determination of 2D strike angles appear, these are solved by changing the cases to 3D/2D as 

previously explained. 

Figure 3.10 schematizes the general flowchart of the program. It has been tested for 

different datasets, some of which appear in the dimensionality studies carried out in this thesis. 

3.6. Conclusions 

A method has been developed to determine the geoelectric dimensionality using the 

WAL invariants, taking into account the data errors. The errors of the invariants and related 

parameters were estimated using three approaches: classical error propagation, generation of 

Random Gaussian Noise and bootstrap resampling. Different threshold values were tested to 

ensure a stable dimensionality pattern. 

The errors of the invariants can be properly estimated by classical error propagation, but 

the generation of random values is more robust, thus ensuring stability in the errors of strike 

direction and distortion parameters. The use of a threshold value between 0.1 and 0.15 is 

recommended for real data of medium to high quality. 

1 Subroutine Gasdev (Press et al., 1992) 
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A program named WALDIM to perform MT dimensionality analysis using WAL 

criteria and considering data noise, has been developed. It offers several options with regard to 

error estimation and threshold values, and has been successfully tested. 
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Figure 3.10: General overview flowchart of WALDIM program. 
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Chapter 4: Improving Bahr’s Invariant 

Parameters Using the WAL Approach 

This chapter presents a comparison between Bahr and WAL parameters and their 

dimensionality criteria. It led to a proposal of a unification of the existing threshold values used 

in these dimensionality analyses. And, to the improving of Bahr’s criteria with the addition of 

the Q parameter, from the WAL invariants set. The new method was hence termed the Bahr-Q 

method.

The motivation for this work came from the previous work of Ledo et al. (2002b), on 

the limitations of a 2D interpretation of 3D data. Among different aspects concerning their 

effects in modelisation, it demonstrated the misuse of some of the Bahr parameters at 

ascertaining whether data are 3D or not. 

Part of this work has been already published in Martí et al. (2005). 

4.1 Introduction 

As already described in chapter 2, both the Bahr and WAL methods use a set of 

rotational invariant parameters of the magnetotelluric tensor and establish a classification of 

these values to determine the kind of dimensionality associated with the measured data. 

Among the four parameters defined by Bahr (1991) (Chapter 2, section 2.4), only the 

skew, , and  regional skew, , are commonly used to test the validity of dimensionality, as 

opposed to the four of them being fully taken into account to characterise it. The use of the 
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WAL method (Chapter 2, section 2.5), although limited, is increasing (Jones et al., 2002; Martí 

et al., 2004). 

When the data are of good quality (low noise and low distortion) and the subsurface 

materials being imaged can be approximated by 2D structures, both methods work reasonably 

well and give similar results. When dealing with more complex structures and with real data, 

propagation of data errors and oversimplification of the physical models used will lead, in most 

cases, to more confusing situations. 

The aim of this work was to study the Bahr and WAL methods and to propose a new 

one that makes both dimensionality methods consistent.  

To accomplish this, the analytical relationships between both sets of parameters were 

derived and the threshold values of each method were revised and compared. To illustrate the 

results of this study one set of synthetic data and two sets of real data were used, including error 

effects.

4.2 Bahr and WAL Methods 

The dimensionality information given by both sets of parameters, and the recommended 

threshold values are summarised in Table 4.1.  

Table 4.1: Dimensionality cases according to Bahr and WAL rotational invariants. In case 3, red and 
green colours refer to Bahr and WAL criteria respectively. The WAL method can distinguish cases 3a) 
from 3b) whereas the Bahr method cannot. 
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One of the main limitations of the Bahr method is that the threshold values do not have 

a justified physical or mathematical meaning, nor are they set in a statistical framework. As is 

shown below, the use of only these four parameters is insufficient to completely characterise the 

dimensionality.

The number of WAL invariants used for determining dimensionality is five (I3 to I7)

plus invariant Q, which determines whether I7 is meaningless or not. This total of six can be 

reduced to five since I3 and I4 are used together in the dimensionality classification. 

In order to compare the reliability of both methods, an example was used which 

consisted of a magnetotelluric tensor M , clearly representing a two-dimensional structure with 

different phases in the xy and yx polarisations. Table 4.2 shows the components of this tensor 

and the dimensionality interpretation using Bahr and WAL criteria. It is clear that in some 

circumstances, Bahr’s criteria may lead to incorrect interpretations. 

The use of only four parameters in the Bahr method is an important limitation in 

determining dimensionality. Furthermore, the classification of the dimensionality types, as well 

as the threshold values, should be revised such that they are concise and consistent. 

As a first step, the next section presents the analytic relationships between the Bahr and 

WAL parameters. 

MT Tensor Bahr invariants WAL invariants 

0

0

0

0.05

I1=20                 I2=10.5 

I3=0.25              I4=0.14 

I5=0                        I6=0

I7=0                   Q=0.39
25 9

15 12
0 + i

M=
- - i 0

and <0.1,

and

1D or 3D/1D 

I3 and I 4  0, 

I5, I6 and I7 = 0 

2D

Table 4.2: Example showing how both methods, using the threshold values established by the authors, 
lead to different interpretations. 
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4.3 Analytical Relationships and Equivalencies for Ideal Cases 

Using the same decomposition as in Weaver et al. (2000), where the magnetotelluric 

tensor components are expressed as a function of the complex parameters j= j+i· j (eq. 2.9), 

Bahr rotational invariants were rewritten as: 

1
2 2 2

1 1
1

2 2 2
4 4

,  (Swift Skew)             (4.1a) 

1
2

3 2 2 3 1 4 4 1
12 2 2

4 4( )
,        (4.1b) 

1
2

3 2 2 3 1 4 4 1
12 2 2

4 4( )
, (Regional skew or Phase sensitive skew)      (4.1c) 

2 2 2 2
2 3 2 3

2 2
4 4

.             (4.1d) 

Departing from these expressions, the analytical relationships were obtained by 

expressing Bahr parameters as functions of WAL invariants and are given as: 
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where a and b depend on I5 and I6:
2

5 6a I I  and 2 2 2 2
5 6 5 6 5 61 1b I I I I I I . r is the 

quotient between I2 and I1, which appears in all the relationships due to the different 

normalisation used in each set of parameters. 

Relating these identities to WAL dimensionality criteria, parameter  is the one that 

distinguishes between undistorted and distorted cases (depending on whether I5 and I6 are null 

or not). and  also depend on the product I7·Q, but not on their individual values. is the only 

parameter that depends on I3 and I4, and, consequently, that deals with two-dimensionality. 

