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Chapter 3

Cohen-Macaulay coordinate

rings of blow-up schemes

After introducing in the previous chapters the basic tools we will need along
(s work, we are now ready to study in detail the Cohen-Macaulayness of the
coordinate rings of blow-ups of projective varieties. Let k be a field, and let
Y be a closed subscheme of Pz“l with coordinate ring A = k[X1,..., Xy]/K,
where K C k[X1,...,Xy] is a homogeneous ideal. Given I C A a homoge-
neous ideal, let denote by 7 = T the sheaf associated to I in Y = Proj (A).
Lol X be the projective scheme obtained by blowing up Y along Z, that is,
X = Proj(®,soI™). If I is generated by forms of degree < d, then (1),
corresponds to a complete linear system on X very ample for ¢ > de+ 1 which
pives a projective embedding of X so that X =2 Proj (k[(I%)¢]) C ]P’kN'l, where
N = dimy(1¢). (see [CH, Lemma 1.1]).

For a given homogeneous ideal I C A, we can consider the Rees algebra
Ra(l) = EBjEOIj of T endowed with the natural bigrading Ra([)q ) = (I7);.
By taking diagonals A = (¢, e) with ¢ > de+1, we have that Ra(I)a = k[(I%)c].
In Chapter 2 we used this fact to study the existence of algebras k[(I¢).]
which are Cohen-Macaulay in the case where the Rees algebra also has this
property (see Theorems 2.3.12 and 2.3.13). Our aim in this chapter is to get
some general criteria for the existence of (at least) one coordinate ring k[(¢) e
with the Cohen-Macaulay property. In Section 3.2 we will give sufficient and
necessary conditions to ensure this existence by means of the local cohomology
of Ra(I) and the sheaf cohomology H (X, Ox). This result will be applied in
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Section 3.3 to exhibit several situations in which we can ensure the existence
of Cohen-Macaulay coordinate rings for X. We also give a criterion for the
existence of Buchsbaum coordinate rings, proving in particular a conjecture
stated by A. Conca et al. [CHTV].

Once we have studied the existence of Cohen-Macaulay diagonals of a
Rees algebra, in Section 3.4 our aim will be to precise these diagonals. This
is a difficult problem which has only been completely solved for complete
intersection ideals in the polynomial ring [CHTV, Theorem 4.6]. We will give
several criteria to decide if a given diagonal is Cohen-Macaulay, which will
allow us to recover ahd extend the result on complete intersection ideals as
well as to determine the Cohen-Macaulay diagonals for new families of ideals.
If the Rees algebra is Cohen-Macaulay, we can also determine a family of
Cohen-Macaulay diagonals. The section finishes by studying the coordinate
rings of the embeddings of the blow-up of a projective space along an ideal of

fat points.

The last section is devoted to study sufficient conditions for the existence
of a constant f ensuring that k[(I¢).] is Cohen-Macaulay for any ¢ > ef
and e > 0, a question that has been treated by S.D. Cutkosky and J. Herzog
in [CH]. The main result shows that this holds for homogeneous ideals in a
Cohen-Macaulay ring A whose Rees algebra is Cohen-Macaulay at any p €
Proj (4).

3.1 The blow-up of a projective variety

From now on in this chapter we will have the following assumptions. Let £ be a
field and A a noetherian graded k-algebra generated in degree 1. Then A has a
presentation A = k[X1,...,X,]/K = k[z1,...,z,], where K is a homogeneous
ideal in the polynomial ring k[X1,...,X,] with the usual grading. We will
denote by m the graded maximal ideal of A. Let Y be the projective scheme
Proj(A) C PZ"I. Let I be a homogeneous ideal not contained in any associated
prime ideal of A, and let Z be the sheaf associated to I in Y. Then Z can
be blown up to produce the projective scheme X = Proj(é,~oZ") together
with a natural morphism 7 : X — Y. Let us recall the cons_truction of the
Proj of a sheaf of graded algebras R over a scheme Y (see [Har, Chapter
II, Section 7]). For each open affine subset U = Spec(B) of Y, let R(U) be
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the graded B-algebra I'(U, R|U). Then we can consider Proj(R(U)) and its
natural morphism =|U : Proj(R(U)) — U. These schemes can be glued to
obtain the scheme Proj(R) with the morphism 7 : Proj(R) — Y such that
for each open affine U C Y, 7= }(U) & Proj(R(U)).

Assume that I is generated by forms fi,..., fr in degrees di,...,d, re-
spectively. Let d = max{ds,...,d,;}. For any ¢ > d + 1, let us consider the
invertible sheaf of ideals £ = Z(¢)Ox. We are going to show that £ defines a
morphism of X in a projective space ¢ : X — lP’,]CV ~! which is a closed immer-
sion so that X = Proj (k[I.]). Since the blow-up of Y along Z° is isomorphic
to X, we will also have X = Proj (k[(I¢).]) for any ¢ > de + 1. For that, we
are going to follow the proof of [CH, Lemma 1.1]. First of all, notice that we
have an affine cover of X by considering the set {U;; |1 <i<n,1 <7<},
where U;; = Spec(R;;), and

e (o2 ) [
’Lj”_ Xi,'.',Xi 7 fj AR f]

Furthermore, I'(U;;,Z(c) Ox) = fjazfﬂdeij. Since fjscf_dj € I, and I, C
I'(X,Z(c) Ox), we have that £ = (I;) Ox.

I. is a k-vector space generated by the elements s of the type s =
fja:lll ...zlr with degree ¢, that is, such that dj+{1+...+l, = c. By consider-
ing X, = {P € X |spgmpLp} with s € I, we have an open covering of X.
Since ¢ > d, there exists some ¢ with {; > 0, so denoting by u = (3;—1)51 . (%)l"

we have that

X5 = Spec((Ryj)u) = Spec (Rij K%)h (:%)lD

is an open affine.

Set N = dimy I.. Let P ' = Proj (k[{Zs}sen]), where A is a k-basis of
I, and Vy, = Dy (Zs) C PY 1. The k-linear maps defined by

F(VS,OVS) = k[Tg ) '-75 S] — F(XS,OXS)

1 g
s = 5

are epimorphisms which define morphisms of schemes X; — V;. By gluing
them, we get a closed immersion ¢ : X — IP,QV_I so that X = Proj (k[I.]) by
[Har, Proposition I1.7.2].
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Let £ = [0x, M = n*Oy(1), so that (I°).Ox = L°® M°. Then, the
classical Serre’s exact sequence allows to relate the local cohomology of the

rings k[(I¢).] and the global cohomology.

Remark 3.1.1 [CH, Lemma 1.2] There is an exact graded sequence

0 — HO (K[(I9)e]) — k[(I)] = P I'(X, L% @ M) — HY (E[(I¢).]) = 0
SEZ

and isomorphisms

Hz gk[( @Hz 1 X Les ®MCS)
SEZ
for i > 1. In particular, looking at the homogeneous component of degree 0

we get the exact sequence
0 — HO(E[(I9)])o = k — I'(X,0x) = Hy (K[(I%)el)o — 0

and isomorphisms H?, (k[(T®)c])o & H" (X, Ox) for i > 1.

For a homogenous ideal I of A, let us consider the Rees algebra R =
Ra(I) = @pzo "™ C Alt] of I endowed with the natural bigrading given by
R 5 = (I7);. Then, by taking a diagonal A = (c, e) with ¢ > de + 1, we
have that Ra(I)a = @eso(l%)es = k[(I°)c]. The natural inclusion k[(I¢).] =
Ra < R, gives the isomz)rphism of schemes Proj 2(Ra(I)) = Proj (k[(1).]).

