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si no la robé, ya la robaré”.
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Preface

In this thesis we study the problem of classification of symplectic structures in

a neighbourhood of a singular compact orbit of a completely integrable system

on a symplectic manifold (M2n, Ω) for which the foliation determined by the mo-

ment map is generically Lagrangian. The foliation is determined by the orbits

of the distribution generated by the symplectic gradients of the components of

a proper moment map F : M2n −→ Rn. We also assume that the singularity is

non-degenerate in the Morse-Bott sense. Under these assumptions, we prove that

any two symplectic structures for which this foliation is generically Lagrangian

are equivalent in the following sense: there exists a diffeomorphism defined in a

neighbourhood of a compact orbit preserving the foliation, fixing the singular orbit

and sending one symplectic form to the other. In the case there exists a symplec-

tic action of a compact Lie group preserving the moment map we prove that the

diffeomorphism can be chosen to be G-equivariant.

We also give an application of this result to contact geometry. We consider a

contact manifold (M2n+1, α) for which the Reeb vector field admits n first inte-

grals generically independent and commuting with respect to the Jacobi bracket.

The horizontal parts of the contact vector fields associated to these n functions

determine a foliation F . We consider the enlarged foliation F ′ generated by this

foliation and the Reeb vector field. The Reeb vector field is assumed to be the

infinitesimal generator of an S1-action. We study the problem of classification of

contact forms α in a neighbourhood of a singular orbit having the same Reeb
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vector field and for which F is Legendrian. Then under the assumption that the

singular orbit is compact and non-degenerate in the Morse-Bott sense we prove

that any two contact forms are equivalent. In other words, we show that there

exists a diffeomorphism preserving the foliation F , fixing the singular orbit and

taking one contact form to the other. In the case there exists a contact action of a

compact Lie group preserving the functions and preserving the Reeb vector field

this diffeomorphism can be chosen to be G-equivariant.
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ces, I met not only some wonderful professionals but also some wonderful people

to learn from.

I also wish to thank my friends Marc Fransoy, Marco Castrillón, Ferran Espuny

and Carlos Calvo for all their support. I remember having shared a lot of coffee

breaks with Josep Maria Ribo, Susana Clara Lopez, Juan Carlos Naranjo and

Frederic Gabern. Thanks for your advice. Thanks also to José Gil for helping me
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Introduction

“Around the new position, a circle, somewhat larger than in the former instance was

now described, and we again set to work with the spades. I was dreadfully, weary, but

scarcely understanding what had occasioned the change in my thoughts..... I dug eagerly,

and now and then caught myself actually looking with something that very much resem-

bled expectation for the fancied treasure.”

“The Gold Bug” by Edgar Allan Poe

This thesis is mainly concerned with the geometry underlying a completely

integrable Hamiltonian system. A Hamiltonian system on a symplectic manifold

(M2n, ω) is the system defined by the symplectic gradient of a function H which

is called the Hamiltonian function of the system. The study of the integrability of

such systems is relevant in many areas of mathematics and has its own story.

In June 29th of 1853 Joseph Liouville presented a communication entitled “Sur

l’intégration des equations différentielles de la Dynamique” at the “Bureau des

longitudes”. In the resulting note [40] he relates the notion of integrability of

the system to the existence of n integrals in involution with respect to the Poisson

bracket attached to the symplectic form. These systems come to the scene with the

classical denomination of “completely integrable systems”. In another language, a

particular choice of n-first integrals in involution determines the n components of

a moment map F : M2n −→ Rn. A lot of work has been done in the subject after

ix



x Introduction

Liouville. Let us outline some of the remarkable achievements from a geometrical

and topological point of view.

Consider a completely integrable Hamiltonian system. The symplectic gradients

of the components of the moment map define an involutive distribution. Assume

that the moment map is proper. Let L be a regular orbit of this distribution then

this orbit is a Lagrangian submanifold. Moreover, it is a torus and the neighbouring

orbits are also tori. Those tori are called Liouville tori. This is the topological con-

tribution of a theorem which has been known in the literature as Arnold-Liouville

theorem. The geometrical contribution of the above-mentioned theorem ensures

the existence of symplectic normal forms in the neighbourhood of a compact regu-

lar orbit. To the author’s knowledge, the works of Henri Mineur [44, 45, 46] already

gave the a complete description of the Hamiltonian system in a neighbourhood of

a compact regular orbit. That is why we will refer to the classical Arnold-Liouville

theorem as Liouville-Mineur-Arnold theorem. Let us state the theorem below,

Theorem 0.0.1 (Liouville-Mineur-Arnold Theorem)

Let (M2n, ω) be a symplectic manifold and let F : M2n −→ Rn be a proper

moment map. Assume that the components fi of F are pairwise in involution with

respect to the Poisson bracket associated to ω and that df1 ∧ · · · ∧ dfn 6= 0 on a

dense set. Let N = F−1(c), c ∈ Rn be a connected levelset. Then there exists a

neighbourhood U(N) of N and a diffeomorphism φ : U(N) −→ Dn×Tn such that,

1. φ(N) = {0} × Tn.

2. A set of coordinates µi in Dn and a set of coordinates βi in Tn for which,

φ∗(
∑n

i=1 dµi ∧ dβi) = ω.

3. F depends only on φ∗(µi) = pi and it does not depend on φ∗(βi) = θi.

The new coordinates pi obtained are called action coordinates. The coordinates

θi are called angle coordinates. Mineur also showed that the action functions pi



Introduction xi

can be defined via the period integrals. Let x be a point in a small neighbourhood

of N , the period integrals are defined by the following formula:

pi(x) =

∫

Γi(x)

α (0.0.1)

where α fulfills the condition dα = ω, and Γi(x) is a closed curve which depends

smoothly on x and which lies on the Liouville torus containing x. The homology

classes of Γ1(x), ..., Γn(x) form a basis of the first homology group of the Liouville

torus.

The existence of action-angle coordinates in a neighbourhood of a compact

orbit provides a symplectic model for the Lagrangian foliation F determined by

the symplectic gradients of the n component functions fi of the moment map

F . In fact, Liouville-Mineur-Arnold theorem entails a “uniqueness” result for the

symplectic structures making F into a Lagrangian foliation. In other words, if ω1

and ω2 are two symplectic structures defined in a neighbourhood of N for which

F is Lagrangian then there exists a symplectomorphism preserving the foliation,

fixing N and carrying ω1 to ω2. This is due to the following observation: Let

Xfi
be the symplectic gradients of the functions fi for any 1 ≤ i ≤ n, then the

Lagrangian condition implies that in fact F =< Xf1 , . . . , Xfn >, further {fj, fk}i =

0 where {., .}i stands for the Poisson bracket attached to ωi , i = 1, 2 . Then

by virtue of Liouville-Mineur-Arnold theorem there exists a foliation-preserving

symplectomorphism φi taking ωi to ω0 =
∑n

i=1 dpi∧dθi. In all, the diffeomorphism

φ−1
2 ◦ φ1 does the job. It takes ω1 to ω2, it fixes N and it is foliation preserving.

So if the orbit is regular the existence of action-angle coordinates enables to

classify the symplectic germs, up to foliation-preserving symplectomorphism, for

which F is Lagrangian in a neighbourhood of a compact orbit. There is just one

class of symplectic germs for which the foliation is Lagrangian.

One could look at the problem from a global perspective. There are topological

obstructions to the existence of global action-angle coordinates as it was shown by

Duistermaat in [22].
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The problem of classification of symplectic germs for regular Lagrangian folia-

tions can be taken further to consider the case of foliations not necessarily determi-

ned by a completely integrable system. Curras-Bosch and Molino have considered

the following concomitant problem: They consider the problem of classification for

germs of Lagrangian foliation defined in a neighbourhood of an torus equipped

with an affine structure. The motivation for considering an affine structure on the

torus is the Bott-Weinstein connection attached to the regular leaves of a Lagran-

gian foliation [59]. In the case the germ of Lagrangian foliation is determined by a

completely integrable system this affine structure is trivial. In the above mentioned

papers it is proved that there is no uniqueness result for the symplectic germ if

the affine structure on the torus is non-trivial.

After this review for regular Lagrangian foliations, the following question arises:

What can be said about the corresponding classification problem for symplectic

germs if the completely integrable systems has singularities?

This question is quite natural because singularities are present in many well-

known examples of integrable systems. In fact, if the completely integrable system

is defined on a compact manifold then the singularities cannot be avoided.

One of the main goals of this thesis is to prove that the uniqueness result for

symplectic germs for which the foliation determined by a completely integrable

system is generically Lagrangian holds when L is a singular orbit.

In the singular case, the problem can be posed at three different levels:

1. At the orbit level: In the neighbourhood of a compact singular orbit.

2. At a semi-local level: In the neighbourhood of a compact singular leaf.

3. At a global level.

Throughout this thesis we will only deal with the first situation. We will always
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assume that the singularity is non-degenerate. In any case, let us say a few words

about the semi-local and global problem first.

The problem of topological classification of integrable Hamiltonian systems

began with Fomenko [25] in some particular cases. Nguyen Tien Zung [61] studied

the general case for the semi-local problem for non-degenerate singularities. It turns

out that from a topological point of view we have a product-like description of the

singularities in terms of the Williamson type. Nguyen Tien Zung also proved in [61]

the existence of partial action-angle coordinates. The symplectic classification in

the semi-local case for non-elliptic singularities has been studied in the hyperbolic

case by Dufour, Molino and Toulet in [20]. The focus-focus case has been studied

recently by San Vu Ngoc in [58]. In the hyperbolic and focus-focus case there are

more invariants attached to the singularity. The symplectic germ in the hyperbolic

case is determined by the jet of a function depending on a variable and in the

focus-focus case is determined by the jet of a function in two variables. The singular

global case has been studied by Nguyen Tien Zung in the paper [63] where the

notion of Duistermaat-Chern class and monodromy (introduced by Duistermaat

for regular foliations) is extended in order to include the singularities into the

picture.

The condition of non-degeneracy is always present in the works cited above.

There are also some contributions for degenerate singularities in the world of inte-

grable systems. A recent contribution in that direction is contained in the paper

[7] by Colin de Verdière. In that paper, among other things, the problem of clas-

sification of germs of singular Lagrangian manifolds is posed for more general

singularities with a special emphasis on quasi-homogeneous singularities. For ins-

tance in this paper an explicit classification is obtained in the case of the cusp.

The singular achievements formerly specified often have a semiclassical version.

Their semiclassical counterpart has been obtained by Colin de Verdière and San

Vu Ngoc in [8, 56, 57, 7].
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After this digression we will focus on the orbit-like case. The main goal of this

thesis is to study problems of classification in the neighbourhood of an orbit.

The singularity of the orbit can be described in terms of the singularity of the

functions fi.

Let us start with the case L is reduced to a point.

Observe that the Poisson bracket induces a Lie algebra structure in the set

of functions. Since the functions fi are in involution with respect to the Poisson

bracket, the quadratic parts of the functions fi commute defining in this way an

abelian subalgebra of Q(2n,R) (the set of quadratic forms on 2n-variables). In the

case the singularity of the functions fi is of Morse type this subalgebra is indeed

a Cartan subalgebra. We call these singularities of non-degenerate type.

The problem of classification of singularities for the quadratic parts of the func-

tions fi can be therefore converted into the problem of classification of Cartan sub-

algebras of Q(2n,R). The singularities for the quadratic parts are well-understood

thanks to a result of Williamson [60] where Cartan subalgebras of Q(2n,R) are

classified. Let us recall its precise statement,

Theorem 0.0.2 (Williamson)

For any Cartan subalgebra C of Q(2n,R) there is a symplectic system of coor-

dinates (x1, . . . , xn, y1, . . . , yn) in R2n and a basis f1, . . . , fn of C such that each fi

is one of the following:

fi = x2
i + y2

i for 1 ≤ i ≤ ke , (elliptic)

fi = xiyi for ke + 1 ≤ i ≤ ke + kh , (hyperbolic)



fi = xiyi+1 − xi+1yi, (focus-focus pair)

fi+1 = xiyi + xi+1yi+1 for i = ke + kh + 2j − 1, 1 ≤ j ≤ kf

(0.0.2)

The linear system given by the quadratic parts of the fi is called the linear mo-

del for a singularity. Williamson’s Theorem can be seen as a normal form theorem



Introduction xv

for the linear model.

We may attach a triple of natural numbers (ke, kh, kf ) to a non-degenerate

singularity p of F , where ke stand for the number of elliptic components in the

linear model, kh and kf the number of hyperbolic and focus-focus components in

the linear model respectively.

By virtue of Williamson theorem this triple is an invariant of the linear system.

That is why this triple is often called the Williamson type of the singularity.

Now that the classification in the linear model has been carried out a natural

question arises:

Can we linearize the completely integrable system symplectically in a neigh-

bourhood of a point p?

We can reformulate the question as follows,

Problem 1

Consider a foliation F defined by a completely integrable system defined in

a neighbourhood of a non-degenerate singular 0-dimensional orbit of F . Assume

that we are given two symplectic forms ω1 and ω2 for which the foliation F is

Lagrangian. Does there exist a local diffeomorphism fixing p and taking ω1 to ω2?

This problem of symplectic linearization is closely related to another problem

in the spirit of Morse lemma which was solved succesfully by Vey for analytic

systems and by Vey and Colin de Verdière for smooth systems.

Problem 2

Given a function f : Rn −→ R with a non-degenerate singularity at the origin

and let ω be a volume form on Rn and let Q be its quadratic part at the origin.

Does there exist a diffeomorphism φ : (Rn, 0) −→ (Rn, 0) such that φ∗(f) = Q and

such that ω is taken to the volume form ω0 = dx1 ∧ · · · ∧ dxn?



xvi Introduction

In [6] Colin de Verdière and Vey prove that there exists a smooth function χ

such that φ∗(ω) = χ(Q) · ω0.

In that paper it is also proved that the function χ is characteristic of the pair

(f, ω) if Q is definite, otherwise only the jet is characteristic for the pair.

As a corollary of this result we obtain normal forms for foliations defined by the

levelsets of f because we can find a foliation-preserving diffeomorphism sending

the volume form χ(Q)·ω0 to the volume form ω0 as was observed in the paper cited

above. Notice as well that this result provides an affirmative answer to Problem 1 in

the case n = 2 because a volume form on a 2-dimensional manifold is a symplectic

form and the Lagrangian condition for a curve is automatic in that dimension.

The affirmative answer to Problem 1 in any dimension was provided by Eliasson

in [23] and [24]. As a matter of fact the proof provided by Eliasson seems complete

just in the case the singularity is completely elliptic ( of Williamson type (ke, 0, 0)).

In this thesis we will give another proof of Eliasson theorem with all the details

for singularities whose Williamson type is (ke, kh, 0). We will also sketch a proof

for the focus-focus components.

Observe that Eliasson’s theorem can be seen as a symplectic linearization result

which ensures that the initial completely integrable system can be taken to the

linear system and that the symplectic form can be taken to the standard one. As a

byproduct we obtain a multiple differentiable linearization result for n commuting

vector fields with singularities of non-degenerate type.

The symplectic linearization in a neighbourhood of an orbit L with dim L > 0

is due to Ito in the analytic case [32]. In this thesis we present the result in the

smooth case. Partial results in that direction (with dim L = 1 in a manifold of

dimension 4) where obtained by Currás-Bosch and the author of this thesis in

[13] and independently by Colin de Verdière and San Vu Ngoc in [8]. The final

result in any dimension was obtained by Nguyen Tien Zung and the author of this

thesis in [48]. In [48] it is also included a G-equivariant version of the symplectic
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linearization.

Symmetries are present in many physical problems and therefore they show up

in integrable systems theory as well. Those symmetries are encoded in actions of

Lie groups.

A special emphasis has been given to Hamiltonian actions of tori in symplectic

geometry. Along the way many results of symplectic uniqueness are obtained. A

good example of this is Delzant’s theorem [19] which enables to recover information

of a compact 2n-dimensional manifold by looking at the image of the moment map

of a Hamiltonian torus action which is, surprisingly, a convex polytope in Rn. A

lot of contributions in the area of Hamiltonian actions of Lie groups have been

done ever since. Let us mention some of the references of the large list of results

in that direction: the works of Lerman and Tolman to extend those result to

symplectic orbifolds ([37]) and the works of Karshon and Tolman for complexity

one Hamiltonian group actions ([33], [34]).

In this thesis actions of compact Lie group are also considered. We assume

also that the group acts symplectically and preserves the moment map which is

underlying in the foliation.

We end up proving the equivariant version of the symplectic uniqueness result in

a neighbourhood of a singular compact orbit. A nice consequence is the abelianity

of the group of symplectomorphisms preserving the moment map. In particular,

in the case the action of the group is effective then this group is Abelian, in all,

since it is also compact it is a product of a torus with a finite group. In the end,

in the case the group is connected we recover actions by tori in the spirit of the

theorem of Delzant.

Loosely speaking, the odd-dimensional counterpart of the theorems obtained

would be considered in the contact case. That is we can consider foliations on a

contact manifold as close as possible to the ones described by completely integrable

systems on symplectic manifolds. The regular case started with Lutz ([41]) who
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studies the problem of classification for contact structures in a compact contact

manifold under the constraint that they are invariant under the action of a to-

rus. This problem is naturally linked with the analogous problem for symplectic

manifolds exposed above. Recent contributions to that problem in the setting of

contact orbifolds are due to Lerman [36] where a convexity result is also establis-

hed. This problem has been considered by Molino and Banyaga in [3] and [4] also

for singular foliations. The common property of the foliations considered by Lutz,

Lerman, Molino and Banyaga is that their orbits are given by a torus action. In

this thesis we prove a similar result in the neighbourhood of a compact orbit but

for foliations whose orbits are not necessarily given by a torus action but fulfill

hypothesis of non-degeneracy. The foliation is determined as the enlarged foliation

of a Legendrian foliation described by the horizontal parts of contact vector fields

together with a Reeb vector field. We also assume that the Reeb vector field is

the infinitesimal generator of an S1-action. We study the problem of classifica-

tion for Legendrian foliations under the assumption that the contact form has the

same Reeb vector field. This assumption is a bit constraining. The natural gene-

ralization of this result would be to study the problem of classification under the

less-constraining assumption that the Reeb vector field belongs to the enlarged

foliation instead. This result has been left in the pipeline and it is not included

in this thesis. It uses an adaptation of Gray’s path method in contact geometry

adapted to foliations.

Organization of this thesis:

In Chapter 1 we make a review of the differentiable linearization result (

theorem 1.3.1) for the foliations considered. We provide our own proof for the

corank 1 case.

This differentiable linearization allows to work in a linear model in the covering.

In Chapter 2 the analytic tools necessary to face the problem are developed.

We also present our own proof for the symplectic linearization in dimension 2.
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In Chapter 3 we study the corank 1 case in dimension 4. We present two proofs

for the symplectic uniqueness. One of the proofs is based on the construction of

a symplectic orthogonal decomposition to reduce the problem to a 2 dimensional

case. The tecniques of decomposition of functions introduced in chapter 2 are used

to construct the symplectic orthogonal decomposition.

In Chapter 4 we study the rank 0 case in dimension 4. We prove the symplectic

uniqueness again using the geometrical tecniques of symplectic orthogonal decom-

position. In the construction of the symplectically orthogonal distributions we use

Moser tecniques and geometrical tricks relying on the Bott-Weinstein connection.

In Chapter 5 we use induction, Liouville-Mineur-Arnold Theorem and the

results obtained in the previous chapters to prove the general case in any rank and

in any dimension.

In Chapter 6 we present the equivariant version of the symplectic uniqueness

attained in Chapter 5. This equivariant version allows to conclude the symplectic

linearization in a neighbourhood of the initial compact orbit considered. We also

present a slice statement of the equivariant symplectic linearization result in the

neighbourhood of an orbit.

Finally, in Chapter 7 we consider the contact case and prove the contact

linearization result in the covering. We also present the G-equivariant contact

version of the theorem which yields in particular the contact linearization in the

initial neighbourhood considered.

Part of the results contained in this thesis are contained in the publications

and preprints that we cite below,

• Publications:

1. C. Currás-Bosch and E. Miranda, Symplectic linearization of singular

Lagrangian foliations in M4, Differential Geom. Appl. 18 (2003), no. 2,

195-205.
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2. E. Miranda, On the symplectic classification of singular Lagrangian fo-

liations. Proceedings of the IX Fall Workshop on Geometry and Physics

(Vilanova i la Geltrú, 2000), 239–244, Publ. R. Soc. Mat. Esp., 3, R.

Soc. Mat. Esp., Madrid, 2001.

• Preprints:

1. E. Miranda and Nguyen Tien Zung, Equivariant normal forms for non-

degenerate singular orbits of integrable Hamiltonian systems, preprint

2003, http://xxx.arxiv.org/abs/math.SG/0302287.

2. C. Currás-Bosch and E. Miranda, Symplectic germs of singular Lagran-

gian Foliations, preprint 265 de la Facultat de Matemàtiques. Univer-

sitat de Barcelona, 1999.
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0.1 Introducció

Objectius de la tesi

L’objectiu d’aquesta tesi és estudiar dos problemes de classificació de foliacions. El

primer problema es planteja per a foliacions definides per sistemes completament

integrables a varietats simplèctiques. El segon problema es planteja en l’àmbit de

les varietats de contacte per a foliacions també de tipus completament integrable

la definició de les quals està fortament inspirada en el cas simplèctic.

Tot seguit anem a establir els objectius amb precisió que seran tractats en

aquesta tesi.

Primer estudiarem el problema de classificació d’estructures simplèctiques de-

finides a un entorn d’una òrbita compacta d’un sistema completament integrable

per les quals la foliació definida per l’aplicació moment és genèricament Lagrangi-

ana. Quan diem que una foliació amb singularitats és genèricament Lagrangiana

volem dir que les fulles regulars són subvarietats Lagrangianes. Per continüıtat,

les fulles singulars (de dimensió inferior a la meitat de la dimensió de la varietat)

són subvarietats isòtropes. Al llarg de tota la tesi treballarem a nivell de germes.

És a dir tots els objectes es consideren definits a un entorn tubular de l’òrbita

compacta. Suposem que l’entorn considerat és una varietat simplèctica. Sigui Ω

una forma simplèctica fixada inicialment a l’entorn. La foliació està definida de la

xxi
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següent manera: és la foliació determinada per les òrbites de la distribució genera-

da pels gradients simplèctics respecte de la forma simplèctica Ω de les components

de l’aplicació moment. La forma simplèctica inicial Ω només és necessària per a

definir la foliació. El tipus de singularitats que considerarem són no degenerades

en el sentit de Morse-Bott. Sota aquestes hipòtesis demostrem que qualssevol dues

estructures simplèctiques per a les quals la foliació és genèricament Lagrangiana

són equivalents. La noció d’equivalència per al problema de classificació plantejat

és el següent: Dues formes simplèctiques definides a un entorn de la fulla són equi-

valents si existeix un simplectomorfisme preservant la foliació que envia una forma

simplèctica a l’altra i que fixa l’òrbita singular. En el cas que existeixi una ac-

ció d’un grup de Lie compacte preservant l’aplicació moment provem que aquesta

equivalència és G-equivariant.

El segon problema que ens plantegem és un problema de classificació per a

formes de contacte. Considerem una varietat de contacte (M2n+1, α) que compleix

les següents hipòtesis:

1. El camp de Reeb és el generador infinitesimal d’una acció del grup de Lie

S1.

2. El camp de Reeb admet n integrals primeres fi funcionalment independents

en un conjunt dens.

3. Les integrals primeres commuten respecte del parèntesi de Jacobi.

En aquesta varietat de contacte hi considerem dues foliacions: la foliació F
definida per les parts horitzontals dels camps de contacte associats a les n integrals

primeres fi considerades i la foliació F ′ definida com la foliació generada per F
conjuntament amb el camp de Reeb.

Un cop definida la foliació anem a plantejar el problema de classificació: Volem

classificar les formes de contacte α definides a un entorn d’una òrbita compacta
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singular de la foliació F ′ que tenen el mateix camp de Reeb i per a les quals la

foliació F és Legendriana. Sota la hipòtesis de que la singularitat sigui no dege-

nerada en el sentit de Morse-Bott provem que qualssevol dues formes de contacte

verificant les condicions anteriorment esmentades són equivalents. És a dir, pro-

vem que existeix un difeomorfisme definit a un entorn de l’òrbita que envia una

forma de contacte a l’altra, preservant la foliació F i fixant l’òrbita singular . En

el cas en què existeixi una acció d’un grup de Lie compacte preservant la forma de

contacte α provem que es pot trobar un difeomorfisme G-equivariant, aix́ı doncs,

la equivalència és G-equivariant.

Ubicació del problema

Aquesta tesi es centra en l’estudi de la geometria que està encoberta als siste-

mes Hamiltonians totalment integrables. Un sistema Hamiltonià en una varietat

simplèctica (M2n, ω) és el sistema definit pel gradient simplèctic d’una funció H

anomenada funció Hamiltoniana del sistema. L’estudi de la integrabilitat d’aquests

sistemes és rellevant en moltes àrees de les matemàtiques i té la seva pròpia història.

El 29 de Juny de 1853 Joseph Liouville va presentar una comunicació titulada

“Sur l’intégration des equations différentielles de la Dynamique”al “Bureau des

longitudes”. A la nota resultant [40] es relaciona la noció d’integrabilitat del sis-

tema amb l’existència de n integrals primeres en involució respecte el parèntesi

de Poisson associat a la forma simplèctica. Aquests sistemes apareixen amb la

denominació clàssica de “sistemes completament integrables”. En un altre llen-

guatge l’elecció de n integrals determina les components de l’aplicació moment

F : M2n −→ Rn. Els treballs de Joseph Liouville constitueixen el punt de par-

tida de tot un seguit de treballs posteriors. Anem a destacar algunes de les fites

aconseguides en aquest terreny des d’un punt de vista geomètric i topològic.

Considerem, d’entrada, un sistema Hamiltonià completament integrable en una

varietat simplèctica. Els gradients simplèctics de les components de l’aplicació mo-
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ment defineixen una distribució involutiva. Suposem que aquesta aplicació moment

és pròpia. Sigui L una òrbita regular d’aquesta distribució, la condició de comple-

ta integrabilitat implica que aquesta òrbita és una subvarietat Lagrangiana. A

més a més es tracta d’un torus i les òrbites a un entorn d’aquesta són també torus.

Aquests torus es diuen torus de Liouville. Aquesta és la contribució topològica d’un

teorema conegut com teorema d’Arnold-Liouville. L’aportació geomètrica d’aquest

teorema és l’existència de formes normals simplèctiques a un entorn d’una òrbita

regular compacta. De fet sembla ser que els treballs de Henri Mineur [44, 45, 46]

donaven una descripció del sistema Hamiltonià en un entorn d’una òrbita com-

pacta regular. Per aquest motiu ens referirem al clàssic teorema d’Arnold-Lioville

com a teorema de Liouville-Mineur-Arnold. Recordem-ne l’enunciat,

Teorema de Liouville-Mineur-Arnold

Sigui (M2n, ω) una varietat simplèctica i sigui F : M2n −→ Rn una aplicació

moment. Suposem que les components fi de F estan en involució dos a dos respecte

el parèntesi de Poisson associat a ω i que df1 ∧ · · · ∧ dfn 6= 0 en un conjunt dens.

Sigui N = F−1(c), c ∈ Rn un nivell connex de l’aplicació moment. Llavors existeix

un entorn U(N) de N i un difeomorfisme φ : U(N) −→ Dn × Tn tal que,

1. φ(N) = {0} × Tn.

2. Existeixen coordenades µi a un disc Dn i coordenades βi definides en un

torus Tn tals que, φ∗(
∑n

i=1 dµi ∧ dβi) = ω.

3. F només depèn de φ∗(µi) = pi i no depèn de φ∗(βi) = θi.

Les noves coordenades pi s’anomenen coordenades acció. Les coordenades θi

s’anomenen coordenades angle. Mineur va donar la fòrmula de les integrals de

peŕıode que s’utilitzen per a definir les coordenades d’acció. Sigui x un punt a un
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entorn de N , definim les integrals de peŕıode mitjançant la fòrmula:

pi(x) =

∫

Γi(x)

α (0.1.1)

on α és una forma de Liouville per a la forma simplèctica, és a dir, ve donada per

la condició dα = ω i Γi(x) és una corba tancada que depèn diferenciablement de x

i està continguda en un torus de Liouville. Les classes d’homologia Γ1(x), ..., Γn(x)

formen una base del primer grup d’homologia del torus de Liouville.

L’existència de coordenades acció-angle a un entorn d’una òrbita compacta do-

nen un model simplèctic per a la foliació Lagrangiana determinada per les òrbites

del gradient simplèctic de les n funcions components de l’aplicació moment F .

De fet, el teorema de Liouville-Mineur-Arnold porta impĺıcit un resultat d’uni-

citat simplèctica, llevat de simplectomorfisme preservant la foliació, de formes

simplèctiques que fan que F sigui Lagrangiana.

Dit d’una altra manera, si ω1 i ω2 són dues formes simplèctiques definides a

un entorn de N per a les quals la foliació F és Lagrangiana, llavors existeix un

simplectomorfisme preservant la foliació, fixant N i enviant ω1 a ω2. Això es degut

a la següent observació: Siguin Xωk
fi

els gradients simplèctics de les funcions fi res-

pecte ωk per a qualsevol 1 ≤ i ≤ n i k = 1, 2, llavors la condició de Lagrangianitat

implica que de fet es té la següent igualtat F =< Xf1
ωk , . . . , Xωk

fn
>, k = 1, 2, a

més a més {fi, fj}k = 0 on {., .}k és el parèntesi de Poisson associat a ωk , k = 1, 2.

Llavors, pel teorema de Liouville-Mineur-Arnold existeix un simplectomorfisme

φk, preservant la foliació i enviant la forma simplèctica ωk a ω0 =
∑n

i=1 dpi ∧ dθi.

Finalment el difeomorfisme φ−1
2 ◦ φ1 envia ω1 a ω2, fixa N i preserva la foliació.

Per tant si l’òrbita és regular l’existència de coordenades acció angle permet

classificar els germes simplèctics per als quals la foliació F és Lagrangiana llevat

de simplectomorfisme preservant la foliació. Com acabem de comprovar només

existeix una classe de germes simplèctics pels quals la foliació és Lagrangiana.

Podem mirar aquest problema des d’un punt de vista global. Existeixen obs-

truccions topològiques a l’existència de coordenades acció-angle global tal i com
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va provar Duistermaat a [22].

El problema de classificació de germes simplèctics de foliacions Lagrangianes es

pot portar més enllà i considerar foliacions Lagrangianes regulars que no provenen,

necessàriament, d’un sistema completament integrable. Currás-Bosch i Molino ([9,

10, 14, 15, 16]) han considerat el problema de classificació per a germes de foliacions

Lagrangianes definides a un entorn d’un torus amb una estructura af́ı fixada. La

motivació per a considerar una estructura af́ı al torus és la connexió de Bott-

Weinstein associada a les fulles regulars d’una foliació Lagrangiana [59].

En el cas que el germe de foliació Lagrangiana quedi determinat per un sistema

completament integrable aquesta estructura af́ı és trivial. Als treballs esmentats

anteriorment es prova que no hi ha resultat d’unicitat per als germes simplèctics

en el cas que la estructura af́ı no sigui trivial.

Després d’aquest repàs de resultats per a foliacions Lagrangianes regulars ens

plantegem la següent pregunta.

Què podem dir sobre el problema de classificació de germes simplèctics si el

sistema completament integrable té singularitats?

Aquesta pregunta és bastant natural perquè les singularitats són presents en

molts sistemes integrables coneguts. De fet si el sistema completament integrable

està definit en una varietat compacta les singularitats són inevitables.

Un dels principals objectius d’aquesta tesi és provar que es té també un resul-

tat d’unicitat per a germes simplèctics per als quals la foliació determinada pel

sistema completament integrable és Lagrangiana a un entorn d’una òrbita singular

compacta.

En el cas singular, ens podem plantejar el problema a tres nivells diferents:

1. A nivell d’òrbita. En un entorn d’una òrbita singular compacta.

2. A nivell semilocal. En un entorn d’una fulla singular compacta.
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3. A nivell global.

En aquesta tesi només ens preocuparem de la primera situació.

És a dir, farem un estudi a un entorn d’una òrbita compacta singular que

suposarem singular no-degenerada en el sentit de Morse-Bott. Abans d’endinsar-

nos en l’estudi a un entorn de l’òrbita, anem a fer esment ràpidament d’alguns

resultats destacables a nivell semilocal i global.

El problema de classificació topològica dels sistemes Hamiltonians completa-

ment integrables va començar amb Fomenko [25] en alguns casos particulars. L’es-

tudi de la topologia d’aquests sistemes a l’entorn d’una fulla no-degenerada en

el cas general es deu a Nguyen Tien Zung [61]. La descripció de les singularitats

des d’un punt de vista topològic és de tipus producte de singularitats el·ĺıptiques,

hiperbòliques i focus-focus. El tipus de Williamson és per tant l’unic invariant to-

pològic semi-local. En aquest treball, Nguyen Tien Zung també prova l’existència

de coordenades acció-angle parcials. La classificació simplèctica en el cas semi-local

per a singularitats de tipus no el·ĺıptic ha estat estudiat per Dufour, Molino i Tou-

let [20], [53] en el cas hiperbòlic i per San Vu Ngoc en el cas focus-focus [58]. La

conclusió d’aquests treballs és que hi ha més invariants associats a la singularitat

caracteritzats per jets de funcions d’una variable (en el cas hiperbòlic) i pels jets

de funcitons de dues variables (en el cas focus-focus). El cas global singular va

ésser estudiat per Nguyen Tien Zung a [63]. En aquest treball s’estén el concepte

de classe de Duistermaat-Chern i el concepte de monodromia en el cas singular.

La condició de no-degeneració està sempre present als treballs anteriorment citats.

Però també cal destacar algunes contribucions en el camp de sistemes integrables

amb singularitats de tipus degenerat. En aquesta direcció apunta el treball de Colin

de Verdière [7]. En aquest article, entre altres moltes coses es planteja el problema

de classificació de germes de varietats Lagrangianes singulars per a singularitats de

tipus més general que les no degenerades, destacant especialment les singularitats

quasi-homogènies. Per exemple, s’estudia el problema de classificació associat al
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cas de la cúspide.

La majoria de resultats esmentats tenen la seva versió semiclàssica. Els resultats

en l’àmbit semiclàssic han estat desenvolupats per Colin de Verdière i San Vu Ngoc

a [8, 56, 57, 7].

0.2 Resultats

L’objectiu principal d’aquesta tesi és estudiar problemes de classificació en un

entorn de l’òrbita.

Les singularitats queden descrites en termes de les singularitats de les compo-

nents de l’aplicació moment fi.

Comencem pel cas que L sigui redüıda a un punt. Observem que el parèntesi

de Poisson indueix una estructura de àlgebra de Lie en el conjunt de funcions

diferenciables. Com que les funcions fi estan en involució respecte el parèntesi

de Poisson, les parts quadràtiques de les funcions fi commuten definint, d’aquesta

manera, una estructura d’àlgebra abeliana al conjunt de formes quadràtiques en 2n

variables que denotarem per Q(2n,R). En el cas que la singularitat de les funcions

sigui de tipus Morse aquesta subàlgebra és una subàlgebra de Cartan. Aquestes

singularitats es diuen singularitats de tipus no degenerat.

