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PART IV: MATHEMATICAL MODELS 

IV. 1 INTRODUCTION

IV.1.1 The role of mathematical models in volcanology 

The use of theoretical/mathematical models based on thermodynamics, rock and 

fluid mechanics principles has become more and more important during the last decades 

since their are a fast, cheap and accurate method to simulate and predict volcanic 

processes. In most cases, the complexity of the mathematical expressions makes 

unworkable the analytical solution of the problem and it is required the application of 

mathematical models run on computers.  

 A theoretical model is a simplified abstraction of a certain natural phenomena. 

The model is acceptable when it is possible to reproduce both experimental and 

analytical data, but its predictions may be confirmed by subsequent measurements. 

These models are characterized by a set of equations called govern equations, which 

describe the physical problem in a mathematical way. Usually, the application of simply 

algebra is not enough to solve analytically these govern equations, so that it is necessary 

to apply numerical methods such us differential and/or integral calculus.  A numerical 

simulation is simply the solution of a certain theoretical model under certain set of 

assumed or given conditions. This includes both the boundary and the initial conditions 

for the governing equations, which are time-dependent differential equations that explain 

and predict the phenomenon. 

 Theoretical models applied to volcanology and especially on collapse calderas, 

are important to quantify variables, to predict semi-quantitative general conditions for 

fracture or fault formation and to provide a link with magma properties. Furthermore, 

this kind of models is flexible and parametric studies are straightforward. 

 In comparison with the analogue models described in thee previous sections, 

mathematical models allow to determine when caldera collapse process will occur, but 

they cannot tell us how such a complex process will develop. Therefore, combination of 

mathematical and analogue models together with field studies, is by now the best way to 
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understand the whole sequence of processes involved in the formation of collapse 

calderas.

IV.1.2 Classification 

 Theoretical models applied to volcanology are divisible in two principal groups 

pre-eruptive and eruptive models.  

IV.1.2.1 Pre-eruptive models 

Modelling pre-eruptive phenomena is crucial to understand those processes that 

lead to volcanic eruptions. Likewise, this kind of models is crucial to interpret correctly 

precursory geophysical and geochemical signals of volcanic activity.  

 Several theoretical models have been developed during the last decades in order 

to study pre-eruptive processes occurring inside magma chamber, as for example 

cooling, differentiation, mixing and degasification processes, overpressurization and 

magma chamber rupture. These models can be divided in two main groups depending on 

if they consider the magma chamber as an open or a closed system. The first group 

considers that the pressure increase inside the magmatic reservoir is induced by volatile 

oversaturation due to the cooling and crystallization process (e.g. Tait et al., 1989; Martí 

and Folch, 2005). The second group of models assume that the overpression has its 

origin in the income of fresh magma into the reservoir, which may produce important 

physical and chemical changes inside the chamber (e.g. Tait et al., 1989; Folch and 

Martí, 1998). Further pre-eruptive models are also focused on the study of field stresses 

around the chamber, the magma chamber rupture and the subsequent process of dike 

injection (e.g. Gudmundsson, 1998; Burov and Guillou-Frottier, 1999).  

IV.1.2.2 Eruptive models 

Eruptive models are useful to understand the physical aspecst of the eruptive 

processes throughout thermodynamics, rock mechanics and fluid dynamics. In an ideal 

case, these models should consider simultaneously the physical processes occurring 

inside the magma chamber, in the conduit, during the magma output and in the 
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atmosphere. In fact, processes occurring in each of these domains may affect the others. 

However, to couple all processes is, by now, a nearly impossible task. The main problem 

is that each region of the system, chamber, conduit, and atmosphere is physically distinct 

from the others and the governing equations in each of them require different 

mathematical techniques. Likewise, several of the implied processes are still obscure. 

In order to simplify the solution of the problem the different regions are treat 

separately. Consequently, we distinguish: 

Magma chamber models: These models describe the dynamics of the process of 

magma withdrawal during an eruption. More recently, this kind of models have been 

focused on understanding the variations of pressure inside the chamber as a consequence 

of the magma lost and the subsequent changes in the stress field.

Conduit models: These models are mainly focused on studying those processes taking 

place during the ascent of magma along the conduit. This includes degasification 

processes and magma fragmentation. Furthermore, these models provide information of 

the physical conditions at the magma outflow in the crater.

Atmospheric models: These models aim to characterise the dynamic and deposition of 

the volcanic material considering certain physical parameters such as volatile content, 

eruptive rate, conduit diameter, etc. 

IV.2 PRESSURE EVOLUTION DURING CALDERA-

FORMING ERUPTIONS

As we have already mentioned in different parts throughout this work (see 

sections I.1.2, II.3.5, III.3.4.3), that caldera-forming systems pass through different 

stages before eruption and caldera collapse onset and during caldera collapse. These 

changes are mainly controlled by the internal pressure of the magmatic system or by 

external factors that also affect the pressure equilibrium of the system. In this section, we 

present a summary of the theoretical pressure evolution during caldera collapse episodes 

(Fig. 4.1). 
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During a whole caldera-forming event cycle the equilibrium of the pressure 

inside the chamber PM (i.e. magmatic pressure) and the lithostatic pressure PL controls 

the evolution and steps of the process (Druitt and Sparks, 1981; Martí et al., 2000). 

At the beginning, prior to the eruption, there exists equilibrium in the system. 

The pressure inside the chamber (PM) and the external lithostatic pressure (PL) are equal 

(PM  = PL). However, both external and internal triggers may alter the system (see 

section I.1.2). The most common external triggers are the injection of fresh magma 

inside the chamber (Sparks et al., 1977; Blake, 1981; Tait et al., 1989; Folch and Martí, 

1998; Troll et al., 2000) and volatile exsolution and the formation of gas bubbles due to 

the cooling process (Smith and Bailey, 1968; Blake, 1984; Tait et al., 1989; Martí and 

Folch, 2005). Both processes produce and increase in the magma chamber internal 

pressure (PM ). The chamber is overpressurized, i.e. PM – PL > 0 (+ P). This 

overpressure can be supported by the host rock if PM < PL + PSTART , where PSTART is

the overpressure necessary to break the host rock by tension, i.e. the tensile strength of 

the rock. However, this overpressure may induce microfracturing and local doming. In 

some cases, at advanced stages of local doming an apical collapse may develop at 

surface, at the apical part of the dome, where surface tensions are larger (Komuro et al., 

1984). The collapse takes place due to a mechanical collapse of the rock and has no 

volcanic implications, i.e. no magma is extruded. By contrast, if the overpressure inside 

the chamber is large enough to break the host rock (PM > PL + PSTART) the system may 

evolve in three different ways. Under the presence of a large regional doming, due to 

tectonic compression or underplating, eruption through ring-faults may take place, i.e. a 

caldera collapse is induced (see section II.5.7.7, type-A calderas). Once the system is 

open and the caldera collapse is going on, the pressure inside the chamber decreases and 

subsidence occurs until the system is re-equilibrated. However, under normal 

circumstances (absence of regional doming), the excess of PM may lead to a dike 

intrusion or if this reaches the surface, to a volcanic eruption (Gudmundsson et al., 1997; 

Gudmundsson, 1998). During the eruption, the pressure inside the chamber decreases 

progressively (PM ) and the system may response in two different ways. For the first 

one we consider that the host rock behaves perfectly elastic (end-member situation 1). 

Consequently, the host rock accommodates instantaneously the pressure decrease inside 

the chamber re-equilibrating the system, PM = PL. Additionally, due to the elastic 

assumption the capacity of the host rock for accommodating deformation is unlimited. In 
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this case the eruption will continue until the closure of the conduit (Quareni and 

Mulargia, 1993; Papale, 1998). On the contrary, if the host rock behaves rigidly (PL

(t)=constant) or PL decreases slower than PM , it cannot deal with the ingoing pressure 

changes. Consequently, the difference between PL and PM increases with time (PM – PL

(t)). It is said that the magma chamber is underpressurized when PM – PL < 0 (- P).

When PM PL - PCOLL , where PCOLL is the underpressure necessary to induce caldera 

collapse, caldera collapse starts.

 From a theoretical point of view and according to the pressure evolution inside 

the chamber during the caldera-forming cycle, we can say that there are two collapse 

caldera end-members:  

Underpressure calderas: The caldera-forming eruption begins under overpressure 

inside the chamber that triggers, once overcome the tensile strength of the host rock, 

magma injection into the host rock and finally, an eruption. The magma withdrawal during 

these eruptive phases leads to a pressure decrease in the magma chamber. The caldera 

collapse begins once the resistance of the host rock to break and subside, is exceeded 

Overpressure calderas: These calderas form due to the overpressurization of a magma 

chamber in the presence of a regional extensive stress field and a large scale doming or 

underplating (). When the tensile strength of the host rock is exceeded, ring fractures 

nucleate at surface. The caldera-forming eruption starts due to the decompression of the 

magma chamber throughout the ring faults.
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Fig. 4.1: Sketch of the pressure evolution during a caldera-forming event cycle. PL Lithostatic pressure; PM
Magmatic pressure; + P Overpressure; - P Underpressure; PCOLL Underpressure necessary to induce 
caldera collapse; PSTART Overpressure necessary to break the host rock by tension.  
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IV.3 CONDITIONS FOR RING FAULT INITIATION

In order to encourage the initiation of subvertical, normal ring faults, the stress 

field must verify three conditions simultaneously (Gudmundsson, 1998; Folch and 

Martí, 2004): 

1. The minimum value of 3, the tensile stress, (maximum tension) must be at surface 

2. The maximum value of 1- 3, the shear stress, must occur at the outer margins of the 

magma chamber 

3. The maximum tension at surface must peak at a radial distance approximately equal to the 

projection at surface of the magma chamber extension.

 The latter condition is motivated by the field evidence that ring-faults are nearly 

vertical and by the agreement between analogue models in showing that the area of 

experimental calderas coincides approximately with the projection at surface of the 

chamber extension. The third condition is also verified if the angle  (Fig. 4.2), 

localized between the vertical and the line that draw from the edges of the cavity and 

mark the peak of 3 at surface is lower than a critical value crit in the range or lower 

than 10-15º, i.e. when the absolute minimum value of 3 is not only at the Earth’s 

surface but also peaks at a radial distance comprised between D/2-hmax and D/2+hmax,

where:

hmax =P · tan( crit )                                             [4.1] 

Considering that rocks behave as brittle materials at rapid loads, low confining 

pressures and low temperatures, i.e. near the surface, whereas they tend to be ductile at 

high confining pressures and temperatures, i.e. near the chamber (Rutter, 1974), 

tensional fractures are produced when: 

03 T                                                     [4.2] 
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whereas shear fractures occur if:

031 S                                                [4.3] 

where T0 and S0 represent the tensile and the shear strength of the embedding crust, 

respectively. Equation 4.2 is the Griffith failure criteria for brittle materials under 

tensional regime ( 1 + 3 3 <0), whereas Equation 4.3 reflects a limit of the Mohr-

Coulomb shear failure criteria near the brittle-ductile transition. Hence, the above 

expressions can be considered as end-members of the combined Griffith/Mohr-Coulomb 

failure criteria for brittle materials. Using these criteria, tensional fractures are produced 

in a plane perpendicular to 3 whereas a conjugate pair of shear fractures occurs in the 

plane 1 - 3 forming angles of  45º with respect the 1 direction.

Fig. 4.2: Example of the model geometry 
applied by Folch and Martí, 2004. Fault dip 
angle; - P Underpressure.  D Magma
chamber diameter; H Magma chamber 
vertical extent; P Magma chamber depth. 
(Modified from Folch and Martí, 2004).

IV.4 STATE OF THE ART

IV.4.1 Mathematical models of collapse caldera: A general classification 

The aim of this section is to briefly describe the existing mathematical models 

related to caldera collapse processes. A summary of the most important results is 

included, principally those relevant for this study. Furthermore, Table 4.1 lists the 

existing studies and provides a short description of their most important characteristics. 
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Mathematical models on collapse calderas performed during the last years can be 

classified depending on the topic they are focused on. There exit principally three 

groups:

Models focused on the pressure evolution inside the magma chamber: Druitt
and Sparks, 1984; Bower and Woods, 1997; 1998; Martí et al. 2000; Roche and Druitt, 
2001.

Models to determine stress conditions for normal-fault caldera initiation: 
Komuro, 1984; Chery et al., 1991; Gudmundsson et al., 1997; Gudmundsson, 1998; Roche 
and Druitt, 2001: Folch and Martí, 2004.

Models that predict fault location using non-elastic rheology: Burov and 
Guillou-Frottier, 1999; Guillou-Frottier et al., 2000; Gray and Monaghan, 2004. 

Values for the principal parameters AUTHORS TYPE OF MODELS AR 
chamber/magma host rock 

Models focused on the pressure evolution inside the chamber and the erupted magma fraction 

Chamber:  P= 2.5-10 km 

Magma: zoned chamber 
Druitt and 
Sparks,

1981

Analysis of magma chamber pressure during an 
eruption. Estimate of erupted magma chamber 
volume fraction 

---- silicic magma: 
T: 900 ºC 
B: 30 GPa 
+ P: 25 MPa         
wc: 4.5-7.5 % 

mafic magma: 
B: 10-100 GPa

CT: 35-40 km        
TR: extensional 
HF: 60 mWm-2

fc: 0.6 
: 2700 kg m-3

E: 100GPa            
: 0.25 

Bower and 
Woods,  

1997

Model to expose some of the fundamental controls 
on the mass, which may erupt from a chamber 
during the caldera-forming eruption until the critical 
underpressure at which the walls fail under 
compression. 

---

Chamber:  
P: 2-7 km 
H: 3km 
vol: 10 km3

+ P: 1-45 MPa 
- P: 0-30 MPa 

Magma: 
: 2700 kg m-3

T: 922 ºC
B: 10-100 GPa 
vc: 3-7% 
mcc: 0-0.4 

--------------

Martí et al., 
2000

Pressure evolution model during explosive 
caldera-forming eruptions. Description of the 
pressure variation throughout the whole central 
vent eruption-caldera collapse cycle 

EL

Chamber:   
P:  3-6 km
D: 1-5 km 
H: 1-5 km
+ P:10-30 MPa 

PCOLL:30-60 MPa

Magma: 
T: 850 ºC 
: 2500 kg m-3

wc: 3.5-6 %  Ss : 40 MPa 

Roche and Druitt, 
2001

A) Scaling analysis: failure criterion for piston 
collapse along reverse ring fault. Comparison with 
experimental results.       
B) Calculation of volume fraction required to 

trigger caldera collapse

MC

Chamber: 
P: 2.5-10 km           
H: 0.5-3 km            
+ P: 0.1-1 MPa
ec: 1-2.5                

Magma:  silicic
T: 895 ºC
B: 30 GPa 
: 2200 kg m-3

wc: 3-7 wt%

fc : 0.5-0.7 
 : 70-90º 

c: 0.1-5 MPa 
: 2700 kg m-3

sc: 0.6

Table 4.1: List of the existing studies of mathematical models related to caldera collapse. A short 
description of the models as well as the applied rheology (AR) and the values for the principal parameters 
are indicated.  Density;  Poisson’s ratio; + P Magma chamber overpressure; - P Magma chamber 
underpressure; PCOLL Collapse trigger underpressure;  Ring fault dip angle; B Bulk modulus; c Cohesion; 
C0 Compression strength; CT: Crust Thickness; D Magma chamber horizontal extent, i.e. diameter E
Young modulus; ec Ellipticity coefficient; EL: Elasticity; ELP Elastoplastic; ELPD Elastic-plastic-ductile; 
ELPV Elastic-visco-plastic; fa Friction angle; fc Friction coefficient; GCTS Griffith criterion under tensile 
strength; H Magma chamber vertical extent, i.e. height; HF Heat Flow; mcc Magma crystal content; NV
Non-linear viscous; P Magma chamber depth; PL Plasticity; S0 Shear strength; T Temperature; TEL
Thermoelasticity; TR Tectonic regime; T0 Tensile strength; v Viscosity; vc Volatile content; VM Von Mises 
failure criterion; vol Magma chamber volume; wc water content. 
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Values for the principal parameters AUTHORS TYPE OF MODELS AR 
chamber/magma host rock 

Models to determine stress conditions for normal-fault caldera initiation (incl. caldera morphology) 

Komuro et al., 
1984

Apical caldera collapse as a consequence of a 
domal deformation 

ELP-
VM ----------------------- : 0.25 

Chery, et al., 
1991

1) Quasi-static evolution of thermally stratified 
continental crust near an:
-inflating magma chamber 
-relaxating magma chamber
2) Caldera collapse 
3) Resurgence of a central dome 

ELPV

Chamber:
D: >10 km              
P: 5 km                   
vol: 2000 km3

+ P: 30-60 MPa

Magma: 
rhyolitic              
T:1150ºC

CT: 35-40 km       
TR: extensional 
HF: 60 mWm-2

fc: 0.6 
: 2800 kg m-3

E: 100GPa
: 0.25

Gudmundsson et 
al.,

1997

Gudmundsson, 
1998a,b

Magma chamber under:
-lithostatic equilibrium
-overpressure 
-underpressure
-horizontal tensile stresses 
-vertical compressive stresses

EL-
GCTS

Chamber:
D: 2a-4a                       
+ P: 1-5 MPa 
- P: 10 MPa

E: 40 GPa
v: 0.25
T0 : 5 MPa

Folch and Martí 
2004

Coupled thermomechanical model to find out the 
conditons for caldera collapse due to magma 
chamber underpressure.