Summarizing, we have:

Proposition 3.1.2 Let X be the blow-up of Y = Proj (A) along T = I,
where T is a homogeneous ideal of A generated by forms of degree < d. For

any ¢ > de + 1, we have isomorphisms of schemes

X & Proj 2(Ra(l)) = Proj ([(I°)c)).

In Chapter 2, Section 3, we have followed an algebraic approach to study
the local cohomology modules of the rings k[(I¢)] in terms of the local co-
homology of the Rees algebra and the diagonal functor. Next we give a new
approach to these modules by using sheaf cohomology.

Notice that from Remark 3.1.1 we may determine the local cohomol-
ogy modules of the k-algebras k[(I¢);] by means of the cohomology modules
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HY(X, L% ® M®). On the other hand, we can get some information about
these modules from the Leray spectral sequence

EY = H(Y, RIm (L% @ M) = H'" (X, L% @ M*),

and the vanishing of the higher direct-image sheaves Rim, (L% @ M), First
of all, let us study the vanishing of RIm,(L*).

Theorem 3.1.3 Set eg = max{ a.(Ra,(ly)) : p € Proj (A) }. For any e > ep,
§>0, RImLe =0 and m L6 =T¢.

Proof. Let us denote by A; = Ay, Ii = I(2y) and R; = Ra,(L;) = As[1it].
Note that by defining V; = Y — Vi(z;) = Dy(z) = Spec(A;), we have that
{Y; : 1 <4 < n}is an open affine cover of Y. Then, given j > 0,e > 0,
Rim,L¢ = 0 if and only if (R/m.L%) | ¥; = 0 for all & Denoting by X; =
7=1Y; = Proj (R;), by [Har, Corollary I11.8.2 and Proposition 1I1.8.5] we have
that for j > 0

Rin,(£°) | Y; = Rim (L | Xi) = HY (X, £° | Xi) ™= H{jy ((I)*Ri)o™ -

From the graded exact sequence

0 — (I,)°Ri(—e) — R; — EP(I)
g<e

it follows that 1 Hg;ing((Ii)e R)o = Hg;i1)+((1i)e Ri(—€))e = H@L(RM Simi-
larly, m, L¢ = I¢ if H(OR " (Ri)e = HlR ) (R;)e = 0 for all 4. Therefore, we have
reduced the problem to prove that H(R " (R;)e =0 for all 4,7 if e > eg.

Set R; = RAl (I;,). We can think R; as a Z-graded ring with deg(Zi )
1—m, deg( ) = d; — m. Note that with this grading we have R; ]0 = R

and % is an 1nvert1b1e element in R; of degree 1. Then we may define the
gr aded isomorphism

R,(T,T7 2 R
T >
R

T
where 1| R; = id and deg(T) = 1. Since R; — R; is a flat morphism, we have

that

HZEH (Bs) = HgRi)+(Ri) Op; R = HgRi)+(Ri)[T7T_1]:

so that Hgﬁi)+(ﬁi)e = HgRi)+ (R;)e [T, T71]. Therefore, it suffices to prove that

HZR) (Ri)e = 0 for all i, if e > eo.



THE BLOW-UP OF A PROJECTIVE VARIETY 48

Given a homogeneous prime q € Spec(Ay;), we have that q = pAz, withp €
Proj (A4). Localizing R; at g, we have that R; ® (Ag,)q = Ra, (I,). Denoting
by B = Ra,(I,), note that B is a standard graded ring whose homogeneous
component of degree 0 is the local ring A,. So B has a unique homogeneous
maximal ideal n, with n = pA, ® By. Since HJ(B). = 0 for all j = 0 and
e > e, according to [Hy, Lemma 2.3] we also have H3§+ (B)y=0forallj >0
and e > eg. Therefore,

[Hlg, Bo)ela = [H) (Ri)ile =, (B)e = 0.

Hence (Hf§->+(ﬁi)e)q £ () for any homogeneous ideal q € Spec(4y,), and we
conclude Hfﬁh(ﬁi)e =0 for j>0ande >ep. O

Corollary 3.1.4 Assume that Ra,(I,) is Cohen-Macaulay for any p €
Proj (A). Then, for any e >0, j >0, Rim, L8 =0 and m L% = Te.

Given a homogeneous ideal I of A, let us denote by I*={feAj mhf C
I forsomek} the saturation of I. Note that HY(A/I) = I /1. Next we use
Proposition 3.1.3 to relate the local cohomology modules of the k-algebras
k[(I¢),] and the local cohomology of the powers of the ideal (compare with
Corollary 2.3.5).

Corollary 3.1.5 Let I be a homogeneous ideal of A, and ey =
max{ a.(Ra,(I;)) : p € Proj (A)}. For any ¢ > de +1, e > ey, s > 0,

there is an exact sequence

0 = HO(kIT)e))s = (I%)es = (I2)Es = Hy([(I?)e])s = 0

cs m
and isomorphisms Hi (k[(I¢)c])s & HL(I%)es for i > 1.

m

Proof. By the Leray spectral sequence we have
Hi(Y,ijr*(Les Q@ M%) = H™HI(X, L% @ M®).

On the other hand, by the Projection formula [Har, Exercise 111.8.3] and
Proposition 3.1.3, we get that for e > eg, s > 0,

1. (L5 ® M) = 1, (L) ® Oy (cs) = I%(cs)

Rim (L% @ M®) = R, (L) ® Oy(cs) =0, for allj > 0.
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Therefore we may conclude that for any ¢ > 1, HY(X, L @ M) =
H(Y, T (cs)) = HAFL(I) o5, and T(X, £ © M) = T(Y, I%(cs)) = (1)

m

Now the result follows from Remark 3.1.1. O

We have shown that the positive components of the local cohomology mod-
ules of the rings k[(I¢).] are closely related to the local cohomology modules
of the powers of the ideal I°. Next we want to study the negative components.
In the case where X is Cohen-Macaulay, we will express them by means of the
local cohomology of the canonical module of the Rees algebra. Recall that the
canonical module of the Rees algebra is defined in the category of bigraded
S-modules, so let us write Kr = @ ;) K ). For any integer e, we denote by
K¢ = (Kg)¢ = ®; K(i,¢). Then we have

Proposition 3.1.6 Assume that X is Cohen-Macaulay. For any ¢ > de +1,
e>a’(Kg),s>0,1<:1<7,

HE (k[(19)e))—s 22 Hip " HE® ) es-

m

Proof. First we will show that X is equidimensional. Let p € Xa be
a closed point. Then dimOx,,p = dim(Ra) ) = dim(Ra),. As Xa =2 X
is Cohen-Macaulay, we have that Ra is generalized Cohen-Macaulay and so
dim(Ra), = dim Ra—dim Ra/p by [HIO, Corollary 37.6]. Recall from Lemma
1.4.1 that dim Ra/p = 1, and so dimOx,p, =n—1= dim Xa. Therefore,
X =2 XA is equidimensional.