Per tant el problema de classificació de singularitats per les parts quadràtiques

de les components de l’aplicació moment s’ha convertit en un problema merament

algebraic: la classificació de les subàlgebres de Cartan de Q(2n,R). La classificació

d’aquestes singularitats es deu al següent resultat de Williamson ([60])

Teorema (Williamson)

Donada una subàlgebra de Cartan C de Q(2n,R) existeix un sistema simplèctic

de coordenades (x1, . . . , xn, y1, . . . , yn) a R2n i una base f1, . . . , fn de C tal que cada

fi és del següent tipus:
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fi = x2
i + y2

i si 1 ≤ i ≤ ke , (el·ĺıptic)

fi = xiyi si ke + 1 ≤ i ≤ ke + kh , (hiperbòlic)



fi = xiyi+1 − xi+1yi, (parell focus-focus )

fi+1 = xiyi + xi+1yi+1 si i = ke + kh + 2j − 1, 1 ≤ j ≤ kf

(0.2.1)

El sistema lineal donat per les parts quadràtiques de les fi es diu model lineal

per a les singularitats. El teorema de Williamson es pot veure com un teorema

de formes normals per al model lineal. Podem adjuntar un triplet de nombres

naturals (ke, kh, kf ) a una singularitat no degenerada de F on ke és el nombre de

components el.ĺıptiques al model lineal i kh i kf són el nombre de components

hiperbòliques i focus-focus respectivament.

Com a conseqüència del teorema de Williamson aquest triplet és un invariant

del sistema lineal. Per aquest motiu s’anomena tipus de Williamson de la singula-

ritat.

Ara que ja tenim la classificació al model lineal la pregunta natural és:

Podem linealitzar simplècticament un sistema completament integrable en un

entorn d’un punt singular p?

Podem reformular la pregunta de la manera següent,

Problema 1

Considerem una foliació F definida per un sistema completament integrable

definit en un entorn d’una òrbita singular no degenerada de dimensió 0 de F .

Suposem que tenim donades dues formes simplèctiques ω1 i ω2 per a les quals la

foliació F és Lagrangiana. Existeix un difeomorfisme local fixant p i portant ω1 a

ω2?

El problema de linealització simplèctica està ı́ntimament relacionat amb un
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altre problema en l’ordre d’idees del lema de Morse. L’altre problema és el següent:

Problema 2

Donada una funció f : Rn −→ R amb una singularitat no degenerada a l’origen

i sigui ω una forma de volum a Rn. Notem per Q la seva part quadràtica a l’origen.

Existeix un difeomorfisme φ : (Rn, 0) −→ (Rn, 0) tal que φ∗(f) = Q i enviant la

forma de volum ω a la forma ω0 = dx1 ∧ · · · ∧ dxn?

A l’article [6] Colin de Verdière i Vey demostren que existeix una funció dife-

renciable χ tal que φ∗(ω) = χ(Q) · ω0.

A l’article esmentat anteriorment es prova que la funció χ caracteritza el parell

(f, ω) en el cas que la forma quadràtica Q sigui definida, en cas contrari només el

jet de la funció caracteritza el parell.

Com a corol·lari d’aquest resultat obtenim formes normals per a foliacions

definides pels nivells de f perquè podem trobar un difeomorfisme preservant la

foliació i enviant la forma de volum χ(Q) ·ω0 a la forma de volum ω0 com s’observa

a la publicació anteriorment citada.

Observem que aquest resultat dóna una resposta afirmativa al Problema 1 en el

cas n = 2 perquè una forma de volum en una varietat de dimensió 2 és una forma

simplèctica i la condició de Lagrangianitat en el cas d’una corba és automàtica en

aquesta dimensió.

La resposta afirmativa al Problema 1 en qualsevol dimensió és conseqüència del

teorema d’Eliasson [23] i [24]. De fet, cal remarcar que la demostració donada per

Eliasson és completa només en cas què la singularitat sigui completament el·ĺıptica

( tipus de Williamson (ke, 0, 0)).

En aquesta tesi donem una altra demostració amb tots els detalls per a sin-

gularitats que tenen tipus de Williamson (ke, kh, 0). També donem un esboç de la

demostració en el cas d’existir components focus-focus.
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Observem que el Teorema d’Eliasson es pot mirar com un resultat de linealit-

zació simplèctica que assegura que el sistema completament integrable inicial es

pot portar a un sistema lineal amb la forma simplèctica estàndard. Com a resultat

obtenim un resultat de linealització múltiple per a n camps vectorials que commu-

ten i que tenen singularitats de tipus no degenerat. La linealització simplèctica a

un entorn de l’òrbita L en el cas dim L > 0 es degut a Ito en el cas anaĺıtic [32].

En aquesta tesi presentem el resultat en el cas diferenciable. Resultats parcials en

aquesta direcció (en el cas en que la dimensió de l’òrbita singular sigui 1 en una

varietat de dimensió 4) vàren ser obtinguts per Currás-Bosch conjuntament amb

l’autora d’aquesta tesi conjuntament ([13]) i independentment per Colin de Ver-

dière i San Vu Ngoc [8]. El resultat final en qualsevol dimensió ha estat obtingut

per Nguyen Tien Zung conjuntament amb l’autora d’aquesta tesi a [48]. En aquest

paper també està continguda la versió G-equivariant de la linealització simplèctica.

L’estudi de simetries té rellevància en molts problemes f́ısics i, en consequència,

també apareix a la teoria de sistemes completament integrables. Aquestes simetries

queden codificades en forma d’accions diferenciables de grups de Lie. El cas d’ac-

cions Hamiltonianes de torus mereix especial atenció. En aquest teoria apareixen

molts resultats d’unicitat simplèctica. El Teorema de Delzant n’és un exemple clar.

El Teorema de Delzant permet recuperar informació en una varietat compacta de

dimensió 2n a partir de la imatge de l’aplicació moment, que curiosament, és un

politop convex. S’han produit moltes contribucions en aquest camp darrerament.

En destaquem dues: Els treballs de Lerman i Tolman per extendre aques resul-

tat al cas d’orbifolds simplèctiques [37] i els treballs de Karshon i Tolman per a

generalitzar aquests resultats en el cas d’accions Hamiltonianes de complexitat 1.

En aquesta tesi també considerem accions de grups de Lie compactes. Supo-

sarem que el grup actúa simplècticament i preserva l’aplicació moment que està

oculta a la foliació. En aquesta tesi demostrem la versió equivariant dels resul-

tats d’unicitat simplèctica en un entorn de l’òrbita compacta singular. Una conse-
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quència curiosa és que el grup de simplectomorfismes preservant l’aplicació moment

és un grup abelià. En particular, si l’acció del grup G és efectiva d’aquest resultat

en podem extreure l’abelianitat de G. Donat que el grup G és compacte és un pro-

ducte d’un torus per un grup finit. En el cas que el grup G sigui connex recuperem

l’acció d’un torus en la ĺınia del Teorema de Delzant.

La contrapartida dels anteriors resultats en dimensió imparella venen donats

pel cas de contacte. Aquest és el segon problema de classificació plantejat a la

tesi. Considerem foliacions en una varietat de contacte semblants a les donades

per sistemes completament integrables en varietats simplèctiques.

La motivació en el cas regular va ser donada per Lutz ([41]) que va estudiar el

problema de classificació per a estructures de contacte en una varietat compacta

sota la hipòtesi que siguin invariants per l’acció d’un torus.

Aquest problema està lligat amb el problema anàleg per a varietats simplèctiques

que hem exposat abans. Cal destacar les següents contribucions recents en aquest

camp: en el cas d’orbifolds de contacte destaquem els treballs de Lerman [36] on es

dóna un resultat de convexitat. Aquest problema ha estat considerat per Molino i

Banyaga a [3] i [4] en el cas de foliacions singulars. El denominador comú de les fo-

liacions considerades per Lutz, Lerman, Molino i Banyaga és que les òrbites vénen

donades per l’acció d’un torus. En aquesta tesi demostrem un resultat similar en

l’entorn d’una òrbita compacta en el cas que la foliació no estigui necessàriament

donada per l’acció d’un torus. Les singularitats les suposem no degenerades i la

foliació queda deteminada com la foliació donada per les parts horitzontals del

camps de contacte de n integrals primeres del camp de Reeb conjuntament amb

el camp de Reeb. En aquesta tesi suposem que el camp de Reeb ve donat com a

generador infinitesimal d’una acció del grup S1. Estudiem el problema de classifi-

cació de la foliació Legendriana descrita per les parts horitzontals dels camps de

contacte sota la hipòtesi que la forma de contacte tingui el mateix camp de Reeb.

Aquesta condició és una mica restrictiva. Una generalització natural seria estudiar
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el problema més general en què el camp de Reeb pertanyi a la foliació. Aquest

resultat que requereix les tècniques de Gray per deformació de formes de contacte

no està inclòs a la tesi.

Organització de la tesi

Al caṕıtol 1 estudiem el problema de linealització diferenciable en un recobri-

ment de l’entorn inicialment considerat. Donem també una demostració diferent

a la donada per l’Eliasson en el cas de foliacions amb corang 1. Aquest resultat

de linealització diferenciable permet treballar en un model lineal al recobridor. En

aquest caṕıtol donem una demostració del següent teorema en el cas de singulari-

tats de corang 1.

Teorema 1.3.1

A Ũ(L) la foliació Lagrangiana definida pels gradients simplèctics de l’aplicació

moment és difeomorfa a la foliació linealitzada.

On notem per Ũ(L) un recobriment finit d’un entorn de l’òrbita singular com-

pacta.

L’objectiu del caṕıtol 2 és doble; per una banda s’introdueixen les eines

anaĺıtiques necessàries per resoldre el problema també es dóna una demostració de

la linealització simplèctica en dimensió 2.

El primer objectiu d’aquest caṕıtol és provar que donada una funció diferenci-

able g es pot trobar una descomposició del tipus,

g = g1 + X(g2) , X(g1) = 0 (0.2.2)

per a determinats tipus de camps singulars, els que corresponen als camps lineals de

la foliació (components el.ĺıtiques i hiperbòliques). Aquest tipus de descomposici-

ons de funcions seran útils més endavant per a trobar deformacions de l’estructura
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simplèctica “à la Moser”preservant la foliació.

El cas el.liptic ja havia estat considerat per Eliasson. El cas hiperbòlic en dimen-

sió 2 també. Donem demostracions pels casos el.liptics i hiperbòlics en qualsevol

dimensió. Els resultats principals provats són els següents:

En el cas que X sigui un camp corresponent a una singularitat el.ĺıptica,

Proposició 2.2.1

Sigui M una varietat diferenciable i sigui g un germe de funció diferenciable

en un entorn del punt p. Donat un camp X que en coordenades locals s’expressa

X = x1
∂

∂x2
− x2

∂
∂x1

llavors existeixen funcions diferenciables g1 i g2 tals que:

g = g1(x
2
1 + x2

2, x3 . . . , xn) + X(g2)

En el cas que X sigui un camp corresponent a una singularitat hiperbòlica,

Proposició 2.2.2

Sigui M una varietat diferenciable i sigui g un germe de funció diferenciable en

un entorn del punt p. Considerem un camp vectorial X que en coordenades locals

s’expressa Y = −x1
∂

∂x1
+ x2

∂
∂x2

llavors existeixen funcions diferenciables g1 i g2

tals que,

g = g1(x1x2, x3 . . . , xn) + Y (g2)

En el cas hiperbòlic aquest resultat estén el resultat en el cas en dimensió 2

provat per Colin de Verdière i Vey a [6]. El cas hiperbòlic és més complicat, cal

redüırse primer al cas de funcions planes al llarg d’un subespai i després usar
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tècniques d’integració semblants a les usades al Teorema de linealització de Stern-

berg.

Usant aquests resultats anaĺıtics en el cas 2 dimensional i tècniques de deforma-

ció d’estructures simplèctiques usant camins “à la Moser”demostrem, per últim,

el resultat de linealització simplèctica en dimensió 2,

Teorema 2.3.1

Sigui (M2, ω1) una varietat simplèctica 2-dimensional amb coordenades (x, y)

i sigui F una foliació Lagrangiana amb singularitats de tipus el.ĺıptic o hiperbòlic

a l’origen (0, 0), llavors existeix un difeomorfisme local φ preservant la foliació F
tal que φ∗(dx ∧ dy) = ω1.

Aquest resultat de linealització simplèctica en dimensió 2 es desprén de [6] pero

en donem la nostra pròpia demostració.

Al caṕıtol 3 estudiem el cas de corang 1 en dimensió 4. Donem dues demos-

tracions de la unicitat simplèctica.

El punt clau per a provar la unicitat simplèctica rau en recuperar una acció

Hamiltoniana de S1 tangent a la foliació. Per tal d’aconseguir aquesta acció usem

el Lema de Poincaré i provem un lema tipus Moser de deformació d’estructures

simplèctiques preservant la foliació que citem a continuació:

Lema 3.2.3

Sigui α una 1-forma, que s’anul.la a L, i que es F0-bàsica i sigui ω1 una forma

simplèctica a M4
0 tal que F0 és Lagrangiana. Llavors:

1. La 2-forma ωo = ω1 − dα es una estructura simplèctica en un entorn de L

per la qual la foliació és Lagrangiana.

2. Existeix un difeomorfisme η entre dos entorns de L a M4
0 preservant F0 i tal
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que η∗(ω1) = ω0.

El resultat principal de la segona secció d’aquest caṕıtol és el següent,

Proposició:

Existeix una acció Hamiltoniana de S1 tangent a la foliació. De fet, existeixen

coordenades (θ, p, x, y) en un entorn de L tal que ω = d(pdθ + C(p, x, y)dx +

D(p, x, y)dy) i l’acció Hamiltoniana es produeix per translacions en la coordenada

θ.

Un cop provada l’existència d’aquesta acció donem dues demostracions del

següent teorema,

Teorema 3.1.1

Sigui M4
0 = S1 ×D3, amb coordenades (θ, p, x, y). Sigui F0 la foliació donada

per:

Y1 =
∂

∂θ

Y2 = y
∂

∂x
− εx

∂

∂y

ε ∈ {−1, 1} (ε = 1 cas el.ĺıptic, ε = −1 cas hiperbòlic).

Sigui L = S1× (0, 0, 0). Llavors qualssevol dues formes simplèctiques ω1 i ω2 a

M4 per a les quals F0 és Lagrangiana són equivalents.

La primera demostració implica un treball de deformació de la forma simplèctica

pel mètode del camı́. La segona demostració usa l’existència d’una acció Hamiltoni-

ana per a contruir una descomposició ortogonal simplèctica (lema 3.3.2) utilitzada

per a reduir el problema a dos problemes de classificació 2-dimensional.
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Al Caṕıtol 4 estudiem el cas de rang 0 en dimensió 4. Donem un resultat

d’unicitat simplèctica usant les tècniques geomètriques de descomposició ortogonal.

Els resultats més importants d’aquest caṕıtol són els següents,

Teorema 4.2.1 (Descomposició simplèctica ortogonal)

Sigui ω una forma simplèctica per la qual F és genèricament Lagrangiana.

Llavors existeix un germe simplèctic ω equivalent a ω i existeixen dues distribucions

simplèctiques D1 i D2 tals que,

1. D1 i D2 són involutives i simplècticament ortogonals respecte ω.

2. X1,ε1 ∈ D1 i X2,ε2 ∈ D2.

Teorema 4.2.2 (Unicitat simplèctica)

Sigui ω una forma simplèctica en un entorn de p per a la qual F és genèricament

lagrangiana llavors ω és equivalent a ω0 = dx1 ∧ dy1 + dx2 ∧ dy2.

Per a demostrar l’existència de la descomposició ortogonal recuperem accions

Hamiltonianes tangents a les fulles usant el mètode del camı́. Un dels resultats

bàsics en la prova d’aquest teorema es la següent Proposició:

Proposició 4.4.1

Existeix un germe simplèctic ω1 equivalent a ω tal que,

iX1,ε1
ω1 = H1df1 + H2df2 .

per a funcions F-bàsiques H1 i H2.

Un cop demostrada aquesta proposició utilitzem tècniques de normalització per

a trobar camps Hamiltonians convenients, tangents a la foliació. La demostració
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és diferent en el cas que la foliació contingui components el.ĺıptiques o en el cas

que la foliació sigui completament hiperbòlica. Usem al llarg de la demostració els

resultats de el caṕıtol 2 i el mètode del camı́ per a deformar formes simplèctiques.

El següent pas per a demostrar l’existència de la descomposició ortogonal és pro-

var que un dels camps lineal és paral.lel respecte de la connexió de Bott-Weinstein

definida a les fulles Lagrangianes regulars properes a la fulla singular. El fet que els

camps siguin paral.lels ens permet donar una demostració geomètrica del teorema

de descomposició ortogonal simplèctic. De fet en el cas que la foliació tingui alguna

component el.ĺıptica donem dues demostracions d’aquest fet, una basada en rao-

naments geomètrics usant la connexió de Bott-Weinstein i un altra usant la forma

expĺıcita de l’estructura simplèctica en un entorn de la fulla i el Lema de Poincaré.

En el cas completament hiperbòlic cal aplicar el mètode del camı́ diverses vegades

per a trobar una estructura simplèctica tal que el Hamiltonià corresponent a f1

sigui el camp lineal X1. Aquest procés constitueix el contingut en les proposicions

4.6.1, 4.5.1 i permet demostrar el teorema 4.2.1. Per a demostrar 4.2.1 contrüım

dues distribucions ortogonals simplèctiques que contenen cadascun dels camps li-

neals de la distribució. A partir d’això per a demostrar el teorema 4.2.2 usem els

resultats d’unicitat simplèctica en dimensió 2 demostrats al caṕıtol 2.

Al Caṕıtol 5 usem inducció, el teorema de Liouville-Mineur-Arnold, el mètode

de la descomposició simplèctica ortogonal i els resultats de caṕıtols anteriors per

a demostrar el cas general en qualsevol rang i qualsevol dimensió.

En aquest caṕıtol demostrem els següents teoremes,

Per al cas de foliacions de rang 0,

Teorema 5.1.1

Sigui ω un forma simplèctica definida en un entorn de l’origen i tal que la foli-

ació lineal F és Lagrangiana, llavors existeix un difeomorfisme local φ : (U, p) −→
(φ(U), p) preservant la foliació i tal que φ∗(

∑
i dxi ∧ dyi) = ω, essent xi, yi coorde-
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nades locals a (φ(U), p).

Per a foliacions de rang diferent de zero provem el teorema d’unicitat simplèctica

següent,

Teorema 5.2.1

Siguin ω i ω0 dues formes simplèctiques que en un entorn d’una òrbita singu-

lar compacta per a les quals la foliació lineal és Lagrangiana llavors ω i ω0 són

equivalents.

Al Caṕıtol 6 donem la versió equivariant de la unicitat simplèctica obtin-

guda al Caṕıtol 5. Aquesta versió equivariant permet concloure la linealització

simplèctica en un entorn de l’òrbita inicial compacta. També donem un enunciat

tipus “slice”de la linealització simplèctica equivariant.

Al llarg d’aquest caṕıtol suposem que G és un grup de Lie compacte que actúa

simplècticament en la varietat i deixa invariant l’aplicació moment. Els resultats

principals obtinguts en aquest caṕıtol són els següents.

En la primera secció es s’estudia el problema de linealització de l’acció a l’entorn

d’un punt fix.

Per a fer això primer estudiem els simplectomorfismes locals que deixen inva-

riant l’aplicació moment. Provem el següent teorema,

Teorema 6.3.2

Sigui ψ : (R2n, 0) → (R2n, 0) un simplectomorfisme local de R2n que preserva

l’aplicació moment en el model h. Llavors la part lineal ψ(1) és un simplectomor-

fisme que preserva l’aplicació moment i existeix una única funció diferenciable

definida en un entorn de l’origen Ψ : (R2n, 0) → R que s’anul.la a l’origen, que es

una integral primera del sistema lineal definit per h i tal que ψ(1) ◦ψ−1 es el flux a
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temps 1 del camp Hamiltonià XΨ de Ψ. Si ψ és real anaĺıtica llavors Ψ és també

real anaĺıtica. Si ψ depèn diferenciablement del paràmetres (resp anaĺıticament) Ψ

també.

Com a corol.lari obtenim la versió amb paràmetres,

Corol.lari 6.3.3

Sigui Dp un disc centrat a l’origen 0 en els paràmetres p1, . . . , pk. Notem per

p = (p1, . . . , pk). Suposem que ψp : (R2n, 0) → (R2n, 0) és un simplectomorfisme

local de R2n que preserva l’aplicació quadràtica h i que depèn diferenciablement dels

paràmetres p. Llavors existeix una única funció local diferenciable Ψp : (R2n, 0) →
R que s’anul.la a 0 i que depèn diferenciablement en els paràmentres p i que és

una integral primera del sistema lineal definit per h i tal que ψ
(1)
0 ◦ ψ−1

p es el flux

a temps 1 del camp Hamiltonià XΨp de Ψp. En cas que ψp sigui real anaĺıtica i

depengui anaĺıticament en els paràmetres, la funció Ψp també.

Aquests resultats permetem provar el següent teorema,

Teorema 6.3.4

Existeix un canvi de coordenades a R2n que preserva el sistema (R2n,
∑n

i=1 dxi∧
dyi,h) i que linealitza l’acció de G.

També demostrem com a corol.lari la versió amb paràmetres que queda recollida

al corol.lari 6.3.5.

Corol.lari 6.3.5

Si l’acció ρp depèn de paràmetres diferenciablement (resp. anaĺıticament) exis-

teix una transformació local simplèctica a R2n, Φp que preserva el sistema i que

verifica,
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Φp ◦ ρp(h) = ρ0(h)(1) ◦ Φp

Si notem G com el grup de simplectomorfismes preservant l’aplicació moment

finalment provem el teorema,

Teorema 6.3.6

El grup G és abelià.

Com a corol.lari en dedüım que si l’acció es efectiva el grup G és abelià.

Un cop obtingut el resultat local de linealització l’òrbita provem el teorema de

linealització en un entorn de l’òrbita.

Teorema 6.4.1

Sigui G un grup compacte preservant el sistema (Dk×Tk×D2(n−k),
∑k

i=1 dpi∧
dθi +

∑n−k
i=1 dxi ∧ dyi,F) llavors existeix ΦG un difeomorfisme en un entorn de

l’òrbita L = Tk que preserva el sistema (Dk × Tk × D2(n−k),
∑k

i=1 dpi ∧ dθi +
∑n−k

i=1 dxi ∧ dyi,F) i que linealitza l’acció G.

També es dona com a corol.lari un resultat tipus “slice”en un entorn de l’òrbita

(Corolari 6.4.2).

Si prenem com a grup G el grup de transformacions recobridores del recobri-

ment Ũ(L) considerat al caṕıtol 1 es prova el teorema de linealització en un entorn

de l’òrbita inicialment considerada que enunciem de manera abreujada com,

Teorema 6.5.1

La foliació F és simplècticament linealitzable en un entorn d’un òrbita com-
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pacta singular.

Finalment al caṕıtol 7 considerem el cas de contacte i provem el resultat de

linealització de contacte al recobridor. També donem la versió G-equivariant de

contacte del teorema que ens dóna en particular el cas de linealització de contacte

a l’entorn inicialment considerat.

Els resultats més importants d’aquest caṕıtol són els següents:

Primer provem un resultat per a linealització diferenciable de foliacions legen-

drianes verificant les condicions especificades a la secció 7.3.1.

Teorema 7.3.1

Existeixen coordenades (θ0, . . . , θk, p1, . . . , pk, x1, y1, . . . , xn−k, yn−k) en un reco-

briment finit d’un entorn tubular de O tal que

• El camp de Reeb és Z = ∂
∂θ0

.

• Existeix un triplet de nombres naturals (ke, kh, kf ) amb ke +kh +2kf = n−k

i tal que les integrals primeres fi són fi = pi, 1 ≤ i ≤ k i

fi+k = x2
i + y2

i si 1 ≤ i ≤ ke ,

fi+k = xiyi si ke + 1 ≤ i ≤ ke + kh ,

fi+k = xiyi+1 − xi+1yi i

fi+k+1 = xiyi + xi+1yi+1 si i = ke + kh + 2j − 1, 1 ≤ j ≤ kf

• La foliació F ve descrita per les òrbites de la distribució D =< Y1, . . . Yn >

on Yi = Xi − fiZ essent Xi el camp de contacte fi respecte la forma de

contacte estàndard α = dθ0 +
∑n−k

i=1
1
2
(xidyi − yidxi) +

∑k
i=1 pidθi.

Un cop demostrada la linealització diferenciable procedim a provar la linealit-

zació simplèctica

Teorema 7.4.1
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Sigui α una forma de contacte a la varietat model M2n+1
0 per la qual la foliació

F és legendriana i tal que el camp de Reeb és ∂
∂θ0

. Llavors existeix un difeomorfisme

φ definit a un entorn de l’òrbita singular O = (θ0, . . . , θk, 0, . . . , 0) preservant F ′ i

enviant α a α0.

En el cas que existeixi una acció d’un grup compacte preservant la foliació i el

camp de Reeb tenim una versió G-equivariant del teorema anterior que enunciem

resumidament,

Teorema 7.5.1

Existeix un contactomorfisme que linealitza la foliació F i l’acció del grup.

Si apliquem aquest resultat al cas que el grup sigui el grup de transformacions

recobridores obtenim el Teorema 7.5.2 que assegura que la linelització de contac-

te és pot dur a terme a l’entorn inicial de l’òrbita. Enunciem aquest teorema a

continuació,

Teorema 7.5.2

Sigui F una foliació verificant totes les condicions especificades a la secció

7.3.1, sigui F ′ la foliació ampliada amb el camp de Reeb Z i sigui α una forma de

contacte per la qual F és Legendriana i tal que Z és el seu camp de Reeb llavors

existeix un difeomorfisme definit en un entorn de O que porta F ′ a la foliació

lineal, l’òrbita O al torus {xi = 0, yi = 0, pi = 0} i la forma de contacte a la forma

de contacte de Darboux α0.

Alguns dels resultats continguts en aquesta tesi estan continguts a les publica-

cions i prepublicacions que citem a continuació,
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• Publicacions:

1. C. Currás-Bosch i E. Miranda, Symplectic linearization of singular La-

grangian foliations in M4, Differential Geom. Appl. 18 (2003), no. 2 ,

195-205.

2. E. Miranda, On the symplectic classification of singular Lagrangian fo-

liations. Proceedings of the IX Fall Workshop on Geometry and Physics

(Vilanova i la Geltrú, 2000), 239–244, Publ. R. Soc. Mat. Esp., 3, R.

Soc. Mat. Esp., Madrid, 2001.

• Prepublicacions:

1. E. Miranda i Nguyen Tien Zung, Equivariant normal forms for non-
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0.3 Conclusions

En aquesta tesi estudiem dos problemes de classificació per a foliacions definides

a varietats simplèctiques i de contacte.

En quant al primer problema de classificació: Com s’ha detallat a la secció de

resultats provem que una foliació Lagrangiana definida pels gradients simplèctics

d’una aplicació moment pròpia és equivalent a la foliació linealitzada amb la forma

simplèctica de Darboux en un entorn d’una òrbita compacta singular no degene-

rada.

En relació a aquest problema també provem un teorema de linealització simplèctica

per accions simplèctiques de grups compactes que preserven l’aplicació moment.
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En quant al segon problema de classificació: Provem que una foliació Legen-

driana completament integrable amb camp de Reeb definit per una acció de una

S1 és equivalent a la foliació linealitzada amb la forma de Darboux en un entorn

d’una òrbita compacta no degenerada de la foliació ampliada amb el camp de Re-

eb. També provem un teorema de linealització per accions de grups compactes per

contactomofismes a varietats de contacte.
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Chapter 1

Differentiable linearization

1.1 Introduction

The aim of this chapter is to recall results of differentiable linearization for folia-

tions given by a certain class of singular integrable Hamiltonian systems.

Throughout this thesis and otherwise stated all the objects considered will be

C∞.

In this chapter and throughout the thesis, we will consider germ-like foliations

in a symplectic manifold (M2n, ω) defined by n first integrals in a neighbour-

hood of a compact submanifold L. Since we are considering germs-like objects,

the foliation is defined in a neighbourhood U(L) of L. We denote by f1, . . . fn the

n-first integrals. The leaves of the foliation are L(c1,...,cn) = {p ∈ U(L), f1(p) =

c1, . . . fn(p) = cn}. We denote by F the function F = (f1, . . . , fn). We will require

the following condition on the functions fi. We will assume that the functions fi are

in involution with respect to the Poisson bracket associated to ω in the neighbour-

hood considered. That is to say, {fi, fj} = 0 for any pair i, j. When this condition

is fulfilled we say that F defines a completely integrable Hamiltonian system on

U(L) and the mapping F is called the moment map. Namely,

1
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Definition 1.1.1 A completely integrable Hamiltonian system on a symplectic

manifold (M2n, ω) is a C∞ Poisson Rn-action, generated by a moment map F :

M2n −→ Rn .

The foliation defined by the level sets of F can also be considered as a pair

(χ,A), where χ is an n-dimensional commutative Lie algebra of vector fields and

A is a vector space of first integrals of the vector fields of χ. This presentation of

the foliation is specially interesting when the foliation has singularities. Then the

foliation obtained from χ is called the singular Lagrangian foliation.

The compact submanifold L that we will consider is an orbit of χ through a

singular point. Let us introduce the definition of singular point,

Definition 1.1.2 A point x0 ∈ M2n is a singular point of the integrable Hamil-

tonian systems if the rank of dx0F = (dx0f1, . . . , dx0fn) is less than n.

Remark:

Since L is an orbit of χ, all the points in L are singular points for F and L

is contained in a singular leaf of the foliation. On the other hand, observe that

singular orbits do not necessary coincide with singular leaves of the foliation as

the following example shows. Consider M = R2 endowed with coordinates (x, y).

Let F =< x ∂
∂y

+ y ∂
∂x

>. A first integral for F is f = x2 − y2. The only singular

point is (0, 0). The orbit through this point is just the point, but the leaf containing

the singular point is L = {(x, y), x2 − y2 = 0} which consists of a pair of lines

through the origin.

When we talk about differentiable linearization in a neighbourhood of L, we

mean that there exists a diffeomorphism in a neighbourhood of L, fixing L and

taking the given foliation to a simpler foliation defined by a linear model. Lineari-

zation is not always possible. We will need additional assumptions on the functions
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fi. Namely, the completely integrable Hamiltonian system considered fulfills the

following three hypotheses:

1. The global moment map F : M2n −→ Rn is a proper map.

2. The singular orbits L of minimal rank are tori.

3. The singularities considered are of “non-degenerate” type.

Remarks

• As a consequence of Liouville-Mineur-Arnold theorem, if F is a regular fo-

liation given by a completely integrable system and L is an n-dimensional

compact leaf. Then this leaf is a torus and the foliation in a neighbourhood

of L is a foliation by n-dimensional tori. Those tori are Lagrangian for the

symplectic form considered.

Now assume that the foliation is allowed to have singularities. The first exam-

ple that comes to our mind is to create a singular foliation by collapsing some

of the cycles of the regular tori L and leaving the rest of the foliation inva-

riant. In this way, the resulting foliation will be a foliation by regular tori

except for the singular one L which will be a torus with dimension r < n.

When all the cycles of the initial torus L are collapsed we obtain an isolated

singular leaf whose dimension has been decreased to 0, that is, a point.

From a symplectic point of view, this torus is an isotropic submanifold, that is

to say it preserves all the properties of Lagrangianity except for the maximal

dimension.

We will take this example as a starting point. The foliation that we will

consider has a torus as an isolated singular leaf but the neighbouring orbits

are not always tori. The example described above corresponds to the picture

of a “completely elliptic” singularity of corank n − r. As we will see this
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example is one of the “differentiable models” for our foliation. In fact we

will see that our foliation is differentiably equivalent in a finite covering of

a neighbourhood of the singular leaf to a direct product type foliation of a

regular Lagrangian foliation by tori with a singular foliation which is also

a direct type foliation of ke components of elliptic type, kh components of

hyperbolic type and kf components of focus-focus type.

• The third condition (non-degeneracy) is a condition on the quadratic parts

of the components of the moment map. Its role in the linearization process is

similar to that of non-degeneracy for Morse-like theorem for single functions.

In fact the differentiable linearization that we prove is a kind of “multiple

Morse” theorem. That is, we can find a diffeomorphism, in a finite covering of

the initial neighbourhood considered, such that the foliation determined by

the moment map can be taken to the foliation determined by the quadratic

parts of the components of the moment map. This is the main difference

with the result of Morse for non-degenerate singularities of differentiable

functions. The involution of the components of the moment map make this

simultaneous linearization possible.

In this chapter, the symplectic properties of the foliation will be temporarily

left aside and our attention will be focused on the differentiable side of the story.

In any case we will need some facts from symplectic geometry which we introduce

in the section called “Preliminaries” of this chapter.

The linearization will be carried out in a neighbourhood of the singular orbit.

1.2 Preliminaries.

Let us recall some notations and definitions:
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1.2.1 Hamiltonian vector fields and the Poisson bracket

Let us start with the definition of symplectic manifold.

Definition 1.2.1 A symplectic manifold is a pair (M, ω) where M is a differen-

tiable manifold and ω is a closed non-degenerate 2-form.

Remarks:

• As a consequence of the definition all symplectic manifolds are even dimen-

sional.

• In contrast to Riemannian manifolds, symplectic manifolds have no local

invariants. This is due to the Theorem of Darboux which establishes the

uniqueness of a local model.

Theorem 1.2.1 Let (M,ω) be a 2n-dimensional symplectic manifold and

let p be a point in M then there exists local coordinates (x1, y1, . . . , xn, yn) in

a neighbourhood U of p such that,

ω|U = dx1 ∧ dy1 + · · ·+ dxn ∧ dyn

In the spirit of this theorem the main goal of this thesis is to establish models

for symplectic manifolds with Lagrangian foliations in a neighbourhood of a

singular orbit of the foliation.

Let (M,ω) be a symplectic manifold. Consider the set of differentiable functions

on M , C = C∞(M).

Let us introduce the notion of Hamiltonian vector field associated to a function

f ∈ C and the notion of Poisson bracket associated to a pair of functions f and g

contained in C.
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Definition 1.2.2 Let f ∈ C, we define the Hamiltonian vector field associated to

f as the unique vector field Xf satisfying,

iXf
ω = −df.

Definition 1.2.3 Let f, g ∈ C we define the Poisson bracket of f and g as

{f, g} = ω(Xf , Xg).

Remarks:

• The following formula can be derived from the definition of Poisson bracket,

X{f,g} = [Xf , Xg]

• Take M = R2n endowed with coordinates (x1, y1, . . . , xn, yn) and let ω be the

Darboux symplectic form ω =
∑

i dxi ∧ dyi. The standard Poisson bracket is

the one associated to ω. Given two functions f, g ∈ C∞(R2n), the standard

Poisson bracket {f, g} equals

n∑
i=1

(
∂f

∂xi

∂g

∂yi

− ∂f

∂yi

∂g

∂xi

).