TEL-
GCTS

MC

Chamber: 
P: 3.5 km             

Magma: 
T: 950ºC

Crust:  
E: 60 GPa
v: 0.25                  
T0 : 15 MPa 
S0 : 50 GPa

Kusumoto and 
Takemura,

2005

Quantitative discussion of the relationship between 
the caldera geometry and the magma chamber 
depth

ELP-
MC

Chamber: 
2P/D : 1-8 km               

Basaltic crust:  
E: 40 GPa
fa: 30º
v: 0.25                  
C0 : 15 MPa 
S0 : 50 GPa 
: 0-40º

Models that predict fault location using non-elastic rheology 

Burov and 
Guillou-Frottier, 

1999

Thermomechanical numerical model 
1) stationary temperature field (rapidly caldera 
collapses)
-no regional compression/extension 
-regional extension 
2) full time-dependent conduction and advection 
(caldera collapse and long-term post-collapse 
activity) Influence of: heat diffusion from the hot 
magma body and thermal blanketing by the 
ignimbrite cover

 ELPD
-MC
-NV

Chamber: 
H: 5-10 km
D:  P-25P               
P: 2-5 km               

Magma: 
T: 800ºC
B: 30 GPa 
: 2200 kg m-3

v: 1016 Pa s 

Upper crust: 
: 2650 kg m-3

Lower crust:
: 2900 kg m-3

Both crusts:        
CT: 10 km            
fa: 30º 
E:0.8 GPa 
:0.25

v: 1019-1021 Pa s

Guillou-Frottier et 
al.,

2000

 Caldera collapse with a pre-defined rectangular 
existing magma chamber. Steady-state geotherm 
and no heat transport during the collapse.

ELPD
-MC
-NV

Chamber: 
P: 2.5 km                      
D: 10-15 km                 
H: 2d                            
- P: 10 MPa 

TC: 10 km             
fa: 30º 
: 2900 kg m-3

E: 0.8 GPa
v: 0.25
c: 0-20 MPa           
v: 1019-1021 Pa s 

Gray and 
Monaghan,  

2004

Numerical simulations of the formation of cracks 
under tensional stresses or increasing magma 
chamber pressure. It includes a fracture model that 
allows to follow the growth of fractures under 
stress

.
EL

P-VM
DM    

GCTS

Chamber: 
P: 3.5 km      
D: 3.5 km               
H: 1.6 km ---------------

   

Caldera collapse through magma 
chamber overpressure 

Caldera collapse through magma 
chamber underpressure 

Caldera collapse through magma 
chamber over- and underpressure 

 Table 4.1 (continuation): List of the existing studies of mathematical models related to caldera collapse. 
A short description of the models as well as the applied rheology (AR) and the values for the principal 
parameters are indicated.  Density;  Poisson’s ratio; + P Magma chamber overpressure; - P Magma 
chamber underpressure; PCOLL Collapse trigger underpressure;  Ring fault dip angle; B Bulk modulus; c
Cohesion; C0 Compression strength; CT: Crust Thickness; D Magma chamber horizontal extent, i.e. 
diameter E Young modulus; ec Ellipticity coefficient; EL: Elasticity; ELP Elastoplastic; ELPD Elastic-plastic-
ductile; ELPV Elastic-visco-plastic; fa Friction angle; fc Friction coefficient; GCTS Griffith criterion under 
tensile strength; H Magma chamber vertical extent, i.e. height; HF Heat Flow; mcc Magma crystal content; 
NV Non-linear viscous; P Magma chamber depth; PL Plasticity; S0 Shear strength; T Temperature; TEL
Thermoelasticity; TR Tectonic regime; T0 Tensile strength; v Viscosity; vc Volatile content; VM Von Mises 
failure criterion; vol Magma chamber volume; wc water content. 
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MODELS FOCUSED ON THE PRESSURE EVOLUTION INSIDE THE 
MAGMA CHAMBER 

These models are based on state laws for magmas and on simple fracture criteria. 

They allow parametric studies varying magma composition and water content, some host 

rock properties and magma chamber geometry, dimensions and depth.  

All models included in this section consider that caldera collapse takes place due 

to decompression of the magmatic reservoir (e.g. Druitt and Sparks, 1984; Martí et al., 

2000). Consequently, these models distinguish two stages in caldera-forming events 

(Fig.4.3):

Stage 1: Before the eruption, magmatic overpressure becomes large enough (PM > PL +

PSTART) to propagate tensile fractures generating pathways for the magma to the 

surface triggering an eruption. During this phase the conduit or conduits become 

sufficiently enlarged by sidewall erosion so that they are not totally closed by elastic 

deformation when the pressure at the top of the chamber falls below lithostatic. Once the 

eruption begins, removal of magma from the chamber results in a decrease in pressure 

with time provided that the walls of the chamber remain rigid at the time scale during which 

the eruption occurs.

Stage 2: The second stage of the eruption is marked by the onset of the caldera collapse. 

This takes place when the chamber pressure has decreases well below the lithostatic value 

and the resistance threshold of the host rock has been reached (PM = PL - PCOLL) . 

Fig. 4.3: Schematic representation 
of an explosive caldera collapse 
process (see text for more details).  
Solid dots indicate points inside 
the magma chamber for which Pm 
is indicated. PM Magmatic
pressure; PL Lithostatic pressure; 

PSTART Overpressure required to 
fracture the country rock and to 
form a conduit to the surface; 

PCOLL Shear  strength of the rock, 
i.e. the underpressure necessary 
to initiate caldera collapse. 
(Modified from Martí et al., 2000).
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Some of these works (e.g. Martí et al., 2000, Roche and Druitt, 2001) are mainly 

focused on calculating the magma chamber underpressure and the magma volume 

fraction that needs to be erupted to trigger a caldera collapse as a function of parameters 

such as the vertical extent, water content, and shape of the magma chamber. 

Furthermore, these studies offer also a description of the pressure variations throughout 

the whole central vent eruption-caldera collapse cycle.

The most significant results from this type of models are (Fig. 4.4): 

For a given roof aspect ratio (R) the erupted magma chamber volume fraction f necessary

to trigger caldera collapse depends on the water/volatile content (wc), the cohesion (c),

the coefficient of internal friction (fc), the ring fault dip angle ( ), the magma chamber 

height (H) and the magma chamber depth (P). In fact, in deep chambers the magma 

remains undersaturated throughout the eruption and the elasticity of the liquid magma and 

chamber walls controls the mass erupted. Consequently, only a small fraction of the total 

mass in the chamber erupts. By contrast, in shallow chambers the magma is saturated and 

consequently, much more compressible. Therefore, the erupted volume of magma from the 

chamber is larger. Furthermore, for a magma chamber with negative gradient of volatile 

content, the f before the collapse decreases significantly compared to that for a 

corresponding homogeneous chamber.  Moreover, the influence of the magma chamber 

height is also relevant, so that with increasing H pressure decrease occurs more rapidly 

and the collapse conditions are reached at lower f values. Therefore, dike-like chambers 

with a great vertical extent need lower f to reach collapse than sill-like magma chamber, 

which have a lower fraction of compressible magma and the proportion of magma located 

above the nucleation level is lower. Magma chambers with the same aspect ratio but with 

different geometries (cylindrical or ellipsoidal) present similar results.

Once the eruption has begun, if the eruptive conduit has a suitable geometry or is 

sufficiently irregular in shape to remain open, the magma can continue to be discharged 

from the chamber after the internal pressure decreases below lithostatic. The main driving 

force for magma ascent is caused by the imbalance between the hydrostatic pressure of 

the vesiculating magma column within the conduit and the magma chamber. If the magma 

chamber contains a large volume of dense, volatile poor magma it restricts the 
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effectiveness of the process. The magma must be partially vesiculated in order to facilitate 

caldera collapse so that there is a minimum value of water content required to ensure the 

formation of calderas. A low density of the vesiculating magma may result in the 

hydrostatic pressure being substantially less than the chamber pressure even when the 

chamber pressure has fallen below the lithostatic value. Consequently, the underpressure 

might be expected to become sufficient for the walls and the roof of the chamber to 

collapse.

Fig. 4.4: Example of some of the results presented by Martí et al., 2000. (A) Magma pressure at the 
chamber roof as a function of the erupted mass fraction for different chamber geometries. Water content is 
constant and equal to 5 wt%. Dashed lines: results using cylindrical geometries (piston-like model). 
Continuous lines: results using ellipsoidal geometries with semi-axes a and b. (B) Erupted mass fraction at 
the onset of collapse as a function of the aspect ratio (a/b) of the chamber, considering volume constant. 
Results for different underpressure ( PCOLL) values. Water content is constant and equal to 5 wt%. (C) 
Magma pressure at the chamber roof as a function of the erupted mass fraction for different water contents. 
(D) Erupted mass fraction at the onset of collapse (PTOP =PL- PCOLL) as a function of the water content for 
different underpressure ( PCOLL) values. (Modified from Martí et al., 2000).
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MODELS TO DETERMINE STRESS CONDITIONS FOR NORMAL-
FAULTS CALERA INITIATION 

The main goal of these models is to provide information about the stress conditions 

leading to the initiation of faults controlling caldera collapses.  

The models considered in this section study specifically the location of the 

minimum value of 3 and the maximum value of 1- 3 as well as the location at surface 

of the peak of maximum tension. These studies permit to investigate which geometrical 

configurations (chamber size, shape and depth) may induce a stress field suitable to 

initiate normal ring faults. Although these models do not consider the influence of any 

pre-collapse fracturing, some of them take into account the presence of regional tectonic 

stresses such as horizontal tensile or vertical compressional stresses, i.e. regional doming 

(e.g. Gudmundsson, 1998).  

As shown on Table 4.1, these models may assume both possibilities, caldera 

collapse through magma chamber overpressure (e.g. Komuro et al., 1991; Gudmundsson 

et al. 1997; Gudmundsson, 1998) or underpressure (e.g. Folch and Martí, 2004). 

Logically, conditions for ring fault initiation (i.e. caldera collapse initiation) are the same 

regardless if wether the magma chamber is over- or underpressurized. We proceed to 

describe the most important results obtained with both type of models. 

Results obtained considering overpressure inside the chamber 

A ring fault may initiate at any depth between the margins of the chamber and the surface. 

If failure initiates at the margin of the chamber, the resulting dykes would relax the stress 

difference and possibly hinder the development of a ring fault.(Gudmundsson et al., 1997; 

Gudmundsson, 1998)

Faults controlling caldera collapse commonly develop from tension fractures at the surface 

of the associated volcano and propagate to greater depths, toward the boundary of the 

associated magma chamber. At a certain depth these tensional ring fracture change into a 

normal- fault ring fractures. (Gudmundsson, 1998) 
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The formation of ring fractures is favoured depending on the magma chamber geometry, 

the assigned overpressure and the relationship of the latter with the regional stress (Fig. 

4.4). A sill-like magma chamber with overpressure and regional doming generates the 

stress field adequate for ring fault formation. The area of the volcanic field subject to 

doming must be much larger than the cross-sectional area of the chamber; if not, the 

surface stresses peak above the centre of the chamber and do not favour the initiation of a 

ring fault. Other configurations such as spherical magma chambers only with overpressure 

or spherical magma chambers with overpressure lower than the horizontal tensile stress 

are not suitable for ring fault formation. In the first case, the maximum tensile and shear 

stresses at the free surface occur at the centre of the chamber, rather than its margins. In 

the second case, although the tensile and shear stresses at surface peak at a certain 

distance above the centre of the chamber, the maximum tensile stress occurs at the 

boundary of the chamber at the point nearest to the surface. (Gudmundsson et al., 1997; 

Gudmundsson, 1998)

Fig. 4.5: Boundary-element results 
showing the contours of the 
maximum principal tensile stress in 
MPa.  Models simulating a magma 
chamber subject to remote horizontal 
tensile stress. Two chamber 
reservoir shapes have been 
considered:  spherical shape (A) and 
sill-like (C).  The other two sketches 
represent the results of models 
emulating a magma chamber under 
the effects of a magmatic 
overpressure in a reservoir located at 
the base of the volcanic field 
containing the magma chamber. Two 
different chamber reservoir shapes 
have been considered:  spherical 
shape (B) and sill-like (D). (Modified 
from Gudmundsson, 1998). 

Results obtained considering underpressure inside the chamber 

Some authors (e.g. Gudmundsson et al., 1997; Gudmundsson, 1998) affirm that for 

spherical magma chambers subjected to underpressure the tensile stress at surface is much 
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smaller than the underpressure in the chamber.  The maximum tensile stress would be too 

small to initiate fractures. The maximum shear stress occurs at the centre of the chamber but 

not on a suitable location for the initiation of normal fault calderas. However, varying the 

magma chamber eccentricity and for certain roof aspect ratio values, tensional stresses at 

surface increase, and a low magma chamber underpressure may produce a tensile peak at 

surface sufficient to induce rupture and favour ring fault formation. Furthermore, the results 

related to the variation of the value of underpressure show that the position of the peak of 

maximum tensile stress at surface remains invariant when changing the chamber 

underpressure and that its value varies linearly with pressure variations.  Moreover, 

considering different magma chamber shapes it can be observed that for the same 

underpressure, the maximum value of tensile stress at surface decreases when increasing 

the chamber eccentricity e (D/H).

The formation of ring fault calderas may be governed by two different mechanisms strongly 

controlled by the geometry (eccentricity) and the roof aspect ratio of the associated magma 

chamber (Folch and Martí, 2004).

Mechanism A (Fig. 4.6 Region A ):   

Ring faults form as a consequence of the flexural bending of the chamber roof.

This would be the mechanism related to the formation of large plate-subsidence 

calderas, without necessary previous cycles of inflation-deflation.

Low chamber underpressures would be able to set up a collapse, since shear stresses 

at the outermost chamber walls and tensile stresses at surface are greater than the 

underpressure itself. 

Only a very small volume fraction of the chamber needs to be extruded before the 

critical set up condition for collapse is reached.  

Geometries of chambers in region A seem unlikely to support important loads without 

bending.    
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Mechanism B (Fig. 4.6 Region B):   

Mechanism related to small to moderate size collapse calderas, commonly associated 

with the evolution of large stratovolcanoes. 

The formation of the faulting system is more complex and history dependent. 

The collapse mechanism is similar to that found in the analogue models and may require 

previous fracturing and higher chamber decompression because chamber geometry 

does not favour an adequate stress field.

For caldera collapse to occur it is necessary the extrusion of a great volume fraction of 

the chamber.