Now by Serre’s duality we have that for any s > 0,1 > 1,
an(k[(—re)c])—s o~ Hi~1(X,£—es ® M—CS) o~ Hﬁ*i(X,wX ® L ® MCS)_

Then, by taking ¢ > de+1, e> a2(Kpg), i <7 we get
H (B[(19)e))—s = HiH THKR) (es,09)

— HTH1-1(K®),, by Proposition 2.1.18. 1

To finish the section, note that according to [HHK, Theorem 2.1] we can
also express the negative components of the local cohomology of the rings
k[(I¢).] by means of the local cohomology of their canonical modules whenever

X is Cohen-Macaulay. Namely,

Proposition 3.1.7 Assume that X s Cohen-Macaulay. Then for all s > 0,

1 < i <7, we have isomorphisms

H%(RALS = HZH_i(KRA)s-
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3.2 Existence of Cohen-Macaulay coordinate rings

Qur aim in this section is to find necessary and sufficient conditions for the
existence of integers c, e, with ¢ > de+ 1, such that the ring k[(/¢).] is Cohen-
Macaulay. Before proving our main result, we need two previous lemmas. The
first one may be seen as a Nakayama’s Lemma adapted to our situation, and

in fact it is just Lemma 1.5.2 for the case r = 2.

Lemma 3.2.1 Let L be a finitely generated bigraded R-module and m an in-
teger such that RT'L =0. Then, there exist integers qo,t such that L, =0 for
all p > dg+t¢, q>q-

The second lemma provides restrictions on the local cohomology modules

of the Rees algebra whenever X is Cohen-Macaulay.

Lemma 3.2.2 If X is Cohen-Macaulay, then there are integers qo, t such that
Hj\A(RA(I))(p,q) =0 foralli<@m+1,qg<qo and p < dq+t.

Proof. Let P € X. Then Ry ¢ P and so there exist 4,5 such that z; ¢ P,
/it & P. Denote by Reps = T7'R, where T is the multiplicative system
consisting of all homogeneous elements of R which are not in P. Note that

Rpy = [R<p>](0,0)- Furthermore, % and i{% are invertible elements in Rop-
T

i

with it
T .
deg 7 = (1,0), deg —5— =(0,1).
Ty
Then we may define a bigraded isomorphism :
Rp U, V,v-] % Reps
U — i
14 it
zyd

where ¥|Rpy = id, and deg(U) = (1,0), deg(V) = (0,1). Since X is CM,
Ox,p = Ry is CM and so Rcp> too. Then, localizing at PR.p~, we have
that Rp is CM.

Now let P € Spec(R) and denote by P* the ideal generated by the homoge-
neous elements of P. By [GW2, Corollary 1.2.4], Rp is CM if and only if Rp~
is CM, so we have that Rp is CM for any prime ideal P such that R ¢ P.
Localizing the Rees algebra R at the homogeneous maximal ideal M we then
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have that R is a generalized Cohen-Macaulay module with respect to Ry R
[HIO, Lemma 43.2). Therefore there exists m > 0 such that RTHY/(R) =0
for all i < @ + 1. From the presentation of R as a quotient of the polynomial
ring S = k[X1,...,Xn,Y1,...,Y;], by Theorem 1.2.1 we get

Hiy(R) = Ext? (R, Kg)",

and so RTE_XQ’;M_"(R,KS) = (0 for i < @+ 1. By Lemma 3.2.1 we then
obtain that there exist integers ¢1,%1 such that E}_{LE“LT“i(R,KS)(p,q) = ( for
all g > q1, p > dg+1t and i <m+1. The proof finishes by dualizing again. O

Now we may formulate the main result of this section.

Theorem 3.2.3 The following are equivalent:
(i) There exist c,e such that k[(1%)c] is Cohen-Macaulay.

(ii) (1) There ezist integers qo, t such that Hiy(RaD))(p,q) = 0 for all
i<m4+1,g<q and p <dq+t.

(2) I'(X,0x) =k and H'(X,0x)=0 for 0 <i<n—1
In this case, k[(I¢).] is Cohen-Macaulay for ¢ >0 relatively to e > 0.

Proof. If () is satisfied, then the scheme X = Proj 2(R) = Proj (k[(I®).]) is
CM and by Lemma 3.2.2 we have (1) of (i4). Furthermore, H (k[(I%)e])o =0
for any ¢ < @ and then by using Remark 3.1.1 we get (2) of (4t).

Assume now that (i) is satisfied. We want to find a diagonal A such
that Ra = k[(I%)¢] is CM. By Remark 3.1.1 and (2) of (iz), we have that
H: (Ra)o = 0 for any diagonal A and 4 < 7. On the other hand, since
Hi,(R) are artinian modules there exists p such that H'(R)(p,q = 0 for all
i and p > p;. Furthermore, by Corollary 2.1.12 there are positive integers
eo, o such that for e > eg, ¢ > de + o we have

H(Ra); = HiN(R) (eje)y Vi, V5 # 0.

Now, let us consider go,¢ given by (1) of (ii). Note that we can assume that
go, t are negative. Then, by taking diagonals A = (c,e) with e > max{eo, —qo},
¢ > max{de + a,p1,de — t}, we have that H! (Rpa); = 0 for all j and 1 < 7,
and therefore k[(I¢).] are CM for all these ¢,e. O
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Remark 3.2.4 Assume that (A, m) is a noetherian local ring and let I C m,
I # 0 be an ideal. Denote by X = Proj (R4(I)) the blow-up of Spec(A)
along I. Then, it was proved by J. Lipman [Li, Theorem 4.1] that there exists
a positive integer e such that R4(I¢) is Cohen-Macaulay if and only if X
is Cohen-Macaulay, I'(X,0x) = A and H*(X,0x) = 0 for all i > 0. The

following corollary may be seen as a projective version of this result.

Corollary 3.2.5 The following are equivalent:
(i) There ezist c,e such that k[(1¢).] is Cohen-Macaulay.

(1) X is Cohen-Macaulay, I'(X, Ox) = k and H (X, 0x) =0 for all 0 < i <

- 1.
(111) X is Cohen-Macaulay and H§+(R)(0,0) =0 for all 1 < 7.
Proof. It is enough to note that we have an exact bigraded sequence

0— H} (R) = R— @ I'X,0x(p,q)) = Hp, (R) = 0,
(».9)

and isomorphisms H}'{f (R) = By, H'(X, Ox(p, q)) for i > 0. O

We can also give sufficient and necessary conditions for the existence of
generalized Cohen-Macaulay or Buchsbaum diagonals of the Rees algebra, in
particular proving a conjecture of A. Conca et al. in [CHTV].

Proposition 3.2.6 The following are equivalent:

(i) Hiy(Ra(I))p,g) =0 fori <m+1 and p K 0 relatively to ¢ < 0.
(i) k[(I®).] is a generalized Cohen-Macaulay module for ¢>> e > 0.
(iii) There exist c,e such that k[(I¢).] is generalized Cohen-Macaulay.
() k[(I%).] is a Buchsbaum ring for ¢ > e > 0.

(v) There exist c,e such that k[(I¢)] is a Buchsbaum ring.

(vi) There exist integers qo, t such that HY, (RalD))p,g) =0 fori <m+1,
g <qo andp <dq+t.
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Proof. (i) = (ii) Assume that (i) is satisfied. By Corollary 2.1.12, we get
Hi (Rp)s = 0 for ¢ > 0 relatively to e > 0, s # 0 and 1 < 7. So k[(I¢)¢] 1s
generalized CM for ¢ > e > 0.

(1) = (i4¢) Obvious.

(i41) = (vi) Let A be a diagonal such that Ra is generalized CM. Then
(Ra), is CM for any p € Proj (Ra) by [HIO, Lemma 43.3], and so X =
Proj (Ra) is CM. By using Lemma 3.2.2 one obtains (vi).

(vi) = (4) Obvious.

