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Introduction

The aim of this work is to study the ring-theoretic properties of the diagonals
of a Rees algebra, which from a geometric point of view are the homogeneous
coordinate rings of embeddings of blow-ups of projective varieties along a
subvariety. First we are going to introduce the subject and the main problems.
After that we shall review the known results about these problems, and finally

we will give a summary of the contents and results obtained in this work.

Let A be a noetherian graded algebra generated over a field £ by
homogeneous elements of degree 1, that is, A has a presentation A =
E[X1,...,Xu)/K = kl[z1,...,25,], where K is a homogeneous ideal of the
polynomial ring k[X1, ..., X,] with the usual grading. Given a homogeneous
ideal T of A, let X be the projective variety obtained by blowing-up the
projective scheme Y = Proj (A) along the sheaf of ideals 7 = I, that is,
X = Proj(@,>,Z"). For a given ¢ € Z, let us denote by I. the c-graded
component of [ T is generated by forms of degree less or equal than d, then
(1°).. corresponds to a complete linear system on X very ample for ¢ > de + 1
which embeds X in a projective space X = Proj (k[(I°).]) C PY ™', with
N = dimg(I¢). [CH, Lemma 1.1}.

Our main purpose is to study the arithmetic properties of the k-algebras
k[(1¢).]), where c,e are positive integers and I is any homogeneous ideal of A.
"I'his problem was first started in the work by A. Gimigliano [Gi], A. Geramita
and A. Gimigliano [GG], and A. Geramita, A. Gimigliano and B. Harbourne
|(i(i11] who treated similar problems for the rational projective surfaces which

arise as embeddings of blow-ups of a projective plane at a set of distinct points.

Let & be an algebraically closed field and s = (“41), d > 2. In [Gi] the
particular case of the blow-up of IP’% at a set of s different points Py,..., P

which do not lie on a curve of degree d — 1 and such that there is no subset of

iii
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d points on a line (if d > 3) is studied in detail. In this case, the defining ideal
I of the set of points is generated by forms of degree d and the rational maps
defined by the linear systems I, give embeddings of the blow-up for ¢ > d. In
the case ¢ = d the surface obtained is called White Surface, and for c =d + 1
Room Surface. It is then shown that White surfaces are contained in ]P)g as
surfaces of degree (g) with defining ideal generated by the maximal minors of
a 3 x d matrix of linear forms. In particular, k[I] is Cohen-Macaulay and it
has a resolution given by the Eagon-Northcott complex [Gi, Proposition 1.1].
On the other hand, Room Surfaces are arithmetically Cohen-Macaulay [GG,

Theorem B] with defining ideal generated by quadrics [GG, Theorem 1.2].

This detailed study of White and Room Surfaces is the first step to consider
the following more general case. Let Py,..., P be s distinct points in IF’,%, with
k an algebraically closed field, let I be its defining ideal and d = reg(I) the
regularity of I. Assume that the points do not lie on a curve of degree d — 1
and that there is no subset of d points on a line. Then the linear systems I
give embeddings of the blowing-up of P at this set of points for ¢ > d. The
resultant surfaces are arithmetically Cohen-Macaulay [GG, Theorem B] and
its defining ideal is defined by quadrics if ¢ > d + 1 [GG, Theorem 2.1].

Even more generally, A. Geramita, A. Gimigliano and Y. Pitteloud [GGP]
consider the blow-up of P} along an ideal of fat points, with & an algebraically
closed field of characteristic zero. Given a set of points Pi,...,P; € P}, let
Pi,...,Ps C k[Xo,...,X,] be their defining ideals, and let us take ideals of
the type I = P/ N... NP, with my,...,ms € Z>1. Then one may study
the projective varieties obtained by embeddings of the blow-up of P} along
Z via the linear systems corresponding to the graded pieces of I, whenever
these linear systems are very ample. Let d = reg(I), and let us assume that
there are not d points on a line. Then the linear systems I, are very ample for
¢ > d, and the varieties obtained via these embeddings are projectively normal
[GGP, Proposition 2.2] and arithmetically Cohen-Macaulay [GGP, Theorem
2.4].

A new point of view to treat these questions was introduced by A. Simis,
N.V. Trung and G. Valla in [STV], and later followed by A. Conca, J. Herzog,
N.V. Trung and G. Valla in [CHTV], to study the more general problem of
the blow-up of a projective space along an arbitrary subvariety. If I is a
homogeneous ideal of A, let us consider the Rees algebra R4(I) = @B, I =
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A[It] C Alt] of I with the natural bigrading given by
Ra(D) 5 = (P)i-

The crucial point now is that all the algebras k[(I¢).] are subalgebras of the
Rees algebra in a natural way. To describe this relationship we need to intro-

duce the diagonal functor.

Given positive integers c, e, the (¢, e)-diagonal of 7.2 is the set
A= {(cs,es) | s € Z}.

For any bigraded algebra S = @; j)ez? S(i,4), the diagonal subalgebra of S
along A is the graded algebra

Sa = @ S(cs,es)'

$€7Z

Similarly we may define the diagonal of a bigraded S-module L along A as
the graded Sa-module

La =P Lics,es)-

SEZ

So we have an exact functor
()a: M?(S) = M'(Sa),

where M2(S), M'(Sa) denote the categories of bigraded S-modules and
graded Sa-modules respectively.

Now we may give a description of the rings k[(I¢).] as diagonals of the
Rees algebra in the following way: By taking A to be the (¢, e)-diagonal of 7.2,
we have

Ra(I)a = @(Ies)cs = k[(IE)C]-

§>0
'his observation allows an algebraic approach to study the rings k[(1¢)] via
the diagonals of Ra(I). This is the starting point in [STV] to study the case
ol homogeneous ideals of the polynomial ring generated by forms of the same
degree, and later in [CHTV] to study arbitrary homogeneous ideals of the
polynomial ring. By paraphrasing [STV]: One is to believe that the algebraic
approach via the diagonals of the Rees algebra may throw further light not
only on the study of embedded rational surfaces obtained by blowing-up a

acl of points in P2 but also of the embedded rational n-folds obtained, more
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generally, by blowing-up P} along some special smooth subvariety. On the
other hand, the diagonals of any standard bigraded algebra defined over a
local ring have also been studied by E. Hyry [Hy] by using both an algebraic
approach and a geometric approach. Finally, S.D. Cutkosky and J. Herzog
[CH] have studied the diagonals of the Rees algebra of a homogeneous ideal

in a general graded k-algebra.