Fig. 4.6: Summary of simulation 
performed by Folch and Martí, 2004. 
Chamber configurations are plotted 
using a small cross in terms of the 
dimensionless parameters (D/2P)
and e (D/H) (the latter in logarithmic 
scale). Cases that verify the 
conditions for ring fault formation lay 
in region A, whereas the rest lay in 
region B. The approximate critical 
limit that separates these two regions 
is marked using a dotted line for two 
different values of fault dip angle 

CRIT. The domain for which results of 
analogue models exist is indicated in 
grey. The position in the diagram of 
some documented collapse calderas 
is also shown using black dots.  
Topinset : schematic representation, 
not at scale, of the ring fault structure 
suggested by: (1) numerical 
experiments for region A, and (2) 
experimental models for region B. 
(Modified from Folch and Martí, 2004) 



Dynamics and structural evolution of collapse calderas                PART IV: MATHEMATICAL MODELS
_______________________________________________________________________

316

MODELS THAT PREDICT FAULT LOCATION USING NON-ELASTIC 
RHEOLOGY

The principal objective of these works is to investigate the formation and deep 

geometry of the caldera faults, and the relationships between the magmatic system and 

the surface features of ash flow calderas. One of these models (Gray and Monaghan, 

2004) includes a fracture model that allows following the growth of fractures under 

stress. Furthermore, the other models (Burov and Guillou-Frottier, 1999; Guillou-

Frottier et al., 2000) are able to study the thermal regime at depth, which may alter 

crustal rheology and physical rock properties, and consequently, influence fracture 

formation and development.   

In short, the calculations provide stress and thermal regimes versus time around 

the magma chamber and its vicinity, prediction of fault location and geometry, and 

directions of the potential brittle failure zones around the magma reservoir. The main 

controlling factors considered in these models are the regional stress field, the reservoir 

geometry and the roof aspect ratio R.  The principal results obtained by Burov and 

Guillou-Frottier (1999) and Guillou-Frottier et al. (2001) may be summarized as follows:

Caldera collapse in the absence of the regional stress field and with a steady temperature field 

Static conditions for caldera snapping following an analytical assessment 

The bending of the magma chamber roof should mostly results in localized faulting at 

the places of highest flexure. Furthermore, the maximum values of flexural stress 

inside the caldera roof are reached at the borders of its upper surface. In any case, the 

roof breaks when the flexural stress is greater than the local brittle rock strength, which 

is much lower at surface than at the brittle-ductile interface with the magma chamber. 

Moreover, the larger the caldera, the smaller the force or load needed to break it at the 

borders (Burov and Guillou-Frottier, 1999).
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Coupled thermomechanical numerical models 

During the uplift stage, overpressure results in flexural uplift of the caldera roof causing 

bending. Roof bending results in the failure at the borders, the initiation of normal inclined 

border faults or reactivation of the first formed faults during the previous uplift. The 

subsidence of the roof is limited by the inward geometry of the cover. A later snapping of 

the roof in a vertical direction, allows the piston like subsidence. Consequently, the model 

predicts two groups of faults: inclined primary (initiated during the flexural stage) and 

subvertical secondary (initiated during overloading and subsidence) faults .

Inclined normal faults may be initialised at the surface during the subsidence phase or at 

depth during the possible uplift phase (in this case they first appear as inverse faults) and 

propagate upward to the surface . 

Magma chamber geometry controls the mechanism of collapse. In fact, the number and 

location of faults depend on the magma chamber eccentricity e (D/H). For e values lower 

than 2.4 no border faults appear because the external load is balanced by the strength of 

the underlying crust. Moreover, during the initial stages of large calderas (e >3), an 

upward caldera roof bending precedes the collapse due to the overpressure inside the 

chamber. Consequently, the flexural stress concentrates at the upper corners of the magma 

chamber, resulting in the formation of inverse inclined border faults propagating from the 

top to the bottom of the magma roof, which inclination is controlled by the friction angle. 

Furthermore, with a larger magma chamber aspect ratio, internal embedded faults are 

created.

Caldera collapse in the presence of the regional stress field and with a steady temperature field 

The presence of far-field stresses can significantly modify the distribution and geometry of 

faulting. Regional extensional stresses shift the locations of the zones of minimal and 

maximal bending stresses, leading to the formation of multiple faults near the centre of the 

caldera floor. Consequently, regional extension favours the occurrence of deep faulting 

centred over the magma chamber roof. As long as the extension continues, the faults 
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propagate from the centre to the borders and create a wider dispersed fault zone.  With 

extension fractures develop at a more vertical angle. 

Caldera collapse in the absence of the regional stress field and with a non-steady temperature field

The main thermal effects that influence the collapse process are heat diffusion from the 

hot magma reservoir and thermal blanketing due to the presence of the insulating 

ignimbritic cover. The magma chamber creates a ductile “aureole” around itself, delineated 

by a brittle-ductile transition (BDT) that can be considered as the “thermomechanical” 

geometry of the magma chamber, in contrast to a more common chemical/lithological 

boundary or definition. The transition between "hot" (ductile) to "cold" (brittle) may limit 

the propagation of the brittle faults and cracks. In fact, brittle deformation follows this 

boundary without penetrating inside, except for some major faults. The BDT is clearly 

marked in the models by a subhorizontal fracture zone in the middle of the cover, thus 

delineating a “mechanical magma chamber”. Although the location of the border faults 

does not change significantly, their geometry is affected. In fact, lateral border faults are 

inward-dipping at the surface but outward-dipping at depth. Furthermore, the insulating 

ingnimbritic cover tends to overheat the lower part of the magma chamber roof, which 

becomes even more ductile. This considerably reduces the effective mechanical thickness 

of the roof, as well as the depth and inclination of the border faults.
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IV.4.2 Summary of previous results

In order to facilitate the comprehension and understanding of the rest of this 

chapter, we consider necessary to present a schematic summary of the most important 

aspects commented in this section. Figure 4.7 offers a sketch summing up the different 

aspects and topics commented in this section concerning the state of the art of collapse 

calderas mathematical models. 

Fig. 4.7: Sketch summing up the different aspects and topics commented in this section concerning the 
state of the art of collapse caldera mathematical models. f Erupted magma chamber volume fraction 
necessary to trigger caldera collapse. 
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IV.4.3 Description of the restrictions 

Before discussing the results obtained by theoretical/mathematical models and 

their geological implications, it is necessary to determine their main restrictions, and if 

possible, to try to minimize their effect in future models.  

In this section we describe the different restrictions and limitations found in the 

mathematical models applied to the study of collapse calderas. These vary from model to 

model, and are principally dependent on the design of the physical model and the 

considered rheological behaviour for the host rock. The main restrictions are: 

Homogeneous host rock

Fluid dynamics and rock mechanics are uncoupled

Impossibility of dike injection 

Absence of volcanic edifice

Failure considered only under extensional stresses

No regional faults or previous formed structures

Host rock rheology 

HOMOGENEOUS HOST ROCK

Similar to analogue models, most of the existing mathematical models have been 

carried out with homogenous host rock. As mentioned before, this is not a correct 

approximation to the natural system, since country rocks around magma chamber are 

normally heterogeneous in composition.  Lithological heterogeneities and structural 

discontinuities can influence the stress field and consequently, fracture propagation and 

structure development (e.g. Gudmundsson and Brenner, 2005). Therefore, it is important 

to introduce stratigraphic heterogeneities in order to approach mathematical models, as 

much as possible, to reality. This is a relevant point when studying and applying 

mathematical models, as they are very sensitive to changes on rock properties.  
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FLUID DYNAMICS AND ROCK MECHANICS UNCOUPLING

The main problem of the existing models about caldera collapse processes is that 

fluid dynamics and rock mechanics are in all cases uncoupled. In an ideal case, all 

physical processes should be simulated simultaneously, as processes occurring inside the 

chamber may affect or are depending on those taking place in the country rock and vice 

versa.  However, since each region of the system is physically distinct from the other, 

coupling all processes is a very difficult or almost impossible task. Nevertheless, this 

should be one of the principal objectives of future complex mathematical modelling. 

NO DIKE INJECTION SIMULATION 

None of the analysed mathematical models can simulate dike injection during the 

collapse or tumescence process. However, the possibility of dike injection is important 

during magmatic processes because it can regulate the equilibrium inside the magma 

chamber (see section III.2.3) (Gudmundsson, 1998). For example, in situations of 

overpressure, dike intrusion can decrease the magma chamber pressure and may avoid 

the initiation of an eruptive event. Furthermore, the impossibility of simulating dike 

injection has other consequences. On the one hand, dike intrusions may significantly 

modify the physical properties of the country rock as, for example, its tensile or shear 

strength values. Evidently, this will affect fault nucleation and propagation. Moreover, 

another important problem is that some interpretation of results obtained may be 

misinterpreted. Whereas some authors maintain that ring fault or other collapse 

controlling structures develop from the top of the magma chamber to the surface (e.g. 

Gray and Monaghan, 2004), others hold that ring fault nucleation at depth is not possible 

as any magma chamber rupture would lead to a dike intrusion (e.g. Gudmundsson, 

1998).  Of course, this kind of controversies will last until the application of a model, 

which considers also dike injection. 
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ABSENCE OF VOLCANIC EDIFICE

The stress field around a magma chamber is one of the most important 

controlling factors of caldera collapse processes. In natural systems the stress field near a 

magmatic reservoir has contributions from three main sources: the stress perturbation 

associated with the magma chamber itself (over- or underpressure), the regional or far-

field stress and finally, the topography loading stresses (Muller et al., 2001). In fact, at 

some volcanic complexes the topographic load may be the principal upper-crustal stress 

field and is able to modify the regional fault patterns, increase the fault throw and induce 

extension (Lavalleé et al., 2004, and references therein). Despite this fact, previous 

commented mathematical models use a flat horizontal topography, although calderas 

usually form in volcanic fields with significant topographic relief. Nowadays, 

mathematical models related to caldera collapse processes, which consider in their 

systems the presence of a volcanic edifice are inexistent. There only exist some works 

studying the effect of volcanic edifice on magma chamber emplacement and dike 

propagation (e.g. Pinel and Jaupart, 2000, 2003, 2004)

FAILURE ONLY UNDER EXTENSIONAL STRESSES

Obviously, this restriction is limited to those models that are able to reproduce 

failure (e.g. Gray and Monaghan, 2004). Due to the complexity of fracture analysis, 

nowadays, programs computing brittle fracture propagation are restricted to failure 

under extensional stresses. In fact, shear components in this kind of models may 

destabilize the process and the system fails. Of course, the main problem is that although 

faults controlling caldera collapses are tensional at surface these became shear fractures 

at depth. Consequently, mathematical models are not able to follow them. However, 

faults generated at the magma chamber wall may develop to fluid-filled cracks which 

have a extensional component due to the fluid pressure, consequently these can be 

modelled as tensional fractures. However, the impossibility of simulating shear fractures 

slants the information of caldera collapse controlling structures, such as vertical ring 

faults.
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NO REGIONAL FAULTS OR PREVIOUS FORMED STRUCTURES 

Another important restriction of previous commented models is that these are 

unable to introduce regional faults or previous formed structures.  These mathematical 

models are not capable to simulate multicycling processes of inflation and deflation, 

although in some of them (e.g. Burov ang Guillou-Frottier, 1999) it is possible to 

observe the reactivation of structures formed during the uplift stages. However, the 

simulation of fault in these models is not possible. They follow fault propagation by 

looking at the stress distribution and the accumulated plastic strain, but they cannot 

register fractures in a strict sense. By contrast, those models able to follow and recreate 

brittle structures (e.g. Gray and Monaghan, 2004) do not introduce pre-existing regional 

structures. Clearly, the existence of regional faults or previous formed structures 

strongly affects the morphology (e.g. Silali – Kenya, Bosworth et al., 2003; Valles – 

U.S.A., Self et al., 1986) (see section II.2.2) and, in some cases, the mechanism of 

caldera collapse. Therefore, if mathematical models are not able to reproduce them these 

will be far away from simulating with accuracy natural systems. In these sense, model 

considering elastic rheology are too simplistic.  

HOST ROCK RHEOLOGY

The models presented in this section deal with different govern equations 

involving diverse rock rheologies. The main problem is that results obtained are highly 

conditioned by the selected host rock rheological behaviour. The most extended option 

is to assume that the crust behaves as a linear homogeneous elastic material, although 

the use of elastic behaviours to predict brittle rock strain is not very robust. However, 

those models using this rheology study, in general trends, the main factors controlling 

(e.g. magma chamber geometry, depth and volume) caldera collapse or the stress field 

conditions for the formation of ring-faults or in some cases also dikes, rather than to 

study fault or brittle failure structures in detail.  Furthermore, the use of linear rheologies 

permits to work with the superposition principle of stress fields.  However, the main 

problem appears when comparing results obtained for the different rheologies, which in 

some cases are completely opposite (Burov and Guillou-Frottier, 1999).  
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IV. 5 NEW MATHEMATICAL MODELS

IV.5.1 Objectives 

The new mathematical models exposed in this work have several objectives. On 

the one hand, we want to reproduce some of the analogue experiments set out in this 

work and described in chapter III. This offers us the possibility to compare the results 

obtained using mathematical or analogue models and consequently, to detect additional 

restrictions of both methodologies. 

The second aim of this section is to reproduce some of the mathematical models 

exposed in Folch and Martí (2004). On the one hand, we are going to study the influence 

of the selected geometrical setting (e.g. axial symmetric or three-dimensional) in the 

obtained results and the subsequent interpretation of the required stress field suitable to 

initiate normal ring faults. These models do not consider the influence of any pre-

collapse fracturing or differential tectonic stress.

Apart from the mathematical models intimately related to caldera collapse 

processes, there is also the possibility of applying other types of mathematical models. 

These are not strictly related to collapse caldera processes but the results obtained are 

applicable to the study of collapse mechanisms and their controlling factors, as we will 

see in this section. In addition to the presentation of some new results of the models, we 

also want to point out that future mathematical works on collapse calderas have to 

consider the possibility of combining the results of other disciplines to go further in the 

investigations.

IV.5.2. Rheological model 

IV.5.2.1 General aspects 

Some authors tend to assume that during the course of a caldera-forming 

eruption, i.e. during the process of magma chamber decompression and subsequent 

initiation of ring-faults, the surrounding crust behaves as a linear homogeneous elastic 
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material (e.g. Folch and Martí, 2004). In our mathematical models we want to reproduce 

conditions as much closer as possible to natural rocks. Natural materials deform in a 

brittle fashion and have a Mohr-Coulomb behaviour. However, some problems appear 

when trying to simulate numerically brittle deformation and fracture. Although, there 

exist several commercial programmes able to reproduce fracture (e.g. ANSYS® , 

BEASY®, etc.), they present some problems depending on the considered fracture 

mode. In short, there are three different fracture modes I, II or II (Fig. 4.8) (Ramsay and 

Huber, 1983). The first one corresponds to a pure opening or tensile mode, the second to 

a sliding or in plane-shear mode and the third to a tearing or antiplane shear mode. 

Normally, the above commented programmes are able to reproduce mode I fractures but 

they present some problems when trying to reproduce mode II and III cracks. This is an 

important restriction when performing our models. As described in prior section, some 

fractures that appear in nature and in the models may be tensile but other have an 

important shear component (see section II.5.4). Consequently, it is very difficult to 

reproduce them numerically. As a result, we decide to simplify the calculus using also 

linear elasticity. We assume that the results obtained are approximated but as we will see 

these are considerably satisfactory. Nevertheless, at the end of the section, we will 

comment the restriction of the method. 

Fig. 4.8: Sketch of the three main fracture modes: Mode I is opening or tensile mode. The forces are 
perpendicular to the crack pulling the crack open. Mode II is sliding or in plane-shear mode. The forces are 
parallel to the crack. The crack surfaces slide over one another perpendicular to the leading edge of the 
crack. Mode III is tearing or antiplane shear mode. The crack surfaces move relative to one another and 
parallel to the leading edge of the crack (Modified from Ramsay and Huber, 1983). 