The implications (i) = (iv) = (v) = (vi) may be proved similarly. O

3.3 Applications

In this section we show several situations in which we can ensure the existence
of Cohen-Macaulay coordinate rings for the blow-up scheme by using Theorem
3.2.3. First lemma provides sufficient conditions to have I'(X, Ox) = k and
HY(X,0x) =0forall 0 <i<m—1

Lemma 3.3.1 Assume a2(R) < 0, ax(A) < 0. Then I'X,0x) =k and
Hi(X,0x) =0 for 0 <i<m—1

Proof. Note that for any i, we have H%,(R)0) = Hiy, (R),0 = 0 and
Hiy (R)o0) = Hi (A)o = 0 by Proposition 2.1.18. Then, from the Mayer-

Vietoris exact sequence associated to My and My, we get Hﬁﬁ (R)o,0) =0

for any i, so we are done. U

As an immediate consequence we get:

Corollary 3.3.2 Suppose that a2(R) < 0, a.(A) < 0. If X is Cohen-
Macaulay, then k[(I®).] is Cohen-Macaulay for ¢ > e > 0.

It is known that there are smooth projective varieties with no arithmeti-
cally Cohen-Macaulay embeddings (see for instance [Mat, Theorem 3.4]). Next

we exhibit a situation where this implication is true.

Proposition 3.3.3 Let X be the blow-up of IP’Z"l along a closed subscheme,
where k has chark = 0. Assume that X is smooth or with rational singulari-

ties. Then X is arithmetically Cohen-Macaulay.
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Proof. Letn: X — IP’Z_I be the blow-up morphism. From [KKMS], we
have that 7, Ox = Opz—l and RIm,Ox = 0 for all § > 0. This implies that the
Leray spectral sequence

By = HY(PPY, Rim, Ox) = H™M(X, Ox)

degenerates. Therefore we have I'(X,0x) = F(IP’Z_l,C’)PZq) = k and
HY(X,0x) = Hi(lp;g"l,opz_l) = 0 for all i > 0. Then the result follows
from Corollary 3.2.5. O

Assume that A is Cohen-Macaulay. S.D. Cutkosky and J. Herzog proved in
[CH] that the Rees algebra has Cohen-Macaulay diagonals for locally complete
intersection ideals and for ideals whose homogeneous localizations are strongly
Cohen-Macaulay satisfying condition (Fi). In the first case, observe that
Ra,(I,) is Cohen-Macaulay for any p € Proj (A4), while in the second one
R, (1)) is Cohen-Macaulay for any p € Proj (A). Next we want to study

those examples.

Proposition 3.3.4 The following are equivalent:
(i) Ra,, (1) is Cohen-Macaulay for all 1 <1i < n.
e, Rag,. ((zy)) is Cohen-Macaulay for all 1 <4 < n.
(i) Ra,(I,) is Cohen-Macaulay for all p € Proj (A).
() Ra,, (L)) is Cohen-Macaulay for all p € Proj (A).

Proof. Set R; = Ry, (I,), R = Ra,.,I(z;))- We have already shown in the
proof of Proposition 3.1.3 that there exists an isomorphism R; = R;[T, 7).
Therefore, R; is CM if and only if R; is CM, and so the two first conditions
are equivalent.

Now let us prove (i) <= (4i¢). First assume (i), and for any prime ideal
p € Proj (A4) let us take z; ¢ p. Note that Ry (I,) = R; ®4,, (Az;)p, and
so R4, (I,) is Cohen-Macaulay. Now assume (ii7), and let us think R; as a
bigraded ring. Then, to prove (i), it is enough to show that for any homo-
geneous prime ideal Q € Spec(R;), we have that (R;)g is CM. Given such a
@, denote by qA;, = Q N A, where q € Spec(4) is a homogeneous prime
which does not contain z;, that is, q € Spec(4(,,)) C Proj (A). Then we have

(Ri)o = (Ra,(I3))g, and so (R;)q is CM.
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Finally, let us prove (ii) <= (iv). Given p € Proj (4) and z; € p, let
g = pAz, N A(mi) € SpeC(A(xi))‘ Then, (A(mi))q = A(p) and so RA(p)(I(p)) =
Ri®4y,, (A(z;))q- Therefore, (i7) implies (iv). Now let us assume (iv). Given
any homogeneous prime ideal Q) € Spec(R;), let g = QNAw,) € Spec(A;) C
Proj (A4), and let p € Proj (A) such that pA4,, = qlzs, 27 ). Since (Ri)g =
(Rag,,())q , we have that (R;)q is Cohen-Macaulay, and so R; is CM. O

Now we can prove that the Rees algebra of a homogeneous ideal I in a
Cohen-Macaulay ring A satisfying any of the equivalent conditions above has
Cohen-Macaulay diagonals. More generally, we have:

Theorem 3.3.5 Assume that Ra,(I,) is Cohen-Macaulay for all p €
Proj (A). Then k[(I¢).) 1is Cohen-Macaulay for ¢ > 0 relatively to e > 0
if and only if H: (A)o =0 for all i < 7.

m

Proof. Civen P € X, let us denote by p = PN A € Proj (4). Then
Ra(I)p = (Ra,(I,))p is CM and so X is CM. Then, by Corollary 3.1.4 and

the Leray spectral sequence
EY = H(Y, RIn,0x) = HV(X,0x),

we get HY(X,0x) = H/(Y,Oy) = HI+(A)p for 0 < j <7 — 1, and the exact

sequence 0 — k — I'(X,0x) = I'(Y,Oy) — HL(A)y — 0, so we get the

statement. O

Denote by E the exceptional divisor of the blow-up and by wg its dualizing
sheaf. The last result of the section shows that weaker assumptions on [CH,
Lemma 2.1] are enough to ensure that the rings k[(I°)c] are Cohen-Macaulay
for ¢ >» e > 0.

Proposition 3.3.6 Suppose that A is Cohen-Macaulay, X is o Cohen-
Macaulay scheme, 1.0p(m) = I/ for m > 0 and R'mOp(m)=0 for
i>0 and m > 0. Then k[(I¢).] is Cohen-Macaulay for ¢ >> 0 relatively to
e>>0.

Proof. Rig,Ox = 0 for i > 0 and m,0x = Oy by [CH, Lemma 2.1].
Then, from the Leray spectral sequence, we obtain H UX,0x) = H(Y,Oy) =
Hitl(A)g =0 for 0 <i <@ —1and 'X,0x) = I'(Y,Oy) = k. Now, the

proposition follows from Corollary 3.2.5. O
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3.4 Cohen-Macaulay diagonals

Once we have studied the problem of the existence of Cohen-Macaulay diago-
nals of a Rees algebra, now we would like to study in more detail which diag-
onals are Cohen-Macaulay. This question has been totally answered only for
complete intersection ideals in the polynomial ring [CHTV, Theorem 4.6]. Our
approach to this problem will give us criteria to decide if a diagonal is Cohen-
Macaulay, which will allow us to recover and extend the result in [CHTV] to
any Cohen-Macaulay ring as well as to precise the Cohen-Macaulay diagonals

for new families of ideals.

The first criterion gives necessary and sufficient conditions for a diagonal
of a Cohen-Macaulay Rees algebra to have this property in the case where

is equigenerated. Namely,

Proposition 3.4.1 Let I C A be a homogeneous ideal generated by forms of
degree d whose Rees algebra is Cohen-Macaulay. For any ¢ > de + 1, k[(1¢).]
1s Cohen-Macaulay if and only if

(i) H: (A =0, fori <.