Next we are going to expose the main results of those works.

The main contribution of A. Simis et al. [STV] to the problems consid-
ered by A. Geramita et al. is the algebraic approach via the diagonal of a
bigraded algebra, a notion which generalizes the Segre product of graded al-
gebras. Given algebraic varieties V C P!, W C P, with homogeneous
coordinate rings Ry, Ry, the image of V. x W C H”Z—l X ]P’z*1 under the Segre
embedding

Pyt x Pl ppt

is a variety with homogeneous coordinate ring the Segre product of R; and
Roy:
R®, Ry = @(Rl)u QR (R2)y.

UEN
Given a standard bigraded k-algebra R = Ga(u,v)er\@ Ry, its diagonal Ra is
defined as Rp = @, en R(u,u) (that is, the (1,1)-diagonal). By considering the
tensor product R = R; ®; Ry bigraded by means of Ry = (R1)u @k (Ra)y,
we have that Ra = R1®, Ry. Classically R is taken to be the bihomogeneous
coordinate ring of a projective subvariety of ]P’Z_1 X ]P}rl, and Ra is then the
homogeneous coordinate ring of its image via the Segre embedding.

In the first section of [STV], a relation between the presentations, the di-
mensions and the multiplicities of a standard bigraded k-algebra R and its
diagonal Rp is obtained. The key for proving these results is the existence of
the Hilbert polynomial of a standard bigraded k-algebra and the character-
ization of its degree, due to D. Katz et al. [KMV] and M. Herrmann et al.
[HHRT] among others. Similarly to the graded case, one may define in this
case the irrelevant ideal, the irrelevant primes and the biprojective scheme

associated to a standard bigraded k-algebra.

After that, it is studied the behaviour of the normality and the Cohen-
Macaulay property by taking diagonals. Since there is a Reynolds operator
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from R to Ra, one immediately gets that the normality of R will be inherited
by its diagonal Ra. With respect to the Cohen-Macaulayness, the strategy
is to reduce the problem to a special situation where the diagonal subalgebra
becomes a Segre product, case in which it is known a criterion for the Cohen-

Macaulayness.

These results are then applied to the study of the Rees algebra R4(I) of
a homogeneous ideal I C A = k[X1,...,X,] generated by forms of the same
degree d (equigenerated ideals). In this situation, the Rees algebra can be
bigraded so that becomes standard by means of

Ra(Diijy = itass

and then Ra(I)a = k[I441]. Mainly, two classes of ideals are then considered
in detail: For complete intersection ideals generated by a regular sequence
of r forms of degree d it is shown that k[I44+1] is a Cohen-Macaulay ring if
(r — 1)d < n, while k[I411] is not a Cohen-Macaulay ring if (r — 1)d > n
[STV, Theorem 3.7]; for straightening closed ideals under some restrictions it
is shown that k[I;y1] is a Cohen-Macaulay ring [STV, Theorem 3.13]. This
second class of ideals includes for instance the determinantal ideals generated

by the maximal minors of a generic matrix.

As a natural sequel of the work above, A. Conca et al. study in [CHTV]
the diagonals Ra of a bigraded k-algebra R for A = (c,e), with ¢, e positive
integers. The main problem considered there is to find suitable conditions on R
such that certain algebraic properties of R are inherited by some diagonal Ra,
mostly with respect to the Cohen-Macaulay property and the Koszul property.
Their goal is to apply the results to the case of a standard bigraded k-algebra
or the Rees algebra of any homogeneous ideal I of A = k[Xy,...,X,}). In
the first case, R has a presentation as a quotient of a polynomial ring S =
k[X1,..., Xn,Y1,...,Y,;] endowed with the grading given by deg(X;) = (1,0),
deg(Y;) = (0,1). As for the Rees algebra, if I is generated by forms fi,..., fr
of degrees di, ..., d, respectively, we have a natural bigraded epimorphism

S =k[X1,...,Xn,Y1,...,Y;] — R=Ra()
X; = X;
Y; - fit
where deg(X;) = (1,0), deg(Y;) = (d;,1). Therefore, by working in the cat-
egory of bigraded S-modules for S = k[Xy,...,X,,Y1,...,Y;] the polyno-
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mial ring with deg(X;) = (1,0), deg(¥;) = (ds,1), di,...,d, > 0, one may
study both cases at the same time. Let us denote by M and m = Max
the homogeneous maximal ideals of S and Sa respectively. Denoting by
d = max{dy,...,d,}, we will consider diagonals A = (c,e) with ¢ > de + 1.

Since the arithmetic properties of a module can be often characterized
in terms of its local cohomology modules, it is of interest to study the local
cohomology of the diagonals La of any finitely generated bigraded S-module
L. This is done from the bigraded minimal free resolution of L over S: Let

0—=-D;—...5Dy—>L—=0

with Dy = @4 p)eq, S(a,b) be the bigraded minimal free resolution of I over
S. By taking diagonals one gets a graded resolution of L

0—>(DZ)A~+...—>(DO)A—>LA—>O,

with (Dp)a = Dapen, S(a,b)a. The first step is then the computation of
the local cohomology modules of the Sa-modules S(a,b)a, which is done in
the frame of a more general study about the local cohomology of the Segre
product of two bigraded k-algebras. In particular, it is obtained a criterion
for the Cohen-Macaulay property of S(a, b)a by means of a, b and A. We say
that the resolution of L is good if every module (D) is Cohen-Macaulay for
large diagonals A. Then it is stated the following theorem:

Theorem [CHTV, Theorem 3.6, Lemma 3.8] Assume n > r. For any finitely

generated bigraded S-module L, there exists a canonical morphism
¢]  Hi(La) = Hif (L)a, Yg >0
such that
(i) ¢ is an isomorphism for g > n.
(i) © is a quasi-isomorphism for ¢ > 0.
(iii) If L has a good resolution, 1 4s an isomorphism for large diagonals.
As a corollary one gets necessary and sufficient conditions for the existence

of Cohen-Macaulay or Buchsbaum diagonals La of L in terms of the graded
picces of the local cohomology modules of L.
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Given a standard bigraded k-algebra R, one may define the graded k-
subalgebras Ry = @yen Bi0)> Re = Djen B(o,j). The following result gives a
criterion for the Cohen-Macaulay property of the diagonals of R by means of
R1 and Ro. Namely,

Theorem [CHTV, Theorem 3.11] Let R be a standard bigraded Cohen-
Macaulay k-algebra. If the shifts in the resolutions of R1 and Ro are greater
than —n and —r respectively, then Ra is Cohen-Macaulay for large A .