The analytical relationships presented allow the particular expressions of Bahr 

parameters to be easily obtained for the ideal cases following the WAL conditions (in 

parenthesis):

1) 1D (I3 – I6=0 and I7=0 or Q=0) 

0        (4.3) 

2) 2D (I3 or I4 0, I5, I6=0 and I7=0 or Q=0) 

0               (4.4a) 

2 2 2
3 4

4 3 4 21
I I rf r ,I ,I

r
.            (4.4b)

3) a) 3D/2Dtwist  and b) 3D/1D2D (I3 or I4 0, I5 0, I6=0 and I7=0 or Q=0) 

0 ,           (4.5a) 

1 5f r,I                (4.5b)

4 3 4 5f r ,I ,I ,I .          (4.5c) 

Cases 3a and 3b are non-distinguishable using the Bahr method because it is not 

possible to know which of I7 or Q is null. 

4) 3D/2D (I6 0 and I7=0): and  have the values corresponding to the general 

expressions (eqs. 4.2a-4.2d): 

0             (4.6a) 
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1 5 6f r ,I ,I           (4.6b) 

2 5 6f r ,I ,I           (4.6c) 

4 3 4 5 6f r ,I ,I ,I ,I .         (4.6d)

5) 3D (I7 0 and Q 0): and  have the values corresponding to the general 

expressions 4.2a-4.2d. However, there is no condition on the values of I3 – I6, therefore these 

invariants could have any value from 0 to 1.

1 5 6f r ,I ,I           (4.7a) 

2 5 6 7 Qf r ,I ,I ,I ,          (4.7b) 

3 5 6 7 Qf r ,I ,I ,I ,             (4.7c) 

4 3 4 5 6f r ,I ,I ,I ,I .          (4.7d) 

From these relationships some important points arise that modify the Bahr criteria 

(Table 4.1):

a) If the dimensionality is 1D or 2D, parameter µ must be null.  

b)  0 and  0 conditions are not necessary for three-dimensionality. 

c) If the structure is not 3D, vanishes.

4.4 Threshold Values 

Given that in real situations data are affected by noise and that geoelectric structures do 

not exactly fit the assumed ideal cases, invariant values are never precisely zero. Weaver et al.

(2000) address this problem by introducing a threshold value ( W), the same  for  all invariants

I3 to I7, beneath which they are considered to be zero. 

In order to make the Bahr and WAL criteria equivalent, first it was necessary to obtain 

the relationships between WAL and Bahr threshold values and then to redefine the thresholds 

used in the Bahr method. It was accomplished with two approaches: an analytical development 

and a statistical one. 



                                                 Chapter 4. Improving Bahr’s invariant parameters using the WAL approach

99

a) Analytical Development 

As a first approach, Bahr thresholds were computed from the analytical relationships, 

using the WAL threshold W in place of invariants I3 - I7. The chosen value of Q was unity, thus 

the product I7·Q was replaced by W. Parameters a and b in equations 4.2a to 4.2d were 

approximated by a=(2· W)2 and b=2, after replacing I5 and I6 by the threshold value W,

excluding second order terms. 

It was assumed that all WAL invariants are equal to the threshold value. This is not the 

situation for every dimensionality case but makes it possible to obtain preliminary expressions 

of Bahr thresholds. , ,  and  depend on W and r (the relationship between I2 and I1):

2

2 2
W

1 r 1
1 r

          (4.8a) 

W

2
W

3
1 1 1
r

          (4.8b) 

W

2
W

2
1 1 1
r

          (4.8c)

2 2
W

2 2
W

(1 r )
1 r

.          (4.8d) 

Despite the approximation used, these expressions are useful to see which of the Bahr 

parameters are the most sensitive to W and r. The dependencies of Bahr thresholds on the WAL 

threshold, for different values of r, are represented in Figure 4.1.

Figure 4.1: Bahr thresholds values obtained analytically for different values of the WAL threshold ( W)
and r. Note that W is represented on a linear scale and r on a logarithmic scale. 
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It can be observed that, for low values of r,  can be approximated to the constant value 

W

2
, whereas for higher values of r its value decreases with r. 

 and , which keep a 2/3  relation (eqs. 4.8b and 4.8c), smoothly increase in 

relation to both W and r. 

Threshold , except for high values of W, has a low dependence with r, and take a 

constant value, 2
W .

For a more accurate approach, instead of defining the new thresholds analytically, a 

statistical analysis was performed. 

b) Statistical Development 

For each dimensionality case, random values of the invariants, above or below their 

corresponding threshold range, W, were generated, and Bahr parameters were computed using 

the analytical relationships in equations 4.2a to 4.2d. The value of r was chosen to be r=1, which 

is a valid approximation since, for experimental data, I1 and I2 are of the same order of 

magnitude (r represents the relation between the imaginary and real parts of the magnetotelluric 

tensor components). Thus, it was possible to establish the new thresholds for Bahr parameters, 

, ,  and , as well as the new dimensionality conditions. This development was made for 

different values of W.

The following results were observed: 

1) Thresholds and  can easily be related to W using the approaches W

2
 and 

2
W , as shown by the analytical development (eqs. 4.8a and 4.8d using r=1). The threshold 

 differentiates 1D and 2D from the rest of the cases, except 3D, which can take any value of .

Values of greater than  indicate that the structure is not 1D, but 2D, with or without galvanic 

distortion (cases 2, 3 and 4). 3D cases can have any value of .

2) The dependence of  on W is more complex, since these parameters become more 

sensitive to the value of r, and, consequently the approximation r=1 is not the most appropriate. 

In order to distinguish cases 1, 2 and 3 from case 4, there is a statistical value of ,

although sometimes there is an overlap of possible values among these different cases. 

3) In the case of parameter , in order to differentiate between cases 4 and 5, it is also 

necessary to consider WAL parameter Q, which determines if I7 is meaningless or not. This is 

accomplished assuming that the condition is only valid if Q is not meaningless, whereby 
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the threshold Q is defined. The value of Q is also useful to differentiate case 3a from 3b, as in 

the WAL criteria. 

Table 4.3 shows the values of , ,  and  that correspond to r=1, W= 0.1 and 

Q=0.1. These thresholds, especially , differ significantly from the thresholds proposed by 

Bahr (1991). 

Bahr parameters W=0.1 

0.06

0.34

0.12

0.01

Table 4.3: Threshold values , ,  and , for r=1 , W= 0.1 and Q=0.1.

4.5 Bahr-Q Method 

From the new threshold values obtained for Bahr parameters, the appropriate 

dimensionality conditions can be defined. However, there is a limitation by using only four 

parameters, compared to the five of the WAL method. In this section, the Bahr method is 

extended to be internally consistent with WAL invariants. 

To classify dimensionality it is necessary to take into account parameters ,   and 

the thresholds as defined in the previous section. Also, in order to distinguish the two 

subcategories of case 3, it is necessary to use parameter Q. This new method has been named 

the Bahr-Q (B-Q) method. Table 4.4 shows the conditions necessary to classify the 

dimensionality using B-Q parameters ( and Q) with the thresholds values defined in the 

preceding section. 

The application of the B-Q method in the example from Table 4.2 leads to the same 

interpretation as does WAL criteria: 0  and Q> Q, which indicates two-

dimensionality.
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Table 4.4: The Bahr-Q method criteria to characterise geoelectric dimensionality. 