IV.5.2.2 Linear elasticity 

 In this section we review the most important and relevant aspects concerning 

elasticity in order to facilitate the understanding of the results obtained and the 

subsequent discussion.
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 In short, elastic materials deform when a force is applied and return to their 

original shape when the force is removed. A linear, isotropic, elastic solid is one in 

which stresses are linearly proportional to strains and mechanical properties have no 

preferred orientations. The principal axes of stress and strain coincide in such a medium, 

and the connection between stress and strain can be conveniently written in this 

coordinate system as (Turcotte and Schubert, 2002). 

1 = (  + 2G) 1 + 2 + 3                                                                [4.4]

2 = 1 + (  + 2G) 2 + 3                                                                  [4.5]

3 = 1 + 2 + (  + 2G) 3                                                                  [4.6]

where the material properties  and the modulus of rigidity G are known as the Lamé 

parameters. Furthermore, 1 , 2 and 3 are the principal stresses. The state of stress at a 

point in a solid is completely specified by giving xx, yy, zz, xy, xz and yz or the 

orientation of the principal axes and the value of the principal stress (Fig. 4.9). In fact, it 

is possible to find three orthogonal axes such that all shear stress components are zero. 

The normal stresses on planes perpendicular to the principal axes are the principal 

stresses commonly denoted as 1 , 2 and 3 . By convention these are chosen such that 

1 2 3 . Thus, 1 is the maximum principal stress, 2 is the intermediate principal 

stress and 3 is the minimum principal stress (Turcotte and Schubert, 2002).  

Additionally, Equations 4.4 – 4.6 can be also written: 

1 =
E
1

1 - E 2 - E 3                                                                          [4.7]

2 = - 
E 1 +

E
1

2 - E 3                                                                   [4.8]

3 = - 
E 1 - E 2  + E

1
3                                                                  [4.9]

where E and  are material properties known as the Young’s modulus and the Poisson’s 

ratio, respectively. Consequently, the elastic behaviour of a material can be characterized 

by specifying either  and G or E and . Throughout this work, material properties will 

be specified using the Young’s modulus E and the Poisson’s ratio .
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Fig. 4.9: Stress components in 2-D and 3-D (Modified from Turcotte and Schubert, 2002). 

IV.5.3 Mathematical reproduction of analogue models 

IV.5.3.1 General aspects and objectives 

The number of studies combining mathematical and analogue models is very low 

(e.g. Komuro et al., 1984; Roche and Druitt, 2001). However, we will see that this seems 

to be the appropriate way to a better understanding of collapse caldera processes. In this 

section we reproduce numerically some of the analogue experiments of chapter 3. Thus, 

we can compare the results obtained with both kinds of models and to infer from their 

differences, the restrictions and limitations of both methodologies. Results obtained are 

divided in two different parts depending on the kind of reproduced analogue models: 

balloon or silicone. 

IV.3.3.2 Reproduced experiments

Since the reproduction of all the experiments would be too time-consuming and 

excessive, it is preferable to concentrate on the most representative and significant ones. 
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In tables 4.2 and 4.3 are listed the selected experiments considering balloon or silicone 

reservoir as magma chamber analogue, respectively.  

For balloon analogue models we choose three D-type experiments (experiments 

without topography performed with the experimental set-up I b) (Fig. 3.12). In order to 

facilitate the comprehension of the results and observations presented in the next 

sections, Table 4.2 also summarizes the main input parameters and, measured and 

calculated values of these four balloon experiments. With the reproduction of these 

experiments we can study the influence of the roof aspect ratio R.

For silicone analogue models we choose eight experiments (Table 4.3): five with 

flat and four with curved silicone reservoir (see section III.3.5). Table 4.3 also includes 

the main input parameters and, measured and calculated values of these silicone 

experiments. With their mathematical reproduction we can study the influence R and the 

effect of the reservoir eccentricity e.

A)

B)

Table 4.2: Sections of tables 3.3 and 3.6. List of the analogue experiments reproduced numerically. (A)
Input parameters of the analogue models. (B) Relevant measured or calculated parameters in balloon 
analogue models.   Slope of the volcanic cone 1;  Slope of the volcanic cone 2; Dmax Balloon maximum 
diameter; Dmin: Balloon minimum diameter; H Balloon height; He1 Volcanic cone height; He2 Height of the 
volcanic cone 2; n.c. No calculable or measurable value due to experimental reasons or visual problems;
N-Dmax Maximum diameter of the non-deformed area; N-Dmin Minimum diameter of the of the outer limit of 
the collapse; OL-Dmax Maximum diameter of the outer limit of the collapse; OL-Dmin Minimum diameter 
piston diameter at surface; P Balloon depth; P-Dsmax Maximum piston diameter at surface; P-Dsmin
Minimum piston diameter at surface; P-Dp Piston diameter at depth; R Roof aspect ratio defined as R= 
[(P+He1)(Dmax+Dmin)]/2DmaxDmin  (Roche and Druitt, 2001); Ra1 Radius of the volcanic cone 1; Ra2: Radius of
the volcanic cone 2; Sp Subsidence at depth; Ss Subsidence at surface;  t Duration of the experiment; V
Total extruded volume of water from the balloon. 

INPUT PARAMETERS 

He1 (cm) Ra1 (cm)

He2 (cm) Ra2 (cm)
Experiments 

P (cm) R H (cm) Dmax (cm) Dmin (cm) t (s) % V 

7.4 37º 10 

D-1 6 0.34 14 20 16  160 50 / / /

D-4 12.5 0.52 15.5 25 23  290 64 / / /

D-5 17.5 0.84 15 22 20  310 86 / / /

MEASURED AND CALCULATED VALUES 
Experiments 

R Sp
 (cm) 

Ss
 (cm) 

P-Dp
(cm)

P-Dsmax
(cm)

P-Dsmin
(cm)

OL-Dmax 
(cm)

OL-Dmin 
(cm)

N-Dmax 
(cm)

N-Dmin
(cm)

D-1 0.34 n.c n.c. n.c. 13 11 33 26 13 11 

D-4 0.52 n.c n.c. n.c. 18 15 59.44 57.50 18 15 

D-5 0.84 n.c n.c. n.c. 17.5 13.5 55 47 17.5 13.5 
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A)

INPUT PARAMETERS 
Experiment 

P (cm) D (cm) t (min) Shape R 

SIL-1 2 10 150 FLAT 0.2 

SIL-2 3 10 140 FLAT 0.3 

SIL-3 4 10 180 FLAT 0.4 

SIL-7 7 10 136 FLAT 0.7 

SIL-8 8 10 180 FLAT 0.8 

SIL-9 3.3 10 100 A= 1.7 cm    e = 2. 94 0.33 

SIL-10 2.2 10 60 A= 2.8 cm    e = 1.79 0.22 

SIL-11 2.5 10 n.c. A= 3.5 cm   e = 1.43 0.25 

SIL-12 3.4 10 75 A= 4.6 cm    e = 1.08 0.34 

B)

MEASURED AND CALCULATED VALUES 
Experiments 

R Sp  (cm) Ss (cm) N-D  (cm) OL-D (cm) EXT-W (cm) 

SIL-1 0.2 0.83 0.83 7.4 9.8 1.20 

SIL-2 0.3 0.76 0.76 6 10.5 2.25 

SIL-3 0.4 1.4 1.4 5 9.8 2.40 

SIL-7 0.7 1 0.8 2.75 5.7 1.48 

SIL-9 0.33 1.46 0.85 5.54 10.7 2.58 

SIL-10 0.22 n.c. 0.92 5.7 10.17 2.23 

SIL-11 0.25 0.8 0.8 6.12 11.51 2.70 

SIL-12 0.34 2.6 2.6 2.11 4.07 0.98 

Table 4.3: Sections of tables 3.10 and 3.13. List of the analogue models reproduced numerically. (A) List of 
the input parameters of the considered analogue silicone models (B) Relevant measured or calculated 
parameters. A Silicone reservoir height; D Silicone reservoir diameter; e Silicone reservoir eccentricity 
defined as 0.5 D/A (e =1 implies an hemispheric silicone reservoir); EXT-W Width of the external area of 
flexure and extension; n.c. No calculable or measurable value due to experimental reasons or visual 
problems; N-D Diameter of the non-deformed area; OL-D Diameter of the outer limit of the collapse; R Roof 
aspect ratio= P/D; Sp Subsidence at depth; Ss Subsidence at surface; T Roof thickness; t Duration of the 
experiment.

IV.5.3.3 Geometrical setting 

IV.5.3.3.1 General aspects

 Prior to the elaboration of any mathematical models it is necessary to define the 

required geometrical setting. The first step is to establish the dimensions of the 

geometry. As we will see, depending on the selected dimensions the results obtained are 
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slightly different. In order to illustrate the importance of the geometrical setting and its 

influence on the results obtained, we find appropriate to analyse a simple example. We 

consider a cube of size 1  1  1 length units (LU) defined in accordance with a 

cartesian x, y, z coordinate system. We fixed its basis, i.e. the displacement u in all 

directions is equal to zero (ux = uy = uz = 0) and assign an excess pressure of 103 pressure

units (PU) on its top (Fig. 4.10 A). The lateral surfaces are traction free. Numerically, we 

have the possibility of a two- dimensional (2-D), a three-dimensional (3-D) or an axial 

symmetrical model (AS) (Fig. 4.10 B, C and D, respectively).  

Fig. 4.10: Sketches of the different possibilities of modelling a cube of size 1  1  1 length units (LU) with 
fixed basis, i.e. the displacement u in all directions is equal to zero (ux = uy = uz = 0) and subjected to an 
excess pressure of 103 pressure units (PU) on its top. (A) Sketch of the example’s geometry and boundary 
conditions. (B) Sketch of the example’s geometry in 2-D with the assigned boundary conditions. (C) Sketch
of the example considering axial symmetry. (D) Sketch of the 3-D solution of the example with the 
prescribed boundary conditions. 

In order to simplify the geometry and to avoid time-consuming calculus we can 

select a 2-D model (Fig. 4.10 B). Consequently, the geometrical setting is a 1  1 LUs 

square with an excess pressure of 103 PU at its top and fixed displacement at its basis (ux

= uy = 0). When dealing with 2-D we can choose between “pure” 2-D, “plane strain” or 

“plane stress” model. 
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 In a “pure” 2-D model the state of stress is two-dimensional. In this case, surface 

forces and strain in the z direction is zero, and none of the others surface forces varies in 

the z direction. Consequently, the three independent components of stress are the normal 

stress xx, yy and the shear stress xy  .

In a “plane stress” state of stress one component of principal stress is zero, i.e. 3

= 0, 1 0, 2 0. The situation is sketched in Figure 4.11. The geometrical setting is 

considered then as a very thin and infinitely wide plate. The strain according to 

Equations 4.7- 4.9 are: 

1 =
E
1 ( 1 - 2 ) [4.10]

2 =
E
1 ( 2 - 1 ) [4.11]

3 = - 
E

 ( 1 + 2 ) [4.12]

 In the case of “plain strain”, 3 = 0, and 1 and 2 are not zero. Figure 4.11 

illustrates a “plain strain” situation. The geometry of Figure 4.11 B would correspond to 

a section of infinite long prismatic bar. Here Equations 4.4 – 4.6 are reduced to: 

1 = (  + 2G) 1 + 2                                                    [4.13] 

2 = 1 + (  + G) 2 [4.14]

3 = ( 1 + 2 ) [4.15]

Fig. 4.11: Sketches representing the main characteristics of a “plane stress” and “plane strain” situations. 
In a “plane stress” state of stress one component of principal stress is zero, i.e. 3 = 0, 1 0, 2 0. In the 
case of “plain strain”, 3 = 0, and 1 and 2 are not zero (Modified from Turcotte and Schubert, 2002). 
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 On the other hand, if we assume axial symmetry the geometry becomes a 0.5  1 

LUs rectangle with an excess pressure of 1 PU at its top and fixed displacement at its 

basis (ux = uy = 0). The required condition along the symmetry axis is ux = 0. Evidently, 

this geometrical setting does not provide exactly the solution for a cube. If we rotate the 

rectangle on the symmetry axis we obtain a cylinder of radius 0.5 LU and height 1 LU. 

In this case the six independent components of stress are rr, zz, , rz, r , and z .

 More mathematically complicated but also more accurate is to reproduce the 

cube three-dimensionally. Consequently, the six independent components of stress are 

the normal stress xx, yy, zz and the shear stresses xy  , xz  and yz .

 In order to find out the consequences and implications of choosing one of the 

different numerical possibilities proposed in Figure 4.10 we proceed to compare the 

results obtained when solving the exposed example (Fig. 4.10 A) with the different 

approaches. For that we use arbitrary values of Young’s modulus E = 1 PU and 

Poisson’s coefficient = 0.25. It has been checked that the values of these two physical 

properties do not affect the results. 

 In order to investigate the effect of the different mathematical approaches we 

study the values of displacements and principal stresses 1 and 3 along a vertical axis 

passing through the centre of the cube or square (depending of the dimensions of the 

problem) or along the symmetry axis if the model has axial symmetry. Results obtained 

are exposed in Figure 4.12. We can observe that the displacement values are practically 

independent on the selected model. By contrast, the distribution of the values of 1 and

3 change considerably. Especially interesting is the comparison between 3-D and axial 

symmetry. Whereas the results of the displacements in of both models are equivalent 

(differences are due to the mesh quality), the profiles of the principal stresses 1 and 3

are different. Therefore, we have to be cautious when interpreting the results obtained 

with both types of models. 

Remember that collapse caldera a process modelling is specially focused on the 

distribution of 3 at surface therefore, the selection of the approach (2-D, plane stress, 

plain stress, axial symmetry or 3-D) is of high relevance. We release also in this section 

that this phenomenon is highly dependent on the geometrical setting of the model. 
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Fig. 4.12: Results obtained when solving the proposed model of Figure 4.10 A with the different 
mathematical approaches. We include in the Figure the distribution of the displacement values, 1 and 3 .
Values of displacement are normalized to the height of the cube 1 LDU and values of stress to the imposed 
excesses pressure of 103 PU.

IV.5.3.3.2 Geometrical setting for reproducing mathematically balloon models

Figure 4.13 sketches the experimental devices of balloon analogue modes and the 

corresponding geometrical setting of the performed mathematical models. Evidently, the 

mathematical models have to reproduce the most important components of the 

experimental set-up: the host rock analogue (dry-quartz sand), the magma chamber 

analogue (latex balloon) and the rigid walls of the tank where the analogue models are 

performed, which may probably introduce some edge effects that have to be analysed.  

We used two geometrical setting depending if we consider two- or three 

dimensions. We want to reproduce the experiments with both approaches and in order to 

detect differences in the results due to the selection of the geometrical setting. 

 The 2-D geometrical setting (Fig. 4.13) corresponds to a rectangle (coloured in 

grey) of 60 or 100 cm width depending on the reproduced model. The height of this 

rectangle is equivalent to the thickness of the sand-pack T in each experiment. This 

geometry implies that the computational domain corresponds to the sand in the analogue 

experiments. The rigid walls of the tank (wood or glass) are reproduced fixing the 

laterals and the base of this rectangle. Small black crosses indicate the boundary 

condition of fixed zero displacement in any direction  (ux = uy = 0). The magma chamber 

analogue is reproduced by an elliptical hole (white) in the rectangle. The upper part is 

free.
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The 3-D geometrical setting consists of a prism with fixed laterals and base.  The 

magma chamber analogue corresponds to an ellipsoidal hole and the upper surface is 

free (Fig. 4.13).

Fig. 4.13: (Top) Sketch of the experimental devices reproduced numerically (Bottom) Geometrical setting 
and boundary conditions of the performed mathematical models. The 2-D geometrical setting corresponds 
to a rectangle with fixed laterals and base (ux = uy = uz = 0). The magma chamber analogue is reproduced 
by an elliptical hole (white) in the rectangle. The upper part is free. The 3-D geometrical setting consists of 
a prism with fixed laterals and base  (grey).  The magma chamber analogue corresponds to an ellipsoidal 
hole (coloured in blue) and the upper surface is free (red). Dmax Balloon maximum diameter; H Balloon
height; P Balloon depth; T Sand-pack thickness; W.F. Water flow direction. 