In particular, they get the following corollary:

Corollary [CHTV, Corollary 3.12] Let R be a standard bigraded Cohen-
Macaulay k-algebra. If Ry, Re are Cohen-Macaulay with a(R1),a(R2) < 0,
then Ra is Cohen-Macaulay for large A .

This result applied to Rees algebras of equigenerated ideals gives a criterion

for the Cohen-Macaulay property of their diagonals.
Furthermore, the study done in [STV] for the (1,1)-diagonal of the Rees

algebra of an equigenerated complete intersection ideal is completed and ex-
tended to any complete intersection ideal and any diagonal, by determining
exactly which are the Cohen-Macaulay diagonals. This is the only case where

non equigenerated ideals are considered.

Theorem [CHTV, Theorem 4.6] Let I C A = k[X1,..., Xp] be a homoge-
neous complete intersection ideal minimally generated by r forms of degrees
di,...,dr. Setu =30 d;. Forc>de+1, k[(I¢).] is a Cohen-Macaulay
ring if and only if ¢ > d(e — 1) + v —n.

About the Cohen-Macaulay property of the diagonals of a Rees algebra, is

conjectured the following fact:

Conjecture Let I C A = k[X1,...,X,] be a homogeneous ideal. If Rao(I) is
a Cohen-Macaulay ring, then there exists a diagonal A such that R4(I)a is a
Cohen-Macaulay ring.

With respect to the Gorenstein property, there is just one statement re-
ferred to the diagonals of the Rees algebra of a homogeneous ideal generated

by a regular sequence of length 2.

Proposition [CHTV, Corollary 4.7] Let I C A = k[Xy,...,Xy] be a homoge-
neous complete intersection ideal minimally generated by two forms of degree
dy <dy. If n>dy + 1, k[I,) is a Gorenstein ring with a-invariant —1.
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Finally, it is shown that large diagonals of the Rees algebra are always
Koszul:

Theorem [CHTYV, Corollary 6.9] Let I C A = k[X1,...,X,] be a homoge-
neous ideal generated by forms of degree < d. Then there exist integers a,b
such that k[(1%)cy.q4e) i Koszul for all ¢ > a and e > b.

Under a slightly different setting, E. Hyry [Hy] is concerned with comparing
the Cohen-Macaulay property of the biRees algebra R4(I, J) with the Cohen-
Macaulay property of the Rees algebra R4(IJ), where I,J C A are ideals of
positive height in a local ring. To this end, he studies the A = (1, 1)-diagonal
of any standard bigraded ring R defined over a local ring. The main result
[y, Theorem 2.5] gives necessary and sufficient conditions for the Cohen-
Macaulayness of a standard bigraded ring R with negative a-invariants by
means of the local cohomology of the modules R(p,0)a and R(0,p)a (p €
N). In particular, it provides sufficient conditions on R so that the Cohen-

Macaulay property is carried from R to Ra:

Theorem Let R be a standard bigraded ring defined over a local ring. Suppose
that dimRy,dim Ry < dim R and o' (R),a*(R) < 0. If R is Cohen-Macaulay,
then so is Ra for A = (1,1).

Now let A be a noetherian graded k-algebra generated in degree 1 and
let I C A be a homogeneous ideal. The general problem of studying the
embeddings of the blow-up X = Proj(@nzo ™) of the projective scheme
Y = Proj (A) along the sheaf of ideals 7 = T given by the graded pieces of T
is treated by S.D. Cutkosky and J. Herzog [CH]. They are mainly concerned
with the existence of an integer f such that k[(1¢).] is Cohen-Macaulay for all
e >0 and ¢ > ef. The first example considered is the blow-up of a smooth
projective variety Y along a regular ideal in a field of characteristic zero, where
the Kodaira Vanishing Theorem can be used to prove:

Theorem [CH, Theorem 1.6] Suppose that k has characteristic zero, A is
Cohen-Macaulay, Y is smooth, I is equidimensional and Proj (A/I) is smooth.
Then there exists a positive integer f such that k[(I¢),] is Cohen-Macaulay
foralle >0 and c > ef.

Let 7 : X — Y be the blow-up morphism, F = Proj (@, Z"/1""), and
wg its dualizing sheaf. The main result they obtain is the following general

criterion:
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Theorem [CH, Theorem 4.1] Suppose that I C A is a homogeneous ideal such
that I ¢ p, Vp € Ass (A4), A is Cohen-Macaulay and X is a Cohen-Macaulay
scheme. Suppose that m,Og(m) = I™/T™ for m > 0, Rim.Og(m)=0 for
i>0and m >0, Rmyawr(m)=0 fori > 0 and m > 2. Then there ezists a
positive integer f such that k[(I¢).] is Cohen-Macaulay for e >0 and c > ef.

This result is applied there to the following classes of ideals:

Corollary [CH, Corollary 4.2) Let I C A be a homogeneous ideal such that
I ¢ p, Vp € Ass(A4), A is Cohen-Macaulay and I, is a complete intersection
ideal for any p € Proj (A). Then there ezists a positive integer f such that
k[(I¢).] is Cohen-Macaulay for e >0, c > ef.

Corollary [CH, Corollary 4.4] Let I C A be a homogencous ideal such that I ¢
p, Vp € Ass(A), A is Cohen-Macaulay and I,y is strongly Cohen-Macaulay
with p(Iy) < ht(p) for any prime idesl p € Proj (A) containing I. Then
there exists a positive integer f such that k[(I¢)c] 4s Cohen-Macaulay for
e>0,c>ef.