4.6 Application to Synthetic and Real Data 

Three sets of data were used in order to compare the dimensionality obtained using 

WAL, Bahr and B-Q methods. The first is a synthetic set from the model used in Weaver et al.

(2000). The second and third sets, increasing in complexity, consist of real data from the 

COPROD dataset, already used in the previous chapter, and from the BC87 dataset, also well 

known by the MT community. In the BC87 datasets, errors were taken into account. 

Set 1: Synthetic Data 

Set 1 consists of seven magnetotelluric tensors (A-G) selected from the synthetic model 

used in Weaver et al. (2000). It consists of a cubic conductive anomaly (0.5 ·m) embedded on 

the surface of an otherwise 2D structure, formed by a vertical fault that separates a layered 

medium of 10 ·m, 100 ·m and 1 ·m from a homogeneous medium of 1 ·m (Figure 4.2). 
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Figure 4.2: Synthetic model from Weaver et al. (2000). a) Plane view at z=0, b) Vertical cross section at 
x’=0. 

The magnetotelluric tensors computed from the model for four sites at different periods 

exemplify the different types of dimensionality that can be identified using the WAL criteria 

with a threshold value of 0.1: 

A: Site 1, 100s: 1D; 

B: Site 2, 1000s: 2D with equal phases for xy and yx; 

C: Site 2, 100s: 2D with different phases for xy and yx; 

D: Site 3, 1000s; 3D/1D2D; 

E: Site 2, 100s where E field was rotated 10o: 3D/2Dtwist; 

F: Site 3, 100s: 3D/2D; 

G: Site 4, 1s: 3D. 

Table 4.5 presents the values of Bahr parameters and Q for each tensor, showing which 

are above (grey background) or below the threshold. 
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MT Tensor Q

( Q=0.1)

A (1D) 0 0 0 0 0 

B (2D) 0 0 0.09 0 0.01 

C (2D) 0 0 0.05 0 0.36

D (3D/1D2D) 0.13 0.07 0.25 0.01 0.03 

E (3D/2D 

twist) 0.18 0.02 0.05 0.01 0.36

F (3D/2D) 0.09 0.37 0.20 0.06 0.31

G (3D) 0.13 0.25 0.21 0.17 0.28

Table 4.5: Bahr parameters and Q, with their corresponding thresholds values, derived from W=0.1, for 
tensors A-G from Set 1 (in parenthesis, the dimensionality according to the WAL method). In grey, 
parameters values greater than the threshold. 

Table 4.6 shows the dimensionality that one would obtain using two types of analysis: 

1) The Bahr method  

2) The B-Q method: Bahr parameters and invariant Q, using , , and  from 

W=0.1 (see Table 4.3). Q is considered meaningless if its value is below 0.1. 

The results present some equivalences but also some divergences showing how the B-Q 

method proposed improves the classical Bahr method. They also prove the consistency between 

B-Q and WAL methods. 

MT Tensor (WAL 

dimensionality)
Bahr method B-Q method 

A (1D) 1D 1D 

B (2D) 1D 2D 

C (2D) 1D 2D 

D (3D/1D2D) 3D/2D 3D/1D2D 

E (3D/2D twist) 3D/1D 3D/2D twist 

F (3D/2D) 2D 3D/2D 

G (3D) ? 3D

Table 4.6: Dimensionality obtained for tensors A-G using the Bahr method and B-Q method. 
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In A (1D according to WAL) both criteria agree because the Bahr parameters are below 

the established thresholds, which indicate that the structure is 1D. 

B and C data (2D according to WAL) are one-dimensional according to Bahr, whilst the 

magnetotelluric tensor has non-zero diagonal components and a well-defined strike direction 

(Weaver et al., 2000). Using the B-Q method, these tensors are interpreted as 2D. This 

inconsistency between Bahr and B-Q methods is due to the new definition of , which is the 

square of W. However, Bahr’s method uses =0.1, which would correspond to a higher value 

for W (0.31). As a result, tensors that are clearly 2D, may be interpreted as 1D. 

In D (3D/1D2D according to WAL), the Bahr method would infer the following: 

1) The structure is not 1D ( > 0.1); 

2) There is a phase difference between the tensor components (  > 0.05); 

3) It can be interpreted as a distortion over a 1D or 2D structure ( < 0.05) and  

4) The regional structure is 2D (  > 0.1). 

According to B-Q, the distortion occurs over a 1D or 2D structure with equal phases in 

the non diagonal components of the MT tensor. Now, the inconsistency between Bahr and B-Q 

comes from the value of : the value 0.05 established by Bahr (1991) is too low, and hence 

provides a very strict criterion to consider when phase values are different (less than 3o in this 

case).

In E (3D/2Dtwist), with the exception of , all the parameters are below the thresholds 

defined by Bahr and the structure could be considered 3D/1D. With the B-Q method, since Q is 

not meaningless, it corresponds to a 3D/2D structure, affected only by twist. 

It must be noted that the use of parameter Q in the B-Q method allows one to 

distinguish two types of dimensionalities, 3D/1D2D and 3D/2Dtwist, in D and E. 

In F (3D/2D according to WAL), the Bahr method states that the dimensionality is 2D, 

because both  and  are greater than 0.1. B-Q agrees with a 3D/2D interpretation because only 

is below the threshold. 

In G (3D according to WAL), the Bahr method cannot ascertain if the structure is 3D 

because is not greater than 0.3. By contrast, the B-Q method identifies the structure as 3D 

because >  and Q > 0.1. 

From this analysis it can be concluded that the B-Q method, consisting of the use of 

Bahr parameters and WAL invariant Q, with the new conditions and a suitable threshold for 

each invariant, is consistent with WAL invariants criteria, used to determine the dimensionality 

of the magnetotelluric tensor. 
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Set 2: COPROD2 Dataset: Site 85_314 

As it was shown in the previous chapter, the data responses of site 85_314 from the 

COPROD2 dataset (Appendix B) have in general a 1D behaviour at short periods (up to 10s). 

From 10s to 1000s the data display a 2D behaviour with a NS strike direction (Jones et al.,

2005), as determined from the multisite-multifrequency decomposition code of McNeice and 

Jones (2001), based on Groom and Bailey (1989) (G&B). 

Table 4.7 shows Bahr and Q parameters related to the threshold values and the 

dimensionality derived from the B-Q method, compared to the ones obtained using G&B 

decomposition, WAL and Bahr methods. 

The Bahr and G&B methods provide the simplest dimensionality descriptions, whereas 

WAL and B-Q also depict 3D cases at the longest periods. The WAL and B-Q results are 

coincident, describing the dimensionality as 1D up to 20s, 2D from 20s to 300s and 3D up to 

1000s. G&B decomposition infers an optimum 2D description from 10 to 1000s and the Bahr 

method results in a 1D description up to 100s and 2D for the remainder. 