The pair (C∞(R2n), {., .}) is a Lie algebra.

Now consider Q(2n,R) the set of quadratic forms in the variables x1, y1, . . . , xn, yn

then the standard Poisson bracket of two quadratic forms is again a quadratic

form. Therefore the pair (Q(2n,R), {., .}) is a Lie subalgebra of (C∞(R2n), {., .}).

1.2.2 Completely integrable systems and regular Lagran-

gian foliations

Recall that a system is completely integrable if it is defined by n first integrals in

involution with respect to the Poisson bracket. The following proposition relates

completely integrable Hamiltonian systems to Lagrangian foliations,
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Proposition 1.2.2 Let f1, . . . , fn be n functions such that {fi, fj} = 0, ∀i, j. As-

sume that p ∈ M is a point for which dpf1 ∧ · · · ∧ dpfn 6= 0. Then the distribution

generated by the Hamiltonian vector fields D =< Xf1 , . . . , Xfn > is involutive and

the leaf through p is a Lagrangian submanifold.

Proof:

Since [Xfi
, Xfj

] = X{fi,fj}, the condition {fi, fj} = 0 implies [Xfi
, Xfj

] = 0,

∀i, j and the distribution is involutive. On the other hand, from the definition of

Poisson bracket {fi, fj} = ω(Xfi
, Xfj

). So the foliation defined by D is isotropic.

The condition dpf1 ∧ · · · ∧ dpfn 6= 0 implies that the Hamiltonian vector fields Xfi

span an n-dimensional vector space at the point p. Therefore the leaf through p is

Lagrangian.

¤
Remark

From the definition of Hamiltonian vector fields iXfi
ω = −dfi and since ω(Xfi

, Xfj
) =

0 for any pair of vector fields tangent to the Lagrangian foliation then Xfi
(fj) =

0,∀i, j. Those conditions imply that the functions fi are first integrals for the

foliation defined by the distribution D.

1.2.3 Orbit versus leaf

In this thesis we will deal with problems of equivalence for symplectic structures

in the neighbourhood of an orbit of a foliation F .

Observe that for foliations given by a completely integrable systems there are

two ways of describing the foliation: the set of orbits and the set of levelsets of the

moment map F .

An orbit of the foliation is the orbit of the distribution XFi
, where Fi is the ith

component of the moment map.

A leaf of the foliation is a levelset of the moment map F .



8 Chapter 1. Differentiable linearization

1.2.4 Transversal linearization at a singular point

Let x0 be as singular point of the foliation defined by F , we start by defining the

rank and corank of a singular point.

Definition 1.2.4 Let x0 ∈ M2n be a singular point of the integrable Hamiltonian

system we say that the rank of x0 is k if the rank of the moment map at x0 is k,

that is to say if rank dx0F = rank (dx0f1, . . . , dx0fn) = k.

We say that a singular point of rank k has corank n− k.

Recall that the foliation can be thought as a pair (χ,A) , where χ is an n-

dimensional commutative Lie algebra of vector fields and A is a vector space of

first integrals of the vector fields of χ. The foliation obtained from χ is called the

singular Lagrangian foliation.

We follow Nguyen Tien Zung [61] for the definitions concerning the notion of

transversal linearization at a singular point.

Let x0 be a singular point and let χx0 be the subspace of Tx0M generated by

Xx0 ,∀X ∈ χ. Let Kx0 = ∩f∈AKerdx0f , and let Bx0 the set of f ∈ A such that

dx0f = 0. Then ∀f ∈ Bx0 the 2-order jet of f − f(x0) gives a quadratic form

on Kx0 , such that its kernel contains χx0 , so it gives a quadratic form f
′T
x0

on

Kx0/χx0 , the set of quadratic forms obtained in this way which we denote by A′T
x0

,

is a commutative subalgebra under the Poisson bracket, which is often called the

transversal linearization of F.

Notice that Kx0/χx0 carries a natural symplectic structure ωx0 , and it is sym-

plectomorphic to a subspace Rx0 ⊂ Tx0M
2n.

We are going to introduce the notion of nondegenerate point but first we need

to recall the definition of Cartan subalgebra.

Definition 1.2.5 A Cartan subalgebra is a maximal self-centralizing abelian su-

balgebra.
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Definition 1.2.6 A singular point of corank k is called non-degenerate if A
′T
x0

is

a Cartan subalgebra of the algebra of quadratic forms on Rx0.

1.2.5 The linear model

Let us recall the following classical result of Williamson [60], which will be the

starting point for the linearization.

Theorem 1.2.3 (Williamson)

For any Cartan subalgebra C of Q(2n,R) there is a symplectic system of coor-

dinates (x1, . . . , xn, y1, . . . , yn) in R2n and a basis f1, . . . , fn of C such that each fi

is one of the following:

fi = x2
i + y2

i for 1 ≤ i ≤ ke , (elliptic)

fi = xiyi for ke + 1 ≤ i ≤ ke + kh , (hyperbolic)



fi = xiyi+1 − xi+1yi, (focus-focus pair)

fi+1 = xiyi + xi+1yi+1 for i = ke + kh + 2j − 1, 1 ≤ j ≤ kf

(1.2.1)

This result ensures the existence of a transversal linear model on Kx0/χx0 . This

basis is often called Williamson basis.

The Williamson type of an orbit

In order to prove the existence of a linear model in a whole neighbourhood one

must consider in general a finite normal covering of the initial neighbourhood.

First let us introduce the notion of Williamson type of an orbit of the integrable

system.
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Observe that because of theorem 1.2.3 the triple (ke, kh, kf ) at p is an invariant

of the point.

This triple is called the Williamson type of the singular point p. As it has been

shown by Nguyen Tien Zung in [61], this triple is also an invariant of the orbit.

That is why it is also called the Williamson type of the orbit L.

A Hamiltonian free action of Tk in a covering

In order to introduce the linear model we need to recall a result of Nguyen Tien

Zung [61] which ensures the existence of a locally free action of Tk (k is the dimen-

sion of the orbit) in a neighbourhood of the orbit which preserves the foliation.

There exists a normal finite covering of a neighbourhood of the orbit such that

this action can be lifted to a free action in the covering.

In ([61]) Nguyen Tien Zung proves the following results concerning the existence

of Hamiltonian actions of tori in a neighbourhood of a singular leaf of a Hamiltonian

system.

Let N be a singular leaf (not a singular orbit of the foliation). In [61] the pair

(U(N),F) stands for a foliated neighbourhood of a singular leaf (F is the singular

Lagrangian foliation).

Theorem 1.2.4 ( Nguyen Tien Zung )

Let (U(N),F) be a nondegenerate singularity of Williamson type (ke, kh, kf )

and of corank n − k = ke + kh + 2kf of an integrable system with n degrees of

freedom. Then there exists an effective Hamiltonian action of a torus Tk+ke+kf in

U(N) which preserves the moment map. This action is unique up to automorphisms

of the torus.

As observed in [61] in order for this action to be free one must consider a finite

covering of (U(N),L) and choose a subtorus Tk of Tk+ke+kf . Then the following

theorem is proved in [61],
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Theorem 1.2.5 ( Nguyen Tien Zung )

Let (U(N),F) be a strongly nondegenerate singularity of corank n− k = ke +

kh + 2kf of an integrable system with n degrees of freedom. Then there exists a

normal finite covering (Ũ(N), F̃) of (U(N),F) and a free Hamiltonian action of

the torus Tk in the covering (Ũ(N), F̃) which preserves the moment map.

Remark:

In [61] a nondegenerate singularity (U(N),F) of an integrable system is called

strongly nondegenerate singularity if the set of singular values of the moment map

when restricted to U(N) coincides with the set of singular values of a singular

point of maximal corank in N .

In the case N coincides with an orbit this condition is automatically satisfied.

Therefore we may apply this result to a neighbourhood of a nondegenerate

orbit of an integrable Hamiltonian system. Namely, since the dimension of the orbit

equals k, the isotropy group of the action is a finite abelian group so there exists a

finite covering Ũ(L) of the neighbourhood of the orbit such that the foliation, the

symplectic form and the action of Tk can be lifted to Ũ(L).

And if L is an orbit of an integrable Hamiltonian system we may restate the

theorem above as,

Theorem 1.2.6 Let U(L) be a neighbourhood of a nondegenerate singular orbit

of an integrable system with n degrees of freedom. Assume the corank of the orbit

is n− k = ke + kh + 2kf . Let F be the singular Lagrangian foliation defined by the

integrable system. Then there exists a normal finite covering Ũ(L) of U(L) such

that the foliation can be lifted to F̃ and a free Hamiltonian action of the torus Tk

in the covering Ũ(L) which preserves the moment map.

Now we can introduce the linear model associated to the orbit L. Later, we

will see that the invariants associated to the linear model are the Williamson type

of the orbit and a twisting group Γ attached to it.

First we introduce the linear model in the covering,
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The linear model in the covering

Denote by (p1, ..., pk) a linear coordinate system of a small ball Dk of dimen-

sion k, (θ1, . . . , θk) is a standard periodic coordinate system of the torus Tk, and

(x1, y1, ..., xn−k, yn−k) a linear coordinate system of a small ball D2(n−k) of dimen-

sion 2(n− k). Now we consider the manifold

V = Dk × Tk ×D2(n−k) (1.2.2)

with the standard symplectic form
∑

dpi ∧ dθi +
∑

dxj ∧ dyj, and the following

moment map:

F = (p1, ..., pk, f1, ..., fn−k) : V → Rn (1.2.3)

where

fi = x2
i + y2

i for 1 ≤ i ≤ ke ,

fi = xiyi for ke + 1 ≤ i ≤ ke + kh ,

fi = xiyi+1 − xi+1yi and

fi+1 = xiyi + xi+1yi+1 for i = ke + kh + 2j − 1, 1 ≤ j ≤ kf

(1.2.4)

The linearized foliation in the covering is the foliation determined by the above

moment map. This presentation of the foliation would be the one of A, that is,

the above components of the moment map are the first integrals of the system. We

can also look for generators of χ to define the linearized foliation in the covering.

After performing a linear change of coordinates in such a way that the hyperbolic

functions can be written as fi = x2
i − y2

i , the following vector fields form a basis of

χ,

Yi = ∂
∂θi

for 1 ≤ i ≤ k ,

Xi = −yi
∂

∂xi
+ xi

∂
∂yi

for 1 ≤ i ≤ ke ,

Xi = yi
∂

∂xi
+ xi

∂
∂yi

for ke + 1 ≤ i ≤ ke + kh ,

Xi = xi
∂

∂xi+1
− yi+1

∂
∂yi
− xi+1

∂
∂xi

+ yi
∂

∂yi+1
and

Xi+1 = −xi
∂

∂xi
+ yi

∂
∂yi
− xi+1

∂
∂xi+1

+ yi+1
∂

∂yi+1
for i = ke + kh + 2j − 1, 1 ≤ j ≤ kf
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As a matter of notation, when we talk about rank r foliations or corank n− r

foliations, we mean that k=r and that the foliation is defined in a neighbourhood

of an r-dimensional torus.

When we refer to completely elliptic foliations we mean that the Williamson

type of the orbit L is (n− k, 0, 0). We denote by completely hyperbolic foliations

in any corank those foliations for which the Williamson type of the orbit L is

(0, n − k, 0). The linear model in the neighbourhood will be determined by the

following two data: The linear model in the covering and a twisting group attached

to the isotropy group of the Hamiltonian Tk-action along the singular orbit L.

In any case the role of the twisting group in the linearization process will be

clarified when we prove the equivariant version of the symplectic linearization. The

linearized foliation in the initial neighbourhood considered U(L) is the linearized

foliation in the covering quotiented by the action of the twisting group.

1.2.6 The parametrized Morse lemma

In this section we are going to recall the parametrized Morse lemma. The Morse

lemma without parameters establishes the existence of a diffeomorphism in a neigh-

bourhood of a nondegenerate singular point of a smooth function which takes the

given function to its quadratic part. If the function depends on parameters then

the above diffeomorphism also exists and depends smoothly on the parameters.

We include here the proof of the Morse lemma without parameters provided by

Richard S. Palais in [51], the Morse lemma with parameters will be a consequence

of it. So let us recall the content and proof of the Morse lemma. But before let us

outline the following: Palais also proved the theorem for Banach spaces; we will

stick to the differentiable case.

Theorem 1.2.7 Let f be a smooth function defined in convex neighbourhood W

of the origin in a finite dimensional vector space V . Let 0 stand for the origin of

the vector space. Suppose that f(0) = 0, d0f = 0 and that 1
2
d2

0f is a nonsingular
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quadratic form Q. Then there exists a neighbourhood U of the origin and a dif-

feomorphism φ : U −→ W with φ(0) = 0 and d0φ = Id such that for x ∈ U ,

f(φ(x)) = Q(x, x).

Proof: The proof uses the path method. Put f = f1 and define f0(x) = Q(x, x).

We define the path ft = f0 + t(f1− f0) for t ∈ [0, 1]. Notice that ḟt = dft

dt
= f1− f0.

We look for a one parameter family of diffeomorphisms φt such that ft ◦ φt = f0

and satisfying the condition φ0 = Id . Once the one parameter family is found,

the diffeomorphism φ that we are looking for will be φ1. Now we introduce the

t-parametric vector field associated to the family φt,

Xt0(φt0(x)) =
d

dt
(φt(x))|t=t0 , (1.2.5)

From this expression the following relation is obtained (lemma 1 in [51]),

d

dt
(ft ◦ φt(x)) = (ḟt + Xt(ft)) ◦ φt(x)

From this equation in particular if Xt(ft) = −ḟt, ∀t ∈ [0, 1] then ft ◦ φt = f0. So

going back to the problem posed at the beginning, it is enough to find a dependent

vector field Xt such that

Xt(ft) = −(f1 − f0). (1.2.6)

Given a smooth mapping g we will denote by dxg the differential of g at the point x.

In order to see which is the convenient vector field Xt observe that since d0ft = 0,

we can write

dxft(v) =

∫ 1

0

d

ds
dsxft(v)ds =

∫ 1

0

d2
sxft(x, v)ds

And this last term is Bt
x(x, v) where,

Bt
x(u, v) =

∫ 1

0

d2
sxft(u, v)ds

Observe that Bt
x = B0

x + t(B1
x−B0

x). On the other hand, since Bt
0 = 2Q and Q is a

nonsingular quadratic form for all t then Bt
x is nonsingular ∀x in a neighbourhood
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of 0 and ∀t ∈ [0, 1]. Now equation 1.2.6 can be rewritten as,

Bt
x(x,Xt) = f0 − f1,

so if we could identify g = f0 − f1 with a quadratic form then the equation 1.2.6

has a well-defined solution. We make similar computations to the ones we did with

dxft,

f0 − f1 =

∫ 1

0

d

ds
g(sx)ds =

∫ 1

0

dsxg(x)ds =

∫ 1

0

∫ 1

0

d2
rsxg(sx, x)drds

This last expression equals the quadratic form Cx(x, x) being Cx the bilinear form,

Cx(u, v) =

∫ 1

0

∫ 1

0

d2
rsxg(su, v)drds

Finally, the Xt satisfying the equation is the unique solution of the equation,

Bt
x(u,Xt) = Cx(u, x), ∀u ∈ V.

Now the diffeomorphism φt defined by the equation 1.2.5 is such that φ1 is a

solution. Observe also that because φ0 is the identity mapping then d0φ0 is also

the identity mapping and since d0Xt = 0 then d0φt is the identity mapping ∀t in

particular for t = 1, as desired. This ends the proof of the theorem. ¤
Remark: As observed by Guillemin and Sternberg in [30], the proof provided by

Palais allows to claim that if f depends smoothly on parameters then the diffeo-

morphism obtained φ will depend smoothly on the same parameters because the

vector field Xt depends differentiably on them (all the operations performed to find

Xt are differentiable). This is the content of the so-called parametrized Morse Lemma.

1.2.7 Our notion of equivalent symplectic germs

We say that a foliation is generically Lagrangian if its regular leaves are Lagrangian

submanifolds and its singular leaves are isotropic. Let L be an orbit of the foliation.

Let us introduce the notion of equivalence for the singular Lagrangian foliation

in a neighbourhood of the orbit that we will use in the sequel.
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Definition 1.2.7 Let (U1, ω1) and (U2, ω2) be two symplectic germs such that F
is generically Lagrangian for both ω1 and ω2. We say that ω1 and ω2 are equivalent

if there exists a diffeomorphism φ : U1 −→ U2 such that:

1. φ∗(ω2) = ω1.

2. φ preserves F .

3. φ fixes L.

Notation 1.2.8 We write ω1 ∼F ω2 to denote equivalent symplectic germs.

1.3 Differentiable equivalence in a finite normal

covering

In this section we recall the result of linearization in a finite normal covering.

That is, we will see that there exists a finite covering in which the foliation can be

linearized in a neighbourhood of a singular orbit for the foliation. This result was

proved by Eliasson. We give our own proof in the corank 1 case which uses Morse

methods to linearize in the covering. The objective of this section is to provide the

following main result,

Theorem 1.3.1 In Ũ(L) the singular Lagrangian foliation is diffeomorphic to the

linearized one.

Remarks:

• The linearization result for analytical systems was proved by Vey.

• The differentiable linearization for maximal corank singularities, that is when

L is reduced to a point, was proved by Eliasson in [23].
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• The differentiable linearization for any corank was proved by Eliasson in [24]

and [23]. Another proof in the completely elliptic case for any corank was

provided by Dufour and Molino in [21].

Before proceeding to the proof of the theorem for rank n − 1 foliations, we

recall the result for rank 0 foliations which was proved by Eliasson. We would like

to remark that Eliasson’s theorem of linearization is also valid for a set of func-

tions h1, . . . , hk in involution with respect to the Poisson bracket attached to the

corresponding symplectic form with k ≤ n. In any case, we state here the version

for n commuting functions. In the statement of the theorem, the set q1, . . . , qn

stands for a Williamson basis of the Cartan subalgebra attached to the singularity

as guaranteed by theorem 1.2.3 and {, }0 stands for the standard Poisson bracket.

Theorem 1.3.2 ( Eliasson ) Let (M, ω) be a symplectic manifold and let h1, . . . , hn

be a set of functions in involution with respect to the Poisson bracket {, } attached

to ω. Assume p is a non-degenerate critical point of rank 0. Then there exists a

local chart φ : T0M −→ M such that dφ(0) = Id and such that {hj ◦φ, qi}0 = 0 for

all i, j. If there are no hyperbolic elements among the qi then there exists germs of

smooth functions ψ1, . . . , ψn such that, hj ◦ φ = ψj(q1, . . . , qn).

Remark:

Although the exception made for the hyperbolic components in the Cartan

subalgebra in the statement of the theorem above, the condition {hj ◦ φ, qi}0 = 0

is enough to guarantee that the foliation is linearizable. This is due to the fact that

the condition {hj ◦ φ, qi}0 = 0 is equivalent to the condition Xi(hj ◦ φ) = 0, ∀i, j
and this, in turn, implies that the foliation is generated, in the new coordinates

provided by φ, by the vector fields of the linearized foliation.

Finally we proceed to prove the linearization theorem for rank n− 1 foliations

in a 2n-dimensional manifold,

Proof of 1.3.1 in the corank 1 case:



18 Chapter 1. Differentiable linearization

In Ũ(L), the algebra A is generated by n functions g1, . . . , gn−1, f . Let Hgi
,

1 ≤ i ≤ n− 1 be the infinitesimal generators of the Hamiltonian free Tn−1 -action.

Recall that L is diffeomorphic to a torus Tn−1. Then one can take coordinates

(θ1, . . . , θn−1, p1, . . . , pn−1, x, y)

in Ũ(L) such that,

Hgi
= ∂

∂θi
and gi = pi for 1 ≤ i ≤ n− 1.

Let f be a singular first integral. Since {f, gi} = 0, in particular we obtain

∂f
∂θi

= 0 and the function f does not depend on θi for any i. Let p be a point in L,

since p is nondegenerate we may apply the result of Williamson and there exists

coordinates on the vector space Kx0/χx0 such that f is one of the following:

• If the Williamson type of the orbit is (1, 0, 0) then f = x2 + y2.

• If the Williamson type of the orbit is (0, 1, 0) then f = x2 − y2.

Let us set the following simplifying notation which we will use throughout the

proof, θ = (θ1, . . . , θn−1) and p = (p1, . . . , pn−1). The notation Dε(p) stands for a

disk of radius ε in the coordinates p1, . . . , pn−1 centered at the origin.

In order to prove the theorem we need the following lemma:

Lemma 1.3.3 Let N ⊂ Ũ(L) be defined as

N = {(θ, p, x, y) ∈ Ũ(L) | ∂f

∂x
= 0,

∂f

∂y
= 0}.

Then, under the non-degeneracy assumptions, there exist functions h1 : Tn−1 ×
Dε(p) −→ R and h2 : Tn−1 × Dε(p) −→ R and a tubular neighbourhood W (L) of

L, W (L) ⊂ Ũ(L) such that

N ∩W (L) = {(θ, p, x, y) ∈ W (L) | x = h1(θ, p), y = h2(θ, p)}.



1.3. Linearization in the covering 19

Proof:

Let N̂ be the set {(θ, p, x, y) ∈ Ũ(L) | x = y = 0}.
There exists a neighbourhood V (L) of L such that the differential of the map-

ping

H : V (L) −→ N̂ × R2

(θ, p, x, y) −→ (θ, p, ∂f
∂x

, ∂f
∂y

)

is non-singular along L. So there is an open neighbourhood W (L) of L in V (L),

such that H|W (L) is a diffeomorphism.

We use this diffeomorphism to define h1 and h2.

Notice that H(N) = N̂ × (0, 0).

Finally defining h1(θ, p) = π3 ◦H−1(θ, p, 0, 0) and h2(θ, p) = π4 ◦H−1(θ, p, 0, 0)

(where π3 and π4 stand for the projections on the x-axis and y-axis respectively)

we have

N ∩W (L) = {(θ, p, x, y) ∈ W (L) | x = h1(θ, p), y = h2(θ, p)}.

And this concludes the proof of the lemma.

¤

The proof of the theorem continues as follows:

The following diffeomorphism

G : W (L) −→ G(W (L))

(θ, p, x, y) −→ (θ, p, x− h1, y − h2)

takes N ∩W (L) to {(θ, p, 0, 0) ∈ G(W (L))}. Let (θ, p, x1, y1) stand for coordinates

on G(W (L)).

After applying the parametrized Morse lemma we get coordinates (θ, p, x̄, ȳ) in

a neighbourhood T (L) of L, T (L) ⊂ W (L), such that
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f = x2 + εy2.

where ε = 1 if f is elliptic and ε = −1 in the hyperbolic case. So, the singular

Lagrangian foliation becomes differentiably equivalent to the one described by the

orbits of the distribution generated by Yi and X being Yi = ∂
∂θi

, 1 ≤ i ≤ n− 1 and

X = −εy ∂
∂x

+ x ∂
∂y

, where ε = 1 if f is elliptic and ε = −1 in the hyperbolic case.

This ends the proof of the theorem in the corank 1 case.

¤



Chapter 2

Analytic tools and symplectic

linearization in dimension 2

2.1 Introduction

In this chapter we will prove some results which will play an important role in the

symplectic linearization process in any dimension concluding also the symplectic

linearization in dimension 2.

The chapter is organized as follows: In the first section we prove some results

concerning two special decomposition for functions. The kind of tools are those of

analysis. Some of this results have already been proved by Eliasson [23] and Colin

de Verdière and Vey in dimension 2 [6]. In any case, we extend those results to

any dimension. This generalization will be needed in the chapters that follow.

In the last section we prove a symplectic linearization result for singular La-

grangian foliations fulfilling the hypotheses posed in the first chapter in dimension

2.

When we talk about symplectic linearization we mean the following: We con-

sider a foliation given by a completely integrable system with singularities of non-

degenerate type. In the first chapter we saw that those foliations are differentiably

21
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linearizable in a finite covering of a neighbourhood of an orbit of the distribution

generated by the Hamiltonian vector fields. We consider the linearized foliation

in the covering and we pose the following problem. Given a symplectic form for

which the foliation is Lagrangian, does there exist a diffeomorphism in the covering

taking the given symplectic form to the Darboux symplectic form and preserving

the foliation?

When the answer to the question is affirmative we say that the foliation is

symplectically linearizable in the covering. To attain the symplectic linearization

in the initial manifold we will need to talk about an equivariant linearization result.

This will be done in a further chapter.

The aim of the second section is to give an affirmative answer to that matter

in dimension 2.

2.2 Two special decompositions for functions

Let g be a smooth function if X is a smooth vector field on a manifold M and

p ∈ M such that X(p) 6= 0, then it is a well-known result that g admits a local

smooth decomposition of the following type:

g = g1 + X(g2) , X(g1) = 0 (2.2.1)

In order to do that just take local coordinates (x1, . . . , xn) centered at a point p

such that X = ∂
∂x1

and apply the classical integration trick. That is, if we consider

the smooth function g1(x1, . . . , xn) = g(0, x2, . . . , xn) and the smooth function

g2 =

∫ 1

0

g(tx1, . . . , xn)dt

we obtain the desired decomposition 2.2.1.

Now the question arises: Can we obtain similar local decomposition for singular

vector fields?
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In this section we are going to prove that similar decompositions can be obtai-

ned for the following vector fields X = x1
∂

∂x2
− x2

∂
∂x1

or Y = −x1
∂

∂x1
+ x2

∂
∂x2

.

This special decomposition for functions are going to become a key point in

the proof of the local uniqueness theorem for the elliptic-elliptic, elliptic-hyperbolic

and hyperbolic-hyperbolic cases.

Let us state and proof the following propositions. The first proposition is pro-

ved by Eliasson in [24] and [23] in any dimension whereas a proof for the second

proposition is proved by Eliasson when n = 2 in [23]. Let us point out that when

the manifold is M = R2 a proof of this decomposition had been formerly given by

Guillemin and Schaeffer [28] and by Colin de Verdière and Vey [6]. This generali-

zation to any dimension seems to be new in the non-elliptic case. In any case the

techniques used here are fairly inspired in those of the paper of Colin de Verdière

and Vey.

Proposition 2.2.1 Let M be a differentiable manifold and let g be a germ of

smooth function in a neighbourhood of a point p. Consider X a vector field which in

local coordinates can be written as X = x1
∂

∂x2
−x2

∂
∂x1

then there exist differentiable

functions g1 and g2 such that:

g = g1(x
2
1 + x2

2, x3 . . . , xn) + X(g2)

Proof:

We follow Eliasson’s recipe [23] for this proof:

Let φt be the flow of the vector field X. Since the orbits of X are circles,

after shrinking the neighourhood U of the point p if necessary we can assume that

φt(U) ⊂ U . On the other hand, the orbits of X are periodic of period 2π. Thus we

can consider the following well-defined function,

g1(x1, . . . , xn) =
1

2π

∫ 2π

0

g(φt(x1, . . . , xn))dt
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and

g2(x1, . . . , xn) =
1

2π

∫ 2π

0

(tg(φt(x1, . . . , xn))− g1(x1, . . . , xn))dt.

Clearly, these functions are differentiable. Let us check that these g1 and g2

give the decomposition sought.

First we check X(g1) = 0 and since the orbits of the vector field are connected

this implies that g1 = g1(x
2
1 + x2

2, x3, . . . , xn).

Since

X(g1) = lim
s→0

g1(φs(x1, . . . , xn))− g1(x1, . . . , xn)

s
,

we compute this derivative:

g1(φs(x1, . . . , xn)) =
1

2π

∫ 2π

0

g(φt(φs(x1, . . . , xn)))dt

Since φs is a one-parameter subgroup we get:

g1(φs(x1, . . . , xn)) =
1

2π

∫ 2π

0

g(φt+s(x1, . . . , xn))dt

Now we perform the change of variable t = t + s and the right hand side

becomes:

1

2π

∫ 2π+s

s

g(φt(x1, . . . , xn))dt

Now we differentiate this expression with respect to s to get:

1

2π
(g(φ2π+s(x1, . . . , xn))− g(φ2π(x1, . . . , xn)))

Since φt is 2π-periodic this expression equals 0 for all s, in particular, for s = 0

and this proves X(g1) = 0.

Now we perform the same kind of calculations for g2. We have to check that

X(g2) = g − g1.

We have,
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g2(φs(x1, . . . , xn)) =
1

2π

∫ 2π

0

((t+s)g(φt(φs(x1, . . . , xn)))−(t+s)g1(φs(x1, . . . , xn)))dt

We split this into two integrals.

The first integral 1
2π

∫ 2π

0
(t + s)g(φt(φs(x1, . . . , xn)))dt becomes

1

2π

∫ 2π+s

s

(tg(φt(x1, . . . , xn)))dt

under the change of variable t = t + s. Now differentiating in s we obtain

1

2π
((2π + s)g(φ2π+s(x1, . . . , xn))− sg(φs(x1, . . . , xn)))

Again, since φt is 2π-periodic this expression equals

1

2π
(2πg(φs(x1, . . . , xn)))

Finally, put s = 0; since φ0 = Id we get

g(x1, . . . , xn).

As for the second integral,

1

2π

∫ 2π

0

(t + s)g1(φs(x1, . . . , xn))dt = g1(φs(x1, . . . , xn))

∫ 2π

0

(t + s)dt

= g(φs(x1, . . . , xn))(
(2π)2

2
+ 2πs)

Finally differentiating in s and setting s = 0 this expression equals,

1

2π
(
(2π)2

2
X(g1(x1, . . . , xn)) + 2πg1(x1, . . . , xn))

But since X(g1) = 0 this integral is g1(x1, . . . , xn). This proves X(g2) = g − g1

and we are done.
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¤

Now let us prove a similar result but for a vector field of type Y = −x1
∂

∂x1
+

x2
∂

∂x2
.

We will prove,

Proposition 2.2.2 Let M be a differentiable manifold and let g be a germ of

smooth function in a neighbourhood of a point p. Consider X a vector field which

in local coordinates can be written as Y = −x1
∂

∂x1
+ x2

∂
∂x2

then there exist diffe-

rentiable functions g1 and g2 such that

g = g1(x1x2, x3 . . . , xn) + Y (g2)

Before we will need some lemmas concerning the smooth resolution of the

equation Y (f) = g for a given smooth g.

Lemma 2.2.1 Let g be a smooth function, the equation Y (f) = g admits a formal

solution along the subspace S = {(0, 0, x3, . . . , xn)} if and only if

∂2kg

∂xk
1∂xk

2

(0, 0, x3, . . . , xn) = 0.

Proof:

Let us construct a solution considering the (x1, x2)-jets. That is, assume the

(x1, x2)-jet of f along S = {(0, 0, x3, . . . , xn)} is
∑

ij fijx
i
1x

j
2, the coefficients fij

being functions in the variables (x3, . . . , xn). Denote by
∑

ij gijx
i
1x

j
2 the (x1, x2)-jet

of g along S = {(0, 0, x3, . . . , xn)}.
Then the condition X(f) = g implies the following conditions for the coefficient

functions

(−i + j)fij = gij , ∀i, j
Particularizing i = j in this equation we obtain gii = 0; so in order to have a

solution by jets of the equation Y (f) = g, the terms ∂2kg
∂xk

1∂xk
2
(0, 0, x3, . . . , xn) have

to vanish necessarily.
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On the other hand if i 6= j from the above relation, the following relation is

met fij =
gij

−i+j
. Therefore, if the condition ∂2kg

∂xk
1∂xk

2
(0, 0, x3, . . . , xn) = 0 is fulfilled

this gives a solution by jets to the equation Y (f) = g. ¤

According to Borel’s theorem there exists a smooth function f̂ with the (x1, x2)-

jets previously found. It remains to solve this equation for functions for which

∂i+jg

∂xi
1∂xj

2

(0, 0, x3, . . . , xn) = 0.

We will refer to this functions as (x1, x2)-flat functions along the subspace S =

{(0, 0, x3, . . . , xn)}.

Lemma 2.2.2 Let g be a (x1, x2)-flat function along the subspace S = {(0, 0, x3, . . . , xn)}
then there exists a smooth function f for which Y (f) = g.

Proof:

Consider the function,

T (x1, . . . , xn) =





1
2
ln x1

x2
x1x2 > 0

1
2
ln −x1

x2
x1x2 < 0

Denote by φt(x1, . . . , xn) the flow of the vector field Y , being Y = −x1
∂

∂x1
+

x2
∂

∂x2
. Observe that φt(x1, . . . , xn) = (e−tx1, e

ty1, . . . , xn).

Now we define

f(x1, . . . , xn) = −
∫ T (x1,...,xn)

0

g(φt(x1, . . . , xn))dt. (2.2.2)

This function is defined outside the set Ω = Ω1∪Ω2 being Ω1 = {(x1, . . . , xn), x1 =

0} and Ω2 = {(x1, . . . , xn), x2 = 0}. Let us prove that f admits a smooth conti-

nuation in the whole neighbourhood considered and that it is a solution to our

problem.
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In order to check that it admits a smooth extension. We compute the deriva-

tives.

Formally differentiating under the integral sign, the computation of the first

derivatives reads,

• If i = 1, 2

∂

∂xi

f = −g(φT (x1,x2,...,xn))
∂

∂xi

T −
∫ T (x1,...,xn)

0

∂

∂xi

g(φt(x1, . . . , xn))dt (2.2.3)

• When i 6= 1 and i 6= 2,

∂

∂xi

f = −
∫ T (x1,...,xn)

0

∂

∂xi

g(φt(x1, . . . , xn))dt (2.2.4)

Observe that the set S equals S = Ω1 ∩ Ω2. Observe that f is smooth outside the

set Ω = Ω1 ∪ Ω2.

The first term in 2.2.3 is smooth outside the set Ω = Ω1 ∪ Ω2. And observe

that if p lies in Ω then from the definition of T , the point φT (p) lies in S. On

the other hand, the function g is flat along the subspace S. Thus the first term

in 2.2.3 −g(φT (x1,x2,...,xn))
∂

∂xi
T is smooth in the whole neighbourhood of the origin

considered.

As for the second term, we could reproduce word by word the proof supplied

by Eliasson in [23] in the two dimensional case. The proof can be adapted because

the function g is flat along S. In fact, it is just the parametric version of Eliasson’s

result. In the same way, Eliasson’s proof yields that the integral 2.2.4 is a smooth

function.

The same arguments applied to the successive derivatives prove that f admits

a C∞ continuation.

In fact in [23] it is proved that the integral defining f is absolutely integrable,

thus we can differentiate with respect to s. This lets us prove that f is, in fact, a

solution to the equation Y (f) = g.
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Now let us check that this is a solution to the equation.

First,

f(φs(x1, . . . , xn)) = −
∫ T (φs(x1,...,xn))

0

g(φs(φt(x1, . . . , xn)))dt (2.2.5)

The relations ln e−sx1

esx2
= ln x1

x2
− 2s when x1x2 ≥ 0 and ln −e−sx1

esx2
= ln −x1

x2
− 2s

when x1x2 ≤ 0 imply T (φs(x1, . . . , xn)) = T (x1, . . . , xn) − s. On the other hand,

since φs is a one-parameter subgroup. Equation 2.2.5 can be written as,

f(φs(x1, . . . , xn)) = −
∫ T (x1,...,xn)−s

0

g(φt+s(x1, . . . , xn))dt

Now we perform the change of variable t = t + s and this equation reads,

f(φs(x1, . . . , xn)) = −
∫ T (x1,...,xn)

s

g(φt(x1, . . . , xn))dt

Now after differentiating in s this equation yields,

df(φs(x1, . . . , xn))

ds
= g(φs(x1, . . . , xn))

Finally, put s = 0 to obtain Y (f) = g as we wanted.