(i3) HE(I%)e =0, for i <m, s > 0.

m

Proof. First, recall that the assumptions on the local cohomology of A
are necessary and sufficient conditions for the existence of Cohen-Macaulay
diagonals (Theorem 2.3.13). Then, for any ¢ > de + 1 and i < 7, we have
HE,(K[(I%)c])o = 0 by Theorem 3.2.3 and Remark 3.1.1. '

On the other hand, by applying Proposition 2.1.18 and Proposition 2.1.19,

for any s < 0 we have:

HJ({AI(R)(CS,GS) = H} (Res)cs =0

mi

H,(/{AQ (R)(cs,es) - ng (Rcs-des)es =0

because R*® = 0 and Rgs_ges = 0. Therefore, for any diagonal and any
i<W, s <0, we get Hi (k[(I¢)])s = 0 according to Proposition 2.1.3. The
statement, then, follows from Corollary 2.3.5. O

We may apply Proposition 3.4.1 to study in detail the following example
considered by L. Robbiano and G. Valla in [RV].
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Corollary 3.4.2 Let {Li;} be a set of d X (d+ 1) homogeneous linear forms
of a polynomial ring A = E[Xp,...,Xn),i=1,...,d;i=1,...,d+1, and let
M be the matriz (Lij). Let It(M) be the ideal generated by the t x t minors
of M and assume that ht (I,(M)) > d —t +2 for 1 <t < d. Denoting by
I = I,(M), then k[(I¢)c] is Cohen-Macaulay for any ¢ > de + 1.

Proof. The ideal I is generated by d + 1 forms of degree d, and the Rees

algebra has a presentation of the form

Ra(I) = k[Xl,...,Xn,YL,...,Yd+1]/(¢1,...,¢d),

where the polynomial ring S = k[Xl,...,Xn,Yl,‘..,YdH] is bigraded by
deg(X;) = (1,0), deg(Y;) = (d,1), and ¢1,...,¢q is a regular sequence in
S with deg(¢) = (d+ 1,1) (see the proof of [RV, Theorem 5.11}). Then we
have a bigraded minimal free resolution of the Rees algebra R4 (I) as S-module

given by the Koszul complex associated to ¢1,..., Pa:

0= Fy— - — Fy —» Fo=8— Ra(l) = 0,
with F, = S(—(d+1)p, —p)(z) By applying the functor ( )¢ to this resolution,

we have a graded free resolution of / ¢ over A:
O——>F§—>---—»Ff—>F§:Se—>Ie—>O,

with p = min{e,d}, Fy = A(-p — de)?s for certain p¢ € Z. The minimal
graded free resolution of I¢ is then obtained by picking out some terms, but
in any case it must have length p because the Hilbert series of A/I¢ is given

by ([RV, Example 6.1])
1= Sdoo(=1)7 (§) (“557) 24

HA/IC(Z) = (1 _;)n c

(note that ZP+de appears in the numerator). So by Theorem 1.3.4 we can

compute the a,-invariant of I® and we get

a*(Ie):{de+e—n ife<d

de+d—mn ife>d.

On the other hand, since n > ht (I1(M)) > d + 1, we have that d<n-1,
and so ax(I¢) < de. Therefore, for any ¢ > de + 1, s > 1, we have that
H (I%%)¢s = 0 for all 4. So k[(I¢)] is Cohen-Macaulay by Proposition 3.4.1.

m

Furthermore, note that a(k[(I¢)c]) < 0. O
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For arbitrary homogeneous ideals, we can also get a criterion for the Cohen-
Macaulayness of the diagonals by means of the local cohomology of the powers
of the ideal and the local cohomology of the graded pieces of the canonical
module of the Rees algebra. More explicitly,

Theorem 3.4.3 Let I be a homogeneous ideal in A generated by forms of
degree < d whose Rees algebra is Cohen-Macaulay. For any ¢ > de + 1,
k[(1°)c] is Cohen-Macaulay if and only if

(i) H:(A)o =0 fori < 7.

(i) HE(I%)es = 0 for i <m, s> 0.

(i5) HI7"PH K)o =0 for 1 <i<m, s> 0.

m

Proof. As in the proof of Proposition 3.4.1, the assumptions on the local
cohomology of A are necessary and sufficient conditions for the existence of
Cohen-Macaulay diagonals. Then we have that HE(E[(I%)c])o = 0 for i < 7.
Since R is Cohen-Macaulay, we have that X r 1s Cohen-Macaulay with
a}(Kr) = 0. Therefore, for any s > 0, 1 <@ < m HL(K[(I9))—s =
HR="F1(K*5) by Proposition 3.1.6. Moreover, note that HY, (k[(I¢),])_s = 0

for any s > 0. Then the statement follows from Corollary 2.3.5. O

Let us denote by G = Gu(I) = @,,50 I"/I™" the form ring of I with the
natural bigrading as a quotient of the Rees algebra. For ideals whose form
ring is quasi-Gorenstein, we may get necessary and sufficient conditions for a
diagonal to be Cohen-Macaulay only in terms of the powers of the ideal.

Corollary 3.4.4 Let I be a homogeneous ideal in A generated by forms of
degree < d. Assume that the Rees algebra is Cohen-Macaulay and the form
ring is quasi-Gorenstein. Let a = —a?(G 4(I)), b = —a(A). For anyc > de+1,
E[(1%)c] is Cohen-Macaulay if and only if

(i) Hi(A)o =0, fori < m.

(i) Hy,

(I%)es = 0, fori <m, s > 0.
(iii) Hy(I%7%H) oy =0, for 1 <i<m, s > 0.

Proof. Under these assumptions Kz has the expected form, that is, there
is a bigraded isomorphism

KRA(I) o @ [Im_a+1]l—b

(lm), m>1
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(see Corollary 4.1.7 for more details about the isomorphism). Then, for any
s> 0 we have K¢ = J¢~%t1(_p), and now the result follows from Theorem
3.4.3. 0

We can use Corollary 3.4.4 to precise the Cohen-Macaulay diagonals for a
complete intersection ideal of a Cohen-Macaulay ring. In particular, this gives
a new proof of [CHTV, Theorem 4.6] where the case A = k[X1,...,Xn] was
studied.

Proposition 3.4.5 Let I be a complete intersection ideal of a Cohen-
Macaulay ring A minimally generated by r forms of degrees dy,...,d,. Set
w=S"'_,d;. For any c > de+1, k[(I°)c] is Cohen-Macaulay if and only if
c> (e—1)d+u+a(A).

Proof. From the bigraded isomorphism Ga(I) = A/I[Y1,...,Y;], with -
deg(Y;) = (dj,1), it is easy to prove by induction on e that the a,-invariant
of A/I¢ is:

ar (A1) = a(A/I) = (e — 1)d + u + a(A).
On the other hand, we also have that H " "(A/I¢)s # 0, for all s < a(A/I¢) =
(e — 1)d + u + a(A) (see Lemma 5.2.19).

Let A = (c, e) be a diagonal with ¢ > de+ 1. Since a*(G) = —ht (I) = -,
by Corollary 3.4.4 we have that k[(I€)] is Cohen-Macaulay if and only if
cs > a(A/I°) and cs +a(A) > a(A/I%77F) for all s > 0. The first condition
is equivalent to (c—de)s > u—d+a(A) for all s > 0, that is, c—de > u—d+a(A).
The other one is equivalent to (c— de)s > u— dr for all s > 0, and this always
holds because u — dr < 0. O

Until now we have given criteria to decide if a diagonal k[(I¢).] is Cohen-
Macaulay once we know the local cohomology of the powers of I, and the
local cohomology of the graded pieces of the canonical module of the Rees
algebra. We will apply them in Chapter 5, Section 2, after computing the

local cohomology of the powers of certain families of ideals.