Table 4.7: Dimensionalities obtained from the Groom and Bailey, Bahr, WAL and B-Q methods for site 
85_314, COPROD2 set. The B-Q method uses , ,  and  obtained from WAL=0.1, and Q=0.1
(Table 4.3). The grey area represents the range of periods for which G&B decomposition resulted in large 
errors. 
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Hence, all methods coincide with a 1D description up to 10s. G&B decomposition at 

this period range provided large error values, which is consistent with 1D dimensionality. The 

main difference is in the period at which the transition between 1D and 2D takes place, which is 

significant (about 1 decade with respect to the other methods) for the Bahr method. 

Furthermore, the 3D dimensionality cases at the longest periods are only shown in the WAL and 

B-Q methods. 

The lowest misfit on the 3D/2D decompositions (Strike program) are obtained when the 

range 10s-300s is considered (B-Q method), as opposed to the 10s-1000s (Jones et al., 2005) 

and 100s-1000s (Bahr Method). These results, together with large values of the invariant I7

observed at the longest periods, confirm the validity of the dimensionality description obtained 

through the B-Q method. 

Set 3: BC87 Dataset: Site 4 

The BC87 dataset was acquired in British Columbia (Appendix C) and is commonly 

used to test and compare new methods in analysis and interpretation of MT data. The data 

display complex 3D effects, due both to local effects and the presence of the Nelson batholithic 

body (western part of profile). Site 4 is located above this body. 

Table 4.8 summarises the kind of structures derived from the new B-Q method and 

compares them to those obtained using the WAL and Bahr methods, in both cases departing 

from W=0.1, Q=0.1 and without considering data errors. The WAL and B-Q methods give the 

same dimensionality interpretation, except for some periods. 

The differences between the B-Q and WAL methods are due to parameters and Q that 

have values close to the thresholds, which, as stated before, were not defined analytically but, 

rather, statistically. 

B-Q and WAL interpretation is more complete than that of using the classical Bahr 

method, whose conditions, 0.05 and  0.3, do not allow the identification of data affected 

by distortion and 3D cases. 

The dimensionality obtained using WAL and B-Q shows that up to 1s distortion can be 

removed from the data, which can be interpreted as 2D. For periods longer than 1s the 

dimensionality is 3D, with the exception of some particular periods, where 3D/2D cases are 

obtained.

This description agrees, in general, with Jones et al. (1993). Accordingly, a 3D/2D 

decomposition of the data is possible for periods shorter than 1s and longer than 10s. From 1s to 

10s the data show a 3D behaviour, due to the presence of the Nelson Batholith. The difference 

with B-Q and WAL dimensionality results becomes evident at longer periods, where these 
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methods identify the data as 3D, whereas Jones et al. (1993) make a 3D/2D decomposition, with 

moderate misfit values in the retrieval of the regional responses. 

Table 4.8: B-Q parameters and dimensionality obtained from the Bahr, B-Q and WAL methods for the 
data from site 4, BC87 dataset. Parameters shaded in grey are those with values greater than the threshold. 
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When data errors are considered, which in turn influence the computed parameters, one 

of the consequences is that the dimensionality can be undetermined if the error bars cross the 

threshold values, since in these cases there are ambiguities in the classification. Another 

consequence is the bias that can appear between the true values (computed directly from the 

tensor components) and the statistical values (computed as the average of the different Gaussian 

generations) (chapter 3). 

Figure 4.3 and Figure 4.4 show the values of the WAL and Bahr parameters and their 

errors that correspond to site 4 for two noise levels: 1% and 10%, where only half of the periods 

have been plotted. For WAL invariants I7 and Q the biases are also presented (for the remainder 

of the parameters the biases are insignificant, as can be seen by comparing the statistical values 

for the different noise levels). 

Figure 4.3: Invariants I3 – I7 and Q, with their error bars, for 20 recorded periods of site 4 from BC87 
dataset. 1% noise level (a, b, c and d) and 10% noise level (e, f, g and h). For invariants I7 and Q (d and h) 
the biases between the true and statistical values are also presented (continuous line). Horizontal 
continuous line: threshold value W=0.1.
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The error bars of WAL parameters are, in general terms, proportional to the noise level, 

with the exception of I7, which displays large error bars at some periods. With 10% noise, at the 

third last period of I6, most of the periods of I7 and some periods of Q, the error bars cross the 

threshold value, with the consequence that it is not possible to discern whether these invariants 

can be considered null or not. A second problem is caused by the biases of I7, which add more 

uncertainty in the parameter estimation. On the contrary, the biases of Q are not important.  

The error bars of Bahr parameters are smaller and, apart from the lowest periods of 

with 10% noise, it is always possible to discern if Bahr parameters are above or below the 

threshold.

Figure 4.4: Bahr parameters with their error bars, for 20 recorded periods of site 4 from the BC87 dataset. 
Upper line: 1% noise. Lower line: 10% noise. 

Consequently, having contrasted the large errors and biases of invariant I7 versus the 

stability of Bahr and Q parameters, it can be stated that the Bahr-Q method is more robust under 

the presence of errors, in determining dimensionality. 
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A complete analysis of the dimensionality using the WAL and B-Q methods taking into 

account these errors would lead to a good determination of all periods for 1% noise. When the 

noise level is 10%, WAL invariant I7 is undetermined at most periods. It limits the 

determination of the type of dimensionality using WAL criteria to only a few periods. With the 

same 10% noise level the Bahr-Q method provides a dimensionality description for a broader 

range of periods which, as already observed in the error bars, makes it more suitable for 

dimensionality analysis of noisy data. 

4.7 Conclusions 

In this chapter, two of the methods used to characterise the geoelectric dimensionality 

from MT data (the Bahr method and the WAL method) were studied. An important conclusion 

is that, compared to WAL, the Bahr method does not provide complete dimensionality 

interpretations. The reasons are that it uses only four parameters (whilst WAL uses five) and 

that the thresholds’ values suggested lead to ambiguities or to situations where the 

dimensionality cannot be determined. 

The redefinition of Bahr thresholds and the addition of the invariant Q allowed the 

establishment of a new dimensionality criterion (Bahr-Q) consistent with the WAL method. 

The Bahr-Q method was tested with synthetic and real data corresponding to all types of 

dimensionality, obtaining the same interpretation as the WAL method. When the data are 

affected by a significant level of noise (10% or higher), the errors and biases of Q can be 

important and, consequently, the dimensionality obtained from either method can be 

undetermined. However, Bahr and Q parameters are more stable under noise effects and make 

Bahr-Q a more robust method. 



Chapter 4. Improving Bahr’s invariant parameters using the WAL approach 

112



            Chapter 5: Applications of the Magnetotelluric Phase Tensor and Comparison with Other Methods

113

Chapter 5: Applications of the Magnetotelluric 

Phase Tensor and Comparison with other 

Methods 

The goal of this chapter is to analyse the phase tensor proposed by Caldwell et al.

(2004) and apply it to synthetic and real data in order to determine the resolution of the 

parameters involved. 

The phase tensor and its associated parameters and errors were analysed, and, together 

with the information obtained, compared to the WAL and Groom and Bailey methods. A last 

step consisted of fitting the phase tensor information to a 2D description of the data. 