This ends the proof of the lemma. ¤

Let us go back to the proof of proposition 2.2.2. Given a differentiable function

g, we want to find smooth functions g1 and g2 such that

g = g1(x1x2, x3 . . . , xn) + Y (g2).

The strategy for finding this decomposition will be to find a solution by (x1, x2)-

jets and then apply the second lemma to gather all the remaining (x1, x2)-flat terms

as Y (f) for a certain smooth f .

So let
∑

ij gijx
i
1x

j
2 be the (x1, x2)-Taylor expand for g at a point (0, 0, x3, . . . , xn)

lying in the subspace S = {(0, 0, x3, . . . , xn)}.
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Now we split this Taylor expand in two. The first one,
∑

ii gijx
i
1x

i
2, and the

second one
∑

i 6=j gijx
i
1x

j
2. Denote by r̂1 and r̂2 two smooth functions with the

previous jets. Then we can assert that

r̂1 = g1(x1x2, x3, . . . , xn) + φ(x1, . . . , xn),

being φ(x1, . . . , xn) a (x1, x2)-flat function along S = {(0, 0, x3, . . . , xn)}. Furt-

her, using the two above lemmas (2.2.1,2.2.2), the function r̂2 can be written as

r̂2 = Y (R2). Now since φ is (x1, y1)-flat, according to lemma 2.2.2 we can write

φ(x1, . . . , xn) = Y (R). Finally define g2 = R2 + R and g1 and g2 satisfy the de-

composition sought g = g1(x1x2, x3 . . . , xn) + Y (g2). And this completes the proof

of proposition 2.2.2.

Observation 2.2.1 Observe that the function defined by formula 2.2.2 is not

smooth if g is not flat along the subspace S.

If g is only flat at the origin then we can find examples which show that f does

not admit a smooth continuation.

For instance consider n = 4, the function g = e
−( 1

x3
)2

is flat at the origin but

it is not flat along the subspace S = {(0, 0, x3, x4)}. Observe that the integral does

not extend to a smooth function at points of the form (0, x0
2, x

0
3, x

0
4) with x0

2 6= 0

and x0
3 6= 0.

This integral has been used by some authors without the condition of flatness

along the subspace and just the condition of flatness at the origin (see proposition

2.13 in [57]). Thus, the functions defined by those integrals in [57] do not always

admit a smooth continuation unless the function g is flat along S.

2.3 Symplectic linearization in dimension 2

In this section we consider a foliation given a completely integrable system with

singularities of non-degenerate type in a 2-dimensional manifold.
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As we observed in the first chapter, the foliation defined as above can be diffe-

rentiably linearized because of Eliasson’s theorem for rank 0 singularities.

Then we know that the foliation is differentiably equivalent to the foliation

defined by the orbits of the vector field,

Xε = x
∂

∂y
− εy

∂

∂x
.

Where ε = 1 in the elliptic case and ε = −1 in the hyperbolic case. That is,

the foliation that we will consider will be Fε =< x ∂
∂y
− εy ∂

∂x
>.

The problem that we want to solve in this section is the following:

Problem

Given two symplectic structures ω1 and ω2, we want to find a local foliation

preserving diffeomorphism defined in a neighbourhood of the origin such that

φ∗(ω1) = ω2

This problem is not new.

The affirmative answer was given by Vey [55] in the analytical case and by

Colin de Verdière and Vey [6] in the smooth case. A proof for the smooth elliptic

case was given by Eliasson in [23].

In any case, we provide our own proof here.

Observe that in dimension 2 this problem is equivalent to the problem of sym-

plectic linearization of singular Lagrangian foliations. This second problem is more

constraining in dimensions greater than 2.

Let us recall what is the problem of symplectic linearization of singular La-

grangian foliations about,

Problem

Let F be a foliation given by a completely integrable system with singularities

of non-degenerate type.
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Given two symplectic structures ω1 and ω2 for which F is Lagrangian, we want

to find a local foliation preserving diffeomorphism defined in a neighbourhood of

the origin such that φ∗(ω1) = ω2.

This result has an utter importance in the forthcoming chapters. It can be

considered as the first step of an inductive process valid for integrable systems

without focus-focus components which will allow us to conclude the symplectic

linearization.

Now we can state and prove the following,

Theorem 2.3.1 Let (M2, ω1) be a 2-dimensional symplectic manifold endowed

with coordinates (x, y) and let F be a singular Lagrangian foliation with an elliptic

or hyperbolic singularity at the origin (0, 0), then there exists a local diffeomorphism

φ preserving F such that φ∗(dx ∧ dy) = ω1.

Proof:

Let Xε = x ∂
∂y
− εy ∂

∂x
. We denote by fε be the function fε = x2 + εy2. Now

assume ω1 = A(x, y)dx ∧ dy Then iXεω = −Adfε.

In the elliptic case (ε = −1) lemma 2.2.1 shows that we can write A = A1 +

X1(A2) with A1 basic for convenient functions A1 and A2.

In the hyperbolic case (ε = −1) we use lemma 2.2.2 to find a similar decompo-

sition. But we have to perform a change of coordinates first, consider x = x+y, y =

x− y and now apply lemma 2.2.2 which guarantees the existence of functions A1

and A2 such that A = A1 + X−1(A2) with A1 basic.

Now in both cases, we define α = A2dfε. Observe that α is a basic 1-form.

The next lemma shows that we can deform ω1 to an equivalent ω1 with the

coefficient function A basic for F . More exactly, we prove the following lemma

which is a foliation-preserving version of the Moser path method.

Lemma 2.3.2 Let α be an F-basic 1-form and let ω1 be a symplectic germ on a

2-dimensional manifold for which F is Lagrangian. Then:



2.3. Symplectic linearization in dimension 2 33

1. The 2-form ω0 = ω1 − dα is a symplectic structure in a neighbourhood of p.

2. There is a diffeomorphism η between two neighbourhoods of p preserving F
and such that η∗(ω1) = ω0.

Proof:

First, let us check that ω0 is a symplectic form in a neighbourhood of p. Clearly,

ω0 is a closed 2-form. Let us see that it is non-degenerate; Since α is basic for the

foliation, α = g · (dfε). In particular α vanishes at p = (0, 0) and ω0|p equals ω1|p .

Therefore, since ω1 is non-degenerate at p, the 2-form ω0 is non-degenerate in a

neighbourhood of p. This ends the proof of the first assertion. In order to prove

the second assertion we consider the following family of 2-forms:

ωt = ω0 + t(ω1 − ω0), t ∈ [0, 1]

Let us see that these 2-forms are symplectic germs. Clearly, the 2-forms ωt are

closed. And since ωt|p = ω0|p , we can repeat the argument above to see that the

2-forms are non-degenerate. Therefore, they are symplectic in a neighbourhood of

the point p.

Now we are going to use Moser’s path method to conclude. First, we consider

the well-defined vector field Xt by the following equality:

iXtωt = −α.

Recall that α vanishes at p, this guarantees [59] that the time-dependent vector

field Xt is integrable. Let φt stand for the “flow” of the time dependent vector

field Xt defined by the conditions: φ0 = Id, Xt = dφs

ds |s=t
We check that this field

is tangent to the foliation, in this way the flow of the time-dependent vector field

will preserve the leaves of the foliation.

The singular set for the foliation is reduced to the origin p. We will see that

the vector field is tangent to the foliation in two steps:
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• At points q 6= (0, 0): Since α is basic for the foliation Xt verifies ωt(Xt, Xε) =

−α(Xε) = 0. Therefore, Xt belongs to its symplectic orthogonal and thus it

has to be tangent to the foliation along the regular leaves.

• At the point p = (0, 0): The vector field Xt is tangent to the foliation because

α vanishes at p = (0, 0) and therefore Xt vanishes at p.

So, we conclude that its flow preserves the leaves of the foliation. Further, remem-

ber that we are looking for a symplectomorphism; this symplectomorphism will be

given by the flow of the vector field Xt at time t = 1. Remember that the flow φt

gives us a family of diffeomorphisms verifying:

1. φt(p) = p.

2. φ∗t ωt = ω0; that is to say, as a particular case, we have: φ∗1(ω1) = ω0.

3. φt preserves the leaves of the foliation.

So φ1 is the symplectomorphism we are looking for and the two symplectic forms

ω0 and ω1 define equivalent symplectic structures. This proves the second assertion

of the lemma.

¤
Now we continue with the proof of the theorem. We apply the lemma taking

α = A2dfε and the symplectic form ω1 = ω1 − dα is equivalent to the initial ω1

and so far

iX1ω = −A1df1

with A1 basic.

The theorem will be proved once we prove the following lemma,
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Lemma 2.3.3 For any 2-form on R2 of the form ω = χ(fε)dx ∧ dy verifying

χ(0) 6= 0 , there is a germ of diffeomorphism ν preserving the origin and also

preserving the foliation given by dfε = 0, such that

ν∗(ω) = dx ∧ dy

Proof of the lemma:

To start with, observe that if ψ(fε) is any differentiable function of fε such that

ψ(0) 6= 0, the mapping

G : (R2, 0) −→ (R2, 0)

(x, y) −→ (x · ψ(fε), y · ψ(fε))

defines a germ of diffeomorphism preserving the foliation dfε = 0. Moreover, ob-

serve that

G∗(dx ∧ dy) = (ψ2 + 2ψψ′fε)dx ∧ dy.

Consider the equation

d

du
(ψ2(u) · u) = χ(u),

where u = fε. Observe that after integrating in u we obtain,

ψ2(u) =

∫ u

0
(χ(u))

u

which is a smooth function.

On the other hand since

ψ2(0) = lim
u→0

∫ u

0
(χ(u))

u
= χ(0)

and χ(0) 6= 0 (it is the coefficient of a symplectic 2-form) we can assert that

ψ is a smooth function in a neighbourhood of the origin and that ψ(0) 6= 0. So

taking as ψ the solution of the equation
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d

du
(ψ2(u) · u) = χ(u)

where u = fε, we have the desired diffeomorphism ν and that finishes the proof of

the lemma and therefore the proof of the theorem.

¤



Chapter 3

Rank 1 singularities in dimension

4

3.1 Introduction

In the first chapter we attained the differentiable equivalence between the sin-

gular Lagrangian foliation and the linearized one. In this chapter we shall see that

this equivalence becomes symplectic in a covering of a neighbourhood of a non-

degenerate singular periodic orbit L. That is to say, we consider a foliation F given

by a completely integrable system on a four dimensional manifold fulfilling the hy-

potheses of non-degeneracy established in the first chapter. Then we consider a

symplectic germ in a neighbourhood of the non-degenerate singular periodic orbit

for which the foliation is Lagrangian.

We prove that there exists a diffeomorphism defined in a neighbourhood of L

then the foliation can be symplectically linearized in a neighbourhood of a singular

periodic orbit.

Namely, we will prove the following theorem,

Theorem 3.1.1 Let M4
0 = S1×D3, endowed with the coordinates (θ, p, x, y). Let

37
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F0 be the foliation given by:

Y1 =
∂

∂θ

Y2 = y
∂

∂x
− εx

∂

∂y

ε ∈ {−1, 1} (ε = 1 elliptic case, ε = −1 hyperbolic case).

Let L = S1 × (0, 0, 0). Then any two symplectic two forms ω1 and ω2 in M4

such that F0 becomes Lagrangian are equivalent, i.e, there exists a diffeomorphism

between two neighbourhood of S1 such that φ preserves F0 and φ∗(ω2) = ω1.

Observation 3.1.1 Once this theorem has been proved, as we proved in the first

chapter that the singular Lagrangian foliation is differentiable equivalent to the

linearized one then it is symplectically equivalent to a neighbourhood of L in M4
0 ,

with a certain symplectic structure on it, but as this symplectic form is equivalent

to the standard one, we finally get the desired symplectic equivalence which we

formulate as:

Theorem 3.1.2 Given an integrable Hamiltonian system on a symplectic mani-

fold (M4, ω) with a non-degenerate singular periodic orbit L. Let F be the singular

Lagrangian foliation associated to it. Let ω0 be the canonical symplectic structure

on M4
0 given by: ω0 = dp ∧ dθ + dx ∧ dy.

• If the singularity on L is elliptic there are neighbourhoods of L in M4 and

M4
0 and a diffeomorphism between them φ such that φ∗(ω0) = ω, sending F

to F0.

• If the singularity on L is hyperbolic there are in general a double covering of a

neighbourhood of L in M4, a neighbourhood of L in M4
0 and a diffeomorphism

φ between them such that φ∗(ω0) = ω, sending F to F0.
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The results contained in this section have been obtained jointly with Carlos

Currás-Bosch and are contained in the paper [13].

In any case we include two proofs of this fact here one of them is different from

the one contained in the publication.

Let us outline how the chapter is organized.

In the first section, we prove the existence of a Hamiltonian S1-action tangent

to the foliation which will be a key point in the proof of linearization. Namely,

according to the first chapter, we may assume that the foliation is generated by

Y1 = ∂
∂θ

and Y2 = y ∂
∂x
−εx ∂

∂y
ε ∈ {−1, 1} being ε = 1 in the elliptic case and ε = −1

in the hyperbolic case. Let ω be a symplectic structure such that F is Lagrangian.

In order to achieve the symplectic linearization we prove first the existence of a

Hamiltonian S1-action by translations which is tangent to the foliation.

In the second section we give two proofs of the theorem: The first one uses some

of the analytical tools contained in the first chapter and defines some diffeomorp-

hisms ad hoc. The second proof is based on the idea of finding a sort of splitting

which separates clearly the singular part from the regular part of the foliation.

Namely, we define two symplectic orthogonal distributions D1 and D2 such that

Y1 ∈ D1 and Y2 ∈ D2. Then we show that these two distributions are integrable.

In this way we obtain new coordinates in a neighbourhood of the singular circle.

Finally the symplectic form ω may be written as ω = ω1 + ω2 being ω1 and ω2 be

two symplectic forms in the 2-dimensional submanifolds integrating the distribu-

tions D1 and D2 respectively. Since each distribution contains a vector field of the

foliation, once reached this point, the symplectic linearization results in dimension

2 obtained in chapter 2 let us conclude the symplectic linearization process. This

second proof sets a precedent for induction which will be used later.
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3.2 Recovering a Hamiltonian S1-action

In order to prove theorem 3.1.1 we need first to find a Hamiltonian S1-action by

translations preserving the foliation.

Let ω be a symplectic form in M4
0 such that F0 is Lagrangian. Let f be a func-

tion defined on S1×D3, we denote by Hω
f the Hamiltonian vector field associated

to f .

Lemma 3.2.1 There exist coordinates (θ, p, x, y) in a neighbourhood of L ∼= S1×
(0, 0, 0), such that Hω

p |N = ∂
∂θ

on N = {(θ, p, 0, 0)}.

Proof: Let us consider N ⊂ M4
0 , N = {(θ, p, 0, 0)} and let i : N −→ M4

0 be the

inclusion of N in M4
0 . One can easily check that i∗ω endows N with a symplectic

structure and that dp = 0 defines a regular Lagrangian foliation on N by circles; by

a simple continuity argument: i ∂
∂θ

ω|N = λdp , λ 6= 0, so one can take coordinates

(θ, p) in N such that i ∂
∂θ

(i∗ω) = dp. Considering (θ, p, x, y) as coordinates in M4
0

(after shrinking M4
0 if necessary), we have

i ∂
∂θ

ω|N = dp.

¤

To avoid unnecessary changes of notation, we will consider from now on M4
0

endowed with coordinates (θ, p, x, y) verifying Hω
p = ∂

∂θ
on N .

By using the generalized Poincaré Lemma one can write

ω = d(Adθ + Bdp + Cdx + Ddy)

where A,B, C, D are differentiable functions vanishing on L.

Now we need the following
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Lemma 3.2.2 There exist coordinates (θ, p, x, y) in a neighbourhood of L such

that

ω = d(pdθ + Bdp + Cdx + Ddy)

where B, C, D vanish along L.

Proof:

Considering the decomposition

A(θ, p, x, y) = A0(p, x, y) +
∂A

∂θ
.

We can write

ω = d(A0(p, x, y)dθ + d(A) + (B − ∂A

∂p
)dp + (C − ∂A

∂x
)dx + (D − ∂A

∂y
)dy).

Now ω = d(A0(p, x, y)dθ + Bdp + Cdx + Ddy).

Let us see that A0 is basic for the foliation F0. As F0 is Lagrangian for ω, we

have

(−y
∂

∂x
+ εx

∂

∂y
)A0 +

∂

∂θ
(yC − εxD) = 0.

So this yields the following two equalities

(y
∂

∂x
− εx

∂

∂y
)A0 = 0

−yC + εxD = f(p, x, y).

The first condition together with ∂A0

∂θ
= 0 implies that A0 is basic for the foliation.

On the other hand, as Hω
p = ∂

∂θ
on N , in particular we obtain ∂A0

∂p
= 1 on N .

So the following mapping

ϕ : M4
0 −→ M4

0

(θ, p, x, y) −→ (θ, A0(p, x, y), x, y)
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is a foliation preserving diffeomorphism.

Finally,

ϕ∗(d(pdθ + B2dp + C2dx + D2dy)) = ω.

Notice that as on N , Hω
p = ∂

∂θ
, the following functions ∂B2

∂θ
, ∂C2

∂θ
and ∂D2

∂θ
vanish

on N . So, in particular B2, C2, D2 are constant on L.

As

ω = d(pdθ+(B2−B2(θ, 0, 0, 0))dp+(C2−C2(θ, 0, 0, 0))dx+(D2−D2(θ, 0, 0, 0))dy),

we can assume that the coefficients B, C, D are zero along L. ¤

We will need the following lemma which is an application of Moser’s path

method:

Lemma 3.2.3 Let α be a 1-form, vanishing on L, and F0-basic and let ω1 be a

symplectic structure on M4
0 such that F0 is Lagrangian. Then:

1. The 2-form ωo = ω1 − dα is a symplectic structure in a neighbourhood of L

and makes the foliation Lagrangian.

2. There is a diffeomorphism η between two neighbourhoods of L in M4
0 such

that it preserves F0 and η∗(ω1) = ω0.

Proof: Let ω1 = d(pdθ + Bdp + Cdx + Ddy). As α is basic for the foliation,

α = F (xdx + εydy) + Gdp.

Consider the following family of 2-forms ωt = ω0 + t(ω1 − ω0), t ∈ [0, 1]. So,

ωt = d(pdθ + Bdp + Cdx + Ddy + (t− 1)F (xdx + εydy) + (t− 1)Gdp),

where B, C, D and G vanish along L. And therefore ωt|L is the 2-form
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ωt|L = dp ∧ dθ + (
∂B

∂x
− ∂C

∂p
+ (t− 1)

∂G

∂x
)dx ∧ dp+

+(
∂B

∂y
− ∂D

∂p
+ (t− 1)

∂G

∂y
)dy ∧ dp + (

∂D

∂x
− ∂C

∂y
)dx ∧ dy,

ω1|L non-degenerate implies that (∂D
∂x
− ∂C

∂y
)|L 6= 0 and one can check that this

implies that ωt is non-degenerate along L, for all t ∈ [0, 1]. Therefore, we may

assume that ∀t ∈ [0, 1] ωt is symplectic in a tubular neighbourhood of L. Moreover,

as

i ∂
∂θ

ωt = (
∂B

∂θ
− 1 + (t− 1)

∂G

∂θ
)dp +

∂C

∂θ
dx +

∂D

∂θ
dy + (t− 1)

∂F

∂θ
(xdx + εydy)

we conclude that the foliation given by Y1, Y2 is Lagrangian for all ωt.

In particular, taking t = 0 we have proved the first assertion claimed in the

lemma.

Now, using non-degeneracy, we have a well-defined vector field Xt by the follo-

wing equality

iXtωt = −α. (I)

Notice that as we have assumed that α|L = 0, this guarantees ([59]) that the

time-dependent vector field Xt is integrable (as it is integrable on L). Let φt stand

for the “flow” of the time dependent vector field Xt defined by the conditions

φ0 = Id, Xt =
dφs

ds |s=t
.

We check that this field is tangent to the foliation, in this way the flow of the

time-dependent vector field will preserve the leaves of the Lagrangian foliation. Let

B = {(θ, p, 0, 0)} be the singular set for the foliation. We will see that the vector

field is tangent to the foliation in two steps:
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• Outside B:

Notice that since the regular leaves of the foliation are Lagrangian subma-

nifolds for all ωt, any vector field belonging to its symplectic orthogonal has

to be tangent to the foliation; but as α is basic for the foliation Xt verifies

ωt(Xt, Y1) = −α(Y1) = 0 and ωt(Xt, Y2) = −α(Y2) = 0. So Xt is tangent to

the foliation along the regular leaves.

• In the singular set B:

Let c = (θ0, c0, 0, 0) ∈ B. A singular leaf for the foliation through c is the

circle Lc = {(θ, c0, 0, 0)}. So a time-dependent vector field tangent to Lc at

c has the form γt(θ, p, x, y) ∂
∂θ

. Let us check that Xt has this form: On B, Xt

has to be tangent to B otherwise its flow would reach a regular Lagrangian

leaf of the foliation. So Xt|B = αt
∂
∂p

+ βt
∂
∂θ

.

Finally, as Xt has to verify (I), αt has to be zero, and therefore Xt is tangent

to the foliation along B.

So, we conclude that its flow preserves the leaves of the foliation.

Further, remember that we are looking for a symplectomorphism; this sym-

plectomorphism will be given by the flow of the vector field Xt at time t = 1.

The flow φt gives us a family of diffeomorphisms verifying:

1. It is equal to the identity on L.

2. φ∗t ωt = ω0; that is to say, as a particular case, we have φ∗1(ω1) = ω0.

3. φt preserves the leaves of the foliation.

So η = φ1 is the symplectomorphism we are looking for and the two symplectic

forms ω0 and ω1 define equivalent symplectic structures. This proves the second

assertion of the lemma. ¤
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Now we are going to apply this lemma to prove that there is a Hamiltonian

S1-action tangent to the foliation:

Proposition 3.2.1 There is a Hamiltonian S1-action tangent to the foliation. In

fact, there exist coordinates (θ, p, x, y) in a neighbourhood of L such that ω =

d(pdθ + C(p, x, y)dx + D(p, x, y)dy) and the Hamiltonian S1-action is performed

by translations with respect to θ.

Proof:

We will apply lema 3.2.3 in two stages:

First stage:

Consider ω1 = d(pdθ + Bdp + Cdx + Ddy) and ω0 = ω1 − d(Bdp).

As B vanishes along L, applying lemma 3.2.3, ω0 defines a symplectic structure

in a neighbourhood of L such that makes F0 into a Lagrangian foliation and it is

equivalent to ω1 .

And so far, we can assume

ω = ω0 = d(pdθ + C(θ, p, x, y)dx + D(θ, p, x, y)dy).

Second stage:

As

i ∂
∂θ

ω = −dp +
∂C

∂θ
dx +

∂D

∂θ
dy,

then
∂C

∂θ
dx +

∂D

∂θ
dy = λ(xdx + εydy)

for a certain function λ.

Therefore,

∂C

∂θ
= xλ,

∂D

∂θ
= εyλ.
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This leads us to the following decomposition

C = C0(p, x, y) + x
∂H

∂θ

D = D0(p, x, y) + εy
∂H

∂θ
.

Now

ω = d(pdθ + C0(p, x, y)dx + D0(p, x, y)dy +
∂H

∂θ
(xdx + εydy)).

Let ω0 = d(pdθ + C0(p, x, y)dx + D0(p, x, y)dy). So, we can apply lemma 3.2.3

again and we can assume

ω = d(pdθ + C(p, x, y)dx + D(p, x, y)dy)

Notice that i ∂
∂θ

ω = −dp.

So, S1 acts on this neighbourhood in a Hamiltonian fashion and p is the moment

map.

This concludes the proof of the proposition.

¤

3.3 Two proofs for theorem 3.1.1

In this section we present two different proofs of the symplectic linearization for

rank 1 singularities in dimension 4 which use the Hamiltonian S1-action obtained

in the previous section.

The first one is the one which appears in our joint paper with Carlos Currás-

Bosch [13] but we also include here a proof for the elliptic rank 1 case which was

already proved in a different way by Eliasson and Molino and Dufour.

The second proof is based on a geometrical idea of finding a decomposition

which singles out the singular part and the regular part. This technique has turned
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out to be very useful to give a general proof for the symplectic linearization in any

dimension. We define two symplectic orthogonal integrable distributions which

allow to reduce the proof to the 2-dimensional case.

3.3.1 First proof

Let us go on with the proof of 3.1.1.

Without loss of generality, we may assume that the symplectic form on M4
0 =

S1 ×D3 can be expressed as:

ω = dp ∧ dθ + A(p, x, y)dp ∧ dx + B(p, x, y)dp ∧ dy + C(p, x, y)dx ∧ dy

Recall that F0 is, F0 =< ∂
∂θ

, εy ∂
∂x

+ x ∂
∂y

>.

Observation 3.3.1 As ω is symplectic C(0, 0, 0) 6= 0 so after shrinking the

neighbourhood, if necessary, we may assume C(p, 0, 0) 6= 0.

Let us introduce the following notation:

For any function f(p, x, y), dT f will stand for the 1-form:

dT f = ∂f
∂x

dx+ ∂f
∂y

dy. We use the notation fε to refer to the function fε = x2+εy2,

where ε = 1 in the elliptic case and ε = −1 in the hyperbolic case.

Lemma 3.3.1 Given C(p, x, y) there exist C∞-functions χ and f such that:

C(p, x, y)dx ∧ dy = χ(p, fε)dx ∧ dy + dT f ∧ d(fε)

Proof of the lemma:

According to lemma 2.2.1 in the elliptic case we can write the following decom-

position,

C(p, x, y) = C1(p, x
2 + y2) + X1(C2)

In the hyperbolic case, after performing the change of coordinates x = x +

y, y = x− y, we can apply lemma 2.2.2 to write a similar decomposition,
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C(p, x, y) = C1(p, x
2 + y2) + X−1(C2)

Now take χ = C1 and f = −H
2

and the function decompositions above yield

the desired decomposition,

C(p, x, y)dx ∧ dy = χ(p, fε)dx ∧ dy + dT f ∧ d(fε)

And this ends the proof of the lemma.

¤
Once reached this point, we can assert that ω can be written as:

ω = dp ∧ dθ + A(p, x, y)dp ∧ dx + B(p, x, y)dp ∧ dy + χ(p, fε)dx ∧ dy + d(fdfε)

Now applying lemma 3.2.3 we can eliminate d(fdfε) by using a diffeomorphism

which preserves the foliation.

The next step will be to “normalize” the coefficient of dx∧ dy, we achieve this

applying lemma 2.3.3 with parameters. Namely,

Observe that if ψ(p, fε) is a smooth function such that ψ(0, 0) 6= 0. Then the

mapping:

G : (M4
0 , 0) −→ (G(M4

0 ), 0)

(θ, p, x, y) −→ (θ, p, x · ψ(p, fε), y · ψ(p, fε))

defines a germ of diffeomorphism preserving the foliation dfε = 0.

As we saw on the proof of lemma 2.3.3 we can take as ψ the solution of the

equation:

d

du
(ψ2(p, u) · u) = χ(p, u)

where u = fε, we have the desired φ, and that finishes the proof of the lemma.

Using the previous lemma we can find a diffeomorphism preserving F0 , such

that the pull-back of ω is:
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ω = dp ∧ dθ + A(p, x, y)dp ∧ dx + B(p, x, y)dp ∧ dy + dx ∧ dy

Finally, as ω is closed, there exists g(p, x, y) such that,

A =
∂g

∂x
B =

∂g

∂y

And using the diffeomorphism:

φ : M4
0 −→ M4

0

(θ, p, x, y) −→ (θ + g(p, x, y), p, x, y)

which preserves F0, we can write ω = dp ∧ dθ + dx ∧ dy. And this ends the proof

of the theorem.

3.3.2 Second proof

In this section we construct two symplectic orthogonal distributions. Those distri-

butions will be 2-dimensional regular distributions and will allow us to reduce the

proof to the 2-dimensional case.

Recall that we may assume that the symplectic form on M4
0 = S1×D3 can be

expressed as:

ω = dp ∧ dθ + A(p, x, y)dp ∧ dx + B(p, x, y)dp ∧ dy + C(p, x, y)dx ∧ dy

Lemma 3.3.2 The distribution D1 =< X, Y > defined by the relations:

iXω = dp

iY ω = dθ

is C∞, symplectic in a neighbourhood of p and involutive everywhere.

Proof: First of all, since ω is symplectic and the forms dp and dθ are differentiable

and independent, the distribution D1 is clearly C∞ and regular. Now let us prove
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that this distribution is symplectic. Observe that this distribution is symplectically

orthogonal to the distribution D2 =< ∂
∂x

, ∂
∂y

>. As a consecuence of observation

3.3.1, D2 is symplectic in a neighbourhood of the origin then its symplectic ortho-

gonal is also symplectic.

Now let us see that this distribution is involutive. We have to check that

[X, Y ] ∈ D1,∀X,Y ∈ D1. In fact, it is enough to prove that [X, Y ] ∈ D1 for vector

fields which are independent on a dense set in the neighbourhood considered. So

we can take X = Y1 = ∂
∂θ

. By Leibnitz’s rule:

LY1(ω(Y,
∂

∂x
)) = LY1(ω)(Y,

∂

∂x
) + ω(LY1Y,

∂

∂x
) + ω(Y, LY1(

∂

∂x
))

Now if we take any Y ∈ D1 then the left hand side of the equality above equals

zero. As for the right hand side: The first term is zero because Y1 is Hamiltonian

and, in particular, it is symplectic; the third term vanishes because LY1(
∂
∂x

) = 0.

So we are led to ω(LY1Y, ∂
∂x

) = 0. In the same way, we prove that ω(LY1Y, ∂
∂y

) = 0

and therefore the distribution is involutive.

¤
Now consider two distributions D1 and D2 those distributions are symplec-

tically orthogonal distributions and contain Y1 and Y2, respectively. Since these

regular distributions are involutive, there are regular foliations F1 and F2 integra-

ting D1 and D2 respectively. Now take a point p in the singular orbit, Frobenius

Theorem provides new coordinates (p, θ, x, y) in a neighbourhood of p such that

the leaves of F1 are L1b = {(p, θ, b1, b2), b1, b2 ∈ R} and the leaves of F2 are

L2a = {(a1, a2, x, y), a1 ∈ R a2 ∈ [0, 2π)}. Since the vector field ∂
∂θ

is Hamiltonian,

in particular its flow is a symplectomorphism and preserves the symplectic ortho-

gonal decomposition. Thus, sliding along the singular circle, we can extend these

coordinates to a whole neighbourhood of the singular orbit. Now let us see what

the expression of ω is in these coordinates; Since D1 and D2 are symplectically

ortogonal and since dω = 0, in these new coordinates the symplectic form can be
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written as:

ω2 = A(p, θ)dp ∧ dθ + B(x, y)dx ∧ dy.

Observe on the other hand, that Y1 defines a foliation by circles on the submani-

folds L1b and Y2 defines a foliation on the submanifolds L2a with a singularity of

elliptic type when ε = 1 and hyperbolic type when ε = −1. It remains to apply

the known results of symplectic uniqueness in dimension 2. Namely, Y1 defines a

regular Lagrangian foliation by circles on L1b. Thus after the theorem of Liouville-

Mineur-Arnold, there exists a local diffeomorphism defined in a neighbourhood of

the singular circle such that φ∗1(dp∧dθ) = A(p, θ)dp∧dθ, being p, θ the coordinates

defined by φ1. The vector field Y2 defines a nondegenerate singularity in each 2-

dimensional submanifold L2a. So we may apply the symplectic linearization result

in dimension 2 ( Theorem 2.3.1) to find a local diffeomorphism in a neighbourhood

of the origin φ2 such that φ∗2(dx ∧ dy) = B(x, θ)dx ∧ dy, being x, y the coordina-

tes provided by the diffeomorphism φ2. Finally, we define a diffeomorphism in a

neighbourhood of L, φ(p, θ, x, y) = (φ1(p, θ), φ2(x, y)). This diffeomorphism pre-

serves the foliation F and satisfies that (φ∗)(dp ∧ dθ + dx ∧ dy) = ω2.

This ends the second proof of the theorem.
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Chapter 4

Rank 0 singularities in dimension

4

4.1 Introduction

In this section we consider the symplectic linearization problem for foliations de-

fined by a completely integrable system with rank 0 singularities in dimension 4.

According to the first chapter we will assume that the foliations are already linear.

That is, F =< X1, X2 >. Recall that there are 4 possible cases from a differentiable

point of view:

• Elliptic-elliptic case: In this case there are coordinates (x1, y1, x2, y2) cen-

tered at the point p such that two first integrals of the Hamiltonian system

are f1 =
x2
1+y2

1

2
and f2 =

x2
2+y2

2

2
.

• Elliptic-hyperbolic case: There are coordinates (x1, y1, x2, y2) centered at

the point p such that two first integrals of the Hamiltonian system are f1 =
x2
1+y2

1

2
and f2 =

x2
2−y2

2

2
.

• Hyperbolic-hyperbolic case: There are coordinates (x1, y1, x2, y2) cente-

red at the point p such that two first integrals of the Hamiltonian system are

53
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f1 =
x2
1−y2

1

2
and f2 =

x2
2−y2

2

2
.

• The focus-focus case: There are coordinates (x1, y1, x2, y2) centered at the

point p such that two first integrals of the Hamiltonian system are f1 =

x1y1 + x2y2 and f2 = x1y2 − x2y1.

For the sake of brevity, we will refer to the first three types as decomposable

at p and we will say that F is non-decomposable at p if its Williamson type is of

focus-focus type.

Following the spirit of the preceding chapters, we look for a local symplec-

tic classification of a foliation defined by the “linearized” model under the only

constraint that the regular leaves of the foliation are Lagrangian. We give a com-

plete proof for the symplectic uniqueness result in all the decomposable cases.

Recall that this symplectic uniqueness for the “linearized” model is what we call

symplectic linearization.

We do not provide a proof for the focus-focus case. In fact, so far, two proofs for

the symplectic linearization in the focus-focus case are known to the author: The

one provided by Eliasson in his thesis [23] and another proof provided by Nguyen

Tien Zung, recently [65].

We would like to point out that this symplectic uniqueness is a consequence of

Eliasson’s Theorem. One of the main motivations for providing another proof for

this fact is the following: the key point of Eliasson’s proof is Proposition 4 in his

thesis [23] but this proposition is stated without proof. The analogous proposition

when the system is of analytical nature was proved by Vey [54] (lemma 1). The

transition from the analytical case to the smooth case entails a non-trivial work

with flat functions which in our opinion cannot be neglected.