The following result shows the behaviour of the a-invariant for the graded
pieces of any finitely generated bigraded S-module, so in particular for the
powers of an ideal and the pieces of the canonical module by applying it to
the Rees algebra and its canonical module respectively. This fact has been
also obtained independently by S.D. Cutkosky, J. Herzog and N. V. Trung
[CHT] and V. Kodiyalam [Ko2] by different methods (see Chapter 5 for more
details).
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Theorem 3.4.6 Let L be q finitely generated bigraded S-module. Then there
exists o such that for any e

a(L°) < de + .

Proof. Let ey = a?(L). By Proposition 2.1.18, Hj'\,IQ(L)(C,e) =0 fori >0,
e > ep. Then, by Proposition 2.1.3 and Proposition 2.1.18, we have that for
any ¢ > de+1, e > ep, i > 0, there are isomorphisms

H}(Lp)y = H/i\/ll(L)(c,e) = H (L),

On the other hand, from Corollary 2.1.12 there exist positive integers e, o
such that H? (La)s = Hﬂl(L)(cs,es) fors#0,e> ey, c>de+ay. Therefore,
we have H? (L€), = 0 for e > max {eo,e1}, ¢ > de+aq, i > 0. This proves the

statement. O

Next we will show how to obtain a family of Cohen-Macaulay diagonals
from the bound on the shifts in the bigraded minimal free resolution of the
Rees algebra given by Theorem 1.3.4. To begin with, let us study the bigraded

a-invariant of the Rees algebra.
Lemma 3.4.7 (i) a'(R) < a(A).
(i) If R is Cohen-Macaulay and a?(G) < —1, then a'(R) = a(A).
Proof. By setting R, = D0 R; 5y, we have the following bigraded exact

sequences:
0= Ryy =R A0

0—-Rit(0,1) 5 R—> G —0.

For each (1, 7), we get exact sequences:
o = Hiy(A) gy — HY P (Riy) ) — Hy 'Ry —0 (1)

= Hi (@) gy — Hy Ry )i gy = Hyft (R)a;) =0 (2)

Note that Ay =01if 5 #£ 0 and so HTY, (A)(Z-,j) =0ifj5#£0.

We want to determine a'(R) = max{i | 35 : H/ﬁ\jl(R)(i,j) # 0}. Sup-
pose H;\ﬁjl(R)(ilj) # 0. Since ¢*(R) = -1, we have j < —1. Then,
from (2), we get H/ﬁ\A+1(R++)(i,j+1) #0 Ifj+1 <0, from (1) we ob-
tain HEI(R)(Z-JH) = Hﬁ'l(R++)(i,j+l) # 0. By repeating this argument,
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we obtain H/ﬁ\jl(RJrJr)(i,O) # 0 and, since Hﬂl(R)(iyo) = 0, from (1) we
get HT(A); = HY(A)goy # 0. Thus @ < a(A), and then it follows that
a'(R) < a(A).

Assume now that R is Cohen-Macaulay and a?(G) < —1. From (2), we
have that if HTT (R)(a(a)—1) = 0 then Hi  (Bit)a(a)0 = 0 Since R is
Cohen-Macaulay, from (1) we get H(A)a(a) = HY(A)(a(a),0) = 0, which is a
contradiction. O

Remark 3.4.8 Note that in the proof of the Lemma 3.4.7 (i1) it is enough to
assume H7((G)(a(a),—1) = 0 and HT(R)(a(a),0) = 0-

Remark 3.4.9 Let us consider the group morphism v : 7% — 7 defined by
(i, 5) = i+j. By Lemma 1.2.3, HUY(RY) = @igj= HRFY(R)(ij)- Then, by
applying Lemma 3.4.7 we get o(R¥) <a(A)—1. IfRis Cohen-Macaulay and
a?(G) < —1, we have proved Hﬂ'l(R)(a(A),_l) # 0 and so a(RY) = a(A) - 1.

We can use the upper bound for the bigraded a-invariant of the Rees alge-
bra found in Lemma 3.4.7 to get bounds for the shifts (a,b) in its resolution.

Namely,

Lemma 3.4.10 Let I be an ideal of A generated by v forms in degrees di <
... < d, whose Rees algebra 1s Cohen-Macaulay. Set u = 29:1 d;. Let

0—>Dm—>...—+D1—>D0:S—>RA(I)—>O

be the minimal bigraded free resolution of Ra(I) over S. Given p = 1 and
(a,b) € Q,, we have

(i) a<0,b<0,a<db.

(11) —a—b<u+m+ald)+p

(i13) —a<ut+n+aAd)+p—(r—1). In particular, —a < u+n+a(4).
(iv) —=b <.

Proof. It is clear that ¢ <0, b<0 , a < did. Also note that m =
proj.dimgR = n+r—-n— 1L To prove (i), let us consider the morphism
¢ : 22 — Z defined by $(i,5) = &+ j, and note that S(a,b)¥ = S%(a + b).
Applying the functor ( ¥ to the resolution, we get a Z-graded minimal free
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resolution of RY over S¥. Moreover a(S%) = —n—u—r and a(R¥) < a(A)—1
(see Remark 3.4.9). Given (a,b) € Q,, from Theorem 1.3.4 we get:

—a—b<max{—a—f](a,f) €} <
<max{-a-F|(a,f) € Qn}+p—m=
=a(R¥) —a(S¥) +p—m < u+a(Ad) +7 + p.
To prove (4it), observe that by Theorem 1.3.4 we have
~a <max{—a| (o,0) € Qp} <
< max{~a | (@,0) € B} +p—m =
=a'(R)—a' (S)+p-m<u+ta(d)+m—r+1+p.
Finally, by using Theorem 1.3.4 we also obtain:
—b < max{—f| (& ) € ) <
< max{ 8| (a,B) € Qr} =
=a*(R) —a®(S) = -1+,
so (iv) is proved. O

Remark 3.4.11 When [ is a complete intersection ideal of the polynomial

ring A = k[X1,..., Xy], all the shifts in the resolution may be explicitly com-

puted. In fact, by the Eagon-Northcott complex the shifts (a,b) € {2, are of

the type: v
a=—dj, ~...~dj,,,, b=-m

where 1 < j1 < ... <jpy1 <7, 1 <m < p (see [CHTV, Lemma, 4.1]). Note

that b takes all the values between —r and 0 and the bounds of Lemma 3.4.10

(it), (i11) are sharp for p = r — 1.

Now we are ready to determine a family of diagonals of the Rees algebra
with the Cohen-Macaulay property when the Rees algebra is Cohen-Macaulay.
Namely,

Theorem 3.4.12 Let I C A be a homogeneous ideal generated by r forms
of degrees di < ... < d, = d. Assume that H.(A)g = 0 for all i < 7. Set
u =3 %_yd;. If the Rees algebra is Cohen-Macaulay, then
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(i) k[(I®)¢] is Cohen-Macaulay for ¢ > max{d(e — 1) +u+a(d),dle—1)+
u—di(r—1)}.

(ii) If I is equigenerated by forms of degree d, k[(I)¢] is Cohen-Macaulay
for¢c>d(e—1+1)+a(A).