The phase tensor, and its related parameters and graphic representations were computed 

using a code created with Compaq Visual Fortran 2000® and a Matlab® application provided by 

Hugh Bibby.  

5.1 The Phase Tensor for Different Dimensionality Cases 

The phase tensor (see chapter 2, section 2.6) displays distinct expressions for particular 

cases of dimensionality and orientations of the measuring axes. The expressions of the phase 

tensors with their SVD (Singular Value Decomposition) and related parameters were computed 

for four particular cases (1D, 2D and 3D/2D with different orientations, and 3D), which are 

summarized, together with a numerical example in each case (Table 5.1). Note that the 2D 

example (B) is the same MT tensor used in chapter 4 (Table 4.2), which is rotated 30o in 

example C. 
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A 1D

Impedance tensor 
0

0
M

M

Phase tensor 
/ 0 tan 0
0 / 0 tan

Y X
Y X

SVD Parameters 0 / 0 ( )P undefined , tanMax
min

; 0ºP

Numerical example 1D with =26.56o

Impedance tensor 
0 10 5

10 5 0
i

i

Phase tensor 
tan 26.56 00.5 0

0 0.5 0 tan(206.56 )

o

o

SVD
1 0 0.5 0 1 0
0 1 0 0.5 0 1

SVD Parameters 0 / 0 ( )P undefined
min

0.5Max 0ºP

Table 5.1: Synopsis and numerical examples of the phase tensor and SVD parameters for particular 

dimensionality cases: (a) 1D case.  

B 2D or 3D/2D along strike direction 

Impedance tensor 12

21

0
0

M
M

0
0

TE

TM

M
M

Phase tensor 21 21 21

12 12 12

/ 0 tan 0
0 / 0 tan

Y X
Y X

/ 0 tan 0
0 / 0 tan

TM TM TM

TE TE TE

Y X
Y X

SVD Parameters 0ºP ,
12
21

tanMax
min

, 0ºP

Numerical example 2D along strike direction (example from chapter 4, table 4.2) 

Impedance tensor 
0 25 9

15 12 0
i

i

Phase tensor 
0.8 0 tan 38.66º 0
0 0.36 0 tan19.79º

SVD
1 0 0.8 0 1 0
0 1 0 0.36 0 1

SVD

Parameters 
0ºP

min

0.8 tan(38.66º )
0.36 tan(19.79º )

Max 0ºP

Table 5.1 (cont.) (b) 2D or 3D/2D measured along the strike 
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C 2D or 3D/2D rotated an angle clockwise

Impedance tensor 
2 2

12 21 12 21
2 2

12 21 12 21

( )sin cos cos sin
sin cos ( )sin cos

M M M M
M M M M

Phase tensor 

2 2
21 21 12 12 21 21 12 12

2 2
21 21 12 12 21 21 12 12

2 2
11 22 11 22

2 2
11 22 11 22

( / ) cos ( / )sin ( / / )sin cos
( / / )sin cos ( / )sin ( / ) cos

cos sin ( )sin cos
( )sin cos sin cos

Y X Y X Y X Y X
Y X Y X Y X Y X

SVD Parameters P ,
12
21

tanMax
min

, 0ºP

Numerical example 2D (example B) rotated 30o

Impedance tensor 
4.33 1.29 22.5 9.75
17.5 11.25 4.33 1.29

i i
i i

Phase tensor 
0.69 0.1905
0.1905 0.47

SVD
0.866 0.5 0.8 0 0.866 0.5

0.5 0.866 0 0.36 0.5 0.866

SVD

Parameters 
30ºP

min

0.8 tan(38.66º )
0.36 tan(19.79º )

Max 0ºP

Table 5.1 (cont.) (c) 2D or 3D/2D rotated 

D 3D case 

Impedance tensor 11 12

21 22

M M
M M

Phase tensor General expression (eq. 2.28) 

SVD Parameters General expressions (eqs. 2.31, 2.32 and 2.33) 

Numerical example 3D case 

Impedance 

Tensor 

1.405 2.23 5.33 2.5
7.45 4.23 1.45 3.29

i i
i i

Phase

Tensor 

0.617 0.333
0.256 0.557

SVD
0.97 0.22 0.7061 0 0.77 0.6335
0.22 0.97 0 0.6076 0.6335 0.77

SVD parameters 26ºP
min

0.706 tan(35.22º )
0.607 tan(31.28º )

Max 13ºP

Table 5.1 (cont.) (d) 3D case. 
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The phase tensor ellipses corresponding to the numerical examples A, B, C and D are 

represented in Figure 5.1. As expected, the 1D case (A) representation is a circle, with an 

undefined value of P. 2D cases (B and C) are ellipses with clearly differentiated major and 

minor axes, aligned along the strike direction. The 3D case (D) is characterized by almost equal 

values of major and minor ellipse axes, although with well defined values of P and P, which 

in this case both have a non-zero value. 

Figure 5.1: Representation of the phase tensor ellipses corresponding to the synthetic examples A, B, C 

and D displayed in Table 5.1. 

5.2 Application to Synthetic and Real Datasets 

5.2.1 Synthetic model dataset 

The first dataset consists of the responses of a synthetic model, previously used in the 

work of Ledo et al. (2002), which studied the 3D effects in the 2D interpretation of 

magnetotelluric data. It consists of a 3D body embedded in a 2D structure (Figure 5.2).  

The responses correspond to 30 sites along a profile, with 11 periods from 0.01 s to 

1000 s. Random galvanic distortion C, with gain g = 1 and without anisotropy (equation 1.26), 

was added to each site in order to see the effects of distortion over 3D regional responses. 

To make the responses representative of real data, Gaussian noise was added, which is 

not proportional to the signal amplitude. Thus, the same error, the relative error of the largest of 

the four components, was added to all tensor components. Additionally, the values of the 

components were randomly scattered around their errors, such that the final values of the tensor 

components were the means of these scattered values. 
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Once distortion was added to the responses, two datasets were created, each one with a 

different level of noise: dataset SIT-1, with 1% error, and SIT-2.5, with 2.5% error. The original 

dataset, without distortion or noise, was also employed and referred to as SIT. 

Figure 5.2: 3D electrical conductivity regional model used to generate synthetic responses. Black line on 

XY view indicates the position of the profile. 

The estimations of the phase tensor parameters and their errors were computed using 

Random Gaussian Noise generation (statistical values and errors) (chapter 3, approach b), using 

n=100. The true values of the parameters were also considered. 

The phase tensor ellipses of dataset SIT are displayed in Figure 5.3, together with the 

arrows indicating the direction given by angle P. Figure 5.4 represents the associated 

parameters Max, min, P, P, the difference Max - min and, except for the original dataset SIT, 

the error of angle P.