IV.5.3.3.3 Geometrical setting for reproducing numerically silicone models

Figure 4.14 sketches the experimental device of those analogue modes carried 

out with a silicone reservoir as magma chamber analogue. We also represent the 

corresponding geometrical setting of the performed mathematical models. Similar to the 

reproduction of the balloon models, the most important components of the experiments 

are the host rock analogue (dry-quartz sand), the magma chamber analogue (silicone 
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reservoir, curved or flat) and the rigid walls of the wood tank. Again we used two 

geometrical settings (axial symmetry and 3-D) in order to detect differences in the 

results due to the election of the geometrical setting.  

The geometrical setting with axial symmetry (Fig. 4.14) corresponds to a 

rectangle of 50 cm width which height is equivalent to the thickness of the sand-pack T

in each experiment. One of the laterals corresponds to the symmetry axis and 

consequently, displacements in the horizontal direction x are fixed to zero (ux = 0). Also 

here the geometry implies that the computational domain corresponds to the sand of the 

analogue experiments. The rigid walls of the tank are reproduced fixing the other lateral 

and the base of the rectangle. Again small black crosses indicate the boundary condition 

of fixed zero displacement in any direction  (ux = uy = 0). In order to reproduce the flat 

silicone reservoirs, we select a small part of the rectangle base close to the symmetry 

axis and free it from the condition of fixed zero displacement, i.e. this small section is 

able to deform.  Curved silicone reservoirs are simulated cutting with a curvy shape the 

edge of the rectangle base located closer to the symmetry axis. This curved part is also 

free from the condition of fixed zero displacement, i.e. is able to deform. The upper part 

of the rectangle is always considered to be traction free.

The 3-D geometrical setting (Fig. 4.14) consists of a prism with fixed laterals and 

base.  The silicone reservoir corresponds to a small free surface cut in the centre of the 

fixed base (flat silicone reservoir) or to a hemisphere. The upper surface is free.  
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Fig. 4.14: (Top) Sketch of the experimental device reproduced numerically (Bottom) Geometrical setting 
and boundary conditions of the performed mathematical models. The geometrical setting with axial 
symmetry corresponds to a rectangle (coloured in grey) whit one of the laterals corresponding to the 
symmetry axis and consequently, with displacements in the horizontal direction x fixed to zero (ux = 0). The 
other lateral and the base of this rectangle are fixed to zero displacement in any direction  (ux = uy = 0). In 
orange colour are indicated those parts of the base free of the prior boundary condition and representing 
the silicone reservoir. The upper part of the rectangle is free. The 3-D geometrical setting consists of a 
prism with fixed laterals and base (grey).  The silicone reservoir corresponds to a small free surface cut in 
the centre of the fixed base (flat silicone reservoir) or to a hemisphere (curved silicone reservoir). The 
upper surface (red) is free. A Height of the silicone reservoir; D Silicone reservoir diameter; P Silicone 
reservoir depth; T Sand-pack thickness. 

IV.5.3.4 Boundary conditions and numerical method 

Solutions are obtained using FEMFES, a code that solves elasticity using a Finite 

Element Method with nodal implementation. The programme, developed in the context 

of computational fluid dynamics (Codina and Folch, 2004), has been now particularised 

to elasticity and tested against standard benchmark problems (Folch and Martí, 2004).  
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The solutions for the several configurations have been calculated using the 

following values of Young’s modulus E = 1400 kPa , Poisson’s ratio  = 0.25 and

density s = 1270 kg/m3 for the dry-quartz sand. The density value has been obtained in 

the laboratory and the other two are approximate obtained come from specialized 

weppages (e.g. http://geology.bgsu.edu). However, we have checked that variations in E

(even changes of one order of magnitude) and affect only the quantitative analysis of 

the results but not the qualitative one. Although the values of the principal stresses may 

vary, the location of the peaks of 3 remains constant. Additionally, since we do not 

know the values of T0 and S0 for the dry-quartz sand, it is unnecessary to calculate 

exactly the values of the principal stresses. Anyway, we are unable to decide which are 

the points of rupture for dry-quartz sand.

 A difficult task when trying to reproduce numerically analogue models is the 

definition or assignment of the boundary conditions (BC). Some of the BCs assigned to 

these mathematical models are partially illustrated in Figures 4.13 and 4.14.  Since the 

tank walls are rigid and fixed, displacements have to be prescribed to zero at the 

computational margins placed at vertical and horizontal distances corresponding to the 

dimensions of the tank where the experiments where carried out. Normally, in order to 

minimize edge effects, the computational margins in mathematical models are placed at 

distances greater than the dimensions of the chamber. However, we want to reproduce 

exactly the dimensions of the glass or wood tank. We assume that these may introduce 

border effect in the analogue models and this is a way to check them.  

More difficult is to define the BCs that reproduce the balloon deflation or the 

silicone reservoir withdrawal (i.e. analogue magma chamber withdrawal responsible for 

the roof collapse). In previous mathematical models focused on natural caldera collapse 

processes, magma chamber withdrawal is usually simulated imposing an underpressure -

P at the chamber walls (e.g. Folch and Martí, 2004). This condition is also feasible to 

reproduce the balloon deflation when water is evacuated. As mentioned before (see 

section III.2.3) filled to its maximum capacity the balloon deflates elastically (see Fig. 

3.11 A) and at lower water capacities, the roof subsided vertically as the water was 

evacuated (see Fig. 3.11 B).  Consequently, we can choose between simulating the 

deflation throughout a radial contraction imposing an underpressure - P at the walls of 

the analogue magma chamber (Fig. 4.15 A) or throughout a vertical deformation 

imposing a vertical traction VT at the chamber roof (Fig. 4.15 B). In order to maintain a 
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certain similarity between balloon analogue models and models simulating natural 

caldera collapse processes, we simulate the balloon withdrawal imposing underpressure.  

Fig. 4.15: Sketches of the two possible boundary conditions we can assign to our models in order to 
simulate the experiments with a water-filled balloon as magma chamber analogue. (A) The limits of the 
computational domain are fixed (ux = u y = 0) and we impose underpressure - P at the magma chamber 
walls. (B) The limits of the computational domain are fixed (ux = u y = 0) and we impose a traction the y – 
direction.

However, in order to exemplify which effects may have these two boundary 

conditions on the results we have run model considering both possibilities (Fig. 4.16). 

The geometrical setting is identical in both models and corresponds to the geometry of 

the experiment D-1 in 2-D. The value of the imposed underpressure is equal to the 

vertical traction - P = VT = 103 Pa. Results obtained for the distribution of 3 at surface 

are illustrated on Figure 4.16. We can observe that results obtained are practically 

identical. The most relevant information for collapse caldera mechanism, the distance at 

which the peaks of 3 appear h (Folch and Martí, 2004) is approximately the same at 

both models. Only the values of 3 vary being more tensile with the condition of vertical 

traction. The election between both boundary conditions introduces small variations in 

the 3 values, which are not so relevant when simulating analogue models because as we 

mentioned before the values of the mechanical properties (E and ), which principally 

control the values of the displacements and stresses, are approximated. In these models it 

has sense only the quantitative analysis of the results but not the qualitative one.  

In this case of the experiments with the silicone reservoir, the collapse takes 

place due to the flow of the silicone through the reservoir’s tube. There does not exist a 

radial contraction. By contrast, the silicone moves apparently vertically with higher 

velocity at the centre. Velocity decreases close to the tube walls, due to the existence of 

frictional forces (Fig. 4.19 A). 
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Fig. 4.16: Results obtained when running two models in 2-D with identical geometrical setting but one with 
assigned radial underpressure - P and the other with vertical traction VT both focused to simulate 
analogue magma chamber deflation. The geometrical setting corresponds to the geometry of the 
experiment D-1 in 2-D. At the bottom the distribution of 3 at surface plotted versus distance (in cm) along 
the tank. D Magma chamber diameter; h Distance from the vertical projection of the chamber to the peak of 

3 at surface.

Fig. 4.17: (A) Sketch of the flow of the silicone through the reservoir’s tube. The silicone moves vertically 
with higher velocity at the centre and lower close to the tube walls due to the existence of friction forces. (B)
Sketch of a section of the silicone reservoir analogue experiments. The excess of weight of the overlying 
sand-pack produces the silicone outflow. At the beginning of the experiment, prior to the burial of the 
silicone reservoir by the sand, the pressure at the points PA and PB are equal to atmospheric pressure. 
Once the sand has been introduced in the tank the pressure at the point PA increases due to the weight of 
the overlaying sand-pack. 
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 Consequently, a radial underpressure is not representative of this behaviour. 

Since in the analogue models, the excess of weight of the overlying sand-pack produces 

the silicone outflow, we have decided that the best approximation is to leave the sand-

pack deform by gravity (Fig. 4.17 B). At the beginning of the experiment, prior to the 

burial of the silicone reservoir by the sand, the pressure at the points PA and PB are equal 

to atmospheric pressure. Once the sand has been introduced in the tank the pressure at 

the point PA increases due to the weight of the overlaying sand-pack. The total increase 

of pressure + P is calculated by: 

+ P = P · g · s [4.16]

where P is the depth of the silicone reservoir (i.e. the thickness of the sand-pack above 

the point PA), g is the gravitational acceleration and s  the density of sand. 

Consequently, the silicone is obliged to deform under the Earth’s gravitational force. 

IV.5.3.5 Results

IV.5.3.5.1 Balloon models 

 In this section we describe and compare the results obtained when reproducing 

experiments D-1, D-4 and D-5 in a 2-D and a 3-D geometrical setting. According to the 

conditions of ring fault formation (see section IV.3 for more details), to study 

numerically analogue caldera collapses we have to localize the maximum value of 1- 3,

the minimum value of 3 and the location of the peak of maximum tension (minimum 

3) at surface.

Results for the experiments D-1, D-4 and D-5 in a 3-D geometrical setting:

Regardless the roof aspect ratio of the models, the maximum value of 1- 3 occurs at the 

outer margins of the magma chamber (Fig. 4.18 indication I).

The minimum value of 3, the tensile stress, (maximum tension) occurs in all three cases 

at the outer margins of the magma chamber (Fig. 4.18 indication II).
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All three reproduced experiments have local minimums of 3 at surface (Fig. 4.19), i.e. 

points of maximum of tension, located symmetrically to the magma chamber. The location 

of these peaks of 3 corresponds approximately to the observed limits of non-deformed 

area in the analogue experiments. Consequently, the distance between the peaks of 

maximum tensile stress MMTSdis is similar to the diameter of the non-deformed area N-

Dmax (MTSdis  N-Dmax ).

In all three experiments the distance between the peaks of maximum tensile stress MMTSdis

is smaller than the vertical projection of the magma chamber at surface, i.e. is smaller than 

the maximum diameter of the magma chamber Dmax (MTSdis < Dmax).

With decreasing roof aspect ratio R of the experiment, the peaks of 3 at surface become 

more tensile (i.e. 3 decreases).

Comparison of the results for the experiments D-1, D-4 and D-5 in a 2-D and a 3-D 

geometrical setting:

Regardless the used geometrical setting, the maximum value of 1- 3 occurs at the outer 

margins of the magma chamber, but above the analogue magma chamber the distribution 

of 1- 3 varies considerably (Fig. 4.18 indication III).

Regardless the used geometrical setting, the minimum value of 3 occurs at the margins of 

the magma chamber. However, the 2-D solution localizes it at the centre of the chamber 

and the 3-D at the outer margins. Additionally, above the analogue magma chamber the 

distribution of 3 varies considerably (Fig. 4.18 indication IV).

Independent on the experiment, the values of 3 at surface calculated with the 2-D 

geometrical setting are considerably lower (more tensile) than those obtained with the 3-D 

approach (Fig. 4.20).
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For each experiment the distance between the peaks of minimum 3  (i.e. maximum tensile 

stress) calculated with the 2-D geometrical setting MMTSdis2-D is considerably larger than 

that obtained with the 3-D approach MMTSdis3-D (MTSdis2-D >  MTSdis3-D) (Fig. 4.20). 

With the 3-D geometrical setting, the distribution of the 3 values at surface has 

independent on the experiment a local maximum just in the centre of the analogue magma 

chamber horizontal extension  (Fig. 4.20 indication I). However, with the 2-D approach 

this local maximum becomes a wide flat region (Fig. 4.20 indication II).

At the computational margins the results obtained with the 3-D geometrical setting do not 

present extreme values due to possible edge effects (Fig. 4.20 indication III). By 

contrast, the distributions calculated with the 2-D approach present extremely low 3

values (Fig. 4.20 indication IV).
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Fig. 4.18: Results obtained when reproducing numerically the analogue experiments D-1 and D-5 in a 2-D 
and a 3-D geometrical setting. Contour fills of the 1 - 3 and 3. Stress values are normalized to magma 
chamber underpressure. Negative values for 3 imply extension.  
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Fig. 4.19: Results obtained when reproducing numerically the analogue experiments D-1, D-4 and D-5 with 
a 3-D geometrical setting. On the top of the Figure horizontal coloured rectangles indicate the magma 
chamber analogue horizontal extension in each of the reproduced experiments. Small black crosses 
indicate the limit of the computational domain with assigned fixed zero displacement (ux = uy = uz = 0). At 
the bottom, distribution of 3 at surface plotted versus distance (in cm) along the tank. D Magma chamber 
diameter; h Distance from the vertical projection of the chamber to the peak of 3 at surface; MTSdis
Distance between both symmetrical peaks of 3 at surface; OL-Dmax Maximum diameter of the outer limit of 
the collapse; P-Dmax Maximum piston diameter at surface 
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Fig. 4.20: Results obtained when reproducing numerically the analogue experiments D-1, D-4 and D-5 in a 
2-D and a 3-D geometrical setting. On the top of the Figure horizontal coloured rectangles indicate the 
magma chamber analogue horizontal extension in each of the reproduced experiments. Small black 
crosses indicate the limit of the computational domain with assigned fixed zero displacement (ux = uy = uz = 
0). At the bottom, distribution of 3 at surface plotted versus distance (in cm) along the tank. D Magma 
chamber diameter; h Distance from the vertical projection of the chamber to the peak of 3 at surface; 
MTSdis Distance between both symmetrical peaks of 3 at surface; OL-Dmax Maximum diameter of the 
outer limit of the collapse; P-Dmax Maximum piston diameter at surface 
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IV.5.3.5.2 Silicone models 

 In this section awe describe the results obtained for the numerical reproduction of 

the silicone experiments SIL-1, SIL-2, SIL-3 and SIL-7 using an axial symmetric (AS) 

and a 3-D geometrical setting. Furthermore, we want to study the influence of the 

silicone reservoir eccentricity e analysing the results of the silicone models SIL-9, SIL-

10, SIL-11 and SIL-12.

 Due to the design of the geometrical setting the limit of the magma chamber 

analogue tends to arrest the highest values of 1- 3 and 3 (Fig. 4.21). Consequently, it is 

very difficult to discriminate between “real” values and edge effects. Moreover, due to 

this effect the condition that the maximum value of 1- 3 should be localized at the outer 

limit of the analogue magma chamber is in all cases accomplished (Fig. 4.21). In the 

case of the distribution of 3, Figure 4.21 illustrates how important is to redefine the 

limits of the contour fills to a better visualization of the extensive (negative) values of 

3. In all experiments, the most tensile stress values are located at the margin of the 

chamber analogue. Taking into account these observations and the results obtained for 

the balloon models, we analyse for the silicone models only the distribution of 3 at 

surface.

Results for the experiments SIL-1, SIL-2, SIL-3 and SIL-7 in a 3-D geometrical setting:

Independent on the roof aspect ratio value, reproduced experiments have two local 

minimums of 3 at surface (Fig. 4.22). The location of these peaks of 3 depends on the 

roof aspect ratio, the distance between them MMTSdis increases with R.

 For low roof aspect ratio values (R=0.2-0.3), MMTSdis is equivalent to the piston diameter 

at surface PP-D, i.e. in the case of silicone models also to the analogue magma chamber 

horizontal extension D (see section….. for more details).

For higher R values MMTSdis is larger than the vertical projection of the magma chamber at 

surface D (MTSdis = D + h).
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With increasing roof aspect ratio RR of the experiment, the peaks of 3 at surface become 

less tensile (i.e. 3 increases).