A proof for this Proposition when the system is completely elliptic is contained

in Eliasson’s paper [24]. In the case that the dimension of the manifold is equal to

2 or the dimension of this manifold is 4 and the foliation corresponds to a foliation
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of focus-focus type, a proof of this fact is contained in Eliasson’s thesis. In fact

when the dimension of the manifold is equal to 2 and the foliation is of hyperbolic

type this had been formerly proved by Colin de Verdière and Vey [6]. As far as the

remaining cases are concerned, to our knowledge the only attempt to provide a

proof in the completely hyperbolic case is due to San Vu Ngoc [57]. Unfortunately,

the proof provided by San Vu Ngoc in that paper is based on a construction of

a solution to a differential equation which is only smooth under some additional

conditions concerning the flat terms which are not necessarily fulfilled under the

hypotheses considered as we showed in Observation 2.2.1. Thus, from out point

of view the proof provided in [57] does not fill the gap. Therefore, in our opinion,

the problem remains unsolved in the decomposable cases which are not completely

elliptic.

In this chapter we are going to provide a proof for the local symplectic uni-

queness in dimension 4 for all the cases which does not rely on Proposition 4 of

Eliasson’s theorem. We do not attempt to give a proof of this Proposition but to

prove the local uniqueness result.

In order to do that, we look for a symplectic orthogonal decomposition in the

decomposable cases to reduce the problem of local uniqueness in dimension 4 to a

problem in dimension 2 as we did in chapter 3. Although the proof is inspired by

ideas coming from geometry, we had to plunge into analytical problems in order to

find an orthogonal symplectic decomposition. Some of those analytical questions

have already been presented in chapter 2.

The chapter is organized as follows: In the second section we pose the problem

for the decomposable cases and we outline the strategy of the proof. In the third

section we prove three basic lemmas that will be used in the uniqueness proof.

One of them is a foliation preserving version of Moser path’s method for corank

2 singularities. In the fourth section we prove a common proposition concerning

basic 1-forms attached to the foliation and the symplectic form. In the fifth sec-
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tion, we look for a special Hamitonian vector field in the elliptic-elliptic case and

elliptic-hyperbolic cases that will lead us to the symplectic orthogonal decomposi-

tion. We give two proofs of this fact: one is based on computation with forms and

the second one is a geometrical proof which uses Bott-Weinstein connection and

results for rank 1 singularities in dimension 4 obtained in chapter 3. In section 6 we

find a special Hamiltonian vector field for hyperbolic-hyperbolic singularities. Fi-

nally, in section 7 we prove the existence of a symplectic orthogonal decomposition

which yields the symplectic uniqueness for the decomposable cases (elliptic-elliptic,

elliptic-hyperbolic and hyperbolic-hyperbolic cases).

As a side remark, let us point out that this technique of reduction to lower

dimensional cases can be exported to dimension higher than 4 using induction to

give a complete proof for the local uniqueness theorem in any dimension as we will

see in the next chapter.

4.2 Strategy of the proof

Let M be a 4-dimensional manifold endowed with coordinates (x1, y1, x2, y2) and

let p be the point p = (0, 0, 0, 0). In the sequel we will deal with germ-like objects in

a neighbourhood of the point p. Consider the vector fields X1,ε1 = x1
∂

∂y1
− ε1y1

∂
∂x1

and X2,ε2 = x2
∂

∂y2
− ε2y2

∂
∂x2

where ε1 and ε2 can be either +1 or −1. Throug-

hout this section, F will stand for the germ of foliation given by the vector fields

X1,ε1 and X2,ε2 and f1 and f2 will stand for the first integrals f1 = x2
1 + ε1y

2
1 and

f2 = x2
2 + ε2y

2
2. The pair (ε1, ε2) labels the foliation. When (ε1, ε2) = (1, 1) we say

that F is of elliptic-elliptic type. If (ε1, ε2) is (1,−1) or (−1, 1), we talk about a

foliation of elliptic-hyperbolic type. And finally when (ε1, ε2) = (−1,−1) the folia-

tion is referred to as a foliation of hyperbolic-hyperbolic type. Our goal is to study

the germs of symplectic structures at p for which the decomposable F is generi-

cally Lagrangian. We say that a foliation is generically Lagrangian if its regular
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leaves are Lagrangian submanifolds and its singular leaves are isotropic. In this

section we prove that if ω is such a symplectic germ then there exists a local dif-

feomorphism φ preserving F , fixing p and such that φ∗(ω) = dx1∧dy1 +dx2∧dy2.

We organize the proof in two stages: In the first stage we find a symplectically

orthogonal decomposition adapted to F . The proof of the construction of this

symplectic orthogonal decomposition differs slightly in each of the cases (elliptic-

elliptic, elliptic-hyperbolic, hyperbolic-hyperbolic). In the second stage we use this

decomposition and the known results in dimension 2 to prove that any two sym-

plectic germs are equivalent. Let us state the main concluding results contained in

this chapter:

Theorem 4.2.1 (Symplectically orthogonal decomposition) Let ω be a sym-

plectic germ for which F is generically Lagrangian. Then there exists a symplectic

germ ω equivalent to ω and there exist two symplectic distributions D1 and D2

such that:

1. D1 and D2 are involutive and symplectically orthogonal with respect to ω.

2. X1,ε1 ∈ D1 and X2,ε2 ∈ D2.

Theorem 4.2.2 (Symplectic Uniqueness) Let ω be a symplectic germ at p for

which F is generically Lagrangian then ω is equivalent to ω0 = dx1∧dy1+dx2∧dy2.

In order to prove Theorem 4.2.1, we will find an equivalent ω for which the

vector field X1 will be Hamiltonian with Hamiltonian function f1. But first we

need a few propositions and lemmas.

4.3 Three common lemmas

In this section we are going to prove several lemmas which will be used later to

prove the local uniqueness of the symplectic germs in the decomposable cases.
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When we write X1, X2 we mean a basis of the Lagrangian foliation. Let us set

the particular basis we are going to use throughout the section:

• In the elliptic-elliptic case, X1 = x1
∂

∂y1
− y1

∂
∂x1

and X2 = x2
∂

∂y2
− y2

∂
∂x2

.

• In the elliptic-hyperbolic case, X1 = x1
∂

∂y1
− y1

∂
∂x1

and X2 = x2
∂

∂y2
+ y2

∂
∂x2

.

• In the hyperbolic-hyperbolic case, X1 = x1
∂

∂y1
+y1

∂
∂x1

and X2 = x2
∂

∂y2
+y2

∂
∂x2

.

• In the focus-focus case, X1 = −x1
∂

∂x1
+ y1

∂
∂y1

− x2
∂

∂x2
+ y2

∂
∂y2

and X2,ε2 =

x1
∂

∂x2
− x2

∂
∂x1

+ y1
∂

∂y2
− y2

∂
∂y1

.

The first lemma is a foliation-preserving version of the Moser path method.

Lemma 4.3.1 Let α be an F-basic 1-form and let ω1 be a symplectic germ for

which F is Lagrangian. Then:

1. The 2-form ω0 = ω1 − dα is a symplectic structure in a neighbourhood of p

and makes the foliation Lagrangian.

2. There is a diffeomorphism η between two neighbourhoods of p preserving F
and such that η∗(ω1) = ω0.

Proof:

First, let us check that ω0 is a symplectic form in a neighbourhood of p.

Clearly, ω0 is a closed 2-form. Let us see that it is non-degenerate; Since α is

basic for the foliation, α = F (df1) + G(df2). In particular α vanishes at p =

(0, 0, 0, 0) and ω0|p equals ω1|p . Therefore, since ω1 is non-degenerate at p, the

2-form ω0 is non-degenerate in a neighbourhood of p. In order to prove that

the foliation is Lagrangian for ω0 we have to check that ω0(X1, X2) = 0. Since

ω0(X1, X2) = ω1(X1, X2) − dα(X1, X2) and F is Lagrangian for ω1, we have to

see that dα(X1, X2) vanishes. Since α is F -basic and [X1, X2] = 0, the formula

dα(X1, X2) = X1α(X2) − X2α(X1) − α([X1, X2]) implies that dα(X1, X2) = 0 .
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This ends the proof of the first assertion. In order to prove the second assertion

we consider the following family of 2-forms:

ωt = ω0 + t(ω1 − ω0), t ∈ [0, 1]

Let us see that these 2-forms are symplectic germs for which the foliation F is

Lagrangian. Clearly, the 2-forms ωt are closed. And since ωt|p = ω0|p , we can repeat

the argument above to see that the 2-forms are non-degenerate. Therefore, they

are symplectic in a neighbourhood of the point p. Further, since ω0(X1, X2) = 0

and ω1(X1, X2) = 0, the foliation F is Lagrangian for ωt, ∀t ∈ [0, 1].

Now we are going to use Moser’s path method to conclude. First, we consider

the well-defined vector field Xt by the following equality:

iXtωt = −α.

Recall that α vanishes at p, this guarantees [59] that the time-dependent vector

field Xt is integrable. Let φt stand for the “flow” of the time dependent vector

field Xt defined by the conditions: φ0 = Id, Xt = dφs

ds |s=t
We check that this

field is tangent to the foliation, in this way the flow of the time-dependent vec-

tor field will preserve the leaves of the Lagrangian foliation. Consider the sets:

B1 = {(x1, y1, 0, 0)} \ {(0, 0, 0, 0)} and B2 = {(0, 0, x2, y2)} \ {(0, 0, 0, 0)}. Then

the singular set for the foliation is B = {(0, 0, 0, 0)} ∪ B1 ∪ B2 if the foliation is

decomposable. In the focus-focus case the singular set for the foliation reduces to

(0, 0, 0, 0).

We will see that the vector field is tangent to the foliation in two steps:

• Outside B: Notice that since the regular leaves of the foliation are Lagrangian

submanifolds for all ωt, any vector field belonging to its symplectic orthogonal

has to be tangent to the foliation; but as α is basic for the foliation Xt verifies

ωt(Xt, X1) = −α(X1) = 0 and ωt(Xt, X2) = −α(X2) = 0. So Xt is tangent

to the foliation along the regular leaves.
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• Along B, the singular set: We check that the vector field Xt is tangent to the

foliation in the following cases:

– The focus-focus case: In this case the only singular point is the origin.

The vector field Xt is tangent to the foliation because α vanishes at

p = (0, 0, 0, 0) and therefore Xt vanishes at p.

– The decomposable cases. In this case the singular set is B = {(0, 0, 0, 0)}∪
B1 ∪ B2. Let us check that Xt is tangent to the foliation:

1. At the point p = (0, 0, 0, 0): The vector field Xt is tangent to the

foliation because α vanishes at p = (0, 0, 0, 0) and therefore Xt

vanishes at p.

2. At a point q1 = (a1, b1, 0, 0) ∈ B1: Since α|p = F (q1)(a1dx1 + b1dy1),

the symplectic orthogonal to Xt at the point q1 is generated by the

vector fields X1,
∂

∂x2
and ∂

∂y2
and since Xt|q1

we can write Xt|q1
=

ft(a1, b1, 0, 0)X1+gt(a1, b1, 0, 0) ∂
∂x2

+ht(a1, b1, 0, 0) ∂
∂y2

. If Xt|q1
is not

a multiple of X1, the flow of Xt starting at q1 would reach a regular

Lagrangian leaf of the foliation. So Xt|q1
= ft(a1, b1, 0, 0)X1 and, in

particular, it is tangent to the foliation.

3. At a point q2 = (0, 0, a2, b2) ∈ B2: We proceed as in the previous

case to see that Xt|q2
= rt(0, 0, a2, b2)X2 , and again Xt is tangent

to the foliation at the point q2.

So, we conclude that its flow preserves the leaves of the foliation. Further, remem-

ber that we are looking for a symplectomorphism; this symplectomorphism will be

given by the flow of the vector field Xt at time t = 1. Remember that the flow φt

gives us a family of diffeomorphisms verifying:

1. φt(p) = p.

2. φ∗t ωt = ω0; that is to say, as a particular case, we have: φ∗1(ω1) = ω0.
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3. φt preserves the leaves of the foliation.

So φ1 is the symplectomorphism we are looking for and the two symplectic forms

ω0 and ω1 define equivalent symplectic structures. This proves the second assertion

of the lemma.

¤
The following lemma will be used in the proof of the symplectic uniqueness for

the decomposable cases. It also holds in the focus-focus case but we have included

the proof only for the decomposable cases. The lemma proves that the forms iX1ω

and iX2ω are basic for the foliation. That is, they are a combination of dfi for fi

defining the foliation.

Under these assumptions,

Lemma 4.3.2 There exists C∞-functions h1, h2, g1 and g2 such that:

iX1ω = h1df1 + h2df2

iX2ω = g1df1 + g2df2

.

Proof:

Let us check that iX1ω = H1df1 + H2df2 and that iX2ω = G1df1 + G2df2 for

certain differentiable functions. Let the symplectic form ω be

ω = Adx1∧dy1 +Bdx1∧dx2 +Cdx1∧dy2 +Ddy1∧dx2 +Edy1∧dy2 +Fdx2∧dy2.

In the decomposable cases, the foliation is generated by X1,ε1 = x1
∂

∂y1
−ε1y1

∂
∂x1

and X2,ε2 = x2
∂

∂y2
− ε2y2

∂
∂x2

where ε1 and ε2 can be either +1 or −1. If ε1 and ε2

have different sign, we say that the foliation is of elliptic-hyperbolic type. If the

pair (ε1, ε2) = (1, 1), we say that the foliation is elliptic-elliptic. Finally, if the pair

(ε1, ε2) = (−1,−1), we say that the foliation is hyperbolic-hyperbolic.

Now let us look at the contractions iX1,ε1
ω and iX2,ε2

ω:

iX1,ε1
ω = −A(x1dx1 + ε1y1dy1) + (Dx1 − ε1By1)dx2 + (Ex1 − εCy1)dy2
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iX2,ε2
ω = (ε2By2 − Cx2)dx1 + (ε2Dy2 − Ex2)dy1 − F (x2dx2 + ε2y2dy2)

But since F is Lagrangian, we have iX1ω(X2) = 0; and so we are led to the equality:

y2(Dx1 − ε1By1) = (ε1Cy1 − Ex1)x2 (I).

From here it is clear that if we take H2 = Dx1−ε1By1

x2
= ε1Cy1−Ex1

y2
, the following

equalities hold: Dx1−ε1By1 = H2x2 and ε1Cy1−Ex1 = H2y2. To check that this H2

is a C∞-function, we apply a classical integration trick: Consider φ(x1, y1, x2, y2) =

y2(Dx1 − ε1By1). Then we can write the following decomposition:

φ(x1, y1, x2, y2) = φ(x1, y1, 0, y2) + x2

∫ 1

0

∂φ

∂x2

(x1, y1, tx2, y2)dt.

Due to (I) the function φ vanishes on (x1, y1, 0, y2), this implies that H2 equals

the function
∫ 1

0
∂φ
∂x2

(x1, y1, tx2, y2)dt which is C∞. So taking H1 = −A and H2 =

Dx1−ε1By1

x2
we have proven that iX1,ε1

ω = H1df1 + H2df2. The condition of La-

grangianity can also be written as: iX2,ε2
ω(X1,ε1) = 0; and this leads us now to

the equality: y1(ε2By2 − Cx2) = (ε2Dy2 − Ex2)x1. As before, we can prove that

G1 = ε2By2−Cx2

x1
is C∞. And taking G2 = −F we have that: iX2,ε2

ω = G1df1 +G2df2.

¤
Finally, let us state and proof a very simple lemma which is a consequence of

Cartan’s formula and the Lagrangianity condition.

Lemma 4.3.3 The following equality holds

LX2iX1ω = LX1iX2ω.

Proof:

First, since i[X1,X2]ω = LX1iX2ω − iX2LX1ω and [X1, X2] = 0, then LX1iX2ω =

iX2LX1ω.

Now we compute:

iX2LX1ω =
dω=0

iX2diX1ω =
LX=diX+iXd

LX2iX1ω − diX2iX1ω =
iX2

iX1
ω=0

LX2iX1ω
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And this proves the formula.

¤
Observe that this lemma holds for all the cases, decomposable or non-decomposable

and also in any dimension.

4.4 A common proposition

We will assume throughout the section that the foliation is decomposable since

the proofs are supplied just in the decomposable cases. As a matter of fact, as we

saw on the preceeding sections the proposition holds also for the focus-focus case.

But we do not give a proof for this fact.

In subsequent sections we will try to identify the Hamiltonian vector field asso-

ciated to f1. The main goal will be to find new coordinates in such a way that X1

can be identified with the Hamiltonian vector field of the function f1 in convenient

coordinates. The first step is given by the following proposition,

Proposition 4.4.1 There exists a symplectic germ ω1 equivalent to ω such that,

iX1,ε1
ω1 = H1df1 + H2df2 .

for F-basic functions H1 and H2.

Proof:

First by lemma 4.3.2 we can write

iX1,ε1
ω = H1df1 + H2df2 .

We distinguish the following cases:
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4.4.1 Proof of proposition 4.4.1 in the non-completely hy-

perbolic cases

We prove 4.4.1 in the elliptic-hyperbolic case and the elliptic-elliptic case:

In this case, we can assume ε1 = 1. For the sake of simplicity, we write X1

instead of X1,1. Applying proposition 2.2.1 we can write:

H1(x1, y1, x2, y2) = h1(x
2
1 + y2

1, x2, y2) + X1(h1)

H2(x1, y1, x2, y2) = h2(x
2
1 + y2

1, x2, y2) + X1(h2)
.

Now consider the 1-form α = h1df1+h2df2. Since α is F -basic, we can apply lemma

4.3.1 taking ω1 = ω. As a consequence, ω1 = ω − dα will be a symplectic germ

equivalent to the initial ω. Let us check that for this ω1 the conditions stated in the

proposition are fulfilled. First, we calculate iX1ω1. We have iX1ω1 = iX1ω− iX1dα.

Due to Cartan’s formula, we have iX1dα = diX1α + LX1α. But since α is F -basic,

in particular iX1α = 0. So in the end, iX1dα = X1(h1)df1 + X1(h2)df2. Finally, we

have that iX1ω1 = h1(x
2
1 + y2

1, x2, y2)df1 + h2(x
2
1 + y2

1, x2, y2)df2.

Now

iX1ω1 = h1df1 + h2df2

iX2,ε2
ω1 = g1df1 + g2df2

for certain differentiable functions g1 and g2.

For the sake of simplicity we write X2 instead of X2,ε2 .

According to lemma 4.3.3 the following formula (5.1) takes place

LX2iX1ω1 = LX1iX2ω1.

From this formula we obtain the following relations,

X2(h1) = X1(g1), (IIa)

X2(h2) = X1(g2), (IIb)

Now, apply LX1 to these equalities and use that [X1, X2] = 0 and the fact that

X1(h1) = 0 and X1(h2) = 0 to get
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X1(X1(g1)) = 0, (A)

X1(X1(g2)) = 0, (B)

Now we want to prove that this implies X1(g1) = 0 and X1(g2) = 0. In order to

do this, we consider the change to polar coordinates given by the equalities x1 =

r cos θ, y1 = r sin θ, x2 = x2, y2 = y2. This change of coordinates is valid outside

the meagre set (0, 0, x2, y2). In these new coordinates, equations (A) and (B) are

written as ∂2

∂θ2 (g1) = 0 and ∂2

∂θ2 (g2) = 0, respectively. So from these equations, the

functions g1 and g2 are affine functions in the θ-coordinate. Since they are 2π-

periodic in the coordinate θ, they have to be constant in the coordinate θ. And as

a consequence the conditions X1(g1) = 0 and X1(g2) = 0 are satisfied in the whole

neighbourhood of p considered. Finally, turning back to (II a) and (II b), we are

led to the equalities X2(h1) = 0 and X2(h2) = 0. This completes the proof of the

proposition in the elliptic-hyperbolic and the elliptic-elliptic cases.

4.4.2 Proof of proposition 4.4.1 in the completely hyper-

bolic cases

We prove proposition 4.4.1 in the hyperbolic-hyperbolic case.

For the sake of simplicity, we write X1 instead of X1,−1.

We consider the change of coordinates, x1 = u1+v1

2
, y = u1−v1

2
, x2 = x2, y2 = y2.

And X1 in the new coordinates can be written as, X1 = −u1
∂

∂u1
+ v1

∂
∂v1

.

Applying proposition 2.2.2 we can write:

H1(u1, v1, x2, y2) = h1(u1.v1, x2, y2) + X1(h1)

H2(u1, v1, x2, y2) = h2(u1.v1, x2, y2) + X1(h2)
.

Now consider the 1-form α = h1df1+h2df2. Since α is F -basic, we can apply lemma

4.3.1 taking ω1 = ω. As a consequence, ω1 = ω − dα will be a symplectic germ
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equivalent to the initial ω. Let us check that for this ω1 satisfies the conditions

stated in the proposition. First, we compute iX1ω1. We have iX1ω1 = iX1ω− iX1dα.

Due to Cartan’s formula, we have iX1dα = diX1α + LX1α. But since α is F -basic,

in particular iX1α = 0. So, iX1dα = X1(h1)df1 + X1(h2)df2. Finally, we have that

iX1ω1 = h1(u1.v1, x2, y2)df1 + h2(u1.v1, x2, y2)df2.

Now

iX1ω1 = h1df1 + h2df2

iX2,ε2
ω1 = g1df1 + g2df2

for certain differentiable functions g1 and g2.

For the sake of simplicity we write X2 instead of X2,ε2 .

According to lemma 4.3.3 the following formula (5.1) takes place

LX2iX1ω1 = LX1iX2ω1.

From this formula we obtain the following relations,

X2(h1) = X1(g1), (IIa)

X2(h2) = X1(g2), (IIb)
.

We are going to use this relations to draw conclusions about the (u1, v1)-jets

of h1 and g1 along {(0, 0, x2, y2)} using lemma 2.2.1.

By construction and as it was seen in the proof of lemma 2.2.2 the (u1, v1)-jet

of h1 along {(0, 0, x2, y2)} is of the form

∑
i

hiiu
i
1v

i
1.

On the other hand as it was seen in the proof of lemma 2.2.1, the (u1, v1)-jet of

X1(g1) along {(0, 0, x2, y2)} has the form

∑

i 6=j

riju
i
1v

j
1
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for certain differentiable functions rij(x2, y2). With all this information at hand, we

can look at the equation (IIA), X2(h1) = X1(g1) at the level of (u1, v1)-jets along

{(0, 0, x2, y2)}. We obtain
∑

i X2(hii)u
i
1v

i
1 =

∑
i6=j riju

i
1v

j
1. In particular, X2(hii) =

0,∀i. And from this relations h1 = S1 + φ1 where S1 satisfies X2(S1) = 0 (and

X1(S1) = 0) and φ1 is an (u1, v1)-flat function along {(0, 0, x2, y2)}. Finally, apply

lemma 2.2.2 to ensure that we can write φ1 = X1(R1) for a smooth R1. Therefore,

so far we have h1 = S1 + X1(R1), X1(S1) = 0, X2(S1) = 0.

We may proceed in the same way for h2 to write the following decomposition

h2 = S2 + X1(R2), X1(S2) = 0, X2(S2) = 0.

Now,

iX1ω1 = (S1 + X1(R1))df1 + (S2 + X1(R2))df2

for basic S1 and S2.

Finally, we apply Moser again 4.3.1 with α = R1df1 + R2df2 to obtain a new

symplectic form ω2 equivalent to ω such that iX1ω1 = S1df1 + S2df2 for basic

functions S1 and S2. This ends the proof of the proposition in the hyperbolic-

hyperbolic case and therefore the proof of the proposition.

¤

4.4.3 A normalization result

Observe that h1 = −A, that is to say −h1 coincides with the coefficient function

of dx1 ∧ dy1. If we could “normalize” our symplectic form in the (x1, y1)-direction

( that is to say, find a foliation preserving symplectomorphism such that A = 1)

we would be closer to our result. The following lemmas will ensure that we can

“normalize” our symplectic form in a foliation preserving way.

Lemma 4.4.1 Let ω be a symplectic form such that the foliation F is Lagrangian.

Let D1 and D2 stand for the distributions D1 =< ∂
∂x1

, ∂
∂y1

> and D2 =< ∂
∂x2

, ∂
∂y2

>.
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Let ω|D1
and ω|D2 be the restriction of ω to the planes integrating the distributions

D1 and D2, respectively. Then ω|D1
and ω|D2 are symplectic forms in a neighbour-

hood of the point p.

Proof:

The condition ω(X1,ε1 , X2,ε2) = 0 for all q in the neighbourhood considered,

implies in particular the following relations:

w(
∂

∂x1

,
∂

∂y2

)|q(y1,x2)
= 0, q(y1,x2)=(0,y1,x2,0) (I)

w(
∂

∂x1

,
∂

∂x2

)|q(y1,y2)
= 0, q(y1,y2)=(0,y1,0,y2) (II)

w(
∂

∂y1

,
∂

∂y2

)|q(x1,x2)
= 0, q(x1,x2)=(x1,0,x2,0) (III)

w(
∂

∂y1

,
∂

∂x2

)|q(y1,x2)
= 0, q(y1,x2)=(x1,0,0,y2) (IV )

In particular all these relations are fulfilled at the point p = (0, 0, 0, 0). If ω|D1

was not symplectic at p, then the w( ∂
∂x1

, ∂
∂y1

)|p = 0. But this condition together

with conditions (I) and (III) would imply that ω|p would vanish on a 3-dimensional

vector space, which is not possible because the initial ω is symplectic. In the same

way, we can prove that ω|D2 is symplectic at p. Since we have proved that ω|D1

and ω|D2 are symplectic at p and the condition of being symplectic is an open

condition, they are also symplectic in a neighbourhood of p.

¤

Lemma 4.4.2 There exists a symplectic germ ω2 equivalent to ω1 such that:

iX1ω2 = −df1 + h2df2.

Proof: Due to 4.4.1, the plane Π = (x1, y1, 0, 0) is symplectic and this implies that

A 6= 0 in a neighbourhood of p. We apply the same trick as in the proof of lemma

2.3.3 in chapter 2 but with two variables u and v corresponding to the first integrals
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of the foliation f1 and f2. That is, observe that if ψ(f1, f2) is any differentiable

function of f1 and f2 such that ψ(0, 0) 6= 0 and U stands for a neighbourhood of

the origin where everything is defined, the mapping

G : (U, 0) −→ (G(U), 0)

(x1, y1, x2, y2) −→ (x1 · ψ(f1, f2), y1 · ψ(f1, f2), x2, y2)

defines a germ of diffeomorphism preserving the foliation defined by f1 and f2.

Consider the equation
d

du
(ψ2(u, v) · u) = A(u, v),

where u = f1 and v = f2. As we saw in the proof of 2.3.3 ψ is smooth and normalizes

the coefficient function of dx1 ∧ dy1. Furthermore, since the function A is basic,

this diffeomorphism is foliation preserving. Now if we define ω2 = (φ−1)∗ω1. Then

ω2 is equivalent to ω1 and satisfies iX1ω2 = −df1 +h2df2 for a certain differentiable

function h2.

¤

4.5 A special Hamiltonian for the non-completely

hyperbolic cases

The aim of this section is to prove the existence of a diffeomorphism taking the

initial symplectic form to a symplectic form for which the vector field X1 is the Ha-

miltonian vector field associated to f1. The proof uses the preceeding lemmas but is

shorter if the singularity is non-completely hyperbolic. The hyperbolic-hyperbolic

case will be treated separately in the next section.

The result is summed up in the following proposition,
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Proposition 4.5.1 Let F be a foliation of elliptic-elliptic type or elliptic-hyperbolic

type. Let X1 be the vector field X1 = x1
∂

∂y1
− y1

∂
∂x1

belonging to F . Under the as-

sumptions of lemma 4.4.2, we have:

iX1ω2 = −df1.

We present two proofs of this proposition. The first one uses decompositions of

symplectic 2-forms while the second one is based on a geometrical argument.

4.5.1 First proof of proposition 4.5.1

Proof:

Let us recap information on the symplectic form.

Since ω2 is locally exact, we can write:

ω2 = dx1 ∧ dy1 + d(A1dx1 + B1dy1 + A2dx2 + B2dy2).

Given a smooth function f , we denote by d(1)(h) = ∂h
∂x1

dx1 + ∂h
∂y1

dy1 and d(2)(h) =

∂h
∂x2

dx2 + ∂h
∂y2

dy2. By lemma 4.4.2,

iX1ω2 = −df1 + h2df2.

This yields d(1)(A1dx1 + B1dy1) = 0 and therefore, A1dx1 + B1dy1 = d(1)(g1)

for a certain differentiable function. On the other hand, taking into account that

d(g1) = d(1)(g1) + d(2)(g1), the above symplectic form becomes,

ω2 = dx1 ∧ dy1 + d(d(g1)− d(2)(g1) + A2dx2 + B2dy2).

So after gathering coefficients of the terms dx2 and dy2 we obtain,

ω2 = dx1 ∧ dy1 + d(C2dx2 + D2dy2),
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for certain smooth functions C2 and D2.

Now, we compute the contraction iX1ω2 again with this expression to get:

iX1ω2 = −df1 + X1(C2)dx2 + X1(D2)dy2.

The Lagrangian condition yields in the elliptic-elliptic case,

X1(C2) = h2(x2)

X1(D2) = h2(y2)

And

X1(C2) = h2(x2)

X1(D2) = −h2(y2)

in the elliptic-hyperbolic case.

In both cases, since X1(h2) = 0, we can apply LX1 in these relations to obtain,

X1(X1(C2)) = 0 , X1(X1(D2)) = 0.

Using these equations, we want to deduce that X1(C2) = 0 and X1(D2) = 0.

In order to do this, we consider the change to polar coordinates given by the

equalities x1 = r cos θ, y1 = r sin θ, x2 = x2, y2 = y2. This change of coordinates is

valid outside the meagre set (0, 0, x2, y2). In these new coordinates the equations

above are written as ∂2

∂θ2 (C2) = 0 and ∂2

∂θ2 (D2) = 0, respectively. So from these

equations,C2 and D2 are affine functions in the α-coordinate. Since they are 2π-

periodic in the coordinate α, they have to be constant in the coordinate α. And

as a consequence the conditions X1(C2) = 0 and X1(D2) = 0 are satisfied in the

whole neighbourhood of p considered.

Finally, from this equations we obtain h2 = 0, this proves that X1 is a Hamil-

tonian vector field with Hamiltonian function f1 and this ends the proof of the

proposition.

¤
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4.5.2 The Bott-Weinstein connection and a geometrical

proof of proposition 4.5.1

In this short section we propose a digression. We will give another proof of proposi-

tion 4.5.1 based on geometrical arguments concerning the Bott-Weinstein connec-

tion. Observe that, a posteriori, the vector field X1 is Hamiltonian. Hamiltonian

vector fields are a special class of parallel vector fields with respect to the Bott-

Weinstein connection defined in the neighbouring regular leaves of the Lagrangian

foliation. Let us introduce the notion of Bott-Weinstein connection for a regular

Lagrangian foliation.

The Bott-Weinstein connection associated to a Lagrangian foliation. Let F be

a regular n-dimensional Lagrangian foliation. We denote by ∇ the Bott-Weinstein

[59] connection associated to F . We recall that the Hamiltonian vector fields of the

functions which locally define F are parallel with respect to ∇. Now the question

arises: Is the converse true? That is to say, Can we assert that a parallel vector

field is locally Hamiltonian? The following innocuous example can help us to see

that this is false in general. For example take ω = dx1∧dy1+dx2∧dy2, consider the

regular Lagrangian foliation generated by the vector fields X = ∂
∂x1

and Y = ∂
∂x2

.

Those vector fields define in turn a basis of parallel vector fields with respect to the

Bott-Weinstein connection. Consider now the vector field Z = ey2 ∂
∂x1

. This vector

field is parallel but since iZω = ey2dy1, it is not locally Hamiltonian. As this exam-

ple shows the affirmative answer is far from being true; But in the case the foliation

is given by the vector fields X1 and X2 of elliptic-elliptic type or hyperbolic-elliptic

type, we use the existence of a Hamiltonian S1-action tangent to the regular leaves

of the foliation to prove that the parallel vector field X1 is indeed Hamiltonian.

Namely, recall that in the second section of chapter 3 we recovered a Hamiltonian

S1-action for the elliptic-hyperbolic case and the elliptic-elliptic case. We will use

the existence of this action in the elliptic-hyperbolic case to prove the result. In
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the completely elliptic case we will use the Liouville-Mineur-Arnold theorem ap-

plied to the compact regular leaves. This, in particular, leads to another proof of

proposition 4.5.1.

Second proof of 4.5.1

Let S be the singular set for the foliation S = {(0, 0, x2, y2)} ∪ {(x1, y1, 0, 0)}.
We denote by B the dense set B = M \S. Then F ′ = F∩B is a regular Lagrangian

foliation. Let ∇ be the Bott-Weinstein connection associated to F ′. We are going

to prove that X1 is Hamiltonian in B.

We are going to distinguish cases:

• The Elliptic-elliptic case.

The foliation F ′ is a regular foliation by tori on B and the functions f1

and f2 are regular functions. According to Liouville-Mineur-Arnold, there

exist a basis of Hamiltonian vector fields Z1 and Z2 which are periodic of

constant period 2π and which are tangent to the foliation by tori. Those

vector fields form a basis of parallel vector fields, so we may write the vector

field X1 = g1Z1 + g2Z2 for basic functions g1 and g2. Now the vector fields

X1, Z1 and Z2 are periodic vector fields of constant period, hence g1

g2
takes

values in Q therefore using continuity the quotient g1

g2
is a rational number p

q

with (p, q) = 1. Summing up, we can write X1 = g2(
p
q
Z1 + Z2). If we proof

that g2 is constant then as a consequence X1 will be a Hamiltonian vector

field.

In order to do this we need the following well-known sublemma which will

be useful later.

Sublemma 4.5.1 Let XG1 and XG2 be two Hamiltonian vector fields tangent

to F . Denote by φs
XG1

and φs
XG2

the time-s-map of XG1 and XG2 respectively.
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Then

φs
XG1

+XG2
= φs

XG1
◦ φs

XG2
.

Proof Since {G1, G2} = ω(XG1 , XG2) and XG1 and XG2 are tangent to the

Lagrangian fibration F then {G1, G2}L = 0 for any regular fiber L of F .

On the other hand, since the set of regular fibers is dense and XG1 and

XG2 are also tangent along the singular fibers, the bracket {G1, G2} vanishes

everywhere.

This implies in turn that [XG1 , XG2 ] = 0 and therefore

φs
XG1

◦ φt
XG2

= φt
XG2

◦ φs
XG1

, ∀s, t. (4.5.1)

Now consider αs = φs
XG1

◦φs
XG2

. Due to 4.5.1, αs is a one-parameter subgroup.

It remains to compute the infinitesimal generator.

Since

d(φs
XG1

◦ φs
XG2

)

ds
=

d(φt
XG1

◦ φs
XG2

)

dt |t=s
+

d(φs
XG1

◦ φr
XG2

)

dr |r=s
,

setting s = 0 this expression implies that the infinitesimal generator of αs is

XG1 + XG2 .

In particular this proves that

φs
XG1

+XG2
= φs

XG1
◦ φs

XG2
, ∀s.