As a somehow unexpected by-product, the methods used to study the
diagonals of a Rees algebra also allow to study the regularity of the powers of
an ideal and their asymptotic properties. These problems have been previously
handled by using other techniques. Let A = k[X;,...,X,] be a polynomial
ring with the usual grading and let I C A be a homogeneous ideal. I. Swanson
[Swa] has shown that there exists an integer B such that reg (1°) < Be, Ve. The
problem is to make B explicit. In some particular cases, such B was already
known. A. Geramita, A. Gimigliano and Y. Pitteloud [GGP] and K. Chandler
[Cha) had proved that for ideals with dim(A/I) = 1, reg (I¢) <reg(l)e. On
the other hand, R. Sjogren [Sjo] had given another kind of bound: If I is an
ideal generated by forms of degree < d with dim(A/I) < 1, reg (1¢) < (n—1)de.
Also A. Bertram, L. Ein and R. Lazarsfeld [BEL] have given a bound for the
regularity of the powers of an ideal in terms of the degrees of its generators:
If I is the ideal of a smooth complex subvariety X of PE™! of codimension ¢
penerated by forms of degrees dp > dy > ... > dy, , then

HYPE Y I8k) =0, Vi> 1, Vk>edi+dp+ ... +do— (n—1).

Let (A,m,k) be a local ring and let I C A be an ideal. Concerning the

asymptotic properties of the powers of I, a classical well known result of
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M. Brodmann [Bro] says that depth A/I7 takes a constant asymptotic value
C for j >> 0, and moreover C' < dim A — [(I). This value C was deter-
mined by D. Eisenbud and C. Huneke [EH] for ideals under some restrictions:
If I is an ideal of height greater than zero and G 4(I) is Cohen-Macaulay,
then inf{depth A/I} = dim A — I(I), and if depth A/I° = inf{depth A/I7},
then depth A/I**! = depth A/I°. Finally, V. Kodiyalam [Kol] has shown
that for any fixed nonnegative integer p and all sufficiently large j, the
p-th Betti number ﬁ;‘([j) = dimyg Torf}(]j,k) and the p-th Bass number
ph (I7) = dimy, Ext% (k, I7) are polynomials in j of degree < [(I) —1.

Now' we are going to set and motivate the concrete problems and questions

considered in this dissertation.

The restriction to Rees algebras of equigenerated ideals done by A. Simis et
al. [STV] is due to the fact that in this case the Rees algebra can be endowed
with a bigrading so that it becomes standard. For standard bigraded algebras
one may define its biprojective scheme (see [STV], [Hy]) and there are also
known results about its Hilbert polynomial (see [HHRT], [KMV]). If I is an
ideal generated by forms f1,..., f. of degrees di,...,d, respectively, the Rees
algebra of I has a presentation as a quotient of S = kX1, X0, 1,0, Y]
bigraded by setting deg(X;) = (1,0), deg(Y;) = (d;, 1) which is non standard.
Our first problem will be to extend the definitions and known results on bi-
graded modules over standard bigraded algebras to the category of bigraded

S-modules.

Several arithmetic properties of a ring such as the Cohen-Macaulayness and
the Gorenstein property can be characterized by means of its local cohomology
modules. This is the reason why it is interesting and useful to study when
the local cohomology modules and the diagonal functor commute, case in
which we may conclude that certain arithmetic properties of the Rees algebra,
are inherited by its diagonals. The shifts (a,b) which arise in the bigraded
minimal free resolution of the Rees algebra R4 (I) over the polynomial ring S
play an essential role in this problem as it was seen in [CHTV]. We will study
and bound these shifts by relating them to the local cohomology of the Rees
algebra. After that, we will focus on the obstructions for the local cohomology

modules and the diagonal functor to commute.

Once we have done all those preliminaries, our main purpose will be to
study the Cohen-Macaulayness of the rings k[(1¢).]. We will consider different
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questions such as the existence and the determination of the diagonals (c,e)
for which k[(7¢).] is Cohen-Macaulay, problems treated in [STV], [CHTV] and
[CH]. Similarly, our next goal will be to study the Gorenstein property of
the k-algebras k[(I¢).]. This has been only done in a very particular case in
[CHTV].

Some of the criteria we will obtain for the Cohen-Macaulayness of the k-
algebras k[(I¢).] are in terms of the local cohomology modules of the powers
of the ideal I. This will lead us to study the a-invariants of the powers of a
homogeneous ideal. We will then show how the bigrading defined in the Rees
algebra can be used to study the a-invariants and the asymptotic properties

of the powers of an ideal.
Summarizing, the main problems we have considered in this work are:
(1) To extend the definitions and results about the biprojective scheme
and the Hilbert polynomial of finitely generated bigraded modules de-
fined over standard bigraded k-algebras to finitely generated bigraded S-

modules, for S = k[X1,...,X,,Y1,...,Y;] the polynomial ring bigraded
by deg(XZ) = (170)7 deg(ij) = (d]a 1)7 dl) s 7d7‘ > 0.

(2) To relate the shifts in the bigraded minimal free resolution of any finitely

generated bigraded S-module to its a-invariants.

(3) To study the local cohomology modules of the diagonals of any finitely
generated bigraded S-module.

(4) To study the Cohen-Macaulay property of the rings k[(1¢).].
(5) To study the Gorenstein property of the rings k[(I®)c]-
(6) To study the a-invariants of the powers of a homogeneous ideal.

(7) To study the asymptotic properties of the powers of a homogeneous ideal.

Now we are ready to describe the results obtained in this work.

In Chapter 1 we introduce the notations and definitions we will need
throughout this work. We begin the chapter by defining the category of multi-
praded modules over a multigraded ring, and by recalling some well-known

results about multigraded local cohomology and the canonical module mainly
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following M. Herrmann, E. Hyry and J. Ribbe [HHR] and S. Goto and K.
Watanabe [GW1]. Then we define the multigraded a-invariants of a module
and we study the relationship between these a-invariants and the shifts of its
multigraded minimal free resolution. We will obtain a formula which extends
(BHI, Example 3.6.15], where it was proved for Cohen-Macaulay modules in
the graded case. This result will be a very useful device used all along this
work. To precise it, let S be a d-dimensional N'-graded Cohen-Macaulay
k-algebra with homogeneous maximal ideal M and let M be a finitely gener-
ated r-graded S-module of dimension m and depth p. For each i = 0, ... , 10,
we may assoclate to the i-th local cohomology module of M its multigraded
ai-invariant a,(M) = (a} (M), ..., al (M)), where

T Q

al (M) =max{n|3In=(n',...,n") € 2" s.t. Hi (M)n # 0,7’ =n}

(2

if Hi,(M) # 0 and af(M) = —oo otherwise. Notice that a,,(M) co-
incides with the usual o-invariant, and so we will denote by a(M) =
(a'(M),...,a"(M)) = an(M). Finally, the multigraded a,-invariant of M
is a, (M) = (al(M),...,al(M)), where al(M) = maxi—o, _m{al (M)}.