At the shortest and longest periods, the phase tensor representations (Figure 5.3) are 

circles, with different radii values, signifying changes in the phase values. These circles are 

characterised by low values of Max - min (Figure 5.4), and a wide variation of angle P along 

the different phase tensor representations. The angle P allows discerning whether the circles 

indicate a 1D or 3D structure. This angle has a range of values between -2o and 2o, which 

suggests that the circles can be interpreted as 1D. 
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At middle periods, the phase tensors are represented by general ellipses, with a gradual 

change in orientation, from the left side (90o, perpendicular to the model strike), to the right side 

(ellipses aligned along the model strike) of the profile. This change reflects the variations in the 

TE and TM phase values. In the same way as the other methods to determine the strike 

direction, the phase tensor representation also involves a 90o ambiguity in its determination. 

Figure 5.3: Ellipse representations of the phase tensor for SIT dataset responses, along with the direction 

given by P, plotted along the profile of the synthetic model for the 11 computed periods. 

As for the datasets in which distortion and errors were added, at site 12 from SIT1 and 

sites 12, 20 and 25 from SIT2.5 there are important overflows of Max and, for all the 

parameters, the differences with the original dataset SIT are evident (Figure 5.4). These 

significant variations with respect to the original dataset rely on the high dependence of the 

phases on small changes in the values of the impedance tensor components, especially when 

their values are small. At the rest of sites, there is good agreement between the original and 

distorted data, as is expected from the property of invariance under distortion of the phase 

tensor. However, some remarkable points arise: 

1) The statistical values of Max are in general higher than its true values, whereas 

those of min are smaller that the true ones. This implies that the difference between 

Max and min computed from the statistical values is greater than the true 

difference, which in some cases leads to a 2D misinterpretation of the data. This 

larger difference is a consequence of the errors, that results in a greater value of the 

radicand in eq. 2.33, consequential upon a larger value of the sum, Max, and a 

smaller value of the difference, min.
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Figure 5.4: Cross sections of the phase tensor parameters corresponding to the three datasets computed 

from the synthetic model, plotted along the profile for the 11 computed periods. Upper panel: original 

dataset SIT, without errors or distortion. Lower panels: datasets in which distortion has been applied, and 

error added. Left: SIT1, with 1% error. Right: SIT2.5, with 2.5% error. The plotted parameters are Max,

min, P, P, Max- min and 
P

(only for the datasets with errors). 
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2) The values of angle P for SIT1 and SIT2.5, at sites 1 to 15, present significant 

variations with respect to SIT, especially at long periods (Figure 5.4). Namely, 

whithout distortion, P  90o, whereas for the distorted data P  0o- 45o. This 

difference is explained by incorrect determination of this angle when the difference 

between Max and min is small. At these sites and periods, 
P

 is greater than  

Max- min, so a 1D or 3D description of the data is more suitable. At middle 

periods,
P

is small, so P is well determined and takes the same values for the 

original responses as for the two noise levels in the distorted data. At the shortest 

periods P is poorly resolved too, as is indicated by the small difference between 

Max and min.

As an illustration of how the bias between the statistical and true values affects the 

determination of angle P, Figure 5.5 represents the normalized biases of P

( /norm P P Ptruestat truebias ) for 1% and 2.5% noise. The areas with the greatest biases 

correspond to the areas with the largest error values, and these biases are higher for the SIT2.5 

dataset. In both datasets, for about 50% of the data the normalised bias is greater than 1. The 

large bias at site 12 reflects the incorrect determination of P when distortion is added, since the 

regional data does have a well-determined P, which is constant at all periods. 

Figure 5.5: Normalised biases of P for SIT1 and SIT2.5 datasets. The normalised biased is computed as 

the difference between the statistical and true values divided by the true value of P.
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Angle P presents values between -4o and 4o for all sites and periods. Both the statistical 

and true values are similar, and biases between true and statistical values are not significant. The 

central periods, in the left side of the profile, where P has values larger than 3o can be identified 

as 3D. 

The overflows observed at sites 12, 20 and 25 were presumed to be caused by the 

galvanic distortion added at these sites, given that the noise level is the same for the whole 

dataset. These sites have shear angle values ( s) of 44o, -41o and 49o respectively, the closest to 

45o or -45o, compared to the rest of sites.    

Figure 5.6 represents, for 1% noise, parameters Max, min, P and P for each of the 

100 realizations generated at T=1 second at sites 12 ( s = -44o) and 14 ( s = -5o), which have a 

similar geoelectric structure below but different distortion characteristics. Since the computed 

parameters should not be affected by distortion, and given the proximity between both sites and 

the same noise level, one would expect a similar behaviour for these parameters, but site 14 is 

highly stable whilst 12 is not. This observation reinforces the fact that, under extreme distortion 

conditions, in addition to noise effects, the phase tensor parameters become unstable and the 

distortion-invariance property is not valid.  

Figure 5.6: Values of phase tensor parameters for the 100 realizations obtained at site 12 and site 14 at 

T=1 s, with 1% error. 
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 This first dataset allowed the characterization of the phase tensor under different 

conditions of distortion and noise. The parameters are highly sensitive to the errors and also to 

the type of dimensionality (e.g. P is highly scattered in 1D cases), and the effects of noise and 

distortion in the data lead to important differences with respect to the regional data.  

5.2.2 The COPROD2 dataset: site 85_314 

Figure 5.7 displays phase tensor representations of site 85_314 along the registered 

periods. It follows a simple pattern: circles for periods shorter than 10s, and ellipses with an 

approximated 60o inclination for the long periods (excluding the longest one). The values of P

are small (<3o) for the whole range of periods, with the exception of the longest one. Hence, it 

agrees with the description of the data representing a 1D dimensionality at short periods, 2D at 

the long ones with a 60o strike and 3D at the longest. 

Figure 5.7: Phase tensor ellipses plotted for site 85_314 from COPROD2 dataset, for the different periods 

registered. 

5.2.3 The BC87 dataset 

The data corresponding to the BC87 profile was used to compute and analyse the phase 

tensor general features. Site 4 was also taken to study it in more detail. 

Phase tensor parameters and errors were estimated using Random Gaussian Noise 

generation (as in the synthetic model dataset). No significant differences were found between 

the true and statistical values. 

Phase tensor parameters Max, min were converted into their related phases, Max and 

min (equation 2.34). These phases are expressed in the first quadrant, so it must be taken into 
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account that one of these is in fact -180o, such as to agree with a 2D representation. Figure 5.8 

presents the cross sections of Max and min, P and P. Max and min have values between 45o

and 90o, and their differences ( Max - min) are appreciable, but not too large. On the contrary, 

the supposed strike direction, given by P, changes abruptly for differing periods and from site 

to site. The angle P presents low values, except for long periods in the eastern part of the 

profile and middle periods in the western part. 

In general, the phase tensor related angles are consistent with a 2D behaviour of the 

data. However, the abrupt changes in angle P and the local increases of P make it difficult to 

find a suitable strike direction to make a 2D interpretation of the profile. 

Figure 5.8: Cross sections of phase tensor related angles plotted along BC87 profile and the registered 

periods. Max and min are the arctangents of parameters Max and min.