Fig. 4.21: Results obtained when reproducing numerically the analogue experiment SIL-3 in the axial 
symmetric geometrical setting. On the top of the Figure a sketch illustrates the geometrical setting of the 
reproduced models. Small black crosses at the laterals indicate the limit of the computational domain, i.e. 
the walls of the experimental tank. These limits have assigned zero displacement in any spatial directions 
(ux = uy = uz = 0). Moreover, the horizontal the coloured rectangle indicates the magma chamber analogue 
horizontal extension for all reproduced experiments. The Figure includes the contour fills of 1 - 3 and 3
Stress values are normalized to the pressure increase due to the sand-pack weight. Negative values for 3
imply extension. D Magma chamber diameter; h Distance from the vertical projection of the chamber to the 
peak of 3 at surface; OL-D Diameter of the outer limit of the collapse; P-D Piston diameter at surface. 
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Fig. 4.22: Results obtained when reproducing numerically the analogue experiments SIL-1, SIL-2, SIL-3  
and SIL-7 in a 3-D geometrical setting. On the top of the Figure a sketch illustrates the geometrical setting 
of the reproduced models. Small black crosses at the laterals indicate the limit of the computational 
domain, i.e. the walls of the experimental tank. These limits have assigned zero displacement in any spatial 
directions (ux = uy = uz = 0). Moreover, the horizontal the coloured rectangle indicates the magma chamber 
analogue horizontal extension for all reproduced experiments. The Figure includes also the distribution of 

3 at surface versus distance (in cm) along the tank. Values of 3 are normalized to the maximum pressure 
increase due to the sand-pack weight. D Magma chamber diameter; h Distance from the vertical projection 
of the chamber to the peak of 3 at surface; MTSdis Distance between both symmetrical peaks of 3 at 
surface; OL-D Diameter of the outer limit of the collapse; P-D Piston diameter at surface 

Comparison of the results for the experiments SIL-1, SIL-2, SIL-3 and SIL-7 in an AS 

and a 3-D geometrical setting :

For any roof aspect ratio R the location of the peaks of 3 at surface is independent of the 

geometrical setting we consider, AS or 3-D (Fig. 4.23 indication I).

For low roof aspect ratios the peaks of 3 at surface are more tensile (i.e. 3 decreases) if 

we obtain the results with the axial symmetric geometrical setting (Fig. 4.23 indication I).

Furthermore, the difference between the 3 value obtained with the axial symmetric and 

that obtained with the 3-D models decrease when R increases (Fig. 4.23 compare 

indication I and II). At higher R values both curves are practically the same (Fig. 4.23 

indication III).
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Fig. 4.23: Comparison of the results obtained when reproducing numerically the analogue experiments 
SIL-1, SIL-2, SIL-3  and SIL-7 using an axial symmetric (AS) and a 3-D geometrical setting. On the top of 
the Figure a sketch illustrates the geometrical setting of the reproduced models. Small black crosses at the 
laterals indicate the limit of the computational domain, i.e. the walls of the experimental tank. These limits 
have assigned zero displacement in any spatial directions (ux = uy = uz = 0). Moreover, the horizontal the 
coloured rectangle indicates the magma chamber analogue horizontal extension for all reproduced 
experiments. The Figure includes also the distribution of 3 at surface versus distance (in cm) along the 
tank. Values of 3 are normalized to the maximum pressure increase due to the sand-pack weight. D
Magma chamber diameter; h Distance from the vertical projection of the chamber to the peak of 3 at 
surface; MTSdis Distance between both symmetrical peaks of 3 at surface; OL-D Diameter of the outer 
limit of the collapse; P-D Piston diameter at surface.

Results for the experiments SIL-9, SIL-10, SIL-11 and SIL-12 in an AS geometrical 
setting:

Independent on the silicone reservoir eccentricity e, reproduced experiments have two 

local minimums of 3 at surface (Fig. 4.24). Apparently, the location of these peaks of 3

depends on e the roof aspect ratio, i.e. MMTSdis increases with e.

With increasing e of the silicone reservoir (i.e. the reservoir becomes flatter), the peaks of 

3 at surface become more tensile (i.e. 3 increases) (Fig. 4.24 indication I).
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Varying e two experiments with different roof aspect ratio RR may have similar values for the 

3 peak at surface (Fig. 4.24 indication II).

Fig. 4.24: Results obtained when reproducing numerically the analogue experiments SIL-9, SIL-10, SIL-11  
and SIL-12 with an axial symmetrical geometrical setting. On the top of the Figure a sketch illustrates the 
geometrical setting of the reproduced models. Small black crosses at the laterals indicate the limit of the 
computational domain, i.e. the walls of the experimental tank. These limits have assigned zero 
displacement in any spatial directions (ux = uy = uz = 0). Moreover, the horizontal the coloured rectangle 
indicates the magma chamber analogue horizontal extension for all reproduced experiments. The Figure 
includes also the distribution of 3 at surface versus distance (in cm) along the tank. Values of 3 are
normalized to the maximum pressure increase due to the sand-pack weight. D Magma chamber diameter; 
h Distance from the vertical projection of the chamber to the peak of 3 at surface; MTSdis Distance 
between both symmetrical peaks of 3 at surface; OL-D Diameter of the outer limit of the collapse; P-D
Piston diameter at surface. 

Comparison of the results for the experiments SIL-9 and SIL-11 in an AS and a 3-D 

geometrical setting:

Independent of the model and, the distribution of 3 at surface has two local minimums 

(Fig. 4.25). However, the location of these peaks of 3 is dependent on the geometrical 
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setting. The distance between them MMTSdis is smaller in the 3-D models than in the axial 

symmetric models. 

In the case of model SIL-9 (R=0.33, e = 2.49) the value of the 3 peak is independent of 

the type of geometrical setting (Fig. 4.25 indication I). By contrast, results obtained for 

model SIL-11, which has a similar R (R=0.34) but a lower (e = 1.49) indicate that there 

exist some differences between the values of the 3 peak. The peak of 3 at surface 

calculated with the 3-D geometry is more tensile (i.e. 3 smaller) than that obtained with 

the AS model (Fig. 4.25 indication II).

Fig. 4.25: Comparison of the results obtained when reproducing numerically the analogue experiments 
SIL-1, SIL-2, SIL-3  and SIL-7 using an axial symmetric (AS) and a 3-D geometrical setting. On the top of 
the Figure a sketch illustrates the geometrical setting of the reproduced models. Small black crosses at the 
laterals indicate the limit of the computational domain, i.e. the walls of the experimental tank. These limits 
have assigned zero displacement in any spatial directions (ux = uy = uz = 0). Moreover, the horizontal the 
coloured rectangle indicates the magma chamber analogue horizontal extension for all reproduced 
experiments. The Figure includes also the distribution of 3 at surface versus distance (in cm) along the 
tank. D Magma chamber diameter; h Distance from the vertical projection of the chamber to the peak of 3
at surface; MTSdis Distance between both symmetrical peaks of 3 at surface; OL-D Diameter of the outer 
limit of the collapse; P-D Piston diameter at surface.
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IV.5.3.6 Discussion 

IV.5.3.6.1 Analogue models vs. mathematical models: Similarities and discrepancies

The mathematical reproduction of analogue models allows us to infer the 

restrictions of both types of modelling. Whereas analogue modelling let us to visualize 

the process itself, mathematical models are able to quantify it. However, are the results 

obtained with both types of models comparable? We have seen in section III.2.3 that 

analogue experiments are constrained by a long series of restrictions directly associated 

with the applied analogue materials and the design of the experimental device. 

Moreover, mathematical models have also several restrictions (see section IV.4.3). 

These come especially from the considered host rock rheology and fault simulation, and 

the actual impossibility of performing mathematical models coupling fluid dynamics and 

rock mechanics. 

 Reproducing numerically some of the balloon and silicone experiments we want 

to infer how the abovementioned restrictions affect and influence the results obtained 

with both analogue and mathematical modelling. We begin with the comparison with the 

results obtained for the analogue and mathematical models D-1, D-4 and D-5. Since we 

assume that 3-D mathematical models reproducing balloon experiments are more 

accurate than 2-D ones, we take into account only the results of the three-dimensional 

calculations. We observe in Figure 4.19 that the peak of 3 coincides with the limit of 

the non-deformed area. Now, we have to interpret the meaning of this coincidence. On 

the one hand, the peak of maximum tensile stress at surface determines the location of 

the collapse controlling ring faults (see section IV.3). Also, the limit of non-deformed 

area in analogue balloon experiments is defined by the arrival of the “bell-shaped faults” 

at surface (see Fig. 3.17) and not by the vertical subsidence-controlling ring faults. 

Consequently, the numerical and experimental results obtained are conceptually 

different. Theoretically, assuming that the peak of 3 at surface corresponds to the 

location of the ring faults, MTSdis would approximately correspond to the diameter of 

the subsiding piston at surface P-Ds, but this is not the case in the analogue models. 

Let us study now the results obtained with the mathematical models simulating 

the silicone reservoir experiments. In this case the 3 peaks do not coincide with any of 

the structural features of this kind of models. Only the mathematical simulation 
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reproducing the silicone experiment with the lowest roof aspect ratio (R=0.3) is 

consistent with real observation, i.e. the 3 peak at surface corresponds to the position of 

the piston limits at surface and at the same time to the limit of the silicone reservoir. 

Apparently, when reproducing the silicone models of low R, mathematical models 

provide results more similar to experimental ones.  

We have to keep in mind that balloon and silicone analogue models provide 

slightly different results, specially concerning the width of the extensional area 

surrounding the collapse area (see section III.3.6.1). For balloon models this area is 

considerably wider and for silicone experiments almost inexistent (compare Figs. 3.14 

and 3.30). Discrepancies between balloon and silicone models appear here again when 

comparing the numerical results. No apparent concordance exists between the 

experimental and mathematical approach of balloon models, but there exist some for low 

R silicone experiments. Why? Which are the factors controlling these discrepancies in 

the results obtained? After long considerations, we assume that one important factor is to 

consider elasticity in the numerical approaches. In fact, as we can see in Figure 3.18, the 

collapse beginning is characterized by a nearly elastic deformation. However, at a 

certain moment the sand (host rock analogue) faults and fractures propagate down- and 

upwards. Evidently, mathematical models assuming elasticity can only reproduce the 

first deformation stage. Once the fist fault has appeared, the assumption of elasticity 

becomes non-sense and probably also the numerical results. Some authors (e.g. Folch 

and Martí, 2004) affirm that elastic behaviours to predict brittle rock strain lacks 

robustness, but it can be useful for general approximations. Nevertheless, they admit 

possible problems when studying any particular system in detail, which is our case. 

Although, in some cases, elasticity is enough to estimate the possible location of future 

fractures, we do not see this correlation when reproducing the balloon experiments. The 

first fractures that appear in the analogue models are those delimiting the extensional 

area (see Fig. 3.17). However, according to the peak of 3 at surface, we would expect to 

find the first fractures in a location equivalent to the limit of the non-deformed area. 

Besides, when reproducing low R silicone experiments the 3 peak coincides with the 

location of the first fractures that appear in the collapse process. Is this a pure coincident 

result or are some other reasons that may explain this observation? A more accurate and 

exhaustive analysis is out of the scope of this work, but it can be a possible subject for 

future works. However, we can sense that possible reasons for a possible reason for this 
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phenomenon may be implicit in the type of the analogue magma chamber (balloon or 

silicone reservoir) and possible edge effects induced by the tank size and consequently, 

introduced in the mathematical model via the small dimensions of the computational 

domain. Additionally, boundary conditions on the numerical models may be not accurate 

enough. For example, the assigned underpressure does not satisfactorily represent the 

natural contraction of the latex balloon due to the withdrawal of water, contrarily to the 

deformation of the silicone, which seems to be more accurately reproduced. These ideas 

may be the basis for further studies focused in this topic.

IV.5.3.6.2 Restrictions and implications of the selected geometrical setting

 Traditionally, authors tend to use 2-D or axial symmetry to avoid time-

consuming calculations. However, we have seen that there exist some differences in the 

results obtained depending on the selected geometrical setting. Compare for example the 

results exposed in Figure 4.20. The 2-D approximation does not indicate any 3 peak for 

high roof aspect ratio experiments. Additionally, the 3 profile of experiment D-1 shows 

two 3   peaks that have a completely different correspondence with analogue results. 

Evidently, a bi-dimensional approximation is too simplistic when considering magma 

chambers with geometries inadaptable to infinite long or wide bodies (Fig. 4.11), which 

are reproducible assuming a “plane strain” or a “plane stress” 2-D approach, 

respectively. Consequently, if possible, it is preferable to use a 3-D geometry rather than 

over-simplify 2-D models, which may lead to misinterpretations of the results.  

 Something different happens when comparing 3-D and AS results. Remember 

that 3-D and AS results for simulations considering a flat silicone reservoir are quite 

similar, whereas for curved silicone reservoir, differences are more evident. Regarding 

the distribution of 3 at surface, results obtained for the flat silicone reservoir 

experiments using a 3-D or and AS geometry are practically similar. In both sets of 

results (3-D and AS results) the distribution at surface of 3 is characterised by a flat 

area close to the symmetry axis and a local minimum ( 3 peak) at a certain radial 

distance. For the highest roof aspect ratio simulations the values of the 3 peak are 

similar in both results sets. For lower R values, the 3-D simulation provides a less tensile 

3 peak than the axial symmetric calculation.  
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art from the distribution of 3 at surface we want to compare the total 

displacement at surface (Fig. 4.24). We can clearly observe that there exist some 

differences between the 3-D and the AS results, especially close to the symmetry axis. 

The difference in the value of the maximum displacement is more evident in the model 

with lower R (SIL-2, R = 0.3). In short, the election of the geometrical setting is not 

trivial for the results obtained and consequently, for the drawn conclusion and 

interpretations. We continue this discussion and the implications in the next section. 

Fig. 4.26: Comparison of the results obtained when reproducing numerically the analogue experiments 
SIL-2 and SIL-7 using an axial symmetric (AS) and a 3-D geometrical setting. On the top of the Figure a 
sketch illustrates the geometrical setting of the reproduced models. The horizontal coloured rectangle 
indicates the magma chamber analogue diameter. The Figure includes also the displacement at surface 
versus distance along the tank. Values of displacement are normalized to the magma chamber diameter. D
Magma chamber diameter.

IV.5.4 Geometrical constrains on the formation of ring fault calderas 

IV.5.4.1 General aspects and objectives 

Some authors (e.g. Gudmundsson, 1998; Folch and Martí, 2004) have 

investigated which combinations of chamber shape and depth are compatible with the 

creation of subvertical normal ring-faults that may lead to the formation of plate-

subsidence calderas without the existence of previous fracturing or regional tectonic 

stresses. Although the results obtained were interesting and relevant for the 

understanding of caldera-forming processes, all these mathematical models were 

performed in 2-D or considering axial symmetry (Table 4.1). Consequently, some doubts 

have arisen regarding the reliability and accuracy of these studies. Therefore, the 
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principal aim of this section is to reproduce in 3-D some of the calculations performed 

by Folch and Martí (2004) those who considered axial symmetry. We can compare the 

results obtained in order to study the influence of the selected geometrical setting and to 

investigate the possible consequences in the interpretation. 

IV.5.4.2 Geometrical setting 

In Figure 4.27 we show the considered geometrical settings: the AS and the 3-D. 

As in prior models, we assume that the magma chamber is elliptical in cross section and 

is characterized by two axis D (magma chamber diameter) and H (magma chamber 

height). The magma chamber is located at a depth P below the Earth’s surface.

In the case of axial symmetry, the computational domain is a rectangle which 

margins are placed at vertical and radial distances approximately ten times greater than 

the dimensions of the chamber. One of the margins acts as the symmetry axis. Results 

obtained with the AS models can be compared with those presented by Folch and Martí 

(2004).

In the 3-D geometrical setting, the elliptical magma chamber is converted to a 

lenticular magma chamber, i.e. the orthogonal projection of the chamber at surface is a 

circle of radius D. It is also characterized by the axis D and H. The computational 

domain corresponds to a cylinder with diameter and height ten times larger than the 

dimensions of the chamber. The magma chamber is located in the centre of the cylinder 

at a depth P below the cylinder’s top, i.e. Earth’s surface.