* e 3

On the other hand, we may consider the r-graded minimal free resolution
of M over S. Suppose that this resolution is finite:

O0—=Dy—...= Dy =Dy — M~—0,

with D, = @, S(a}]q,...,agq). For every p € {0,...,1}, j € {1,...,r}, let us
denote by

(M) = maxg{—al,},

(M) = maxp,q{—a%q} = max, t%(M),
t (M) = (L (M),..., (M),

Moreover, given a permutation o of the set {1,..,r}, let us con-
sider <, the order in Z" defined by: (uy,.,u,) <, (1,0, vp) iff
(Uo(1)s s Uo(r)) Ztex (Vg(1)s - Vo(r))s Where <ie is the lexicographic order.
Set My = max<,{ (—ap,, ..., —ap,)}. Then we can relate the shifts and the

a-invariants of M in the following way:

Theorem 1 [Theorem 1.3.4] For every j = 1,...,r,

(i) af_,(M) < (M) +d/(S), forp=d—m,...,d—p.
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(1) Assume‘ that for some p thm‘"e ezists 0 s.t. o(1) = j and My >, M7,.
Then a}y (M) = (M) + a’(S).

(iii) al(M) = tL(M) + o/ (S). That is, a,(M) = t.(M) + a(5).

After that, we extend the definition and some of the results about the
multiprojective scheme associated to a standard r-graded ring given by E. Hyry
[Hy] and M. Herrmann et al. [HHRT] to rings endowed with a more general
grading, which will also include the Rees algebra of a homogeneous ideal. Let

S be a noetherian N'-graded ring generated over S by homogeneous elements

L1ty ey Elhyy - o Trly- - -5 Tpk, in degrees deg (z45) = (d}j, . ,déj“l, 1,0,...,0),
with déj > 0. For every j = 1,...,r, let I; be the ideal of S generated
by the homogeneous components of S of degree n = (n1,... ,ny) such that
n; > 0,nj41 = ... = ny = 0. The irrelevant ideal of S'is Sy =11 ---I,. We

may associate to S the r-projective scheme Proj "(S) which as a set contains
all the homogeneous prime ideals P C S such that S; ¢ P. The relevant
dimension of S is

r—1 if Proj "(S) =0

Ldim S = .
renam {max{dimS/P|PeProjr(S)} if Proj "(S) # 0

It can be proved that dimProj "(S) = rel.dim S — r by arguing as in [Hy,
Lemma 1.2] where the standard r-graded case was considered. This result
jointly with the isomorphism of schemes Proj "(S) = Proj (Sa) that we have
for certain diagonals allows to compute the dimension of Sao whenever Sy
is artinian, by extending [STV, Proposition 2.3] where this dimension was
determined for the (1,1)-diagonal of a standard bigraded k-algebra by different

methods.

Finally, we extend to the category of r-graded modules defined over the r-
graded k-algebras introduced before the basic results concerning Hilbert func-
tions and Hilbert polynomials. Some of them have been established in the
standard r-graded case in [HHRT] and [KMV].

In Chapter 2 we are concerned with the diagonal functor in the
category of bigraded S-modules, where S is the polynomial ring S =
k[Xy,...,Xn,Y1,...,Y;] bigraded by setting deg X; = (1,0), deg¥; = (d;, 1),
dy,...,d, > 0. In the first section, we compare the local cohomology modules
of a finitely generated bigraded S-module L with the local cohomology mod-
nles of its diagonals. In particular, we will prove the main results in [CHTV] by
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a different and somewhat easier approach. In addition, this approach will pro-
vide more detailed information about several problems related to the behaviour
of the local cohomology when taking diagonals. Set d = max{di,...,d,}, and
let A = (c,e) be a diagonal with ¢ > de + 1. Let us consider the following
subalgebras of St S1 = k[X1,..., X,)], So = K[V, ... , Y2, with homogeneous
maximal ideals m; = (X1,..., X,,) and my = (V7,. .. ,Y2). Let My, My be the
ideals of S generated by my, my respectively, and let M be the homogeneous
maximal ideal of S. Then:

Proposition 2 [Proposition 2.1.3] Let L be a finitely generated bigraded S-

module. There ezists a natural ezact sequence

&

q
= HY(L)a = Hjy (L)a & Hi,, (L)a = HL, (La) 25 B (L)s — ...

In the rest of the section, we study the obstructions for ©? to be an isomor-
phism. Firstly, we relate this question to the vanishing of the local cohomology
with respect to M; and Mj of the modules S(a, b) which arise in the bigraded
minimal {ree resolution of L over S. This allows us as said to recover the main
results in [CHTV]. After that, we study the vanishing of the local cohomology
modules of L with respect to M; and My by themselves.

In Section 2.2 we will focus on standard bigraded k-algebras. Given
a standard bigraded k-algebra R, let us consider the graded subalgebras
Ri = @ien By, Ro = Djen F(o,5)- By using Theorem 1, we obtain a char-
acterization for R to have a good resolution in terms of the as-invariants of
R1 and Ry which, in particular, provides a criterion for the Cohen-Macaulay
property of its diagonals. We also find necessary and sufficient conditions
on the local cohomology of Ry and Ry for the existence of Cohen-Macaulay
diagonals of a Cohen-Macaulay standard bigraded k-algebra R. This result
extends [CHTV, Corollary 3.12].

Proposition 3 [Proposition 2.2.7] Let R be a standard bigraded Cohen-
Macaulay k-algebra of relevant dimension 6. There ezists A such that Ra s
Cohen-Macaulay if and only if HL (R1)g = HY (R2)o =0 for any g < 6 — 1.

m1 m

Now let us consider a standard bigraded ring R defined over a local ring

with a'(R),a?(R) < 0. In [Hy, Theorem 2.5] it is shown that if R is Cohen-

Macaulay then the A = (1, 1)-diagonal of R has also this property. This result
can be extended to any diagonal of a standard bigraded k-algebra:
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Proposition 4 [Proposition 2.2.6] Let R be a standard bigraded Cohen-
Macaulay k-algebra with a*(R),a?(R) < 0. Then Ra s Cohen-Macaulay for
any diagonal A.