¤

Now going back to the vector field X1 applying this sublemma the period of

X1 is 2πq
g2

. But X1 is a periodic vector field with constant period. Therefore

g2 is constant and the vector field is Hamiltonian on B. Observe that since

X1 is Hamiltonian on B we obtain d(iX1ω2) = 0 on B. This implies that
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∂
∂x1

h2 and ∂
∂y1

h2 vanish on B and hence, using the density of the set B, they

vanish everywhere. So h2 does not depend on the variables x1 and y1. But

since iX1ω2|(0,0,x2,y2) = 0, the function h2 vanishes.

Therefore, iX1ω2 = −df1 as we wanted.

• The elliptic-hyperbolic case

In this case we cannot go straight to the regular foliation F ′ (Liouville-

Mineur-Arnold only works when we consider regular foliations with compact

leaves and in the elliptic-hyperbolic case those leaves are cylinders). So let

us consider the auxiliary foliation F ′′ = F ∩ (M \{(0, 0, x2, y2)}, By virtue of

proposition in chapter 3 , we know that there exists a unique Hamiltonian S1-

action which is tangent to the leaves of the B′′. Consider now Y1, a vector field

generated by this Hamiltonian S1-action with constant period 2πk. Complete

Y1 to a basis Y1, Y2 of Hamiltonian vector fields tangent to the leaves of F ′.

Observe that Y2 cannot be periodic because the leaves of F ∩B are cilinders.

Using lemma 4.4.2, the vector field X1 can be expressed as X1 = Xf1−h2Xf2

for a basic function h2. As a consequence, the vector field X1 is parallel with

respect to ∇ and therefore we can write X1 = α1Y1 +α2Y2 for basic functions

α1 and α2. Since X1 and Y1 have periodic orbits but Y2 does not, α2 has to

vanish. Now as X1 = α1Y1, the period of X1 has to be 2πk
α1

. But the period

of X1 is 2π, so α1 = k and therefore, X1 is Hamiltonian on B. Finally, X1

is Hamiltonian on B yields d(iX1ω2) = 0 on B. This implies that ∂
∂x1

h2 and

∂
∂y1

h2 vanish on B and hence, using the density of the set B, they vanish

everywhere. So h2 does not depend on the variables x1 and y1. But since

iX1ω2|(0,0,x2,y2) = 0, the function h2 vanishes. And in the end, the condition

iX1ω2 = −df1 is met.

This ends the second proof of proposition 4.5.1.

¤
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4.6 A special Hamiltonian for the completely hy-

perbolic cases

It remains to prove an equivalent proposition for the hyperbolic-hyperbolic case. In

the hyperbolic-hyperbolic case we do not have a privileged S1-action. This means

that to reach a similar result we need to apply our Moser type lemma again.

Proposition 4.6.1 Let F be a foliation of hyperbolic-hyperbolic type. Let X1 be

the vector field X1 = x1
∂

∂y1
+ y1

∂
∂x1

belonging to F . Under the assumptions of

lemma 4.4.2, there exists an equivalent symplectic form ω3 for which we have:

iX1ω3 = −df1.

Proof:

Since ω2 is locally exact, we can write:

ω2 = dx1 ∧ dy1 + d(A1dx1 + B1dy1 + A2dx2 + B2dy2).

Using lemma 4.4.2,

iX1ω2 = −df1 + h2df2.

This yields d(1)(A1dx1 + B1dy1) = 0 and therefore, A1dx1 + B1dy1 = d(1)(g1) for a

certain differentiable function. And collecting the coefficients of the terms dx2 and

dy2 as it was seen in the first proof of 4.5.1, we can write

ω2 = dx1 ∧ dy1 + d(C2dx2 + D2dy2)

for certain smooth functions C2 and D2.

Now, we compute the contraction iX1ω2 again with this expression to get:

iX1ω2 = −df1 + X1(C2)dx2 + X1(D2)dy2.

After making a change of coordinates in such a way that f1 = x1y1 and f2 =

x2y2, the Lagrangian condition implies,
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X1(C2) = h2(y2)

X1(D2) = h2(x2)

Let us use the first equation, for instance, to draw conclusions about the

(x1, y1)-jets of the function h2 along {(0, 0, x2, y2)}.
As observed in the proof of 2.2.2, the (x1, y1)-Taylor expand of the function

X1(C2) along {(0, 0, x2, y2)} has the form
∑

i6=j cijx
i
1y

j
1 where cij are smooth func-

tions in the variables (x2, y2). Therefore the funtion h2 has a (x1, y1)-Taylor expand

of the form
∑

i6=j hijx
i
1y

j
1 for certain differentiable hij.

But, since the function h2 is basic, X1(h2) = 0. This implies that h2 is (x1, y1)-

flat along {(0, 0, x2, y2)}. Now we apply 2.2.2 to ensure that there exists a smooth

h such that h2 = X1(h).

So far,

iX1ω2 = −df1 + (X1(h))df2.

Finally, we can apply lemma 4.3.1 with the basic 1-form α = hdf2 to obtain a

new symplectic form ω3, equivalent to ω2 for which,

iX1ω3 = −df1.

This ends the proof of the proposition.

¤

4.7 Two symplectic orthogonal distributions and

symplectic linearization

For the sake of simplicity, let us unify the notation in all the cases and denote ω

the symplectic form equivalent to the initial ω for which X1 is Hamiltonian with
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Hamiltonian function f1. Once reached this point, we are close to the symplectic

orthogonal decomposition. Let us proof the following lemma before:

Lemma 4.7.1 The distribution D1 =< X, Y > defined by the relations:

iXω = dx1

iY ω = dy1

is C∞, symplectic in a neighbourhood of p and involutive everywhere.

Proof: First of all, since ω is symplectic and the forms dx1 and dy1 are differen-

tiable and independent, the distribution D1 is clearly C∞ and regular. Now let us

prove that this distribution is symplectic. Observe that this distribution is sym-

plectically orthogonal to the distribution D2 =< ∂
∂x2

, ∂
∂y2

> defined in lemma 4.4.1.

Since D2 is symplectic in a neighbourhood of p (lemma 4.4.1), the distribution D1

is also symplectic in a neighbourhood of p. Now let us see that this distribution is

involutive. We have to check that [X,Y ] ∈ D1, ∀X, Y ∈ D1. In fact, it is enough

to prove that [X, Y ] ∈ D1 for vector fields which are independent on a dense set

in the neighbourhood considered. So we can take X = X1. By Leibnitz’s rule:

LX1(ω(Y,
∂

∂x2

)) = LX1(ω)(Y,
∂

∂x2

) + ω(LX1Y,
∂

∂x2

) + ω(Y, LX1(
∂

∂x2

))

Now if we take any Y ∈ D1 then the left hand side of the equality above equals

zero. As for the right hand side: The first term is zero because X1 is Hamiltonian

and, in particular, it is symplectic; the third term vanishes because LX1(
∂

∂x2
) = 0.

So we are led to ω(LX1Y, ∂
∂x2

) = 0. In the same way, we prove that ω(LX1Y, ∂
∂y2

) = 0

and therefore the distribution is involutive.

¤

Now let us use the distribution above to prove Theorem 4.2.1. We recall the

precise statement of Theorem 4.2.1.
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Theorem 4.2.1(Symplectically orthogonal decomposition)

Let ω be a symplectic germ for which F is generically Lagrangian. Then there

exists a symplectic germ ω equivalent to ω and there exist two symplectic distribu-

tions D1 and D2 such that:

1. D1 and D2 are involutive and symplectically orthogonal with respect to ω.

2. X1,ε1 ∈ D1 and X2,ε2 ∈ D2.

Proof of Theorem 4.2.1: Consider D1 the distribution defined in the above

lemma. Observe that propositions 4.5.1 and 4.6.1 prove that this distribution con-

tains the vector field X1 in the elliptic-elliptic, elliptic-hyperbolic and hyperbolic-

hyperbolic cases. On the other hand, we consider the distribution D2 =< ∂
∂x2

, ∂
∂y2

>,

this distribution contains the vector field X2. The distribution D2 is symplectic

due to lemma 4.4.1 and trivially involutive. The distribution D1 is symplectically

orthogonal to D2 by construction. This ends up proving Theorem 4.2.1 in all the

cases.

¤
Next step, we use the symplectic orthogonal decomposition to prove that there

is just one symplectic germ making the foliation F into a Lagrangian foliation.

For the sake of clarity, we recall the precise statement of Theorem 4.2.2:

Theorem 4.2.2

Let ω be a symplectic germ at p for which F is generically Lagrangian then ω

is equivalent to ω0 = dx1 ∧ dy1 + dx2 ∧ dy2.

Proof:

Firstly, by virtue of Theorem 4.2.1 there exist symplectically orthogonal dis-

tributions D1 and D2 containing X1 and X2, respectively. Since these regular
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distributions are involutive, there are regular foliations F1 and F2 integrating

D1 and D2 respectively. Furthermore, Frobenius Theorem provides new coordi-

nates (x1, y1, x2, y2) in a neighbourhood of p such that the leaves of F1 are L1b =

{(x1, y1, b1, b2), b1, b2 ∈ R} and the leaves of F2 are L2a = {(a1, a2, x2, y2), a1, a2 ∈
R}.

Since D1 and D2 are symplectically ortogonal and since dω2 = 0, in these new

coordinates the symplectic form can be written as:

ω2 = A(x1, y1)dx1 ∧ dy1 + B(x2, y2)dx2 ∧ dy2.

Since X1 belongs to D1 and X2 belongs to D2 it remains to apply the known

results of symplectic uniqueness in dimension 2 (theorem 2.3.1 in section 2) in the

(x1, y1)-coordinates and in the (x2, y2)-coordinates separately.

More exactly, let us recall this results in dimension 2 and then we perform a

composition of symplectomorphisms.

Theorem 2.3.1

Let (M2, ω1) be a 2-dimensional symplectic manifold endowed with coordinates

(x, y) and let F be a singular Lagrangian foliation with an elliptic or hyperbolic

singularity at the origin (0, 0), then there exists a local diffeomorphism φ preserving

F such that φ∗(dx ∧ dy) = ω1.

Let φ1 and φ2 be the diffeomorphisms provided by the above theorem, attached

to D1 and D2 respectively.

We define a local diffeomorphism

φ(x1, y1, x2, y2) = (φ1(x1, y1), φ2(x2, y2)).

This diffeomorphism preserves the foliation F and satisfies that

φ∗(dx1 ∧ dy1 + dx2 ∧ dy2) = ω2.

¤



Chapter 5

Higher dimensions

The aim of this chapter is to give a general result for symplectic linearization in

arbitrary dimension and for foliations defined by completely integrable systems in

a neighbourhood of a rank k-orbit of the system. In the preceeding chapter we

set a precedent for induction. The idea of the proof relies on an inductive process

and the symplectic orthogonal decomposition. Those tecniques were thoroughly

studied in the last chapter. Most of the lemmas contained in this chapter will be

claimed without proof. In fact, they are the higher dimensional counterparts to the

lemmas contained in chapter 4. That is why we omit their proofs understanding

that the dimension makes no difference in that matter.

The chapter is organized as follows: In the first section we study the rank 0-

foliations and we prove the symplectic uniqueness for those foliations in the case

there are no focus-focus components. In the second section we pose the problem

for rank k-foliations and we prove that the linear foliation in the covering is sym-

plectically linearizable. We do it by defining a splitting of the regular and singular

parts. The splitting is again a symplectic orthogonal decomposition. For the re-

gular part, we apply the classical Liouville-Mineur-Arnold theorem and we apply

the result of symplectic uniqueness established in the first section for the singular

part.

81



82 Chapter 5. Higher dimensions

5.1 Rank 0 foliations in any dimension

In this section we deal with the rank 0 case. That is assume that F is the linear

foliation defined by F =< X1, . . . , Xn > where the vector fields are the linear

vector fields introduced in the first chapter.

This foliation is a linear foliation on M2n with a rank 0 singularity at the origin

p. Assume that the Williamson type of the singularity is (ke, kh, kf ). Recall that

the foliation is then generated by the following vector fields,

Xi = −yi
∂

∂xi
+ xi

∂
∂yi

for 1 ≤ i ≤ ke ,

Xi = yi
∂

∂xi
+ xi

∂
∂yi

for ke + 1 ≤ i ≤ ke + kh ,

Xi = xi
∂

∂xi+1
− yi+1

∂
∂yi
− xi+1

∂
∂xi

+ yi
∂

∂yi+1
and

Xi+1 = −xi
∂

∂xi
+ yi

∂
∂yi
− xi+1

∂
∂xi+1

+ yi+1
∂

∂yi+1
for i = ke + kh + 2j − 1, 1 ≤ j ≤ kf

We want to prove the following theorem,

Theorem 5.1.1 Let ω be a symplectic form defined in a neighbourhood of the

origin for which F is Lagrangian, then there exists a local diffeomorphism φ :

(U, p) −→ (φ(U), p) such that φ preserves the foliation and φ∗(
∑

i dxi ∧ dyi) = ω,

being xi, yi local coordinates on (φ(U), p).

Remarks

Observe that this theorem has already been proved in dimension 2 in chapter

2 and in dimension four in chapter 4. So we propose here to prove it by induction.

Before starting the induction process we claim the following two lemmas (we omit

the proof) which are the higher dimensional analogues of lemmas 4.3.2 and 4.3.1,

respectively. We include the proof here just in the case that the Williamson type

is (ke, kh, 0).

Lemma 5.1.2 There exists C∞-functions hj
i , ∀i, j ∈ {1, n} such that
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iXi
ω =

n∑
j=1

hi
jdfj

The following lemma is a foliation-preserving version of the Moser path method

in the general case.

Lemma 5.1.3 Let α be an F-basic 1-form and let ω1 be a symplectic germ for

which F is Lagrangian. Then:

1. The 2-form ω0 = ω1 − dα is a symplectic structure in a neighbourhood of p

and makes the foliation Lagrangian.

2. There is a diffeomorphism η between two neighbourhoods of p preserving F
and such that η∗(ω1) = ω0.

We will also need the following lemma. We already proved this lemma in any

dimension in the previous chapter.

Lemma 4.3.3

The following equality holds

LXi
iXj

ω = LXj
iXi

ω, ∀i, j ∈ {1, n}.

Now we can start the proof of the theorem.

Proof of theorem 5.1.1

We prove it by induction on n. Recall that dim M = 2n.

• Case n = 1. This is nothing but the symplectic linearization result (theorem

2.3.1) in dimension 2 which is contained in chapter 2.
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• Now let us assume that the theorem holds for r ≤ n−1 let us prove that the

result is true for r = n. Observe that when we pass from n−1 to n we attach

a component of the foliation which can be elliptic or hyperbolic. In the case

we attach an elliptic or hyperbolic component we are adding a vector field

(generically independent from the others) to the distribution.

So we need to make out the following cases

1. Attaching an elliptic component.

According to lemma 5.1.2 we can write,

iXi
ω =

n∑

k=1

hi
kdfk, ∀i ≤ n

On the other hand for each function hn
k we can apply the decomposition

of proposition 2.2.1 in page 23 (chapter 2) to write,

hn
k = h

n

k + Xn(Hn
k ), Xn(h

n

k) = 0,

for convenient differentiable functions. Now consider the 1-form α =
∑n

k=1 Hn
k dfk. We can apply lemma 5.1.3 with this 1-form and ω will be

equivalent to ω = ω − dα.

Now we compute iXnω = iXnω − iXndα. We can compute the second

term in the right hand side of the equality using Cartan’s formula to

obtain,

iXndα = LXnα− diXnα =
n∑

k=1

Xn(Hn
k )dfk

where in the last equality we have used the fact that the 1-form is

F -basic.

In the end this yields,
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iXnω =
n∑

k=1

h
n

kdfk, Xn(h
n

k) = 0.

For the sake of simplicity we will keep the notation hn
k instead of h

n

k

bearing in mind that we can assume that Xn(hn
k) = 0. Observe that

formula 5.1 LXi
iXj

ω = LXj
iXi

ω of lemma 4.3.3 yields the relations,

Xj(h
i
k) = Xi(h

j
k), ∀i, j, k (5.1.1)

After taking i = n in the relation above and applying LXn both sides

we obtain,

X2
n(hj

k) = 0

now since Xn is a periodic vector field we can reproduce the arguments

exposed in the first proof of proposition 4.5.1 in page 69 to obtain

Xn(hj
k) = 0, now going back to equation 5.1.1 we get,

Xj(h
n
k) = 0, ∀j.

Next step, we normalize in the (xn, yn)-direction, that is to say as we

did in the proof of 2.3.3 in page 34 first we consider the smooth solution

of the differential equation

d

du
(ψ2(u, x̂n, ŷn) · u) = hn

n(u, x̂n, ŷn),

where u = x2
n + y2

n, x̂n = (x1, . . . , xn−1) and ŷn = (y1, . . . , yn−1) and

then we define the foliation preserving diffeomorphism

φ(x̂n, ŷn, xn, yn) = (x̂n, ŷn, ψ · xn, ψ · yn).

This diffeomorphism takes the symplectic form to a new symplectic

form ω1 such that,



86 Chapter 5. Higher dimensions

iXnω1 =
n−1∑

k=1

h
n

kdfk − dfn, Xn(h
n

k) = 0. (5.1.2)

Taking into account the expression above and since ω1 is locally exact,

we can write:

ω1 = dxn ∧ dyn + d(
∑

k<n

(Akdxk + Bkdyk)).

We use the notation by d(1)(h) = ∂h
∂xn

dxn + ∂h
∂yn

dyn and d(2)(h) =
∑

k<n
∂h
∂xk

dxk + ∂h
∂yk

dyk with d(1)(
∑

k<n(Akdxk + Bkdyk)) = 0 and there-

fore,
∑

k<n(Akdxk + Bkdyk) = d(1)(gn) for a certain differentiable func-

tion. After gathering coefficients conveniently this yields,

ω1 = dxn ∧ dyn + d(
∑

k<n

(Akdxk + Bkdyk)),

for certain smooth functions Ak and Bk.

Now, we compute the contraction iXnω1 again with this expression to

get:

iXnω1 = −dfn +
∑

k<n

(Xn(Ak)dxk + Xn(Bk)dyk).

Comparing this expression with equation 5.1.3 we obtain,

Xn(Ak) = hn
k(xk)

Xn(Bk) = εkh
n
k(yk)

for any k, where εk = 1 if the function fk is elliptic and εk = −1 for an

hyperbolic function fk.

Since Xn(hn
k) = 0, we can apply LXn to these relations to obtain,

X2
n(Ak) = 0, X2

n(Bk) = 0,
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again since Xn is periodic these relations yield,

Xn(Ak) = 0, Xn(Bk) = 0,

proving so far

iXnω1 = −dfn.

In order to finish the proof it remains to define a symplectically ortho-

gonal decomposition and apply the induction hypothesis.

As we did in chapter 4 we use the lemma,

Lemma 5.1.4 The distribution D1 =< X, Y > defined by the rela-

tions:

iXω1 = dxn

iY ω1 = dyn

is C∞, symplectic in a neighbourhood of the origin and involutive everyw-

here.

The proof can be treated along the same lines that is why we omit it.

This lemma allows us to talk about symplectically orthogonal decom-

position. Notice that from the definition the 2-dimensional distribution

D1 is symplectically orthogonal to the 2(n−2) dimensional distribution

D2 generated by the vector fields ∂
∂xk

and ∂
∂yk

, for k 6= n. Both distribu-

tions are involutive. The integral submanifolds Mc integrating the first

one are symplectic whereas the integral submanifolds Nc integrating

the second distribution are symplectic because they are symplectically

orthogonal to the former.

These two orthogonal distributions provide coordinates xi, yi. Such that

the symplectic form may be expressed as ω1 = ω1 +ω2, where ω1 defines
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a symplectic 2-form on Tp(Mc) for each p ∈ Mc and, in the same way,

ω2 defines a symplectic 2-form on Tp(Nc) for each p ∈ Nc. The condition

dω1 = 0 implies that ω1 depends only on the xn, yn variables and ω2

depends only on the xk, yk variables (for k 6= n).

Observe that (Mc, ω1) is a 2-dimensional manifold endowed with the

foliation F1 defined by Xn. In the same way, (Nc, ω2) is a 2(n − 1)-

dimensional manifold endowed with the foliation F2 generated by Xk

for k 6= n.

The lagrangian condition imposed on the initial foliation F implies the

Lagrangian condition for F1 and F2. So we may apply the hypothesis for

induction to the symplectic submanifolds Nc and Mc to define foliation

preserving diffeomorphisms φ1 and φ2 for which φ∗(ω1) = dxn∧dyn and

φ∗(ω2) =
∑

k<n dxk ∧ dyk.

Finally define φ = (φ1, φ2) to get the desired foliation preserving diffeo-

morphism.

2. Attaching an hyperbolic component.

The proof follows the guidelines of the elliptic case with some differen-

ces. Let us point them out.

First, using lemma 2.2.2 in page 26 and lemma 5.1.3 we can assume

that,

iXnω =
n∑

k=1

h
n

kdfk, Xn(h
n

k) = 0.

As we observed in the proof for completely hyperbolic case in chapter

4, this implies

X2
n(hi

k) = 0, ∀i, k
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Since Xn is a vector field corresponding to an hyperbolic singularity,

this does not imply necessarily that Xn(hi
k) = 0. It remains to apply

Moser again exactly as we did on chapter 4 to obtain Xn(hi
k) = 0, ∀i.

As a consequence of the commutation relations this yields Xj(h
n
k) = 0

, ∀i, k and then we can proceed to normalization. That is to say we

consider the foliation preserving diffeomorphism

φ(x̂n, ŷn, xn, yn) = (x̂n, ŷn, ψ · xn, ψ · yn).

where ψ is the smooth solution of the differential equation

d

du
(ψ2(u, x̂n, ŷn) · u) = hn

n(u, x̂n, ŷn),

and u = x2
n − y2

n, x̂n = (x1, . . . , xn−1) and ŷn = (y1, . . . , yn−1) This

diffeomorphims takes the symplectic form to a new symplectic form ω1

such that,

iXnω1 =
n−1∑

k=1

h
n

kdfk − dfn, Xn(h
n

k) = 0. (5.1.3)

Now in view of this expression and following the same arguments as in

the elliptic case, the symplectic form can be written,

ω1 = dxn ∧ dyn + d(
∑

k<n

(Akdxk + Bkdyk)),

for certain smooth functions Ak and Bk.

The contraction iXnω1 reads,

iXnω1 = −dfn +
∑

k<n

(Xn(Ak)dxk + Xn(Bk)dyk).

From here and the Lagrangian condition we can write

Xn(Ak) = hn
k(xk)

Xn(Bk) = εkh
n
k(yk)

,
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for any k, where εk = 1 if the function fk is elliptic and εk = −1 for an

hyperbolic function fk.

Since Xn(hn
k) = 0, we can apply LXn to these relations to obtain,

X2
n(Ak) = 0, X2

n(Bk) = 0,

from this expressions we can draw conclusions about the (xn, yn)-jet

of the function along the subspace xn = 0, yn = 0 and then apply

Moser again as we did in the proof for the completely hyperbolic case

in chapter 4. Then we will be taken to a new symplectic form and for

new coefficients Ak and Bk for which

Xn(Ak) = 0, Xn(Bk) = 0,

proving so far

iXnω1 = −dfn.

From this moment on, we can define the symplectically orthogonal de-

composition as we did in the proof of the elliptic case and follow the

same proof which takes the initial symplectic form to the standard one.

Remark

This theorem was proved with all the details by Eliasson just in the

completely elliptic case. Here we have included a different proof for fo-

liations of Williamson type (ke, kh, 0). We have not include here the

more general case kf 6= 0. But let us add a few words about this case,

when kf 6= 0 we can prove the theorem using induction as well. Observe

that when we attach a focus-focus component we are adding two vector

fields to the distribution. One of this vector fields Xn−1 is periodic. For

this vector field, we can obtain a decomposition as the one obtained in
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chapter 2 proposition 2.2.1, page 23. Then using Moser and tecniques

similar to the elliptic case we can prove that Xn−1 is a Hamiltonian

vector field with hamiltonian function fn−1. This enables to define a

symplectic distribution which obviously contains Xn−1. Since this dis-

tribution is symplectically orthogonal to the distribution generated by

∂
∂xk

, ∂
∂yk

k 6= n, k 6= n− 1. This distribution also contains Xn. Once re-

ached this point, we have an orthogonal symplectic decomposition and

we can apply the induction hypothesis exactly as we did in the other

cases.
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5.2 Rank k foliations in any dimension

The goal of this section is to give a symplectic uniqueness result in the neighbour-

hood of an orbit for the linearized foliation. This result is contained in the joint

paper [48] with Nguyen Tien Zung. We provide a different proof here. Recall that

the foliation is given by the vector fields,

Yi = ∂
∂θi

, 1 ≤ i ≤ k

Xi = −yi
∂

∂xi
+ xi

∂
∂yi

for 1 ≤ i ≤ ke ,

Xi = yi
∂

∂xi
+ xi

∂
∂yi

for ke + 1 ≤ i ≤ ke + kh ,

Xi = xi
∂

∂xi+1
− yi+1

∂
∂yi
− xi+1

∂
∂xi

+ yi
∂

∂yi+1
and

Xi+1 = −xi
∂

∂xi
+ yi

∂
∂yi
− xi+1

∂
∂xi+1

+ yi+1
∂

∂yi+1
for i = ke + kh + 2j − 1, 1 ≤ j ≤ kf

We denote this foliation by F . We want to prove the following theorem,

Theorem 5.2.1 Let ω and ω0 two symplectic forms in a neighbourhood of a sin-

gular orbit for which the foliation F is Lagrangian then ω and ω0 are equivalent.

Remarks:

• Taking into account the notion of equivalence, we could also state this theo-

rem in the following way,

Theorem 5.2.2 Let ω be a symplectic form defined in a neighbourhood of a

singular orbit L, then there exists coordinates (θ1, . . . , θk, p1, . . . , pk, x1, y1,

. . . , xn−k, yn−k), a diffeomorphism φ in a neighbourhood of L preserving the

foliation F such that

φ∗(
k∑

i=1

dpi ∧ dθi +
n−k∑
i=1

dxi ∧ dyi) = ω.
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• The idea of the proof is to define an splitting at each point of the symplectic

manifold into two symplectic manifolds Mp and Np which are symplectically

orthogonal and such that the regular distribution ( generated by the vector

fields Yi) is tangent to Mp and the singular distribution ( generated by the

vector fields Xi) is tangent to Np.

Proof of theorem 5.2.1:

Let ω be a symplectic form for which F is Lagrangian. In order to define the

symplectic orthogonal decomposition we need to prove the existence of a Hamil-

tonian Tk action tangent to the leaves of the foliation. In section 3, proposition

4.5.2 in page 75 we proved the existence of a Hamiltonian S1-action tangent to the

leaves of the foliation using Moser path method and the Lagrangian condition.

Iterating this procedure and using 5.1.3 we have the following proposition, we

omit the proof because it is a straightforward generalization of proposition 4.5.2.

Let us introduce the following simplifying notation,

θ = (θ1, . . . , θk), p = (p1, . . . , pk) x = (x1, . . . , xn−k) and y = (y1, . . . , yn−k)

Proposition 5.2.1 There is a Hamiltonian Tk-action tangent to the foliation.

In fact, there exist coordinates (θ, p, x, y) in a neighbourhood of L such that ω =

d(
∑k

i=1 pidθi +
∑

C(p, x, y)dx + D(p, x, y)dy) and the Hamiltonian Tk-action is

performed by translations with respect to θi, for 1 ≤ i ≤ k.

Under these conditions we can prove the following lemma,

Lemma 5.2.3 The distribution D =< Z1, T1, . . . , Zk, Tk > defined by the rela-

tions:

iZi
ω = dpi

iTi
ω = dθi

is C∞, symplectic in a neighbourhood of L and involutive everywhere.
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Proof:

Clearly this distribution is smooth and regular. First we prove that the dis-

tribution is symplectic. From the definition, this distribution is the symplectic

orthogonal to the distribution D′ generated by ∂
∂xi

, ∂
∂yi

for 1 ≤ i ≤ n − k. If we

prove that D′ is symplectic in a neighbourhood of the orbit L then we will be done.

In order to check that D′ is symplectic we use the same strategy as in the

proof of lemma 4.4.1 in page 67. From the Lagrangian conditions at any point

in p in a neighbourhood of L the following relations are fulfilled, ω(Yi, Xj) = 0,

ω(Yi, Yj) = 0 and ω(Xi, Xj) = 0.

Now along L the coordinates xi and yi vanish so in the absence of focus-focus

components, the relations above read,

w(
∂

∂θi

,
∂

∂θj

)|q = 0, q ∈ L

w(
∂

∂θi

,
∂

∂xj

)|q = 0, q ∈ L

w(
∂

∂θi

,
∂

∂yj

)|q = 0, q ∈ L

w(
∂

∂xi

,
∂

∂xj

)|q = 0, q ∈ L

w(
∂

∂yi

,
∂

∂yj

)|q = 0, q ∈ L

w(
∂

∂xi

,
∂

∂yj

)|q = 0, i 6= j q ∈ L

Following the same arguments as in proposition 4.4.1 these relations imply

that D′ is symplectic and therefore its symplectic orthogonal distribution D is also

symplectic. In the case there are focus-focus components the last relation changes

for j = i + 1 in a focus-focus pair fi, fi+1 and following similar arguments we

conclude that D′ is also symplectic.
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In order to see that the distribution is involutive observe first that the vector

fields Zi coincide with the vector fields Yi = ∂
∂θi

. Therefore, [Zi, Zj] = 0. On the

other hand according to proposition 5.2.1 the coefficients of the symplectic form

do not depend on the angular coordinates θi. From here, [Zi, Tj] = 0 because of

the expression of the symplectic form obtained in Proposition 5.2.1.

It remains to check that [Ti, Tj] = 0.

We use the formula,

i[Ti,Tj ]ω = LTi
iTj

ω − iTj
LTi

ω. ∗

The second term vanishes because from the definition of Ti the vector field Ti is

locally Hamiltonian. As for the first term, applying the definition of Ti, we obtain

the following chain of equalities,

LTi
iTj

ω = LTi
dθj = d(Ti(θj)) = 0,

where in the last equality we have used again the explicit expression of ω in pro-

position 5.2.1.

Now going back to ∗ we obtain,

i[Ti,Tj ]ω = 0

Finally this yields [Ti, Tj] = 0 and the distribution is involutive. This ends the

proof of the lemma. ¤
Once this key lemma has been proved we are already done. Because we have

two symplectic orthogonal distributions D and D′.

Now through each point p in L there are two symplectic submanifolds, sym-

plectically orthogonal to each other, Mp and Np integrating D and D′ respectively.

Observe that the distribution generated by the singular vector fields Xi is tangent

to Mp thus defining a foliation tangent to Mp. We call this foliation F1. In the

same way, the distribution generated by the regular vector fields Yi is tangent to
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Np thus defining a foliation tangent to Np. We call this foliation F2. Note, as well,

that the Lagrangian condition imposed on F implies that the foliations F1 and F2

are Lagrangian with respect to the symplectic forms ω1 and ω2 induced by restric-

tion of ω to Mp and Np, respectively. Further, since Mp and Np are symplectically

orthogonal to each other we may write,

ω = ω1 + ω2.

Let us have a look at the expression of ω in local coordinates. Frobenius theo-

rem provides coordinates (θ1, . . . , θk, p1, . . . , pk, x1, y1 . . . , xn−k, yn−k) in a neigh-

bourhood of p such that (θ1, . . . , θk, p1, . . . , pk) are coordinates in Np and

(x1, y1 . . . , xn−k, yn−k) are coordinates in Mp. The condition dω = 0 implies that

the coefficient functions of ω1 just depend on xi and yi and that the coefficient

functions of ω2 just depend on pi and θi.

Once reached this point, we can apply theorem 5.1.1 to the pair (Mp, ω1) and

there exists a diffeomorphims φ1 preserving the foliation F1 and coordinates (xi, yi)

such that φ∗(
∑

i dxi ∧ dyi) = ω1. We can apply Liouville-Mineur-Arnold theorem

to the pair (Np, ω2) to obtain a diffeomorphims φ1 preserving the foliation F2 and

coordinates (pi, θi) such that φ∗(
∑

i dpi∧dθi) = ω2. Observe that these coordinates

can be extended to a whole neighbourhood of the orbit using the flow of the vector

fields Yi which are symplectomorphisms.

Finally the desired preserving foliation diffeomorphism is φ = (φ1, φ2).

This ends the proof of theorem 5.2.1.

¤



Chapter 6

Equivariant linearization and

symplectic equivalence

6.1 Introduction

In the previous chapters we have attained the symplectic linearization of the folia-

tion F̃ in a finite normal covering Ũ(L) of the initial neighbourhood of the orbit

L.

As we observed in the first chapter, the group Γ of deck transformation attached

to the covering preserves the symplectic structure and the fibration given by the

mapping F = (f1, . . . , fn). Therefore, in order to prove the symplectic equivalence

in the initial neighbourhood of the orbit we have to check that the symplectomorp-

hism which provides the linearization result in the covering can be chosen to be

Γ-equivariant.

We can pose the problem in the following terms,

Denote by α the initial symplectic action of the group Γ in the covering Ũ(L)

and we denote by ω the symplectic form in the covering. This action preserves

the fibration given by F. Let φ : Ũ(L) −→ φ(Ũ(L)) be the symplectomorphism

attained in the previous chapter. This symplectomorphism preserves the foliation

97
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F̃ and satisfies (φ∗)−1(ω) = ω0, being ω0 =
∑k

i=1 dpi ∧ dθi +
∑n−k

i=1 dxi ∧ dyi.

Then the initial action α of Γ becomes an action ρ on φ(Ũ(L)) preserving ω0

and the fibration given by F = (f1, . . . , fn).

Summing up, if we prove that the Γ-equivariant equivalence taking the initial

action to a linear action can be attained in the linear model with the symplectic

structure ω0 =
∑k

i=1 dpi ∧ dθi +
∑n−k

i=1 dxi ∧ dyi, then we will be done.

Observe that the twisting group Γ is a finite group. So it would be sufficient to

prove that the Γ-equivariance holds for finite groups.

We will prove a more general theorem which will yield the desired result as a

corollary.

The general result that we prove provides an equivariant version of the sym-

plectic linearization. In other words, we will assume that there exists a symplectic

action of a compact Lie group in a neighbourhood of L preserving F = (f1, . . . , fn)

and we will show that the symplectic linearization can be carried out in an equi-

variant way.

As a consequence of this result we end up proving the symplectic linearization

result in the original neighbourhood of the orbit.

Another byproduct of the proof of this theorem is that if the action is effective

then the group G fulfilling all the above-mentioned hypotheses has to be abelian.

As a matter of fact, the equivariant symplectic linearization result turns out

to have interest by itself. It follows the general philosophy of the large list of

linearization results for compact group actions preserving additional structures.

From our point of view, the first one in this long list is the one for fixed points due

to Bochner. Let us state Bochner’s linearization theorem.