Proof. We have already shown that the assumptions on the local cohomology
of A imply that Hi (k[(I®)c])o = 0 for i < 7. Now, let us consider the bigraded

minimal free resolution of R over S:
0—Dyp—...oDyg=5—=R—-0,

where D = @4 p)eq, 5 (6, b). From Remark 2.1.11, recall that if we define

—b bd—a—
XA:U(a,b)eQR{SEZ’TSS<——a -

-~  c—ed )

c—ed e

Y2 = Uppyeanl s €L (btr)d—u=a o o o zb=r 3}

then we have HY (k[(I¢)))s = f\jl(R)(cs,es) —0fori<m sdgXPUYA
Therefore, k[(I¢).] is Cohen-Macaulay for any diagonal A = (c,e) such that
XA UY? c {0}. Since b <0, any s € XA satisfies s > 0. If b < —1, then
bd—a—n < —d+u+ a(A) by Lemma 3.4.10. If b = 0, then note that [D.Jo
is a graded minimal free resolution of A over 5; with [Dylo = De,0)en, S1a);
s0bd —a—n = —a—n < a(A) by Theorem 1.3.4. Therefore, by taking
¢ > (e — 1)d + u + a(A), we have bd=a=n < 1 and so X2 c {0}. On the
other hand, any shift (a,b) € Qg satisfies b > —r by Lemma 3.4.10, so if

s € V2 then s < —1. By taking ¢ > d(e — 1) + u — dy(r — 1), one can check
(tr)d-u-a - 1 g0 Y2 = (). This proves ().

c—ed

Now, let us assume that I is generated in degree d. From the proof of
Proposition 3.4.1, we have that HE (K[(I€)c])s = 0 for i <M, s < 0. So it
is just enough to study the positive components of these local cohomology
modules. Tensoriazing by k(T) we may assume that the field k is infinite.
Then, since the fiber cone F,(I) of I is a k-algebra generated by homo-
geneous elements in degree (d,1), there exists a minimal reduction J of I
generated by [ forms of degree d. Now, by considering the polynomial ring
S = k[Xi,...,Xn,Y1,...,Y1], we have a natural epimorhism S — Ra(J).
Then R4(J) is a finitely generated bigraded S-module, and so R4(I) because
it is a finitely generated R4(J)-module. Then we may consider the bigraded
minimal free resolution of Ra4(I) over S, and it suffices to check that the sets
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X4 and Y2 associated to this resolution do not have positive integers for
c>dle—1+1)+a(A). O

In the case where A = k[X1,... , Xrn] we can improve the bounds slightly.
More explicitly,

Theorem 3.4.13 Let I C A = k[X,... , Xn] be a homogeneous ideal gener-
ated by v forms of degrees dy < ... < d,. Assume that the Rees algebra R (1)
is Cohen-Macaulay. Then, by defining

a=min{d(e —1)+u—n,e(u—n)},
B =min{d(e - 1) +u—dy(r—1),e(u— di)},
we have that k[(1¢).] is Cohen-Macaulay for all ¢ > max{de, a, B}

Proof. Note that the first homomorphism in the resolution of the Rees
algebra is:
Dy=85 — R4

X; = X

Y; = fit,
so any shift (a,b) € Q,, with p > 1, satisfies b < 0. Note that if b—dig’l <=t
for all (a,b) € Qp, p > 1, then X2 is empty. This condition is equivalent to
e(—a—n) < —bc. Since e(—a—n) < e(—n—u) by Lemma 3.4.10 and —bc > ¢,
it suffices to take ¢ > e(u —n) to get this condition. Similarly, if ¢ > e(u—dy)
then Y2 = () and we are done. O

Remark 3.4.14 With the notation above, note that o = e(u — n) if and
only if u —d—n <0, and 8 = e(u — dy) if and only ifu—d—dy <0 and
e > u—_s:—('ﬁ(}d_—l). For instance, if u — d < n then k[(I°).] is Cohen-Macaulay

for all ¢ > max{de, 5}.

We finish this section with an application of Corollary 3.1.4 to the study
of the (n — 1)-folds obtained from P{~' by blowing-up a finite set of distinct
points. Let Pp,..., P, € IPZ_l be distinct points, and for each ¢ = 1,... s,
denote by P; C A = k[Xy,...,X,] the homogeneous prime ideal which cor-
responds to F;. Let us consider the ideal of fat points [ = P N... NPT,
with my,...,ms € Z>1. Next we study the embeddings of the blow-up of IP’Z}_l
along 7 via the linear systems (I¢)., whenever these linear systems are very
ample, slightly extending [GGP, Theorem 2.4] where only the divisors (I.)

were considered.
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Theorem 3.4.15 Let I C A = k[X1,..
k is a field with characteristic 0. Then:

., Xy) be an ideal of fat points, where

(i) k[(I¢).] is Cohen-Macaulay if and only if Hi (I¢%)es = 0 for any s > 0,

m
1 < n.

(ii) For ¢ > reg(I)e, k[(I®)c] i Cohen-Macaulay with a(k[(I¢)c]) < 0. In
particular, reg (k[(I1%)c]) <n—1.

Proof. Let X be the blow-up of the projective space ]P”,z_l along Z. Assume
that I is generated by forms in degree < d. Then we have shown that £¢® M*
is very ample if ¢ > de. Therefore, for any s < 0,4 <n—1, c > de, we have
that H*(X, £ ® M) = 0 by the Kodaira vanishing theorem (see for instance
[Har, Remark I11.7.5]). Then, H: (k[(I¢)¢])s = 0 for i <n, s <0 by Remark
3.1.1. ‘

On the other hand, from Proposition 3.3.3 we get I'X,0x) = k and
HY(X,0x) = 0 for all 2 > 0. Then, according to Remark 3.1.1, we have
H: (K[(I¢)c))o = O for any .

Finally, note that for a given p € Proj (A) we have:

- A, ifp & {Py,...,Ps}
T\ PMAp, ifp="Pi.

Tn both cases, Ra, () is Cohen-Macaulay. So, according to Corollary 3.1.4,
T L = Té and RIm L = 0 for e > 0, 7 > 0. Then, by the Leray spectral

sequence
BN = HA(Y, Rim (L5 @ M*)) = HH (X, L% @ M*),
we have that for s > 0
DX, L% © M) = (B, T (es)) = (1),

H? ( ﬁes MCS) H'L([P)n 1 IeS(CS)) Hz—H(IeS) Vi > 1.

m

Therefore, we immediately get (i) by Remark 3.1.1. From [GGP, Theorem
1.1] or [Cha, Theorem 6], we have a+(I¢) < reg(I®) < ereg(l). Furthermore,
(I¢)r = (I®), for ¢ > reg(l)e by [GGP, Corollary 1.4]. Then, by taking
¢ > reg (I)e, we have I'(X, L @ M) = (I¢%)5 and H* (X, L @ M) = 0 for
any i > 1. Now, by Remark 3.1.1, we obtain HE,(K[(I%)c))s = 0 for any s > 0.
So k[(I¢).] is Cohen-Macaulay with a(k[(I%)c]) < 0. O
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3.5 Linear bounds

S.D. Cutkosky and J. Herzog [CH] studied sufficient conditions for the exis-
tence of a constant f satisfying that the rings k[(I¢).] are Cohen-Macaulay
for all ¢ > ef and e > 0, that is, for the existence of a linear bound on ¢ and
e ensuring that k[(1¢).] is Cohen-Macaulay. Note that, according to Theorem
3.4.12, this holds for any homogeneous ideal in a Cohen-Macaulay ring whose
Rees algebra is Cohen-Macaulay. Our first purpose is to show that this also
holds under the weaker assumption that Ry4, (I,) is Cohen-Macaulay for any
p € Proj (A). This would recover for instance locally complete intersection

ideals.

Let K = Kg = @ ;) K, ) be the canonical module of R = R4 (), and
let K¢ be the graded A-module K¢ = P, K(; o). Then we have

Theorem 3.5.1 Assume that Ra,(I,) is Cohen-Macaulay for all p ¢
Proj (A). Then m.(wx ® £L¢) = K¢ and Rim,(wx ® L) = 0 for e > 0,
j>0.