At the end of the chapter, we apply the results about bigraded k-algebras
to the Rees algebra of a homogeneous ideal. Let A be a noetherian graded
k-algebra generated in degree 1 of dimension 7 and let m be the homogeneous
maximal ideal of A. Given a homogeneous ideal I of A, the Rees algebra
R = R4(I) of I is bigraded by R4(I)i, ) = (I7);. If T is generated in degree
< d, for any diagonal A = (c,e) with ¢ > de + 1 we have:

Ra(I)a = K[(I°)c]-

The diagonals k[(I¢).] are graded k-algebras of dimension 7 if no associated
prime of A contains I. In the sequel we will always assume such hypothesis.
We can relate the local cohomology modules of the k-algebras k[(I€).] and
those of the powers of I. Denoting by m the homogeneous maximal ideal of
k[(I¢).], we have:

Proposition 5 [Corollary 2.3.5] For any ¢ > de +1, e > a(R), s > 0, we

have isomorphisms

H,(R[(I9)c])s = H

m

(I%%)es, Vg 2 0.

In the particular case where A = k[X1,...,X,], A. Conca et al. [CHTV]
conjectured that if the Rees algebra of a homogeneous ideal I of A is Cohen-
Macaulay, then there exists a Cohen-Macaulay diagonal. The results proved
for standard bigraded k-algebras provide an affirmative answer for equigener-

ated homogeneous ideals. In fact, we can give a full answer to this conjecture.
Theorem 6 [Theorem 2.3.12] Let I be a homogeneous ideal of the polynomial
ring A = k[X1,...,Xp]. If Ra(I) is a Cohen-Macaulay ring, then R4(I) has
a good resolution. In particular, k[(I¢).] is Cohen-Macaulay for ¢ >> e > 0.
Furthermore, we obtain sufficient and necessary conditions on the ring A

for the existence of Cohen-Macaulay diagonals of a Rees algebra R4(I) with
this property. Namely,

Theorem 7 [Theorem 2.3.13) If R4(I) is Cohen-Macaulay, then the following

are equivalent:
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(i) There exist c,e such that k[(I¢).] is Cohen-Macaulay.

(i) HL(A) =0 fori <m.

In Chapter 3 we study in detail the Cohen-Macaulay property of the
rings k[(1°).]. We consider the problem of the existence of Cohen-Macaulay
diagonals of the Rees algebra. Once studied this problem, we will try to
determine the diagonals with this property. The following isomorphisms will

play an important role:

Proposition 8 [Proposition 3.1.2] Let X be the blow-up of Proj (A) along
I = f, where I is a homogeneous ideal of A generated by forms of degree < d.

For any ¢ > de + 1, there are isomorphisms of schemes

X 2 Proj *(Ra(I)) = Proj (k[(I°).]).

First of all, these isomorphisms will be used to give a criterion for the
existence of diagonals k[(1°).] which are generalized Cohen-Macaulay modules,
thereby solving a conjecture of [CHTV].

Proposition 9 [Proposition 3.2.6] The following are equivalent:
(i) Hig(Ra(I)) (=0 fori <m—+1, p< q<0.
(ir) k[(I°)c] is a generalized Cohen-Macaulay module for ¢ > ¢ > 0.
(i1i) There ewist c, e such that k[(I¢).] is generalized Cohen-Macaulay.
(iv) k[(I¢)c] is a Buchsbaum ring for ¢ > e > 0. |
(v) There exist c,e such that k[(1°)c] is a Buchsbaum ring.

(vi) There exist qq, t such that HjA(RA(I))(p)q) =0 fori<m+1, ¢ <qyand
p<dg+t.

After that, we use Proposition 8 to give necessary and sufficient conditions
for a Rees algebra to have Cohen-Macaulay diagonals. Namely,

Theorem 10 [Theorem 3.2.3, Corollary 3.2.5] The following are equivalent:

(i) There esist c,e such that k[(I°),] is a Cohen-Macaulay ring.



INTRODUCTION Xix

(ii) (1) There ezist qo,t € Z such that Hi(RaA(I))(p,q = 0 for alli <m+1,
g <qo andp <dg+t.

(2) HEA(I)JF(RA(I))(O,O) =0 for all i < 7.
(111) (1) X is a Cohen-Macaulay scheme.
(2) I'(X,0x) =k, H(X,0x) =0 for 0 <i<m—1.
In this case, k[(1¢).] is a Cohen-Macaulay ring for ¢ > e > 0.

By using this theorem, we can exhibit some general situations in which
we can ensure the existence of Cohen-Macaulay coordinate rings for X. For

instance,

Proposition 11 [Proposition 3.3.3] Let X be the blow-up of IP)Z_]L along a
closed subscheme, where k has chark = 0. Assume that X is smooth or with

rational singularities. Then X is arithmetically Cohen-Macaulay.

Our next goal in the chapter will be to determine the Cohen-Macaulay
diagonals once we know its existence. This is a difficult problem which has
been completely solved only for complete intersection ideals in the polynomial
ring [CHTV, Theorem 4.6]. For equigenerated ideals, we can give a criterion
for the Cohen-Macaulayness of a diagonal in terms of the local cohomology
modules of the powers of the ideal by just assuming that the Rees algebra is

Cohen-Macaulay. Namely,

Proposition 12 [Proposition 3.4.1] Let I C A be an ideal generated by forms
of degree d whose Rees algebra is Cohen-Macaulay. For any ¢ > de+-1, k[(I°).]
is Cohen-Macaulay if and only if

(i) Hi(A) =0 fori<m.

(i) H:(I%)es =0 fori <m, s > 0.

m

For arbitrary homogeneous ideals, we can also prove a criterion for the
Cohen-Macaulayness of a diagonal by means of the local cohomology of the
powers of the ideal and the local cohomology of the graded pieces of the
canonical module of the Rees algebra. Let us denote by K = Kp,(5) =
D i) K the canonical module of the Rees algebra, and for each e € Z, let
us consider the graded A-module K¢ = ; K(; ). Then we have:

Theorem 13 [Theorem 3.4.3] Let I be a homogeneous ideal of A generated by
forms of degree < d whose Rees algebra is Cohen-Macaulay. For any c > de+1,
k[(I¢).] is Cohen-Macaulay if and only if
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(i) H(A)y =0 fori < 7.
(i) HE(I%%)es =0 fori<m, s> 0.

(iii) HP LK), =0 for1 <i<m, s> 0.
1f the form ring is quasi-Gorenstein we can express the criterion above only

in terms of the local cohomology of the powers of the ideal.