Theorem 6.1.1 (Bochner)

Let α be a smooth action of a compact group G on a manifold M and let

x0 ∈ M be a fixed point for the action, i.e α(g, x0) = x0, ∀g ∈ G. Denote by α1
g the

differential at x0 of the diffeomorphism αg : M −→ M induced by α. Then there
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exists a G-invariant neighbourhood U of x0 and a diffeomorphism φ from U onto

an open neighbourhood V of the origin 0 in Tx0M , such that,

φ(x0) = 0, dx0φ = Id

and

φ ◦ αg = α(1)
g ◦ φ, ∀g ∈ G, x ∈ U

The orbit-like version of this theorem was given by Koszul [35]. This theorem

has been known in the literature as the slice theorem. It guarantees that for any

smooth action of a compact Lie group on a manifold M there exists a slice S

through every point x ∈ M . Furthermore one can choose coordinates on S so that

S is an open invariant disk in a vector space upon which the isotropy group acts

linearly. Namely,

Theorem 6.1.2 (Koszul)

Let G be a compact connected Lie group acting on a manifold M and let x ∈ M

be a point. A neighbourhood of the orbit G·x through the point x, is G-equivariantly

diffeomorphic to a neighbourhood of the zero section of the homogeneous vector

bundle G ×Gx W where W = Tx(M)/Tx(G · x) and where the action of Gx on W

is linear.

An extension of this theorem to proper actions of groups was provided by R.

Palais [50], [49].

Another G-equivariant result concerning also symplectic forms is the G-equivariant

Darboux theorem. We state it below,

Theorem 6.1.3 Let G be a compact Lie group acting smoothly on a manifold M ,

let Y be a G-invariant compact submanifold of M , and let ω1 and ω2 be two G-

invariant symplectic forms on M such that ω0p = ω1p for all p ∈ Y . Then there
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exists a G-invariant neighbourhood U of Y and a G-equivariant diffeomorphism

f of U onto another G-invariant neighbourhood of Y such that f(y) = y for all

y ∈ Y and f ∗(ω1) = ω0.

The first two theorems can be considered as linearization theorems for actions of

compact Lie groups whereas the last theorem is also concerned with an additional

geometrical structure (the symplectic form).

In this spirit we will prove similar linearization theorems in the neighbourhood

of a point and in the neighbourhood of an orbit under the more constraining con-

dition that the diffeomorphism preserves the map F and the symplectic structure.

This chapter is organized as follows: in the first section we introduce the notion

of the linear action on the linear model. In the second section we study the case of

a fixed point and we prove that the action can be linearized. As a by-product, we

prove that the group of symplectomorphisms preserving the system is abelian. In

the third section we prove the G-linearization in the neighbourhood of an orbit. As

a corollary we obtain the symplectic equivalence in a neighbourhood of an orbit,

this result is included in the last section.

Throughout the chapter there will be two different concepts that show up.

The concept of foliation preserving symplectomorphism and the concept of system

preserving diffeomorphism. They are slightly different concepts. Let us point out

the difference in advance.

When we say that a symplectomorphism is foliation preserving we mean that

it preserves the foliation. That is, it sends leaves to to leaves. When we refer to a

system preserving diffeomorphism we mean that the diffeomorphism preserves the

symplectic form considered and F. In particular, a system preserving diffeomorp-

hism is foliation preserving.

The results contained in this section have been obtained jointly with Nguyen

Tien Zung. The proofs provided here (with the only exception of the proof of the

linearization theorem in the neighbourhood of an orbit and the parametric version
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of theorem 6.3.2 and theorem 6.3.4 (corollaries 6.3.3 and 6.3.5)) are contained in

the joint paper [48].

6.2 The linear action on the linear model

We are going to introduce the notion of linear action on the linear model associated

to the orbit L for a given symplectic action preserving the system. Later, we will

see that the invariants associated to the linear model are the Williamson type of

the orbit and a twisting group Γ attached to it.

We recall the notion of linear model. Denote by (p1, ..., pk) a linear coordinate

system of a small ball Dk of dimension k, (θ1(mod1), ..., θk(mod1)) a standard

periodic coordinate system of the torus Tk, and (x1, y1, ..., xn−k, yn−k) a linear

coordinate system of a small ball D2(n−k) of dimension 2(n − k). Consider the

manifold

V = Dk × Tk ×D2(n−k) (6.2.1)

with the standard symplectic form ω0 =
∑

dpi∧dθi+
∑

dxj∧dyj, and the following

moment map:

F = (p1, ..., pk, fk+1, ..., fn) : V → Rn (6.2.2)

where

fi+k = x2
i + y2

i for 1 ≤ i ≤ ke ,

fi+k = xiyi for ke + 1 ≤ i ≤ ke + kh ,

fi+k = xiyi+1 − xi+1yi and

fi+k+1 = xiyi + xi+1yi+1 for i = ke + kh + 2j − 1, 1 ≤ j ≤ kf

(6.2.3)

For the sake of simplicity we will denote by p the mapping whose components are

the k regular first integrals pi and h will stand for the mapping whose components

are the singular first integrals fi, i ≥ k; following this convention we will write

F = (p,h). Let Γ be a group with a symplectic action ρ(Γ) on V , which preserves
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the moment map F. We will say that the action of Γ on V is linear if it satisfies

the following property:

Γ acts on the product V = Dk × Tk ×D2(n−k) componentwise; the action of Γ

on Dk is trivial, its action on Tk is by translations (with respect to the coordinate

system (θ1, ..., θk)), and its action on D2(n−k) is linear with respect to the coordinate

system (x1, y1, ..., xn−k, yn−k).

Suppose now that Γ is a finite group with a free symplectic action ρ(Γ) on

V , which preserves the moment map and which is linear. Then we can form the

quotient symplectic manifold V/Γ, with an integrable system on it given by the

induced moment map as above:

F = (p1, ..., pk, fk+1, ..., fn) : V/Γ → Rn (6.2.4)

The set {pi = xi = yi = 0} ⊂ V/Γ is a compact orbit of Williamson type (ke, kf , kh)

of the above system. We will call the above system on V/Γ, together with its

associated singular Lagrangian foliation, the linear system (or linear model) of

Williamson type (ke, kf , kh) and twisting group Γ (or more precisely, twisting action

ρ(Γ)). We will also say that it is a direct model if Γ is trivial, and a twisted model

if Γ is nontrivial.

A symplectic action of a compact group G on V/Γ which preserves the moment

map (p1, ..., pk, fk+1, ..., fn) will be called linear if it comes from a linear symplectic

action of G on V which commutes with the action of Γ. In our case, let G ′ denote the

group of linear symplectic maps which preserve the moment map then this group

is abelian and therefore this last condition is automatically satisfied. In fact G ′ is

isomorphic to Tm×G1×G2×G3 being G1 the direct product of ke special orthogonal

groups SO(2,R), G2 the direct product of kh components of type SO(1, 1,R) and

G3 the direct product of kf components of type R× SO(2,R), respectively.
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6.3 G-linearization for rank 0 foliations

In this section we consider the action of a compact Lie group on the linear model

corresponding to a rank 0 point of Williamson type (ke, kh, kf ). We assume that

this action preserves the symplectic form and the mapping F = (f1, . . . , fn) where

fi are of elliptic, hyperbolic or focus-focus type as specified in the section above

(formula 6.2.3). We prove that the action can be linearized in a foliation preserving

way. We will also provide the analytic version of the theorem.

The proof of this linearization theorem resembles very much the proof of Bo-

chner’s linearization theorem. We will use the averaging method. Nevertheless, we

have to make sure that the linearization can be carried out using symplectomorp-

hisms and that all the symplectomorphisms preserve the Lagrangian foliation. In

order to do that, we will often consider flows of Hamiltonian vector fields which

are tangent to the foliation.

Let us fix some notation that we will use throughout the chapter. The vector

field XΨ will stand for a Hamiltonian vector field with associated Hamiltonian

function Ψ. We will denote by φs
Xt

the time-s-map of the vector field Xt. Let ψ

be a local diffeomorphism ψ : (R2n, 0) → (R2n, 0). In the sequel, we will denote by

ψ(1) the linear part of ψ at 0. That is to say, ψ(1)(x) = d0ψ(x).

In this section we will linearize the action of G using the averaging met-

hod and a theorem about local automorphisms of the linear integrable system

(R2n,
∑n

i=1 dxi ∧ dyi,h).

First we recall this well-known sublemma (sublemma 4.5.1) of chapter 4.

Sublemma 6.3.1 Let XG1 and XG2 be two Hamiltonian vector fields tangent to

F . Denote by φs
XG1

and φs
XG2

the time-s-map of XG1 and XG2 respectively. Then

φs
XG1

+XG2
= φs

XG1
◦ φs

XG2
.

Now we can state and prove the following theorem,
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Theorem 6.3.2 Suppose that ψ : (R2n, 0) → (R2n, 0) is a local symplectic diffeo-

morphism of R2n which preserves the quadratic moment map h. Then the linear

part ψ(1) is also a system-preserving symplectomorphism, and there is a unique

local smooth function Ψ : (R2n, 0) → R vanishing at 0 which is a first integral for

the linear system given by h and such that ψ(1) ◦ ψ−1 is the time-1 map of the

Hamiltonian vector field XΨ of Ψ. If ψ is real analytic then Ψ is also real analytic.

If ψ depends smoothly (resp analytically) on parameters so does Ψ.

Proof

We are going to construct a path connecting ψ to ψ(1) contained in G = {φ :

(R2n, 0) → (R2n, 0), such that φ∗(ω) = ω, h ◦ φ = h}. Given a function ψ ∈ G,

we consider

Sψ
t (x) =





ψ ◦ gt

t
(x) t ∈ (0, 1]

ψ(1)(x) t = 0

being gt the homothecy gt(x1, . . . , xn) = t(x1, . . . , xn).

Observe that in case ψ is smooth, this mapping Sψ
t is smooth and depends

smoothly on t. In case ψ is real analytic, the corresponding Sψ
t is also real analytic

and depends analytically on t. If ψ depends smoothly or analytically on parameters

so does Sψ
t .

First let us check that h ◦ Sψ
t = h when t 6= 0. We do it component-wise.

Let x = (x1, . . . , xn) and let fj be one of the components of h, then

fj ◦ (
ψ ◦ gt

t
)(x) =

(fj ◦ ψ ◦ gt)(x)

t2
=

fj ◦ gt(x)

t2
= fj(x)

where in the first and the last equalities we have used the fact that each component

fj of the moment map h is a quadratic polynomial whereas the condition h◦ψ = h

yields the second equality.

Now we check that (Sψ
t )∗(ω0) = ω0 when t 6= 0. Since ω0 =

∑
dxi ∧ dyi, then
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g∗t (ω0) = t2ω0. But since ψ preserves ω0 then

(Sψ
t )∗(ω) = (

ψ ◦ gt

t
)∗ω0 = ω0

when t 6= 0.

So far we have checked the conditions h ◦ Sψ
t = h and (Sψ

t )∗(ω0) = ω0 when

t 6= 0 but since Sψ
t depends smoothly on t we also have that h ◦ S0

ψ = h and

(Sψ
0 )∗(ω0) = ω0. So, in particular, we obtain that Sψ

0 = ψ(1) preserves the moment

map and the symplectic structure and therefore ψ(1) is also contained in G.

Now consider

Rt = ψ(1) ◦ S
(ψ−1)
t

with t ∈ [0, 1], this path connects the identity to ψ(1) ◦ ψ−1 and is contained in G.

We are going to use this path to define a Hamiltonian vector field such that

its time-1-map is ψ(1) ◦ ψ−1. First, we consider the t-dependent vector field Xt

satisfying

Xt(p) =
d

ds
(Rs(q))|s=t, q = R−1

t (p) (6.3.1)

with t ∈ [0, 1] . Since Rs is a symplectomorphism for any s contained in [0, 1], the

vector field Xt is locally Hamiltonian. Then the vector field

X =

∫ 1

0

Xtdt

is also locally Hamiltonian. Since the symplectic manifold considered is a neigh-

bourhood U of the origin, the vector field X is indeed Hamiltonian in U . There is

a unique local Hamiltonian function Ψ associated to X satisfying Ψ(0) = 0. This

Hamiltonian function is a first integral for the system since {Ψ, hi} = 0. If ψ is real

analytic (respectively differentiable) Xt is also real analytic (respectively differen-

tiable) and the same property holds for Ψ. Observe that in the case ψ depends

smoothly (resp. analytically) on parameters then by construction the t-dependent

vector field Xt depends smoothly (resp. analytically) on that parameters and the-

refore so does the vector field X and its time one map. It remains to check that

the time-1-map of X is ψ(1) ◦ ψ−1.
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We are going to prove that the time-1-map of the vector field X coincides

with R1 by performing a partition of the interval [0, 1] into n pieces and then

approximating the integral by a sum.

First observe that formula 6.3.1 shows that the vector X1− k+1
n

(p) is tangent to

the curve Rs ◦ R−1

1− k+1
n

(p) at the point p. On the other hand by the definition of

flow the vector is also tangent to the curve φs
X

1− k+1
n

(p) at the point p.

So in fact,

X1− k+1
n

(p) = lim
s→0

R1− k+1
n

+s ◦R1− k+1
n

−1(p)− p

s
(6.3.2)

and also

X1− k+1
n

(p) = lim
s→0

φs
X

1− k+1
n

(p)− p

s
(6.3.3)

Therefore,

lim
s→0

R1− k+1
n

+s ◦R−1

1− k+1
n

(p)− φs
X

1− k+1
n

(p)

s
= 0 (6.3.4)

In other words, R1− k+1
n

+s◦R−1

1− k+1
n

(p) = φs
X

1− k+1
n

(p) + o(s1). After refining the initial

partition if necessary, we can particularize s = 1
n

to obtain

R1− k
n
◦R−1

1− k+1
n

= φ
1
n
X

1− k+1
n

+ o(
1

n
). (6.3.5)

Since R1 can be written as,

R1 = (R1 ◦R−1
1− 1

n

) ◦R1− 1
n
· · · ◦ (R1−n−1

n
◦R−1

0 ). (6.3.6)

we can perform the necessary substitutions of 6.3.5 in 6.3.6 and we are led to

R1 = (φ
1
n
X

1− 1
n

+ o(
1

n
)) ◦ (φ

1
n
X

1− 2
n

+ o(
1

n
)) ◦ · · · ◦ (φ

1
n
X0

+ o(
1

n
)) (6.3.7)
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Assuming that
∏

here stands for the composition of diffeomorphisms, we can write

this expression in a reduced form as

R1 = (
k=n−1∏

k=0

φ
1
n
X

1− k
n

) + o(1). (6.3.8)

Observe that the vector field Xt is tangent to the fibration F for any t contained

in [0, 1] because the diffeomorphisms Rs preserve the fibration F , ∀s. On the other

hand, each vector field Xt is Hamiltonian. Therefore we may apply sublemma 4.5.1

for any pair t, t′ contained in [0, 1] and the following equation holds φs
Xt+Xt′

=

φs
Xt
◦ φs

Xt′
. Now this expression reads,

R1 = (φ
1
nPk=n−1

k=0 X
1− k

n

) + o(1). (6.3.9)

Since the time-1-map of X
n

and the time- 1
n
-map of X are related by the formula

φ
1
n
X = φ1

X
n

, we obtain,

R1 = lim
n→∞

(φ1Pk=n−1
k=0

X
1− k

n
n

) (6.3.10)

But,

lim
n→∞

k=n−1∑

k=0

X1− k
n

n
=

∫ 1

0

Xtdt.

This identity shows that R1 = φ1
X and this ends the proof of the theorem.

¤
As a corollary of the above theorem we obtain a local linearization result of

symplectomorphism depending on parameters. The corollary below will be a key

point in the proof of the linearization in a neighbourhood of the orbit.

Corollary 6.3.3 Let Dp stand for a disk centered at 0 in the parameters p1, . . . , pk.

We denote by p = (p1, . . . , pk). Assume that ψp : (R2n, 0) → (R2n, 0) is a local

symplectic diffeomorphism of R2n which preserves the quadratic moment map h

and which depends smoothly on the parameters p. Then there is a unique local
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smooth function Ψp : (R2n, 0) → R vanishing at 0 depending smoothly on p which

is a first integral for the linear system given by h and such that ψ
(1)
0 ◦ ψ−1

p is the

time-1 map of the Hamiltonian vector field XΨp of Ψp. If ψp is real analytic and

depends analytically on the parameters then Ψp is also real analytic and depends

analytically on the parameters.

Proof:

According to theorem 6.3.2 there exists a first integral F1,p such that the time-

one-map of the Hamiltonian vector field XF1,p is ψ
(1)
p ◦ψ−1

p . We will apply the same

trick that we applied to the path Rt in the proof of theorem 6.3.2 but applied to

the path in G, Mt defined as follows,

Mt = ψ1
0 ◦ (ψ

(1)
gt(p))

−1,

where gt(p) = (tp1, . . . , tpk).

Observe that the path is contained in G and is well defined (since the disk is

convex). This path is smooth (resp. analytic) if ψ is smooth (resp. analytic) and

depends analytically on t. Now we can apply the same reasoning as in the proof

of theorem 6.3.2.

Namely, we can consider the t-dependent vector field,

Xt(p) =
d

ds
(Ms(q))|s=t, q = M−1

t (p) (6.3.11)

And also the averaged vector field

X =

∫ 1

0

Xtdt.

As we pointed out in the proof of theorem 6.3.2, this vector field is Hamiltonian

and it is tangent to the foliation. Denote by F2,p the only Hamiltonian function

attached to X such that F2,p(0) = 0. This function is a first integral of the system.

And the time-1-map of the vector field XF2,p coincides with ψ1
0 ◦ (ψ

(1)
p )−1.
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Now we consider the composition of the two time-1-maps associated to XF1,p

and XF2,p respectively.

The composition equals,

(ψ
(1)
0 ◦ (ψ(1)

p )−1) ◦ (ψ(1)
p ◦ ψ−1

p )

In the end we obtain the desired diffeomorphism,

(ψ
(1)
0 ◦ ψ−1

p ).

This diffeomorphism has been presented as a composition of two time-1-maps.

The time-1-map associated to XF1,p and the time-1-map associated to XF2,p . It

remains to identify this composition as the time-1-map of a Hamiltonian vector

field tangent to the foliation.

On the one hand, according to sublemma 4.5.1 with s = 1

φ1
XF2,p

+XF1,p
= φ1

XF2,p
◦ φ1

XF1,p

On the other hand, XF1,p + XF2,p = XF1,p+F2,p ; in view of this decomposition

the Hamiltonian vector field to consider is G = F1,p +F2,p. Since F1,p and F2,p are

first integrals for the system so is G.

This ends the proof of the corollary.

¤
By abuse of language, we will denote the local (a priori nonlinear) action of

our compact group G on (R2n,
∑n

i=1 dxi ∧ dyi,h) by ρ. For each element g ∈ G,

denote by XΨ(g) the Hamiltonian vector field whose time-1 map is ρ(g)(1) ◦ ρ(g)−1,

where ρ(g)(1) denotes the linear part of ρ(g), as provided by the previous lemma.

Consider the averaging of the family of vector fields XΨ(g) over G with respect

to the Haar measure dµ on G. That is to say,

XG(x) =

∫

G

XΨ(g)(x)dµ, x ∈ R2n (6.3.12)
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This vector field is Hamiltonian with Hamiltonian function
∫

G
Ψ(g)dµ. It is

also tangent to the foliation. Denote by ΦG the time-1 map of this vector field XG.

Observe that this mapping preserves the system.

Finally we can prove the local linearization theorem,

Theorem 6.3.4 ΦG is a local symplectic variable transformation of R2n which

preserves the system (R2n,
∑n

i=1 dxi ∧ dyi,h) and under which the action of G

becomes linear.

Proof.

Since ΦG is the time-1 map of a Hamiltonian vector field then it is a diffeomorp-

hism satisfying Φ∗
G(ω) = ω. Therefore it defines a local symplectic variable transfor-

mation. Let us check that this transformation linearizes the action of G. We want

to show that for any h ∈ G the following relation is fulfilled ΦG◦ρ(h) = ρ(h)(1)◦ΦG.

From the definition of ΦG and formula 6.3.12,

ΦG(x) = φ1
XG

(x) =

∫

G

φ1
XΨ(g)

(x)dµ

But since, φ1
XΨ(g)

= ρ(g)(1) ◦ ρ(g)−1 we have,

ΦG(x) =

∫

G

ρ(g)(1) ◦ ρ(g)−1(x)dµ

Now we write,

(ρ(h)(1) ◦ ΦG ◦ ρ(h)−1)(x) = ρ(h)(1) ◦
∫

G

(ρ(g)(1) ◦ ρ(g)−1)(ρ(h)−1(x))dµ.

Using the linearity of ρ(h)(1) and the fact that ρ stands for an action, the expression

above can be written as,
∫

G

(ρ(h) ◦ ρ(g))(1) ◦ (ρ(h) ◦ ρ(g))−1(x)dµ

Finally this expression equals ΦG due to the left invariance property of averaging.

So ΦG ◦ ρ(h) = ρ(h)(1) ◦ ΦG and this ends the proof of the lemma.
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¤
As a consequence of this theorem and corollary 6.3.3 we obtain the following

parametric version of the theorem,

Corollary 6.3.5 In the case the action ρp depends smoothly (resp. analytically)

on parameters there exists a local symplectic variable transformation of R2n, Φp

which preserves the system and which satisfies,

Φp ◦ ρp(h) = ρ0(h)(1) ◦ Φp

Let

G = {φ : (R2n, 0) → (R2n, 0), such that φ∗(ω) = ω, h ◦ φ = h}

be the group of germs of smooth symplectomorphisms that preserve ω and h, i.e

the symmetry group for the system. We will denote by G ′ the subgroup of linear

transformations contained in G. As we have observed in the introduction, this

group is abelian.

A direct consequence of theorem 6.3.2 is that any two diffeomorphisms contai-

ned in G whose linear part is the identity commute because they are the time-1-map

of hamiltonian vector fields tangent to the foliation and those in turn commute by

virtue of sublemma 4.5.1. In fact, this property extends to the whole G. This is

the content of the theorem below.

Before stating the theorem, let us point our some general observations which

we will apply later.

Let f be a diffeomorphism and let X be a vector field, we denote by f∗ and f ∗

the push-forward and pullback associated to f . Recall that the following formula

holds

i(f∗X)ω = (f−1)∗(iX(f ∗(ω))).
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Now let f be a diffeomorphism contained in G ′. In particular f ∗(ω) = ω. Therefore

the above formula shows that the pushforward of a Hamiltonian vector field is also

a Hamiltonian vector field. In fact, f∗(XΨ) = XΨ◦f−1 .

Theorem 6.3.6 The group G is abelian.

Proof

We will prove that any two diffeomorphisms contained in G commute by stages.

First we prove that any diffeomorphism ψ contained in G commutes with any

linear transformation A contained in G ′.
We will denote by G ′0 the connected component of the identity of G ′. Observe

that if the system does not contain any hyperbolic component G ′ = G ′0.
Let XΨ be the Hamiltonian vector field with associated Hamiltonian Ψ whose

time-1-map is ψ(1)◦ψ−1. The existence of this vector field is guaranteed by theorem

6.3.2. Now due to the above observation, the vector field Y = (A)∗(XΨ) is a

Hamiltonian vector field with Hamiltonian function Ψ ◦ A−1. Assume first that A

is contained in G ′0. We are going to show that for such a linear transformation,

Ψ ◦ A−1 = Ψ.

In order to do that we start by observing that since the vector field XΨ is

tangent to the fibration F then {Ψ, hi} = 0.

Let us assume first that there are no hyperbolic components among the hi.

Then according to Vey [54] for an analytical h and Eliasson [23] (Proposition 1) in

the differentiable case, we can assert that Ψ = φ(h1, . . . , hn) being φ an analytical

(respectively differentiable) function.

In the case there are hyperbolic components this assertion is no longer true

for differentiable functions as was observed by Eliasson in [23]. But the property

remains true if we restrict Ψ to each orthant. We label each orthant with an n-

tuple of signs (ε1, . . ., ε2n), εi ∈ {−1, +1} following the convention εi = +1 if xi ≥ 0

and εi = −1 if xi ≤ 0. Then we can assert that Ψ restricted to each orthant is a

function φ(ε1,...,ε2n)(h1, . . . , hn).
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After making this distinction, observe that in both cases since A−1 belongs to

the connected component of the identity G, then it leaves the connected compo-

nents of the fibration F invariant. Therefore, the transformation A−1 leaves the

function Ψ invariant when restricted to each orthant. So in fact, Ψ ◦A−1 = Ψ and

the vector fields Y and XΨ coincide. As a consequence their flows coincide as well.

Recall that if X is a vector field whose flow is φX then for any diffeomorphism

the flow of (f∗)X is f ◦φX ◦ f−1. The same is true replacing flows by time-1-maps.

Therefore, since Y = XΨ we obtain the following relation

ψ(1) ◦ ψ−1 = A ◦ ψ(1) ◦ ψ−1 ◦ A−1.

But since A and ψ(1) commute this expression reads

ψ(1) ◦ ψ−1 = ψ(1) ◦ A ◦ ψ−1 ◦ A−1

which leads to the commutation of A with ψ.

If A does not belong to G ′0 then we can write

A = I2k,2k+1 ◦ · · · ◦ I2l,2l+1 ◦B (6.3.13)

with B belonging to G ′0 and for certain diagonal matrices I2r,2r+1 (corresponding

to hyperbolic involutions) whose entries aij satisfy the following relations a2r,2r =

−1, a2r+1,2r+1 = −1 and ai,i = 1 i 6= 2r , i 6= 2r + 1. It can be checked

that the linear transformations of type I2k,2k+1 commute with any diffeomorphism

contained in G. Now since G ′ is abelian the expression 6.3.13 shows that the linear

transformation A commutes with any ψ contained in G.

In particular, taking A = ψ(1)−1
we obtain that ψ commutes with ψ(1). And

as a consequence, given two diffeomorphisms ψ1 and ψ2 contained in G the diffeo-

morphisms f = (ψ
(1)
1 )−1 ◦ψ1 and g = ψ2 ◦ (ψ

(1)
2 )−1, commute because they are the

time-1-map of Hamiltonian vector fields.
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Finally we are going to show that any two diffeomorphisms ψ1 and ψ2 contained

in G commute.

We can write,

ψ1 ◦ ψ2 = ψ
(1)
1 ◦ ((ψ

(1)
1 )−1 ◦ ψ1) ◦ (ψ2 ◦ (ψ

(1)
2 )−1) ◦ ψ

(1)
2 (6.3.14)

As we have explained before, the diffeomorphisms within brackets commute and

this expression reads,

ψ
(1)
1 ◦ (ψ2 ◦ (ψ

(1)
2 )−1) ◦ ((ψ

(1)
1 )−1 ◦ ψ1) ◦ ψ

(1)
2

Due to the commutation of any linear transformation contained in G ′ with any

diffeomorphims contained in G, we can write this expression as,

ψ
(1)
1 ◦ (ψ

(1)
2 )−1 ◦ (ψ

(1)
1 )−1 ◦ ψ

(1)
2 ◦ (ψ2 ◦ ψ1)

But since G ′ is abelian the expression above equals ψ2 ◦ ψ1 and therefore coming

back to equation 6.3.14, ψ1 and ψ2 commute.

This completes the proof of the theorem.

¤
A smooth action of a group G on a manifold M is called effective if the condition

ρ(h, p) = p, ∀p ∈ M implies that h = e.

Now assume that we are given an effective action of a group ρ preserving

the system. If the action of the group is effective the abelianity of G implies the

abelianity of G. As a direct corollary we obtain,

Corollary 6.3.7 Let G be a compact Lie group which acts effectively on the linear

model of a rank 0 singularity preserving the system (R2n,
∑

i dxi ∧ dyi,h) then G

is abelian.

Proof: Consider the group of diffeomorphisms ρ(h), h ∈ G. According to theorem
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6.3.6 this group of diffeomorphisms is abelian. Therefore ρ(h1) ◦ ρ(h2) = ρ(h2) ◦
ρ(h1), ∀h1, h2 ∈ G. Since ρ is an action, this relation yields,

ρ(h1h2h
−1
1 h−1

2 ) = ρ(e), ∀h1, h2 ∈ G

But ρ(e) is the identity mapping and since the action is effective this implies

h1h2h
−1
1 h−1

2 = e, ∀h1, h2 ∈ G and therefore the group G is abelian. ¤

6.4 Linearization in the neighbourhood of an or-

bit

In this section we prove a linearization theorem in the neighbourhood of an orbit.

Recall the meaning of linear action of a group G in the neighbourhood of an

orbit,

G acts on the product V = Dk × Tk ×D2(n−k) componentwise; the action of Γ

on Dk is trivial, its action on Tk is by translations (with respect to the coordinate

system (θ1, ..., θk)), and its action on D2(n−k) is linear with respect to the coordinate

system (x1, y1, ..., xn−k, yn−k)

Now we are ready to state and prove the linearization theorem in the neigh-

bourhood of an orbit.

Theorem 6.4.1 Let G be a compact Lie group preserving the system (Dk ×Tk ×
D2(n−k),

∑k
i=1 dpi ∧ dθi +

∑n−k
i=1 dxi ∧ dyi,F) then there exists ΦG a diffeomorphism

defined in a tubular neighbourhood of the orbit L = Tk which preserves the system

(Dk×Tk×D2(n−k),
∑k

i=1 dpi∧dθi +
∑n−k

i=1 dxi∧dyi,F) and under which the action

of G becomes linear.

Proof:

After shrinking the original neighbourhood if necessary, we may assume without

loss of generality that we are considering a G-invariant neighbourhood of L. First
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of all, let us express in local coordinates how the action looks like. We denote by ρ

the action of G. For convenience, we use the simplifying notation p = (p1, . . . , pk)

and (x, y) = (x1, y1, . . . , xn−k, yn−k). Since G preserves the system, in particular ρ

preserves p and sends ∂
∂θi

to ∂
∂θi

because it preserves the symplectic form and it

sends the Hamiltonian vector fields associated to pi to the same vector fields. After

all these considerations, for each h ∈ G the diffeomorphism ρ(h) can be written

as,

ρ(h)(p, θ1, . . . , θk, x, y) = (p, θ1 + gh
1 (p, x, y), . . . , θk + gh

k (p, x, y), αh(x, y, p))

where the functions gh
i and αh are subdued to more constraints given by the

preservation of the system. Before considering these constraints, it will be most

convenient to simplify the expression of αh first. This will be done using the local

linearization theorem with parameters (corollary 6.3.5).

In order to do that, we restrict our attention to the induced mapping,

ρ(h)(p, x, y) = (p, αh(p, x, y))

and we consider the family of diffeomorphisms ρ(h)p : D2(n−k) −→ D2(n−k) defined

as follows,

ρ(h)p(x, y) = αh(p, x, y).

We may look at p = (p1, . . . , pk) as parameters. For each p the mapping

ρ(h)p(x, y) induces an action of G on the disk D2(n−k) which preserves the in-

duced system (D2(n−k),
∑n

i=1 dxi ∧ dyi,h). Observe that the preservation of the

induced system implies, in particular, that the action fixes the origin.

According to corollary 6.3.5 we can linearize the action ρ(h)p in such a way

that it is taken to the parametric-free linear action ρ(h)
(1)
0 . We can extend tri-

vially the diffeomorphism Φ in the disk provided by the corollary 6.3.5 to a

diffeomorphism Ψ in the whole neighbourhood considered, simply by declaring,
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Ψ(p, θ1, . . . , θk, x, y) = (p, θ1, . . . , θk, Φ(x, y)). After this linearization in the (x, y)-

direction the initial expression of ρ(h) looks like,

ρ(h)(p, θ1, . . . , θk, x, y) = (p, θ1 + gh
1 (p, x, y), . . . , θk + gh

k (p, x, y), ρ(h)
(1)
0 (x, y)),

Since the action preserves the symplectic form
∑

i=1 dpi ∧ dθi +
∑n

i=1 dxi ∧ dyi

we conclude that the functions gh
i do not depend on (x, y) and so far just depend

on the parameters (p1, . . . , pk).

That is,

ρ(h)(p, θ1, . . . , θk, x, y) = (p, θ1 + gh
1 (p), . . . , θk + gh

k (p), ρ(h)
(1)
0 (x, y)),

Observe that if we prove that these functions gh
i do not depend on p then we will

be done because then the induced action on Tk will be performed by translations.

And, in all, the action will be linear.

Consider H = {ρ(h), h ∈ G}, we are going to prove that this group is abelian.

We have to check that ρ(h1) ◦ ρ(h2) = ρ(h2) ◦ ρ(h1)

We compute

ρ(h1) ◦ ρ(h2)(p, θ1, . . . , θk, x, y) =

(p, θ1 + gh2
1 (p) + gh1

1 (p), . . . , θk + gh2
k (p) + gh1

k (p), ρ(h1)
(1)
0 (x, y) ◦ ρ(h2)

(1)
0 (x, y))

on the other hand,

ρ(h2) ◦ ρ(h1)(p, θ1, . . . , θk, x, y) =

(p, θ1 + gh1
1 (p) + gh2

1 (p), . . . , θk + gh1
k (p) + gh2

k (p), ρ(h2)
(1)
0 (x, y) ◦ ρ(h1)

(1)
0 (x, y))

Clearly, the first 2k components coincide. As for the 2(n− k) last components,

we can use theorem 6.3.6 to conclude the commutation.

So far we know that the group H is abelian. It is also compact, therefore it is

a direct product of a torus Tr with finite groups Z/mrZ. We are going to check
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that for each ρ(h) ∈ H the functions gh
i do not depend on p. It is enough to check

it for ρ(h) in one of the components Z/nZ and Tr. So we distinguish two cases,

• ρ(h) belongs to Z/nZ.

Then ρ(h)n = Id this condition yields, ngh
i (p) = 2πmi, for all 1 ≤ i ≤ k and

mi ∈ Z. In particular, gh
i (p) = 2πmi

n
and gh

i does not depend on p.

• ρ(h) belongs to Tr. We can consider a sequence ρ(hn) lying on the torus

which belong to a finite group Z/knZ and which converge to ρ(h). For each

of these points ρ(hn) we can apply the same reasoning as before to obtain,

ghn
i (p) = 2πmi

kn
.

Now for each n, the diffeomorphism ρ(hn) does not depend on p, we may

write this condition as,

∂ρ(hn)

∂pi

= 0, 1 ≤ i ≤ k

Now since the action is smooth we can take limits in this expression to obtain

that
∂ρ(h)

∂pi

= 0, 1 ≤ i ≤ k

and finally gh
i (p) does not depend on p.

And this ends the proof of the theorem.

¤
We may look at this theorem as a slice theorem for integrable systems.

In order to announce this result as a slice theorem we need some notation.

6.4.1 The classical slice theorem

Let G be a compact Lie group and let H be a closed subgroup. Let ϕ be a re-

presentation of H on a vector space E. Then we have an induced action of H on
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the product G × E. The action is given by ρ(h, (g, u)) = (gh−1, ϕ(h, u)). We can

consider the space of orbits by this action; it is the quotient G × E/H. Observe

that this quotient is a vector bundle over G/H with typical fiber E. Classically,

this quotient in denoted by G×H E.

As a matter of notation a class in the quotient is denoted by [g, u]. Observe

that the action of G on G×E defined as α(a, (g, u)) = (ag, u), a ∈ G commutes

with the action of H and hence descends to the quotient and the projection π :

G×H E −→ G/H is G-equivariant.