Site 4, located over the Nelson Batholith, was studied in more detail. Figure 5.9 plots 

the phase tensor ellipses for the range of periods registered together with the direction given by 

angle P.  If this direction differs from the maximum axes of the ellipse, a 2D interpretation is 

not possible, even if Max and min have different values. 
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Up to 2 s, the major axes of the ellipses coincide with P direction, which increases 

gradually from 45o to almost 90o. Hence, those periods in which the difference between Max

and min is not meaningless can be interpreted as 2D (or 3D/2D). 

From 2 s to 100 s, the major axes of the ellipses present large values (which mean large 

values of the phases, close to 90o), with clear divergences between the ellipse orientation and 

the direction given by P.  At the longest periods the size of the ellipses decreases and Max and 

min are still clearly different but their orientation, however, still does not provide the direction 

of the strike. Consequently, for periods longer than 2s, the data must be treated, in general, as 

3D.

Figure 5.9: Phase tensor ellipses plotted for site 4 from the BC87 dataset for the different periods 

registered. Arrows indicate the direction given by angle P.

Figure 5.10 plots phase tensor angles Max, min, P and P with their error bars for site 

4. The values of the parameters quantify and reinforce the description provided by the phase 

tensor representation. 

The errors of Max and min are small, except for periods longer than 100s, although their 

error bars never cross, so they do not become significant. Errors in the direction angles, P and 

P, are small for the shortest periods, in which a 2D strike direction can be defined. These errors 

become important from T=2s onward, which agrees with a 3D description of the data, without 

any prevalent strike direction. 
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Figure 5.10: Plots of Max, min, P and P with their error bars for the registered periods of site 4 from the 

BC87 dataset. 

5.3 Comparison with the WAL Method 

The equivalences and differences between the characterisation of the dimensionality 

from WAL invariants and the phase tensor have already been seen from the theory (section 2.6 

and Caldwell et al., 2004) and the examples used.  

This section presents the main results of the comparison between the phase tensor and 

WAL invariants, using the data from section 5.2. This comparison focused on finding new 

equivalences between both methods and on the determination of the corresponding parameters, 

under noise and distortion conditions. Another study on the comparison between WAL and the 

phase tensor can be found in Weaver et al. (2003). 

For the datasets from the synthetic model, SIT, SIT1 and SIT2.5, WAL and phase 

tensor parameters and the strike directions obtained from each method were computed and 

compared. 

The cross-sections of Max - min and invariant Q for the SIT dataset (Figure 5.11) show 

a certain degree of proportionality between both parameters, both dimensionless. A second 

comparison between Max - min (the difference between the angles related to Max and min) and 

invariant Q shows the same values for both parameters (Figure 5.12a), even though Max - min is 

an angular magnitude, expressed in radians. 
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This similarity disappears when distortion is added (Figure 5.12b), since Max - min is 

distortion invariant (with some exceptions due to the overflows caused by some distortion 

parameters), whereas Q is not invariant under distortion and its value changes. 

Figure 5.11: Cross-sections of Max - min (from the phase tensor) and WAL invariant Q, for the 

registered periods along the SIT dataset profile. 

Figure 5.12: Cross-sections of Max - min (in radians, from the phase tensor) and WAL invariant Q, for 

the registered periods. a) SIT dataset (non-distorted data), b) SIT1 dataset (distorted data with 1% error 

added). 

All the examples of section 5.1, to which distortion was added, confirmed this 

equivalence between Q and Max - min for non-distorted data. 
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For the real data from site 85_314 (COPROD2) and site 4 (BC87) the coincidence and 

non-coincidence between Q and Max - min, depending on data being affected of not by 

distortion, is less clear (Figure 5.13). 

Up to 10 s, where according to the WAL and Bahr-Q methods the dimensionality is 1D 

for site 85_314 and 3D mixed with 3D/2D  for  site  4 (see Chapter 4, section 4.6), Q  and Max - 

min  have similar values, with the exception of some scattered points for site 85_314 and   

between 1s and 5s for site 4. For 10s and longer periods (2D at site 85_314 and again 3D mixed 

with 3D/2D at site 4), the difference between both parameters becomes larger, although at site 

85_314 both follow the same trend, whereas at site 4 the differences are more irregular. In the 

first site, the differences may be attributed to noise effects, whereas in the second, these may be, 

in fact, due to the distortion. 

This coincidence between Q and Max - min when data are not distorted is an important 

result, since it opens a new method for identifying galvanic distortion, even in 3D cases. 

Moreover, it has been tested successfully in synthetic data, where the distortion was important.  

Figure 5.13: Graphical representations of Q invariant (from WAL) and Max - min for site 85_314 from 

the COPROD2 dataset and site 4 from the BC87. 

In order to compare the determinations of the strike using both approaches, the strike 

angles were estimated for the SIT1 and SIT2.5 datasets as P - P from the phase tensor, and 3

(chapter 2, equation 2.23) from the WAL method. In both cases Random Gaussian Noise 

generation was applied. For each dataset, similar values of the strike directions were obtained. 

The main differences are in the errors, which are larger in the strike directions determined from 
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WAL parameters. This is a consequence of the different expressions of the strike angles, which 

leads to different error estimations. 

5.4 Comparison with Groom and Bailey Decomposition 

A comparison between the phase tensor and Groom and Bailey (G&B decomposition) 

(Groom and Bailey, 1989) was performed, using site 4 from BC87. Two G&B decompositions 

of this site are available from Jones et al., 1993.  

The first analysis, a) was performed assuming a 2D dimensionality, without distortion. 

The strike angle obtained is 45o up to 1 s and decreases towards 0o at the longest periods.  

'yx reaches values greater than 90o at the longest periods, and the errors are large (Figure 

5.14a).

Analysis b) assumed a 3D/2D dimensionality, with a 60o strike. Both 'xy  and 'yx

phases can be represented in the first quadrant, although a large difference between them is 

observed at periods from 1s to 10s. Distortion parameters show two different behaviours: twist 

and shear close to zero from 0.01 to 1s, and increasing to t = 20o and e = -35o at the longest 

periods. Current channelling is important at all periods. According to the errors, which are 

smaller than in analysis a), a 3D/2D description is more appropriate than a 2D one (Figure 

5.14b). 

A third analysis c) was performed in this thesis, leaving all parameters and angles free. 

The strike direction obtained was between -30o and -45o for the short periods (up to 1 s) and 

around 45o from 1s onward. Twist and shear angles presented sharp variations, particularly the 

shear. The phases obtained were 'xy  50o, and 'yx  varied from –135o (0.01 s) to 90o (1000 

s), reaching greater values at the longest periods (Figure 5.14c). 

The decomposition obtained from the phase tensor (Figure 5.10) has, up to 2 s, the same 

phase values as the 2D description given in analysis a), although with different strike directions. 