Theorem 14 [Corollary 3.4.4] Let I be a homogeneous ideal of A generated by
forms of degree < d. Assume that Rao(I) is Cohen-Macaulay, G 4(I) is quasi-
Gorenstein. Set a = —a?(Ga(I)), b= —a(A). For any ¢ > de + 1, E[(I%).] is
Cohen-Macaulay if and only if

(i) Hi(A)g =0 fori <.
(i3) H:(I%)es =0 fori<m, s> 0.

(iii) HE,

(Ies=athy oy =0forl<i<m, s>0.

We can use Theorem 14 to determine exactly the Cohen-Macaulay diago-
nals of the Rees algebra of a complete intersection ideal in any Cohen-Macaulay
ring. In particular, we get a new proof of [CHTV, Theorem 4.6] where the
case A = k[X1,...,X,] was studied.

These criteria will be also applied in the Chapter 5, once we have studied
in detail the local cohomology modules of the powers of several families of

ideals, such as equimultiple ideals or strongly Cohen-Macaulay ideals.

Furthermore, the results and methods used up to now allow us to show
the behaviour of the a,-invariant of the powers of a homogeneous ideal. The
following statement has been obtained independently by S.D. Cutkosky, J.
Herzog and N. V. Trung [CHT] and V. Kodiyalam [Ko2] by different methods.

Theorem 15 [Theorem 3.4.6] Let L be a finitely generated bigraded S-module.
Then there ezxists o such that

a,(L%) < de + a, Ye.

After that, we use the bound on the shifts of the bigraded minimal free
resolution of the Rees algebra obtained in Theorem 1 to determine a family of
Cohen-Macaulay diagonals of a Cohen-Macaulay Rees algebra.
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Theorem 16 [Theorem 3.4.12] Let I be a homogeneous ideal of A generated
by r forms of degree di < ... < dp = d. Assume that Hi(A)y =0 fori < 7.
Set u = Z§:1 dj. If the Rees algebra is Cohen-Macaulay, then

(i) k[(I¢).] is Cohen-Macaulay for ¢ > max{d(e — 1) +u+a(A4),d(e — 1) +
u—dy(r—1)}.

(i) If T is generated by forms in degree d, k[(1¢).] is Cohen-Macaulay for
c>dle—1+1(I))+a(A).

Our results can be also applied to study the embedddings of the blow-
up of a projective space along an ideal I of fat points via the linear systems
(I¢). whenever these linear systems are very ample, slightly extending [GGP,

Theorem 2.4] where only the linear systems I, were considered.

Theorem 17 [Theorem 3.4.15] Let I C A = k[Xy,... , Xn] be an ideal of fat

points, with k a field of characteristic zero. Then

(i) k[(I°).] is Cohen-Macaulay if and only if H(I¢)es =0 fors > 0,4 <n.

m

(i) For ¢ > reg (I)e, k[(I°)c] is Cohen-Macaulay with a(k[(I¢):]) < 0. In
particular, reg (k[(1¢)]) <n—1.

The chapter finishes by studying sufficient conditions for the existence of
a positive integer f such that k[(1¢).] is a Cohen-Macaulay ring for all ¢ > ef
and e > 0, a question that has been treated by S.D. Cutkosky and J. Herzog.
Our main result, which improves [CH, Corollaries 4.2, 4.3 and 4.4], is the

following:

Theorem 18 [Theorem 3.5.3] Let I be a homogeneous ideal of A such that
Ry, (I,) is Cohen-Macaulay for any prime ideal p € Proj (A). Assume that
Hi(A)o = 0 fori < m. Then there exists an integer o such that k[(I¢)¢] is

m

Cohen-Macaulay for all ¢ > de +a and e > 0.

The aim of Chapter 4 is to study the Gorenstein property of the k-
algebras k[(I°).]. About the Cohen-Macaulay property, we have already
proved that if there exists a Cohen-Macaulay diagonal then there are in-
finitely many with this property. We show that the behaviour of the Goren-
stein property is totally different. For instance, by considering the polyno-
mial ring S = k[X1,..., Xn, Y1,...,Y;] with deg X; = (1,0), deg¥; = (dj, 1),
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di,...,d, > 0, we have that Sa is Cohen-Macaulay for any diagonal A but
there is just a finite set of Gorenstein diagonals.

‘s . . o v ndw
Proposition 19 [Proposition 4.1.1] Sa is Gorenstein if and only if L=t =
l €Z. Then a(Sa) = —1.

To determine the rings k[(I¢).] which are Gorenstein, we will compare
the canonical module of the Rees algebra with the canonical module of each
diagonal. For complete intersection ideals of the polynomial ring, it was proved
in [CHTV, Proposition 4.5] that the canonical module and the diagonal functor
commute. This result can be extended to more general situations.

Proposition 20 [Proposition 4.1.4 and Remark 4.1.5] Let A = k[X}, ..., X,,]
be the polynomial ring, n > 2, and let I be a homogeneous ideal of A with
u(l) > 2.

(i) If p(I) <n, Kr, = (Kg)a.

(i) If I is equigenerated and R is Cohen-Macaulay, Kg, = (Kg)a.

Although this isomorphism can be extended to a more general class of
rings, we will restrict our attention to the above two cases. This will suffice
to study the rational surfaces obtained by blowing-up the projective plane at

a set of points.

Next we study the behaviour of the Gorenstein property of the Rees algebra
when we take diagonals. If the Rees algebra is Gorenstein then the form
ring is also Gorenstein. Under this assumption on the form ring, which is
less restrictive, we can determine exactly for which ¢, e the algebra k[(I “)e) is

quasi-Gorenstein. Namely,

Theorem 21 [Theorem 4.1.9] Let I C A = k[Xy,...,X,] be a homogeneous
ideal with 1 < ht (I) < n whose form ring Ga(I) is Gorenstein. Set a =
—a*(Ga(I)). Then k[(I°).] is a quasi-Gorenstein ring if and only if 2 =
=l =iy € Z. In this case, a(k[(I%).]) = —lo.