Example

Assume that β stands for an action of a compact Lie group on a manifold M .

Let p be a point in M . We denote by G ·p the orbit through the point p. We denote

by Gp the isotropy group for the action at the point p, Gp = {g ∈ G, α(g, p) = p}.
It is a well-known fact that the isotropy group is a compact subgroup of G. Now

consider a Gp-invariant Riemannian metric in a Gp invariant neighbourhood of

the orbit G · p. Define E as the subspace of the tangent space at the point p

which is orthogonal to the tangent space to the orbit. Since the metric chosen is

Gp-invariant. The action of Gp induces an action of Gp on E. Denote by α
(1)
p the

differential of the action of Gp at the point p. As before, α
(1)
p defines a representation

when restricted to E. So if we take H = Gp and ϕ = α
(1)
p the vector bundle defined

above becomes, G×Gp E.

This example is more than an example. It is the standard model for the action

of a compact Lie group on a manifold. The classical slice theorem [35] asserts that a

neighbourhood of the orbit is diffeomorphic to G×Gp E. The linear representation

of Gp on E induced by the action of G is called the slice representation.

In the case the action of the manifold preserves the fibration defined by F and

the symplectic structure, we have a similar “slice theorem” in the neighbourhood
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of an orbit whenever the orbit L coincides with the orbit of the action of the group.

6.4.2 The slice statement of the linearization

Now, let us go back to our situation. Let p be a point lying on the orbit L. Observe

that the preservation of the system yields that the orbit of the action through a

point p ∈ L is contained in L but it does not have to coincide with L.

From now on we will assume that L coincides with an orbit of the action.

We take coordinates centered at p. We consider the isotropy group at p, Gp.

Since Gp preserves the symplectic structure leaves the symplectic orthogonal to

the orbit invariant. On the other hand, the isotropy group Gp fixes L thus it

induces an action of Gp on D2(n−k), where D2(n−k) is endowed with the (xi, yi)

coordinates. On D2(n−k) we have the induced system (U(L),
∑

i dxi ∧ dyi,h) being

h = (fk+1, . . . , fn). By virtue of theorem 6.3.4 we can linearize the induced action

by the isotropy group in a foliation preserving way. Observe that this linear action

can be extended trivially to a linear action βp on a vector space E
2(n−k)
1 containing

the disk D2(n−k). In the same way the foliation defined by h can be extended to a

foliation F ′ on E
2(n−k)
1 . We denote this extension by β̃p. Now let Ek

2 a vector space

containing the disk Dk endowed with coordinates (p1, . . . , pk). Finally, we define

the linear representation of Gp on E
2(n−k)
1 × Ek

2 as γp(u, v) = (β̃p(u), v).

Now form the bundle G×Gp(E
2(n−k)
1 ×Ek

2 ) attached to this linear representation.

On this bundle we can consider the foliation induced by the product foliation

G · p×F ′ on G× (E
2(n−k)
1 × Ek

2 ).

With all this notations, now we are ready to give another presentation of theo-

rem 6.4.1 “à la slice”. We do it in form of corollary,

Corollary 6.4.2 Let G be a compact group preserving the system (Dk × Tk ×
D2(n−k),

∑k
i=1 dpi∧ dθi +

∑n−k
i=1 dxi∧ dyi,F) and let p be a point in L. Assume that

L = G · p, then a neighbourhood of the orbit L is G-equivariantly diffeomorphic to
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a neighbourhood of the zero section of the bundle G ×Gp (E
2(n−k)
1 × Ek

2 ). Further,

this diffeomorphism can be chosen to be foliation preserving.

6.5 Equivariant symplectic equivalence

As a corollary of the G-linearization results in the linear model obtained in the last

section and the symplectic linearization in the covering obtained in the last chap-

ter we obtain the equivariant symplectic equivalence. This equivariant symplectic

equivalence is valid also for analytical systems (since the results for G-linearization

are valid for analytical systems and the results of symplectic equivalence in the co-

vering are valid for analytical systems [54]). Now we can formulate the equivariant

symplectic linearization theorem for nondegenerate singular orbits of integrable

Hamiltonian systems, that we have been envisaging for chapters:

Theorem 6.5.1 Consider F the foliation defined by a completely integrable sys-

tem and consider L, a compact orbit of Williamson type (ke, kh, kf ). Let ω be

a symplectic for which the foliation F is Lagrangian. Then there exists a finite

group Γ and a diffeomorphism taking the foliation to the linear foliation on V/Γ

given by (6.2.1,6.2.2,6.2.3,6.2.4), and taking ω to ω0, which sends L to the torus

{pi = xi = yi = 0}. The smooth symplectomorphism φ can be chosen so that via

φ, the system-preserving action of the compact group G near L becomes a linear

system-preserving action of G on V/Γ. If the moment map F is real analytic and

the action of G near L is analytic, then the symplectomorphism φ can also be cho-

sen to be real analytic. If the system depends smoothly (resp., analytically) on a

local parameter (i.e. we have a local family of systems), then φ can also be chosen

to depend smoothly (resp., analytically) on that parameter.

Observation 6.5.1 A proof for the twisted hyperbolic case when n = 2 and k = 1

was provided by Currás-Bosch in [11].



122 Chapter 6. Equivariant linearization and symplectic equivalence



Chapter 7

Contact linearization of singular

Legendrian foliations

7.1 Introduction

The aim of this chapter is to prove an analogue to the linearization result for

singular Lagrangian foliations which was studied in the previous chapters but in

the case of singular Legendrian foliations in contact manifolds.

Consider a contact manifold M2n+1 together with a contact form. We assume

that the Reeb vector field associated to α coincides with the infinitesimal generator

of an S1 action. We assume further than there exists n-first integrals of the Reeb

vector field which commute with respect to the Jacobi bracket. Then there are two

foliations naturally attached to the situation. On the one hand, we can consider

the foliation associated to the distribution generated by the contact vector fields.

We call this foliation F ′. On the other hand we can consider a foliation F given

by the horizontal parts of the contact vector fields. The functions determining

the contact vector fields may have singularities. We will always assume that those

singularities are of non-degenerate type.

Observe that F ′ is nothing but the enlarged foliation determined by the folia-

123
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tion F and the Reeb vector field.

Let α′ be another contact form in a neighbourhood of a compact orbit O of F ′

for which F is Legendrian and such that the Reeb vector field with respect to α′

coincides with the Reeb vector field associated to α. In this chapter we prove that

then there exists a diffeomorphism from a neighbourhood of O to a model manifold

taking the foliation F ′ to a linear foliation in the model manifold with a finite

group attached to it and taking the initial contact form to the Darboux contact

form. As it was done in the last chapter for Lagrangian foliations determined by a

completely integrable system, we also prove the G-equivariant version of this fact

for Legendrian foliations. That is, we prove that in the case there exists a compact

Lie group preserving the first integrals of the Legendrian foliation and preserving

the contact form then the contactomorphism can be chosen to be G-equivariant.

The problem of determining normal forms for foliations related to Legendrian

foliations has its own story. P. Libermann in [38] established a local equivalence

theorem for α-regular foliations. Loosely speaking, those foliations are regular fo-

liations containing the Reeb vector field and a Legendrian foliation. The problem

of classifying contact forms is different from the problem of classification of contact

structures. As a example of this, if M is a compact manifold then any two contact

structures are equivalent as Gray’s theorem asserts ([27]). Whereas one can find

examples of two contact forms which are not equivalent (see for example [26]). The

problem of classifying contact structures which are invariant under a Lie group was

considered by Lutz in [41]. In particular he proves that two contact structures in

a compact manifold M2n+1 which are invariant by a locally free action of Rn+1 are

equivalent in the sense that there exists an equivariant contactomorphism taking

one to the other.

The foliations studied by Libermann and Lutz are regular. The singular coun-

terpart to the result of Lutz was proved by Banyaga and Molino in [4] but for

contact forms.
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Namely, Banyaga and Molino study the problem of finding normal forms under

the additional assumption of transversal ellipticity. The assumption of transversal

ellipticity allows to relate the foliation F ′ of generic dimension (n + 1) with the

foliation given by the orbits of a torus action.

This chapter pretends to extend these results for foliations which are related in

the same sense to (n+1)-foliations but which are not necessarily identified with the

orbits of a torus action. All our study of the problem is done in a neighbourhood

of a compact orbit. Global results for contact manifolds admiting torus action

have been obtained by Banyaga and Molino in [4] and recently by Lerman in [36].

Linearization results for contact vector fields in R2n with an hyperbolic zero were

considered by Guillemin and Schaeffer in [28].

The chapter is organized as follows: In the first section we make a review of the

basic facts in contact geometry that we will need later. In section 2 we define two

foliations, F and F ′ and we prove that we can find coordinates in a finite covering

such that the foliations have a particularly simple form. In section 3 we prove that

for any two contact forms for which F is Legendrian and having the same Reeb

vector field, we can find a foliation preserving contactomorphism taking one to the

other. It turns out that the Legendrian condition imposed on the foliation for the

contact form α becomes a Lagrangian condition for the same foliation with the

symplectic form dα defined in a convenient submanifold. The result appears then

as an application of the symplectic equivalence results for Lagrangian foliations

which we have been working out in the previous chapters.

In the last Section we establish the G-equivariant version of contact equivalence.

Applying this G-equivariant version to the particular case of the finite group at-

tached to the finite covering, we obtain as a consequence the contact equivalence

of any two contact forms fulfilling the above mentioned conditions.
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7.2 Basics in contact geometry

In this section we recall some basic definitions in contact geometry.

Definition 7.2.1 Let M2n+1 be a 2n + 1-dimensional manifold. A 1-form on a

manifold M2n+1 is a contact form if the set E = {(p, u) ∈ T (M), αp(u) = 0}
is a smooth subbundle of T (M) and dα|E is a symplectic structure on the vector

bundle E −→ M .

When we talk about a contact pair we consider a pair (M, α) where α is a

contact form on M .

Remark:

• The classical definition of contact manifold is the following. It is a pair (M, α)

where α satisfies the condition α∧(dα)n
p 6= 0, ∀p ∈ M . In turn, this condition

implies the nonintegrability of the subbundle E = {(p, u) ∈ T (M), αp(u) =

0}. That is it is not possible to find a symplectic submanifold S such that

T (S) = E.

Suppose that α is a contact form on a manifold M . Then if f is a positive

function the 1-form fα is also a contact form.

This motivates the definition of contact structure,

Definition 7.2.2 A contact structure on a manifold M is a subbundle E of the

tangent bundle of the form E = {(p, u) ∈ T (M), αp(u) = 0} for some contact

form α.

The problem of classification of contact structures is different from that of con-

tact forms. There are a lot of results in the literature concerning the classification

of contact structures from a local, global or semilocal point of view. Finding their

counterparts for contact forms is not always possible.
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Our problem of classification will always be focused on contact forms.

In contrast to symplectic manifolds (M, ω) where the condition iX(ω) = 0

implies X = 0, in a contact manifold we can find non-trivial solutions X to the

equation iX(ω) = 0. A privileged solution of this equation has the particular name

of Reeb vector field. It is a concept attached to the contact form rather than the

contact structure.

Definition 7.2.3 Given a contact pair (M,α), the Reeb vector field Z is the

unique vector field satisfying the following two conditions,

• iZdα = 0.

• α(Z) = 1.

The Reeb vector field is a particular case of what we call contact vector field.

Definition 7.2.4 Let f be a smooth function on the contact pair (M,α) the con-

tact vector field associated to f is the unique vector field Xf fulfilling the following

two conditions

• iXf
dα|E = −df|E.

• α(Xf ) = f.

Observe that the contact vector field associated to the function 1 is precisely

the Reeb vector field.

As it is proved in [38], we can express any vector field X in T (M) as a sum of

two vector fields X1 and X2 where the vector field X1 belongs to the subbundle E

and its called the horizontal part of X and the vector field X2 is the component

in the direction of the Reeb vector field. The standard notation for the horizontal

vector field associated to X is X̂.
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We can now define the notion of Jacobi bracket of two functions, which is the

contact counterpart to the Poisson bracket of two functions.

Definition 7.2.5 Let f, g be two smooth functions on a contact pair (M, α), we

define the Jacobi bracket as,

[f, g] = α([Xf , Xg]).

The following relations are proved in [38],

•
X[f,g] = [Xf , Xg] (7.2.1)

•
[f, g] = dα(Xf , Xg) + f(Z(g))− g(Z(f)) (7.2.2)

Definition 7.2.6 A submanifold N ⊂ M2n+1 is Legendrian if dimN = n and

α(X) = 0 for any X ∈ T (N).

7.3 The foliation and its differentiable lineariza-

tion

In this section we define the foliations that we will work with throughout the

chapter and we will also define the linear model.

7.3.1 Posing the problem

Let (M2n+1, α) be a contact pair and let Z be its Reeb vector field. We make the

following assumptions,
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• We assume Z coincides with the infinitesimal generator of an S1 action. Let

S be one of its orbits.

• We assume that there are n first integrals f1, . . . , fn of Z (that is Z(fi) = 0)

which fulfill the following additional hypotheses:

1. The first integrals are independent in an open dense set. That is, df1 ∧
· · · ∧ dfn 6= 0 in an open dense set.

2. The n-first integrals are in involution with respect to the Jacobi bracket

associated to α. That is to say,

[fi, fj] = 0 ,∀i, j.

3. The minimum rank of the differential (df1, . . . , dfn) is k. Let p be a

point in M2n+1 such that the rank is exactly k. Let O be the orbit of

the contact vector fields through p. We will assume the following,

(a) O is diffeomorphic to a torus of dimension k + 1.

(b) The first integrals f1, . . . , fk are non-singular along O and the first

integrals fk+1, . . . , fn have a non-degenerate singularity in the Morse-

Bott sense along O.

Since [fi, fj] = 0 then due to formula 7.2.1, [Xfi
, Xfj

] = 0 and this implies

that the distribution < Z, Xf1 , . . . , Xfn > is involutive because the functions fi

are first integrals of the Reeb vector field. Thus, we can talk about the foliation

generated by the contact vector fields of the functions 1, f1, . . . , fn. This foliation

will be denoted by F ′.

On the other hand, consider the horizontal parts of the contact vector fields.

They have the form X̂f = Xf −fZ. Thus the distribution < X̂f1 , . . . X̂fn > defines

an involutive distribution. The foliation defined by this distribution will be denoted
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by F . Observe that since α(Xf ) = f and α(Z) = 0 then the regular leaves of this

foliation are Legendrian submanifolds with respect to α.

That is why this foliation will be called the singular Legendrian foliation.

In fact we will work with germ-like foliations. That is, we will assume that the

foliation is defined in a neighbourhood of O. Now let p ∈ M be a singular point.

We will say that the point has rank r if the dimension of the orbit through p is r.

Once the two foliations F and F ′ are defined we are ready to pose the following

problem.

Problem

Study the contact forms α′ defined in a neighbourhood of O for which F is

Legendrian and such that the Reeb vector field with respect to α′ coincides with

the Reeb vector field with respect to α.

As far as this problem is concerned we will prove the following.

There exists a diffeomorphism φ defined in a neighbourhood of O such that

φ∗(α′) = α and φ preserves the foliations F and F ′.

In order to deal with this problem we will need to introduce coordinates in

such a way that the foliations F and F ′ are really simple. This judicious choice of

coordinates leads us to the linear model.

7.3.2 Differentiable linearization

In this section we want to prove that under the above assumptions there exist

coordinates in a neighbourhood of O such that the foliation can be linearized.
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We prove the following theorem,

Theorem 7.3.1 There exist coordinates (θ0, . . . , θk, p1, . . . , pk, x1, y1, . . . , xn−k, yn−k)

in a finite covering of a tubular neighbourhood of O such that

• The Reeb vector field is Z = ∂
∂θ0

.

• There exists a triple of natural numbers (ke, kh, kf ) with ke +kh +2kf = n−k

and such that the first integrals fi are of the following type, fi = pi, 1 ≤
i ≤ k and

fi+k = x2
i + y2

i for 1 ≤ i ≤ ke ,

fi+k = xiyi for ke + 1 ≤ i ≤ ke + kh ,

fi+k = xiyi+1 − xi+1yi and

fi+k+1 = xiyi + xi+1yi+1 for i = ke + kh + 2j − 1, 1 ≤ j ≤ kf

• The foliation F is given by the orbits of the distribution D =< Y1, . . . Yn >

where Yi = Xi − fiZ being Xi the contact vector field of fi with respect to

the contact form α = dθ0 +
∑n−k

i=1
1
2
(xidyi − yidxi) +

∑k
i=1 pidθi.

Proof:

First of all, since Z is the infinitesimal generator of an S1-action, according

to the Slice Theorem [50] a neighbourhood of O in M2n+1 is diffeomorphic to the

bundle S1×S1
x
W where S1

x denotes the isotropy group at a point in the orbit. Thus

we can choose coordinates

(θ0, . . . , θk, p1, . . . , pk, x1, y1, . . . , xn−k, yn−k)

in a finite covering of a neighbourhood of O such that the Reeb vector field has

the form Z = ∂
∂θ0

. Now the 1-form α can be written as

α = dθ0 + α.
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Observe that since Z is the Reeb vector field in particular we obtain

iZdα = 0

Using Cartan’s formula LZ(dα) = diZ(α) + iZdα we deduce that α does not

depend on θ0.

Further, the condition on the contact form α ∧ dαn 6= 0 implies that dα is a

symplectic form in the submanifold N0 = {p ∈ U(O), θ0 = 0}. Let fi be the n

first integrals. The equation

iY dα = −dfi

has a unique well-defined solution when restricted to the symplectic submanifold

N0. We denote by Xs
fi

the n Hamiltonian vector fields of the functions fi with

respect to the symplectic structure dα on N0. We denote by Xc
fi

the n contact

vector fields of the functions fi with respect to the contact structure α. With all

these information at hand we can write

Xc
fi

= Xs
fi

+ giZ (7.3.1)

for certain smooth functions gi.

We are going to focus our attention in the symplectic submanifold N0 and in

the Hamiltonian vector fields Xs
fi

for a while.

First of all, we will check that {fi, fj} = 0 where {, } stands for the Poisson

bracket attached to dα. Thus, the vector fields Xs
fi

define a completely integrable

Hamiltonian system on N0 and the foliation they define is a singular Lagrangian

foliation.

We are going to check

{fi, fj} = [fi, fj]
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Because of the definition of Poisson bracket,

{fi, fj} = dα(Xs
fi
, Xs

fj
)

Since dα = dα, we can write this last equality as, dα(Xs
fi
, Xs

fj
)

Taking into account this observation and due to 7.3.1 this equality can be

written as,

{fi, fj} = dα(Xc
fi
− giZ,Xc

fj
− giZ)

But Z is the Reeb vector field and the last expression reads

dα(Xc
fi
, Xc

fj
)

which is, by definition, the Jacobi bracket of the functions fi and fj. Thus {fi, fj} =

[fi, fj] = 0

Denote by ON a singular compact orbit of minimal rank of the singular Lagran-

gian foliation in N0. According to the symplectic linearization theorem (theorem

6.5.1) for Lagrangian foliations whose proof was concluded in the last chapter.

There exists a diffeomorphism in a neighbourhood of a singular compact orbit

which takes the foliation to the linearized one and the symplectic structure dα to

the Darboux symplectic structure. Recall that the linearized foliation has a finite

group attached to it. In particular, we can find a diffeomorphism in a covering of a

tubular neighbourhood of ON , φ : ˜(U(ON)) −→ φ( ˜(U(ON))) such that in the new

coordinates provided by the diffeomorphism the first integrals have the following

simple form:
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fi+k = x2
i + y2

i for 1 ≤ i ≤ ke ,

fi+k = xiyi for ke + 1 ≤ i ≤ ke + kh ,

fi+k = xiyi+1 − xi+1yi and

fi+k+1 = xiyi + xi+1yi+1 for i = ke + kh + 2j − 1, 1 ≤ j ≤ kf

Now define,

ϕ : S1 × ˜(U(ON)) −→ ϕ(S1 × (Ũ(ON)))

(θ0, z) −→ (θ0, φ(z))

Observe that since

φ∗(
k∑

i=1

dpi ∧ dθi +
n−k∑
i=1

dxi ∧ dyi) = dα

Then φ∗(
∑

1
2
(xidyi − yidxi) +

∑
pidθi + dH) = α

this yields,

ϕ∗(dθ0 +
∑ 1

2
(xidyi − yidxi) +

∑
pidθi + dH) = dθ0 + α

Thus we may assume that in the new coordinates

α = dθ0 +
n−k∑
i=1

1

2
(xidyi − yidxi) +

k∑
i=1

pidθi + dH

Now consider the path of contact forms

αt = dθ0 +
n−k∑
i=1

1

2
(xidyi − yidxi) +

k∑
i=1

pidθi + tdH

Observe that α1 = α and α0 is the Darboux contact form.

Let ψt be the flow of the vector field X = −HZ. Note that as a matter of fact,

φ1(θ0, θ1, . . . , θk, p1, . . . , pk, x1, . . . , yn−k) = (θ0−H, θ1, . . . , θk, p1, . . . , pk, x1, . . . , yn−k).

So ψ1(α1) = α0. Thus, ψ∗1(α1) = α0 and in the new coordinates provided by ψ1

we can assume that α is the Darboux contact form. That is to say, we can assume

that α = dθ0 +
∑n−k

i=1
1
2
(xidyi − yidxi) +

∑k
i=1 pidθi.
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Observe that L−HZ(fi) = 0 this implies that d
dt

ψ∗t (fi) = 0 and therefore ψ∗t (fi)

does not depend on t thus ψ∗1(fi) = ψ∗0(fi) = fi. So in the new coordinates fi have

the same form.

Finally the foliation we are considering is generated by the horizontal parts of

Xfi
which in the new coordinates are Yi = Xi−fiZ being Xi the contact vector field

of fi with respect to the contact form α = dθ0+
∑n−k

i=1
1
2
(xidyi−yidxi)+

∑k
i=1 pidθi.

This ends the proof of the theorem.

¤
This theorem establishes the existence of a linear foliation and a model mani-

fold.

The model manifold is the manifold M2n+1
0 = Tk+1 × Uk × V 2(n−k), where

Uk and V 2(n−k) are k-dimensional and 2(n − k) dimensional disks respectively.

Now we introduce a contact form in this model manifold. We take coordinates

(θ0, . . . , θk) on Tk+1, (p1, . . . , pk) on Uk and (x1, . . . , xn−k, y1, . . . yn−k) on V 2(n−k)

and we consider the following contact form

α0 = dθ0 +
k∑

i=1

pidθi +

(n−k)∑
i=1

1

2
(xidyi − yidxi).

The pair (M2n+1
0 , α0) is called the contact model manifold. The Reeb vector

field in the contact model manifold is the vector field ∂
∂θ0

.

Now consider functions of the following type, fi = pi, 1 ≤ i ≤ k and

fi+k = x2
i + y2

i for 1 ≤ i ≤ ke ,

fi+k = xiyi for ke + 1 ≤ i ≤ ke + kh ,

fi+k = xiyi+1 − xi+1yi and

fi+k+1 = xiyi + xi+1yi+1 for i = ke + kh + 2j − 1, 1 ≤ j ≤ kf

The linear foliation is the foliation given by the orbits of the distribution D =<

Y1, . . . Yn > where Yi = Xi − fiZ being Xi the contact vector field of fi in the

contact model manifold.
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In all, we have proved that there exists a finite covering of a neighbourhood

U(O) of the compact orbit considered such that the lifted foliation in the covering

is differentiably equivalent to the linear foliation in the contact model manifold.

The linear model for the foliation F ′ is the foliation expressed in the coordinates

provided by the theorem together with a finite group attached to the finite covering.

The different smooth submodels corresponding to the model manifold are la-

beled by a finite group which acts in a contact fashion and preserves the foliation

in the model manifold. This is the only differentiable invariant. Therefore, our

problem of contact equivalence will be studied in this model manifold and the

equivalence will be established via the equivariant version equivalence which will

be considered in the last section.

7.4 Contact linearization in the model manifold

The aim of this section is to prove the following theorem,

Theorem 7.4.1 Let α be a contact form on the model manifold M2n+1
0 for which

F is a Legendrian foliation and such that the Reeb vector field is ∂
∂θ0

. Then there

exists a diffeomorphism φ defined in a neighbourhood of the singular orbit O =

(θ0, . . . , θk, 0, . . . , 0) preserving F ′ and taking α to α0.

Proof:

We are going to solve the problem by adjusting the contact form to a point

where we can apply our symplectic linearization result.

Let us start by considering the contact 1-form α,

α = Adθ0 +
∑

Bidpi +
∑

Cidθi +
∑

Didxi +
∑

Eidyi

Observe that the fact that the Reeb vector field is ∂
∂θ0

imposes the following two

conditions on α,
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• α( ∂
∂θ0

) = 1, that is to say A = 1.

So far we can write α = dθ0 +α′, being α′ =
∑

Bidpi +
∑

Cidθi +
∑

Didxi +∑
Eidyi.

• i ∂
∂θ0

dα = 0,

Since dα = dα′ the condition becomes,

i ∂
∂θ0

dα′ = 0

Now Cartan’s formula yields,

0 = i ∂
∂θ0

dα′ = L ∂
∂θ0

α′ − di ∂
∂θ0

α′

Since the last term vanishes this chain of equalities give the condition,

L ∂
∂θ0

α′ = 0

Therefore, the coefficient functions do not depend on θ0. Let us see that the

submanifold θ0 = 0 equipped with the form dα′ is a symplectic submanifold of the

model contact manifold. We denote this submanifold by N .

Since α is a contact form dα has to be symplectic in the vector bundle E defined

by E = {(p, u) ∈ T (M), αp(u) = 0} and dα = dα′ then dα′ defines a symplectic

structure on N .

Observe that the vector fields Xi = Xfi
are tangent to the submanifold N .

Next step, we check that the vector fields Xi are Lagrangian for N , observe that

α(Xi) = fi.

Now since, dα′(Xi, Xj) = Xiα(Xj)−Xjα(Xi)− α([Xi, Xj])

According to the computation above Xiα(Xj) = Xi(fj) but fi are first integrals

for the foliation and therefore this term vanishes. Symmetrically, the second term

vanishes. And since the Lie bracket of the vector fields are zero we obtain,

dα′(Xi, Xj) = 0
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Therefore, the foliation F is Lagrangian for dα′ and we may apply the symplec-

tic linearization result in a neighbourhood of L = Tk (theorem 5.2.1) to find a local

diffeomorphism ϕ : U(L) −→ ϕ(U(L)) in a neighbourhood of the leaf L, preserving

the foliation F and satisfying ϕ∗(ω0) = dα′, where ω0 =
∑

i dpi∧dθi +
∑

dxi∧dyi.

After shrinking the initial neighbourhood if necessary, the neighbourhood of Tk+1

in the initial manifold M can be decomposed as a product, S1 × U(L). The S1

corresponds to an orbit of the Reeb vector field. We denote by z a point in U(L).

Now we define a diffeomorphism in the following way,

φ : S1 × U(L) −→ φ(S1 × U(L))

(θ0, z) −→ (θ0, ϕ(z))

Since ϕ preserves F it is clear that this diffeomorphism is foliation-preserving.

Now consider φ(S1 × U(L)) endowed with the Darboux contact form. That is

with the contact form α0 = dθ0 +
∑k

i=1 pidθi +
∑(n−k)

i=1
1
2
(xidyi − yidxi). It remains

to check that the diffeomorphism above is indeed a contactomorphism.

First observe that since

ϕ∗(ω0) = dα′

and ω0 = d(β), being β = (
∑k

i=1 pidθi +
∑(n−k)

i=1
1
2
(xidyi − yidxi)) we can assert

that ϕ∗(β) = α′ + df for a smooth function f . Observe that since ϕ preserves the

foliation the function f is a basic function for the foliation. Now consider the path

αt = α0 + tdf being α0 the contact form α0 = dθ0 + α′.

Now, consider the vector field X = −f ∂
∂θ0

. Denote by ψt its flow. Since

ψ1(θ0, θ1, . . . , θk, p1, . . . , pk, x1, . . . , yn−k) = (θ0−H, θ1, . . . , θk, p1, . . . , pk, x1, . . . , yn−k),

we obtain ψ∗1(α1) = α0.

Therefore φ is a contactomorphism. And clearly it preserves the foliation be-

cause [X,Xi] = 0 and therefore the flow ψt preserves the foliation.

And this ends the proof of the theorem.

¤
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7.5 Equivariant contact linearization

In this section we consider a compact Lie group G acting on a contact model ma-

nifold in such a way that preserves the n first integrals of the Reeb vector field and

preserves the contact form as well. We want to prove that there exists a diffeo-

morphism in a neighbourhood of O preserving the n first integrals , preserving the

contact form and linearizing the action of the group. This result is a consequence

of the equivariant symplectic linearization theorem of the last chapter.

The notion of linear action of a Lie group on the contact model manifold is

analogous to the equivalent notion for the symplectic model manifold.

Let G be a group defining a smooth action ρ : G×M2n+1
0 −→ M2n+1

0 on M2n+1
0 .

We assume that this action preserves the contact form α0 of the contact model

manifold. That is to say ρ∗g(α0) = α0. Assume further that it preserves the n-first

integrals (f1, . . . , fn), where fi = pi, 1 ≤ i ≤ k. For the sake of simplicity we

denote by F the collective mapping F = (p1, . . . , pk, fk+1, . . . , fn). We will say that

the action of G on M2n+1
0 is linear if it satisfies the following property:

G acts on the product M2n+1
0 = Dk×Tk+1×D2(n−k) componentwise; the action

of G on Dk is trivial, its action on Tk+1 is by translations (with respect to the

coordinate system (θ0, . . . , θk)), and its action on D2(n−k) is linear with respect to

the coordinate system (x1, y1, ..., xn−k, yn−k).

Under the above notations and assumptions. Now we can state and prove the

following theorem,

Theorem 7.5.1 There exists a diffeomorphism φ defined in a tubular neighbour-

hood of O such that,

• it preserves the contact form α0 i.e φ∗(α0) = α0.

• it preserves F .

• it linearizes the action of G. That is to say φ ◦ ρg = ρ
(1)
g ◦ φ.
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Proof:

Recall that α0 = dθ0 + α0 being α0 the 1-form (
∑k

i=1 pidθi +
∑(n−k)

i=1
1
2
(xidyi −

yidxi)). Consider the symplectic manifold S = M2n+1
0 × (−ε, ε) endowed with the

symplectic form ω0 = dt ∧ dθ0 + dα0, where t stands for a coordinate function on

(−ε, ε). An action of G on M2n+1
0 can be extended in a natural way to an action

of G on S as follows,

ρ̂ : G×M2n+1
0 × (−ε, ε)+ −→ M2n+1

0 × (−ε, ε)

(g, z, t) −→ (ρg(z), t)

On S we consider the moment mapping F̂ = (F, t). We can apply the equi-

variant linearization theorem to obtain a symplectomorphism ϕ̂ preserving F̂ and

linearizing the action ρ̂. From the definition of the action ρ̂ and the definition of F̂ ,

this symplectomorphism clearly descends to a diffeomorphism ϕ on M2n+1
0 which

linearizes the action ρ and which satisfies ϕ∗(dα0) = dα0.

Therefore,

ϕ∗(α0) = α0 + dh

Finally the diffeomorphism,

φ(θ0, . . . , θk, p1, . . . , pk, x1, . . . , yn−k) = (θ0 − h, . . . , θk, p1, . . . , pk, x1, . . . , yn−k)

takes the form α0 + dh to α0 and provides new coordinates for which the action is

linear.

¤
In the previous section we have attained the contact linearization in the cove-

ring. Now applying the theorem of equivariant linearization to the group of deck

transformations we obtain as a corollary the following theorem,

Theorem 7.5.2 Let F be a foliation fulfilling the hypotheses specified in section

7.3.1, let F ′ be the enlarged foliation with the Reeb vector field Z and let α be a
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contact form for which F is Legendrian and such that Z is the Reeb vector field

then there exists a diffeomorphism defined in a neighbourhood of O taking F ′ to

the linear foliation, the orbit O to the torus {xi = 0, yi = 0, pi = 0} and taking the

contact form to the Darboux contact form α0.
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“Where am I? Metaphysics says

No question can be asked unless

It has an answer, so I can

Assume this maze has got a plan.”

“The Maze” W.H Auden
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[16] C. Currás-Bosch and P. Molino, Réduction symplectique d’un feuilletage la-

grangien au voisinage d’une feuille compacte. C. R. Acad. Sci. Paris Sér. I

Math. 318 (1994), no. 7, 661–664.

[17] R. Cushman and L. Bates, Global aspects of classical integrable systems.
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en dimension 2 et invariants des modèles de Fomenko. C. R. Acad. Sci. Paris

Sér. I Math. 318 (1994), no. 10, 949–952.

[21] J.-P. Dufour and P. Molino, Compactification d’actions de Rn et variables

action-angle avec singularités, Symplectic geometry, groupoids, and integrable

systems (Berkeley, CA, 1989), Springer, New York, 1991, pp. 151–167.

[22] J.J. Duistermaat, On global action-angle coordinates. Comm. Pure Appl.

Math. 33 (1980), no. 6, 687–706.

[23] L. H. Eliasson, Normal forms for Hamiltonian systems with Poisson commu-

ting integrals, Ph.D. Thesis (1984).

[24] L.H. Eliasson, Normal forms for Hamiltonian systems with Poisson commu-

ting integrals—elliptic case, Comment. Math. Helv. 65 (1990), no. 1, 4–35.

[25] Fomenko, Topological classification of all integrable Hamiltonian systems of

general types with two degrees of freedom, MSRI Publ., Vol 22 (1991) 131-340.

[26] G. Geiges, Contact Geometry , in: Handbook of Differential Geometry vol. 2

(F.J.E. Dillen and L.C.A. Verstraelen, eds.), to appear.

[27] J.W. Gray, Some global properties of contact structures , Annals of Mathema-

tics, 69 2, 1959.

[28] V. Guillemin, D. Shaeffer, On a certain class of Fuchsian partial differential

equations. Duke Math. J. 44 (1977), no. 1, 157–199.



148 BIBLIOGRAPHY

[29] V. Guillemin and S. Sternberg, Symplectic techniques in physics. Cambridge

University Press, Cambridge, 1990.

[30] V. Guillemin and S. Sternberg, Geometric Asymptotics Mathematical Sur-

veys, 14, American Mathematical Society, 1977.

[31] H. Ito, Convergence of Birkhoff normal forms for integrable systems, Com-

ment. Math. Helv. 64 (1989), no. 3, 412–461.

[32] H. Ito Action-angle coordinates at singularities for analytic integrable sys-

tems., Math. Z. 206 (1991), no. 3, 363–407.

[33] Y. Karshon, Periodic Hamiltonian flows on four-dimensional manifolds. Mem.

Amer. Math. Soc. 141 (1999), no. 672.

[34] Y. Karshon, S. Tolman, Centered complexity one Hamiltonian torus actions.

Trans. Amer. Math. Soc. 353 (2001), no. 12, 4831–4861

[35] J.L Koszul, Sur certains groupes de transformations de Lie. Géométrie
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