Fig. 4.27: Sketch of the corresponding geometrical setting and boundary conditions of the performed 
mathematical models. The axial symmetric geometrical setting corresponds to a rectangle with fixed 
laterals and base (ux = uy = 0). The magma camber is reproduced by an elliptical hole (white) in the 
rectangle. The top of the rectangle is traction free and. The 3-D geometrical setting consists of a cylinder 
with fixed laterals and base  (grey).  The magma chamber corresponds to a ellipsoidal lenticular hole. The 
upper surface of the cylinder corresponds to the Earth’s surface and is traction free (red). D Magma
chamber diameter; H Magma chamber height; P Balloon depth.
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IV.5.4.3 Boundary conditions and numerical method

Similar to the other models, solutions are obtained using FEMFES. For the host 

rock properties we use standard values of Young’s modulus E = 45 GPa and Poisson’s 

coefficient = 0.25. Additionally, we assume that the host rock tensile strength T0 is 15 

MPa and the shear strength S0 is 50 MPa. Nevertheless, possible variations of these 

values (always within bounds typically found in nature) do not alter the conclusions of 

this study.

Since we consider linear elasticity to solve the models, we can apply the 

superposition principle. Consequently, the solution of the problem gives the variations of 

the stress field (due to chamber decompression) with respect to an initial state of stress. 

The total stress field will be the pre-eruptive reference stress field plus the computed 

syn-eruptive stress variations. In our models we assume that the initial stress field is 

purely lithostatic given by Equation 4.16. Under these hypotheses, the stress field around 

a magma chamber is computed by solving the AS or the 3-D equations for each specific 

configuration and set of boundary conditions.

As boundary conditions we impose an underpressure - P at the chamber walls in 

order to simulate magma chamber decompression and we consider the surface of the 

Earth as free surface (i.e. traction free). Furthermore displacements are prescribed to 

zero (ux = uy = uz = 0) at the computational margins where the variations of the stress 

field due toe the magma chamber decompression can be neglected.  

IV.5.4.4 Performed models 

We have performed six different models (Table 4.4): 3 with axial symmetry and 

3 in 3-D. 

INPUT PARAMETERS Models
P (km) R H (km) D (km) e - P (MPa) 

NR-0.2 AS 2 0.2 2 10 5 15 

NR-0.4 AS 4 0.4 2 10 5 15 

NR-0.6 AS 6 0.6 2 10 5 15 

NR-0.2 3-D 2 0.2 2 10 5 15 

NR-0.4 3-D 4 0.4 2 10 5 15 
NR-0.6 3-D 6 0.6 2 10 5 15 

Table 4.4: List of the performed mathematical models and the corresponding input parameters. All 
parameters remain constants except of the roof aspect ratio R. Axial symmetric models are indicated with 
the abbreviation “AS”. - P Magma chamber underpressure; D Magma chamber diameter; H Magma
chamber height; P Magma chamber depth; R Roof aspect ratio. 
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IV.5.4.5 Results 

 Since we want to compare our results with those exposed by Folch and Martí 

(2004), we are going to illustrate the contour fills of 1- 3 and 3 and the distribution of 

3 at surface, in order to find the position of the peak of maximum tension. We assume 

that caldera collapse will take place if all the conditions for ring fault formation 

mentioned in section IV.3 are accomplished. 

In Figure 4.28 we show the contour fills of 1- 3 and 3. Regardless the roof 

aspect ratio of the mathematical model the maximum value of 1- 3 occurs at the outer 

margins of the magma chamber (Fig. 4.28 indication I). Observe that for both samples 

(NR-0.2 3-D and NR-0.6 3-D) the highest value of 1- 3 goes beyond 50 MPa, the 

considered shear strength of the rock S0. Consequently, if 1- 3 >S0 shear fractures can 

be produced according to condition (2) for ring fault formation. If we compare the 

results obtained with the two different geometrical settings (axial symmetry or 3-D), 

notice that around the magma chamber the distribution of the values of 1- 3 is similar. 

By contrast, approaching to the surface, discrepancies between the results increase (Fig. 

4.28 indication II). Regarding the contour fills of 3. For low roof aspect ratio, 3 values

at surface become more tensile. In fact, only for the sample NR-0.2 3-D (R=0.2, 3-D) 

with the lowest R value, the minimum value of 3 is lower or close to 15 MPa, the 

considered tensile strength of the rock T0. Consequently, only in this case 3 < T0, i.e. 

tensile fractures can be produced according to condition (1) for ring fault formation. If 

we compare the results obtained with the two different geometrical settings (axial 

symmetry or 3-D), notice that there exist some discrepancies between the results (Fig. 

4.28 indication III).

In Figure 4.29 we have represented the distribution of total displacement and of 

3 at surface. In the case of the displacement distribution at surface, we observe that the 

maximum is centred in the magma chamber axis. Notice that for the same model in 3-D 

or with the AS geometry whereas the profile of the curve is geometrically similar the 

value of maximum displacement umax varies. In all three cases, the AS models provide a 

much higher value of  umax than the 3-D ones. Additionally, we can observe that the 

difference between the values of umax  provide by the AS and the 3-D decrease when 

increasing R. Regarding the distribution of 3 at surface. Again, similar to the 

mathematical models reproducing curved silicone reservoir experiments, differences 
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between AS and 3-D are quite notorious. First, the main differences reside in the 

position of the 3 peaks. Results obtained with the 3-D models localize the minimum 

value of 3 at a distance shorter than D/2 and this position is independent on the roof 

aspect ratio value. By contrast, AS models indicate that the peak of 3 is situated beyond 

the limits of the magma chamber and the distance increases when increasing R.

Additionally, if we compare the values of 3 we observe that similar to the 

displacements, difference increase when decreasing R.

Fig. 4.28: Results obtained for the mathematical models NR-0.2 3-D, NR-0.2 AS, NR-0.6 3-D and NR-0.6 
AS. Contour fills of 1 - 3 and 3. Stress values are normalized to magma chamber underpressure. Negative 
values for 3 imply extension. 
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Fig. 4.29: Comparison of the results obtained when using an axial symmetric (AS) or a 3-D geometrical 
setting. On the top of the Figure a sketch illustrates the location of the magma chamber to facilitate the 
comprehension of the plots. The Figure includes the distribution of the displacements and of 3 at surface 
versus distance respect the magma chamber axis. Values of displacements and distances are normalized 
to the magma chamber diameter and those of 3 to the magma chamber underpressure - P. The angle 
(Fig. 4.2), localized between the vertical and the line that draw from the edges of the cavity marks the peak 
of 3 at surface and has been calculated according to Equation 4.1. D Magma chamber diameter; H
Magma chamber height; P Magma chamber depth; R Roof aspect ratio. 
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IV.5.4.6 Discussion 

IV.5.4.6.1 Numerical implications of the selected geometrical setting

Theoretically, at least regarding the displacement and 3 values, results obtained 

should be independent on the selected geometrical setting. Due to the selected 3-D 

geometry (remember that for the 3-D models we use revolution geometries of the AS 

models) both AS and 3-D models are numerically equivalent. However, our results 

indicate the opposite. After long consideration we assume that the mesh of the 3-D 

models could play an important role. 

  Figure 4.30 shows the mesh of model NR-0.2 AS (R=0.2 and AS). We can 

observe that whereas the element size at the computational margins is quite large, around 

the magma chamber it is relatively uniform and refined. The total number of elements is 

12,354, which are associated with 6,526 nodes and the accuracy of the results obtained is 

satisfactory for our study. In fact, a more refined mesh improves the results in the 

displacements only in the second decimal position. A finite element mesh of these 

characteristics (12,354 elements and 6,526 nodes) does not offer any computational 

problems and the calculation time is fast (< 1 min).  

Fig. 4.30: Mesh of model NR-0.2 AS 
(R=0.2 and axial symmetric).

However, important problems appear when trying to mesh 3-D models. Figure 

4.31 illustrates three different meshes for model NR-0.2 3-D (R=0.2, 3-D). Mesh A has 

a very small element size at surface, the magma chamber walls and the magma chamber 

axis (Fig. 4.31 indication I). However, elements surrounding the magma chamber are 

quite large (Fig. 4.31 indication II). In the case of mesh B, the elements at surface, the 
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magma chamber walls and the magma chamber axis have been refined (Fig. 4.31 

indication III) and as a consequence of the mesh generator, the elements surrounding the 

magma chamber have been refined, too (Fig. 4.31 indication IV). In comparison to 

meshes A and B, mesh C is less refined at surface, the magma chamber walls and the 

magma chamber axis (Fig. 4.31 indication V). By contrast, elements surrounding the 

magma chamber are smaller and more abundant (Fig. 4.31 indication VI). If we 

compare, this three meshes with that of model NR-0.2 AS the most similar one is mesh 

C. Whereas the meshes of the axial symmetric models have less than 50,000 triangular 

elements, the 3-D meshes used in this work have between 800,000 and 1,000,000 

tetrahedral elements. Using a standard personal computer Intel Pentium® 4 CPU 2.66 

GHz and 1GB RAM, the generation of such a 3-D mesh and the corresponding calculus 

may last between 15 and 30 min each. Additionally, up to now the limit of elements 

calculable with the abovementioned computer due to the RAM memory is around 106

elements. Consequently, when calculating the 3-D models with a mesh similar to that of 

the axial symmetric models we are close to the computational limits of our computer. 

However, from the results illustrated in Figure 4.30 it is evident that 3-D models are 

more sensible to mesh changes than the AS ones. Moreover, notice that decreasing the 

size of the elements is not necessarily the best way to improve the results of our mesh 

(compare mesh A and C). The number of elements is approximately the same, but mesh 

A is more heterogeneous than mesh C and the number of elements between the magma 

chamber and the surface is greater in the latter. Displacement values obtained with mesh 

C are slightly closer to those of the AS model. Observe, that simply to give the mesh a 

more uniform element size covering better the zone between the magma chamber and 

the surface, improves the results in 0.15. We imagine that, similar to the model of the 

cube exposed in section, results in the displacement distribution obtained with an 

accurate 3-D mesh would we almost equal to that obtained with the AS models. 

Nevertheless, the performance of such refined meshes are out of our computational 

possibilities.

 Additionally, Figure 4.31 illustrates that refining the mesh do not introduce 

changes in the position of the 3 peak. Therefore, interpretations of the results 

concerning this aspect are independent on the applied 3-D mesh. 
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Fig. 4.31: Detailed comparison of the results obtained when using an axial symmetric (AS) or a 3-D 
geometrical setting. On the top of the Figure different mesh of model NR-0.2 3-D (R=0.2, 3-D). The Figure 
includes the distribution of the displacements and of 3 at surface versus distance respect the magma 
chamber axis. Values of displacements and distances are normalized to the magma chamber diameter and 
those of 3 to the magma chamber underpressure - P. D Magma chamber diameter; R Roof aspect ratio.
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IV.5.4.6.2 Volcanological implications of the selected geometrical setting

Now, we want to compare our results with those exposed by Folch and Martí 

(2004) (Fig. 4.32). Additionally, we want to analyse the volcanological implications of 

the selected geometrical setting. Remember that these authors use an AS approach for 

their calculations. Consequently, our results obtained considering AS should by identical 

to those exposed by Folch and Martí (2004). 

We have seen in our results that regarding the contour fills of 1- 3 and 3, there 

are any significant differences when using a 3-D or a AS geometrical setting. 

Consequently, our results and those exposed by Folch and Martí (2004) should be 

approximately equivalent. Effectively, similar to our models, regardless the roof aspect 

ratio of the mathematical model the maximum value of 1- 3 occurs at the outer margins 

of the magma chamber and this is enough high, so that shear fractures can be produced 

according to condition (2) for ring fault formation. Our results regarding the contour fills 

of 3 values are also similar to those of Folch and Martí (2004). For low roof aspect 

ratio, 3 values at surface become more tensile. Only for low R values, 3 is enough low 

so that tensile fractures can be produced according to condition (1) for ring fault 

formation. 

According to our results, the most important differences should appear when 

comparing the distribution of 3 at surface. Remember that our results vary noticeably 

when considering 3-D or AS geometry. In Figure 4.32 B we can see some of the results 

exposed by Folch and Martí (2004). Notice that according to them, the condition of ring 

fault formation concerning the location of the peak of maximum tension (minimum 3)

at a radial distance approximately equal to the projection at surface of the magma 

chamber extension is never attained for certain magma chamber configurations (a given 

R and e pair). In such cases, the location of these fractures at too large radial distances 

impedes the formation of ring faults because this violates condition (3). Comparing our 

results with those exposed by Folch and Martí (2004) we can affirm that the main 

differences reside in the position of the 3 peaks. Our results obtained with the 3-D 

models localize the minimum value of 3 at a distance shorter than D/2, i.e. a radial 

distance shorter to the projection at surface of the magma chamber extension. 

Additionally, contrarily to Folch and Martí (2004) results, this position is independent on 

the roof aspect ratio value. Consequently, if we calculate the value of the angle (Fig.
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4.2) for the models NR-0.2 3-D, NR-0.4 3-D and NR-0.6 3-D (Fig. 4.29), we can 

observe that it decreases with the roof aspect ratio of the models. Contrarily to Folch and 

Martí (2004) results, for higher R values faults may be closer to the vertical. 

 According to their results (Fig. 4.32), the authors stated that in all their 

numerical runs they observed that those chambers that verify conditions (1) and (3) at 

surface verify also condition (2) at the chamber walls. With Figure 4.32 B the try to 

illustrated how, for sill-like chamber geometries, there exists a critical value for R (a 

critical chamber depth) above which both shear and tensional fractures are produced in a 

way that encourage the formation of subvertical ring-faults. Tensional fractures open at 

surface along the vertical direction, whereas a conjugate pair of shear fractures appears 

at a point above the chamber margins and forming angles of  45º with the normal to the 

walls. Despite their model is unable to predict subsequent fracture propagation, the 

orientation of principal stresses at this point suggests a rather vertical orientation for 

shear fractures. Finally, the authors perform the classification of the two collapse caldera 

end-members in terms of the dimensionless parameters R and e (Fig. 4.6). Evidently, 

with the new 3-D results this classification may be rethought.  

After comparing our results with those presented by Folch and Martí (2004) we 

can appreciate how influential are in mathematical models the selected geometrical 

settings. In short, it is necessary to ensure when performing mathematical models that 

the selected boundary conditions, material properties and other pure numerical factors 

like mesh size or the numerical approach may influence the numerical results. It can 

happen, as we have seen in this chapter, that results may vary considerably depending on 

the selected characteristics.  We cannot forget that the comparison of numerical results 

with a direct and clear field observation is a difficult and risky task, since we are not able 

to collate the obtained information.  
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Fig 4.32: (A) Contour fills of 1- 3 and 3 for two magma chambers with e=8 and R=0.5 and 0.17 after a 
decompression of 10 MPa. In both cases, only the region of the computational domain around the chamber 
is shown. The regions where 3<-T0 for T0 =10 MPa, i.e. where tensile fractures can be produced according 
to condition (1), are indicated in black. Regarding the contour fills of 1- 3 , the regions where 1- 3 >S0 for 
S0 =50 MPa, i.e. where shear fractures can be produced according to (2), are indicated in black. In any 
case, distances are given in km and stresses in MPa. For R=0.17, both shear and tensional fractures are 
produced in a way that encourage the formation of subvertical normal ring-faults. (B) Values of 3 at 
surface plotted versus radial distance for values of R=0.5 and 0.17. Stress values are normalised to 
chamber underpressure whereas radial distance is normalised to chamber extension, i.e. the surface 
projection of the chamber walls peaks at dimensionless distance 1. The origin of coordinates is at the 
symmetry axis.  
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IV.5.5 Influence of damage-zone growth on fault displacement 

IV.5.5.1 Introduction and objectives 

This section has two basic aims. One is to summarize recent field studies on the 

typical infrastructures of fault zones. The focus is on the fault core and fault damage 

zones, and how they grow and change with the development of the fault zone itself. In 

fact, these mechanical properties determine the fault slips and may control also fault 

reactivation. A second aim is to present new mathematical models on the effects of a 

growing damage zone on fault slip. 