For T>2 s, the phase tensor exhibits 3D effects ( P different from zero). However, for T>10 s, 

the strike angles are similar to those obtained from analysis a) and c), but not the phases, since 

those obtained from the phase tensor are arranged in the first quadrant and do not show if the 

phases are greater than 90o. As it is expected, the phase tensor and G&B decomposition only 

lead to comparable results when the data can be described as 2D or 3D/2D. Even in these cases, 

the phase tensor analysis arranges all the phases in the first quadrant, and it is not possible to 

detect phases outside of the quadrant, as with the G&B analysis. 
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(a)

(b)
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(c)

Figure 5.14: Groom and Bailey decomposition parameters using different analysis, corresponding to site 4 

from BC87 dataset.  (a): Non-distortion: data rotated to the direction that minimises diagonal 

components of the MT tensor (Jones et al., 1993). (b): G&B decomposition, allowing galvanic distortion, 

rotating the data 60o (Jones et al., 1993). (c): G&B decomposition, allowing all parameters free. 

5.5 Fitting the Phase Tensor Data to a 2D Model 

This section presents an approach to obtain a 2D description of the data, by fitting the 

measured phase tensor to that corresponding to a 2D model. Contrary to the Multisite 

Multifrequency Strike code (Strike, McNeice and Jones, 2001), which uses the MT tensor, the 

proposed approach does not provide distortion decomposition, since the phase tensor does not 

include this information. 

The process of fitting the phase tensor observed data to a 2D phase tensor model was 

done by minimizing a misfit function between the observed and model parameters of the phase 

tensor:



            Chapter 5: Applications of the Magnetotelluric Phase Tensor and Comparison with Other Methods

131

24
2 mod

1 1

N S
iobs i

k i i

,          (5.1) 

where N·S is the number of phase tensors included in the process: N, the number of frequencies 

and S, the number of sites. 

i obs and i (i=1 to 4) are the 4 observed components of the phase tensor and their 

standard deviations. 

i mod (i=1 to 4) are the components that one should obtain for a 2D description of the 

data, which make a total of 2·N·S+M parameters: N·S· Max, N·S· min and M·  (different strike 

directions considered): 

2 2
1mod mincos sinMax ,          (5.2) 

2mod 3mod min cos sinMax ,        (5.3) 

2 2
4mod minsin cosMax .          (5.4) 

Thus, in the case that each site and each frequency could have a different strike 

direction, the fitting process would imply N·S different functions, each with 4 data and 3 

parameters to fit. If all frequencies in every site had a common strike, there would be S different 

functions to fit, each one with 4·N data and 2·N+1 parameters to fit. Finally, if a common strike 

was considered for all data, the fitting would use 4·N·S data and there would be 2·N·S+1 

parameters to fit. 

The minimisation method employed is the same used in the Strike code (McNeice and 

Jones, 2001), using a Taylor expansion of the 2 function with the Jacobian and Hessian 

matrixes for the 1st and 2nd derivatives.  

Furthermore, the fitting process also needs a set of initial parameters, as well as a 

convergence parameter or, alternatively, a maximum number of iterations to stop the 

minimisation. 

The code created was tested using a subset of the BC87 dataset, referred to as line 

BC87c. It includes 10 of the western sites, 902, 0, 1, 3, 4, 5, 006, 11, 15 and 17. This subset was 

chosen because the information from G&B decomposition, using the Strike code with a strike 

direction of 18o for the period range from 0.01 to 10s, was available for comparison (Jones, 

pers. comm.). The hypothetical strike values, P- P, obtained from the phase tensor, compared 

to the 18o of the G&B decomposition, are displayed in (Figure 5.15), showing broad variations.
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Figure 5.15: P- P directions obtained along line BC87c from the phase tensor data. : 18o (Strike used in 

the Groom and Bailey decomposition).  

A first test was done by trying to adjust all frequencies in each site to the same strike 

direction. Hence, one function was fitted for each site, with 2·N +1 parameters each. The 

maximum number of iterations allowed was 100, otherwise, the process stopped when the 

change in the misfit function between two iterations was less than 10-10. A set of initial 

parameters was also defined. In general, the final result was independent of the initial 

parameters. However, in some cases, the final parameters were the same as the initial ones, and 

any parameter led to the same value of the misfit function, which was notably high. This means 

that these data cannot, in fact, be adjusted to a 2D model with a unique strike direction. 

Combining the frequencies into smaller groups made the misfit function smaller, although there 

were some groups for which the misfit function did not decrease and the iterative process 

stopped after the 100 iterations. 

Three different fitting processes were performed for the BC87c line. The results from 

site 001, compared to G&B decomposition with an 18o strike, show the following: 

1) All parameters free: different strike for every frequency. The aim of this inversion 

was to check if, even without constraints, there is a predominant strike direction in 

the final parameters obtained. The strike directions obtained present smooth 

variations around 0o, but clearly different to the 18o obtained from G&B 

decomposition. The corresponding phases are similar to those of G&B for the 

shorter periods. The misfit function is large and converges after 10 iterations. 
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2) A common strike for every 4 frequencies. The strike directions and phases obtained 

are similar to those of misfit 1), where these changed smoothly with the period. 

3) A common strike for all frequencies. The strike direction obtained was 

approximately –13o, and the phases similar to 1) and 2). 

Although the three inversions led to similar results, these differ significantly from the 

results of the Groom and Bailey decomposition. For the rest of the sites in this dataset, it was 

observed that, even if the strike pattern is very different in 1), 2) and 3), the phases are similar, 

and different to those obtained with Groom and Bailey decomposition. 

This small variation of the phases in the strike direction would indicate one-

dimensionality, which is not the case. Working only with the phases, and not with the 

resistivities, is an important limitation.  Further tests and research on this minimisation process 

are necessary to lead to satisfactory results. 

5.6 Conclusions 

A summary of the phase tensor obtained from synthetic MT tensors has been presented 

to illustrate its features and graphical representation for different types of dimensionality. 

The phase tensors computed from the responses of a synthetic model showed the effects 

of noise and distortion: the errors lead to wrong interpretations of the dimensionality, and, under 

extreme distortion conditions, the phase tensor is not distortion-invariant. 

The comparison between the phase tensor parameters and WAL invariants allowed the 

identification of a relationship between Max - min (difference between the maximum and 

minimum phases obtained from the phase tensor) and the WAL invariant Q. These magnitudes 

have the same values when data are not affected by distortion, which introduces a new way to 

identify distortion even if data are 3D. With regard to the strike angles computed from the phase 

tensor and from the WAL method using the same data, the errors of the latter are greater. 

A comparison of the phases and strike directions obtained from the phase tensor and 

from the Groom and Bailey decomposition showed significant differences due to the hypothesis 

of 2D dimensionality that applies in the second, and the use of only the phases information in 

the phase tensor. 

Finally, a code was developed to fit the phase tensor data to a 2D model. The results 

were quite inconsistent, however, because of few data to work with: 4N data to fit 2N+1 

parameters, compared to Groom and Bailey, 8N data and 4N+3 parameters. 
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