Proof. Let A; = A(m): L = I(acz)a R;, = Al[Ilt] and K; = Kr ® R;. Let
us consider the affine cover {Y; : 1 < i <n} of Y, where V; =Y — V, (z;) =
Spec(4;). Denote by X; = 771Y; = Proj (R;). Then, for a given j and e > 0
we have that RIm, (wx ® £°) = 0 if and only if Rim,(wx ® £°) | Y; = 0 for all
1 <4 < n. Furthermore, we have a diagram

X; = Proj(R;) < X =Proj %(R)
T T
Y; = Spec(4;) — Y = Proj(4)

Now, by Corollary II1.8.2 and Proposition II1.8.5 of [Har], for any e > 0 and
J > 0 we have

Rim(wx ® L) | Y; = RIm ((wx @ L) | Xi) = HI(X;, (wx ® L) | X;) ™

—

Since (wx ® L£°) | X; = K;(e), we have reduced the problem to show

th?t ol (Ki)e = 0. Similarly, m(wx ® £°) = K¢ if Hip (K)o =
H(Ri)+(Ki)e =0.

Denote by R; = Ra,, (Iy;). Tensoriazing by R;, we have

H(j]—%i)+ (K& —R—i)e - HgRi)+ (Ks)elT, T_l]’
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so it is enough to show that HZE-)+(K ® Ri)e = 0 for any 4,5 and e > 0. Let
q € Spec(Ay;) be a homogeneous prime, and let p € Proj (A) be such that

q = pAg,. Denote by B = Ry, (I,). Then

7y (K @ Ty = [Hig,, (K © Re = [, (K 94 4]

By taking into account that B is Cohen-Macaulay, standard arguments allow
to check that K ®4 A, = Kp or K ®4 A, = 0. In any case, we have that
[H, (K @4 Ap)le =0 for any j and e > 0, so we are done. U

From this result we can obtain a simple criterion for having a linear bound
for the Cohen-Macaulay property. First, let us notice the following interesting
fact.

Proposition 3.5.2 Assume Ra,Iy) is Cohen-Macaulay for all p € Proj (A).
Let ¢ > de+1, e >0. Then:

(i) For s >0, there 1s an ezact sequence
0 = HY(K[(I9)e])s = (I%)es = ()5 = Hn(k[(T)e])s = 0
and isomorphisms HE (K[(1€)¢])s & HE (1%%)s fori> 1.

m

(ii) Fors>0,1<i<m—1, Hy(k[(I*)c])-s = HE (K™ )es:

Proof. The first part of the statement follows directly from Corollary 3.1.5.
To prove (i4), let s > 0,4 > 1. Then

HE(k[(I%)e])-s & Hi7Y(X, L% ® M~%) by Remark 3.1.1
— H7(X,wx ® L @ M) by Serre’s duality
= H (Y, T (wx ® L%) @ M) by Theorem 3.5.1
= Hﬁ_i(Y,I?e/s(cs)) by Theorem 3.5.1

— HE—H—l (Kes)cs- 0

Theorem 3.5.3 Assume that A is a ring with H:(A)g =0 fori < m. If
I is a homogeneous ideal of A such that Ra,(I,) is Cohen-Macaulay for all
p € Proj (A), then there ezists o such that k[(I®).] is Cohen-Macaulay for
¢>de+a, e>0.
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Proof. From Proposition 3.3.5 we have that k[(1¢).] is Cohen-Macaulay for
¢ > e > 0. So, in particular, by Theorem 3.2.3 and Remark 3.1.1 we have that
H},(K[(I%)c])o = 0 for any ¢ > de + 1, 4 < 7. On the other hand, according to
Theorem 3.4.6, there exists o > 0 such that a.(1¢) < de+a, a+(K®) < de+a,
for all e. Then, k[(1°).] is Cohen-Macaulay for any ¢ > de + a by Proposition
3.5.2. O

In particular, we can recover Corollary 4.2 and Corollary 4.4 in (CH].
Furthermore, note that the bound has been improved slightly.

Corollary 3.5.4 Let I be a locally complete intersection ideal in a Cohen-
Macaulay ring A. Then there exists o such that such that k[(I°),] is Cohen-
Macaulay for any ¢ > de + « and e > 0.

Corollary 3.5.5 Let I be a strongly Cohen-Macaulay ideal such that for any
prime ideal p D I, p(I,) < ht(p) in a Cohen-Macaulay ring A. Then there
exists  such that such that k[(I°).] is Cohen-Macaulay for any ¢ > de + «
and e > 0.

We can also characterize the existence of linear bounds for the Cohen-
Macaulay property of the rings k[(I¢).] by means of the local cohomology
modules of the Rees algebra and its canonical module. Namely,

Proposition 3.5.6 Assume that there ezist c,e such that k[(I°).] is Cohen-
Macaulay. Then the following are equivalent

(i) There exists f such that k[(I¢).] is Cohen-Macaulay for ¢ > ef, e > 0.

(ii) There exists f such that H§+(R)(c,e) =0, HZ;HI(KR)(Q@) = 0, for
1<, c>ef ande > 0.

(117) There exists f such that H}.\/lz(R)(c,e) = 0, HE‘;“(KR)(C,@ = 0, for
1<m,c>ef and e > (.

Proof. From Lemma 2.1.2, we have H. (k[(I%)])s = H§{+(R)(cs,es)
for any s > 0. Moreover, since X is Cohen-Macaulay we also have that
HE(R[(I9))) s = Z;HI(KR)(CSJGS) for 1 <4 <@, s >0 (see the proof of

Proposition 3.1.6). Therefore two first conditions are equivalent.
For (i1) <= (it1), first we will show that there exists f such that for all
i, e >0, ¢ > ef it holds

H.7;\/1 (R)(C,e) = H}'\/ll (R) (c,e) = O)
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Hj\/l(KR)(c,e) = Hj\Al(KR)(c,e) = 0.

Then, from the Mayer-Vietoris exact sequence, we get that for any ¢, e > 0,
c>ef,
Hy, (R)(ce) = Hiuy (B)(cpe)>

H%{+ (KR)(c,e) = Hj\/Iz (KR)(c,e)7

and so (i5) and (#44) are equivalent. To get the vanishing of the local coho-

mology modules with respect to the maximal ideal M, it is just enough to

take ¢ > max {al(R),al(Kg)}. By Theorem 3.4.6 there exists o > 0 such

that a,(I¢) < de + a, a,(K®) < de + o, so by taking ¢ > de + o we have
j\/ll (R)(C)e) = H! (I¢), = 0 and Hj\,(l (KR)(c,e) = H! (K¢.=0.0

m m

Also note that the last proposition holds if we replace the condition for all
¢ > ef and e > 0 by the following one: forallc¢ >de+aand e > 0. Asa

direct consequence, we obtain:

Corollary 3.5.7 Assume that R has some Cohen-Macaulay diagonal. If
a2(R) < 0 and a2(Kg) < 0, there exists o such that k[(1°).] is Cohen-Macaulay
for all ¢ > de+ o and e > 0.

Proof. It is a direct consequence of Proposition 3.5.6 by noting that for
any ¢ and e > 0 we have H'y,(R) ey = 0, H',(KR)(c,e) = 0 by Proposition
2.1.18. O

Remark 3.5.8 The converse of the last corollary is not true. Let us take the
homogeneous ideal I = (z”, y7, 20y + z%y®) in the polynomial ring A = k[z,vy].
We have m!4 C I, so (I¢), = A, for any ¢ > 14e, and then k[(I¢).] = K[z |
a + b = ¢] is Cohen-Macaulay for all these ¢,e. But a(R) = 4 > 0 by [HM,
Example 3.13).
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