As mentioned above the aim of this section is to explore the effects of increasing 

damage-zone thickness on fault slip. Therefore, we have performed many mathematical 

models trying to simulate various fault zones. The results obtain are applicable to any 

type of faults, here idealized as sinistral strike-slip faults or vertical dip-slip faults such 

as those acting on caldera collapses. 

Often caldera collapse processes take place incrementally during a short period 

of time during the same eruptive cycle (e.g. Bolsena – Italy, Nappi et al., 1991). In some 

cases, a subsequent collapse caldera close to a previous one, making good use of the 

existing ring fractures. Furthermore, as mentioned before (see sections I.1.2, II.5.7.5 and 

III.2.2), there exists relevant regional tectonic structures that may control the subsidence 

process or may be reactivated during the caldera collapse. Therefore, we consider very 

interesting to study the influence of the damage-zone growth on fault displacement 

related to caldera collapse. 

IV.5.5.2 Infrastructure of a fault zone 

 Regarding the infrastructure of a fault zone, field studies worldwide indicate that 

fault zones consist of two main hydromechanical units: a fault core and a fault damage 

zone (Fig. 4.32). On the one hand, the core is primarily composed of fault rocks, such us 

breccia or gouge. On the other, the damage zone contains some lenses of breccia but is 

characterized by fractures of various types (Berg, 2000; Braathen and Gabrielsen, 1998; 
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Bruhn et al., 1994; Caine et al., 1995; Simmenes, 2002). During fault activity the core is 

normally soft (with a low stiffness), however, if the fault is inactive for a long time, it 

heals and seals becoming stiffer.   

Furthermore, fields studies show that fracture frequency in a damage zone is 

often quite variable, but normally decreases with distance from the core-damage zone 

boundary (Berg, 2000; Braathen and Gabrielsen, 1998; Bruhn et al., 1994; Caine et al., 

1995; Li et al., 1994; Simmenes, 2002). Similar results are obtained for microfaults in 

laboratory experiments (Shimada, 2000). Generally, an increase in the frequency 

corresponds to a decrease of the effective stiffness E (Young’s Modulus) in a direction 

perpendicular to the main fracture direction. Consequently, the stiffness of a damage 

zone normally decreases on approaching the fault core (Fig. 4.32). On the basis of 

fracture frequency, a fault damage zone can commonly be divided into several subzones 

or units, each with a different stiffness (Gudmundsson and Brenner, 2003). 

During fault activity the core accommodates most of displacement. Faults and 

fractures located in the core tend to be smaller than those in the damage zone and its 

characteristic features are cataclastic rocks such as gouge and breccia (Fig. 4.33). In an 

active fault, the crushed and altered cataclastic rocks of the core remain soft, with a 

granular-media structure at the millimeter or centimeter scale. In moderately to highly 

active fault zones the core material behaves as ductile except during fault slip. 

Fig. 4.33:  Schematic illustration of a typical 
fault zone consisting of two main 
mechanical units: a comparatively thin core 
and a much thicker damage zone. The 
effective Young’s modulus (stiffness) 
decreases from the host rock to the 
boundary between the core and the damage 
zone.
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 It is important to remark that the thickness of the core and damage zone increase 

with fault displacement (Berg, 2000; Braathen and Gabrielsen, 1998; Bruhn et al., 1994; 

Caine et al., 1995; Simmenes, 2002). For example, fault zones with displacements of tens 

of kilometres have damage zones that reach a thickness of several kilometres and cores 

(sometimes more than one) that reach ten meters. 

So long as slip on a fault continues, the core and the damage zone maintain lower 

stiffnesses than the surrounding host rock (Fig. 4.33). As the damage zone increases its 

thickness, its stiffness may be expected to have gradually stronger effects on fault slips. 

IV.5.5.3 Numerical fault models 

IV.5.5.3.1 Procedure and geometrical settings

For the models we choose a 2-D plain strain geometrical setting. The 

computational domain is a rectangle of 2600 × 2400 length units LU. In the interior we 

simulate an existing fault by introducing a thin and elongate hole (Fig. 4.34 A).  The 

fault-plane is 400 LUs long (strike dimension) and its opening (thickness of the fault 

core) is of 0.2 LUs. In order to analyse the effects of the damage zone growth we define 

10 mechanical units around the opening. In each of the 10 total model runs, a new 

mechanical unit (of 10 length units) is added on either side of the fault, in order to 

simulate an increase in the damage-zone thickness (Fig. 4.34 B).  

Fig. 4.34: Boundary-element model 
of fault displacement. (A) The 
boundary conditions and the 
variation in Young’s modulus 
(stiffness) in the core and damage 
zone. (B) The damage-zone 
thickness is gradually increased in 
10 steps. Step 10 corresponds to the 
mechanical units and stiffnesses 
shown in (A). 
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IV.5.5.3.2 Boundary conditions and numerical method

Results are obtained using the commercial boundary-element program BEASY

(Beasy, 1991; Brebbia and Dominquez, 1992; http://www.beasy. com). 

Boundary conditions for the models are illustrated in Figure 4.33. The model 

boundaries running parallel with the fault, supposed to be far away from the fault, are 

fastened (fixed) using the conditions of fixed zero displacement (Fig. 4.34 A). 

Furthermore, a typical stress drop of 5 MPa (Scholz, 1990) is used as driving stress. 

Since the fault dimensions and the loading are constant, the only parameter that changes 

between the different models is the thickness of the fault-damage zone. In the present 

models we use data on typical laboratory values of stiffnesses for igneous rocks such as 

basalts but scale the laboratory values (Carmichael, 1989; Bell, 2000) down to lower 

values so as to take the effects of fractures in the damage zones into account. In the final 

geometry (step 10, Fig. 4.34 A) the stiffnesses of the mechanical units gradually 

decreases from 35 GPa at the contact with the host rock to 0.5 GPa next to the core. The 

host-rock stiffness is 40 GPa. The core stiffness is 0.1 GPa, a value based on typical 

static stiffnesses of unconsolidated rocks as well as in situ measurements from various 

fault cores worldwide (Hoek, 2000; Schön, 2004). 

IV.5.5.4 Numerical results 

 For the given boundary conditions, the fault has its maximum displacement at the 

centre and the minimums at the borders (Fig. 4.35 A). The two peaks of tensile stress 

concentrations occur at the opposite locations of those of high compressional stresses 

(Fig. 4.35 B). One principal result is that the maximum displacement on the fault also 

increases (Fig. 4.36). It follows that fault slip generated during a particular event, may 

gradually increase with increasing damage-zone thickness. Thus, for a fault of constant 

rupture (trace) length, the ratio of the maximum displacement to the rupture length 

should decrease with time. Additionally, when the damage-zone thickness gradually 

increases, the maximum displacement increases although the fault-displacement curves 

remain geometrically similar (Fig. 4.37). Thus, irrespective of the displacement size, the 

displacement profile remains similar as regards shape; namely, a smooth curve with a 
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maximum displacement at the centre and minimum displacements at the lateral tips of 

the fault. 

Fig. 4.35: Results obtained for step 10. Contour fills correspond to (A) Displacements. (B) Values of 3 (the 
maximum principal tensile stress). 

Fig. 4.36:  Maximum normalized displacement (MND) in the fault center in each of the 10 steps (Fig. 3). 
Here MND = 104 MD/FL, where MD is the maximum displacement and FL the fault length, both expressed 
in model length units. 
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Fig. 4.37: Displacement curves along the length of the fault in each of the 10 steps (Fig. 4.34). 

IV.5.5.5 Discussion 

Fault displacement is directly proportional to the rock Poisson’s ratio  and the 

shear stress driving the displacement (Gudmundsson, 2000). Altough the Poisson’s 

ratio depends on the rock type under consideration, its range is generally small compared 

with that of Young’s modulus; for most crustal rocks Poisson’s ratio is between 0.2 and 

0.3 (Carmichael, 1989; Bell, 2000). Furthermore, stress drop, or driving stress, which 

lead to faulting has also a remarkably narrow range. In fact, most stress drops are 

between 1 and 10 MPa, and commonly 3-6 MPa (Scholz, 1990). 

Furthermore, previous studies (Gudmundsson, 2000) indicate that for a given 

controlling dimension and driving stress the displacement increases, as E gets lower, 

which is in perfect agreement with the numerical results (Fig. 4.33). These theoretical 

results are also by supported by direct observations. Various field studies indicate that as 

a fault evolves, not only does its damage zone and core become thicker (Bruhn et al,. 

1994; Berg, 2000; Simmenes, 2002), but its displacement u becomes larger in proportion 

to its trace length L so that the L/u ratio becomes smaller.  
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IV.5.5.6 Implications for caldera collapses 

 It is typical in some caldera systems that collapses episodes may occur 

repeatedly. Evidently, if we apply the results obtained in this section we can assume that 

due to the fractures that took place during the first collapse process it is possible that 

reactivation of pre-existing faults or the collapse onset is easier during the subsequent 

caldera-forming eruptions. If we extrapolate the observed results to natural caldera 

collapses, for the same stress field we would expect to find in reactivated faults higher 

displacements in the subsequent collapse process. We assume that caldera subsidence is 

controlled by the collapse mechanism but it is also limited by the high of the magmatic 

reservoir. However, attending to these observations it is plausible to assume that 

displacements along pre-existing ring faults during a second caldera collapse would be 

greater than the first one only due to the fact that the damage-zone surrounding the 

fractures has increased. Additionally, since post-collapse alteration processes may also 

alter and modify the stiffness of the host rock surrounding the ring faults there is the 

possibility that these processes may also influence in the displacement and fracture 

reactivation in posterior caldera collapses. It is clear that the mechanical conditions for 

subsequent caldera-forming events may vary during each cycle.  

IV.5.6 Restrictions of the performed mathematical models 

The principal aim of this section is to sum up the main restrictions of the 

mathematical models presented in this chapter. Some of them were already mentioned in 

section IV.2.3 and others appear after analysing results obtained in this work. 

IV.5.6.1 The use of elastic models 

 A first group of numerical limitations are related to the use of elasticity as the 

selected host rock rheological behaviour. We have seen when trying to reproduce 

numerically the analogue models of chapter 3 that using this rheology is not possible to 

reproduce fault or brittle failure structures in detail. In fact, it is quite difficult to 
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correlate the numerical results with the experimental observations. We admit that the use 

of linear rheologies permits to work with the superposition principle of stress fields and 

facilitates the required calculation but the list of implicit restrictions is quite long. We 

suppose that the same mathematical models performed with different rheologies would 

offer completely opposite results, at least in such detailed study. Consequently, although 

linear elasticity may be suitable for a first numerical approximation is it recommendable 

the use of more complicated, i.e. realistic approaches. In fact, to consider linear elasticity 

when reproducing analogue experiments may be only reliable for simulating the first 

stages of the collapse process, i.e. the down flexure phase, prior to the appearance of any 

brittle structure. Once the first fracture has appeared, elasticity is far away from 

reproducing with accuracy the deformation that takes place during the collapse. These 

observations concerning the reproduction of analogue models may be extrapolated to 

those mathematical models trying to simulate “natural” conditions. If we base our 

interpretations only on numerical examples performed with elastic assumption they 

cannot be satisfactory enough and lead to misinterpretations of natural systems. 

Additionally, since we use linear elasticity, we are not able to consider the presence of 

regional faults or previous formed structures.

IV.5.6.2 Defining the geometrical setting 

Some restrictions come directly from the considered geometrical setting. As we 

have seen, it is necessary to take into account possible variations in the results due to the 

selected geometrical setting. Several authors (e.g. Gudmundsson, 1998; Gray and 

Monaghan, 2004) (see Table 4.1) use 2-D geometries considering that the obtained 

results are an enough accurate solution. However, we have seen in sections IV.5.3.6.2 

and 5.4.6.1 that this is not necessarily the case. Depending on the selected geometrical 

approach results obtained can be conceptually very different. Again, this is a crucial 

aspect when extrapolating the results obtained to natural systems. Since we try to 

understand complicated natural systems it is obvious that a too simplistic model may 

induce us to important conceptual errors and interpretation of our observations. We 

should try to improve mathematical models using if possible the most accurate 

geometries and trying to avoid too simple geometrical approaches like 2-D models. We 
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have seen that results of even axial symmetric and 3-D models may have important 

differences, although theoretically, results obtained should be equivalent. 

IV.5.6.3 Influence of the mesh and computational limitations 

An important source of errors in mathematical modelling is the mesh quality, 

which is strongly dependent on the own computational limitations. It is important to 

consider that although 3-D modelling is the best numerical approach, the accuracy and 

reliability of the obtained results is controlled by the quality of the used mesh. In our 

models we try to use the most refined finite element we are able to calculate using our 

standard personal computers (PC). Of course, more powerful machines or 

supercomputers would allow us to perform very fine meshes and consequently, much 

better calculations. As we assume that not all research groups are able to calculate with 

the helps of such potent computers we have preferred to infer the error provided by the 

calculus capacity of normal PCs. 

IV.3.6.4 Additional limitations 

 Logically, our mathematical models are also affected by the restrictions 

commented in section IV.4.3. In our models reproducing natural systems (see section 

IV.5.4) we consider a homogeneous host rock, which is of course a simplification. 

Additionally, our models do not allow the possibility of dike injection and of course, 

fluid dynamics and rock mechanics are uncoupled. Moreover, models of section IV.5.4 

are carried out without the presence of a volcanic edifice that may alter the stress around 

the chamber and slightly vary the observed results.

IV.6 SUMMARY AND CONCLUSIONS

This chapter has been addressed to summarize the most important aspects 

concerning theoretical/mathematical models of collapse calderas, which are important to 

quantify variables, to predict semi-quantitative general conditions for fracture or fault 
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formation and to provide a link with magma properties. Mathematical models allow to 

determine when caldera collapse process will occur, but they cannot tell us how such a 

complex process will develop. Mathematical models on collapse calderas performed 

during the last years can be classified depending on the topic they are focused on. There 

exit principally three groups: Models focused on the pressure evolution inside the 

magma chamber, models that determine stress conditions for normal-fault caldera 

initiation and models for predicting fault location using non-elastic rheology. 

In this chapter, we have also introduced the important aspects regarding pressure 

evolution inside the chamber during volcanic cycles (specially caldera-forming 

eruptions). From this theoretical analysis, we have defined two collapse caldera end-

members: under- and overpressure calderas. Additionally, we have sum up the 

conditions for ring fault initiation, i.e. the mechanical conditions to the caldera collapse 

onset: (1) The minimum value of 3, the tensile stress, (maximum tension) must be at 

surface, (2) the maximum value of 1- 3, the shear stress, must occur at the outer 

margins of the magma chamber and (3) the maximum tension at surface must peak at a 

radial distance approximately equal to the projection at surface of the magma chamber 

extension.

Furthermore, in this section we have described the different restrictions and 

limitations found in the mathematical models applied to the study of collapse calderas. 

These vary from model to model, and are principally dependent on the design of the 

physical model and the considered rheological behaviour for the host rock.  

The new mathematical models exposed in this work want to reproduce some of 

the analogue experiments presented here offering us the possibility of comparing the 

results obtained using mathematical or analogue models to detect additional restrictions 

of both methodologies. We have also reproduced some of the existing mathematical 

models to study the influence of the selected geometrical setting (e.g. axial symmetric or 

three-dimensional) in the obtained results and the subsequent interpretation of the 

required stress field likely to initiate normal ring faults without the influence of any pre-

collapse fracturing or differential tectonic stress. Moreover, we have presented another 

type of mathematical models, not strictly related to collapse caldera processes but from 

which the results obtained are applicable to the study of collapse mechanisms and 

controlling factors.

The main restrictions of our mathematical models are related to the use of 

elasticity as the selected host rock rheological behaviour, to the considered system 
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geometril and to the quality of the used mesh. Additionally, we have seen that the 

restrictions of the mathematical models may lead to misinterpretations of the results 

obtained.