€
For homogeneous non principal ideals I of height 1, the ring k[(I¢)] is
never Gorenstein. If I has height n, then the diagonals determined in the
theorem are always Gorenstein, but the converse is not true. As a corollary of
this result we can solve the problem of determining completely the Gorenstein
diagonals for complete intersection ideals or determinantal ideals generated by

the maximal minors of a generic matrix.
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Corollary 22 [Corollary 4.1.12] Let I C A = k[X1,...,Xx] be a complete
intersection ideal minimally generated by r forms of degree dy < ... < d, =d,
with 7 < n. For any ¢ > de + 1, k[(I®).] is a Gorenstein ring if and only if
n—r=L =] 7. In this case, a(k[(I®).]) = —lo.

4 [4

Corollary 23 [Example 4.1.13] Let X = (Xj;) denote a matriz of indetermi-
nates, with 1 <i <n,1 <j<m andm <n. Let I ¢ A = k[X] denote the
ideal generated by the mazimal minors of X, where k is a field. Then:

(i) If m < n, then k[(I°)] is Gorenstein if and only if " = *T% € Z.

e

(ii) If m =n, then A = (n(n+ 1),1) is the only Gorenstein diagonal.

We have shown that if the form ring is Gorenstein there is just a finite set
of Gorenstein diagonals. This fact also holds under the general assumptions

of the chapter. Namely,

Proposition 24 [Proposition 4.2.1] There is a finite set of diagonals & = (c,e)
such that k[(I¢).] is quasi-Gorenstein.

Tf the Rees algebra is Cohen-Macaulay, then we can bound the diagonals
A = (¢, e) for which k[(I®).] is Gorenstein.

Proposition 25 [Proposition 4.2.2] Assume that ht (I) > 2 and Ru(I) is
Cohen-Macaulay. Let a = —a?(Ga(I)). If k[(I°)c] is quasi-Gorenstein, then
e < a—1andc<n. Moreover, if diim(A/I) >0 then [§] ~1=% =1¢€ Z.
In particular, if a = 1 there are no diagonals (c,e) such that k[(I¢).) is quasi-

Gorenstein.

Finally, we show that in some cases the existence of a diagonal (¢,e) such
that k[(I¢).] is quasi-Gorenstein forces the form ring to be Gorenstein. It may

be seen as a converse of Theorem 21 for those cases.

Theorem 26 [Theorem 4.2.3] Assume that Rs(I) is Cohen-Macaulay,
ht (I) > 2, I(I) < n and I is equigenerated. If there exists a diagonal (c,e)
such that k[(I¢).] is quasi-Gorenstein then G 4(I) is Gorenstein.

We finish the chapter by applying the previous results to recover the fact
that the Del Pezzo sestic surface in P® is the only Room surface which is

Gorenstein.

In Chapter 5 we study the a-invariant and the regularity of any finitely
generated bigraded S-module L, for S = k[X1,...,Xn, Y1,...,Y;] the polyno-
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mial ring with deg X; = (1,0), degY; = (0,1). This class of modules includes
for instance any standard bigraded k-algebra R.

Given a finitely generated bigraded S-module L, let us consider the bi-

graded minimal free resolution of L over S
0—=Dy—=...>Dy—> L0,

with D, = D (an)eq, S(a,b). The bigraded regularity of L is reg(L) =
(reg1L,regqL), where

reg1l = max{~a—p|(a,0) € Qp},
regol = mpax{—b —p| (a,b) € Qp}.

For each e € Z, we may define the graded Sj-module L® = @, L; e
and the graded Sy-module L, = Djecz Lie,j)- Our first result gives a new
description of the as-invariant a,(L) of L and the regularity reg(L) of L in
terms of the a,-invariants and the regularities of the graded modules L¢ and

L. Namely,

Theorem 27 [Theorem 5.1.1, Theorem 5.1.2] Let L be a finitely generated
bigraded S-module. Then:

(i) aX(L) = maxe{a,(L9)} = maxe{a.(L%) | e < a¥(L) +r}.
(ii) a2(L) = max.{a.(Le)} = maxe{an(Le) | e < al(L) + n}.
(iii) reg 1 L = maxe{reg (L)} = max{reg (L) | e < a?(L) + r}.
(iv) reg 2L = max,(reg (Le)} = max.{reg (L) | e < al(L) +n}.

This result will be used to study the a,-invariant and the regularity of the
powers of a homogeneous ideal I in the polynomial ring 4 = k[X1,..., X,].
According to Theorem 15, there exists an integer « such that a.(I¢) < de+ o,
Ve. The first aim is to determine such an « explicitly, and this will be done for
any equigenerated ideal by means of a suitable a-invariant of the Rees algebra.
For a homogeneous ideal I, we will denote by R, G and F the Rees algebra
of I, its form ring and the fiber cone respectively. If T is an ideal generated
by forms in degree d, let us denote by R¥ the Rees algebra endowed with the
bigrading [R¥](; ;) = (I7)i4+4;. Then we have

Theorem 28 [Theorem 5.2.1] Let I be a homogeneous ideal of A generated by
forms in degree d. Set 1 =1(I). Then
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(i) al(R®) = max.{ a.(I°) — de} = max { a.(I¢) — de | e < a(R) +1}.
(ii) reg1(R?) = max.{reg (I°) — de} = max { reg (I°) — de | e < a2(R) +1}.
Therefore, we need to study al(R¥) to get concrete bounds for the a.-

invariant of the powers of several families of ideals. If the Rees algebra is

Cohen-Macaulay we have
Proposition 29 [Proposition 5.2.5] Let I be a homogeneous ideal generated by
forms in degree d whose Rees algebra is Cohen-Macaulay. Setl = I(I). Then

—n+d(-a*(G)—1) < Iengéc{a*(fe) —de} < —n+d(l-1).

The a,-invariants of the powers of a complete intersection ideal are well-
known, and in this case the inequalities above are sharp. Next we compute
explicitly al(R?) = maxe>o{a«(I°) — de} for other families of ideals. First we

consider equimultiple ideals.

Proposition 30 [Proposition 5.2.8] Let I be an equimultiple ideal equigener-
ated in degree d and set h = ht(I). If the Rees algebra is Cohen-Macaulay,

(i) a(I¢/1°%Y) = de + a(A/I). In particular, a'(G¥) = a(A/I).
(i) an_ni1(I¢) = d(e —1) +a(4/I). In particular, a*(R¥) = a(A/T) —d.
For ideals whose form ring is Gorenstein we can also compute explicitly

maxe>o{as(1¢) — de}, and then we get that the lower bound given by Propo-

sition 29 is sharp.

Proposition 31 [Proposition 5.2.9] Let I be a homogeneous ideal equigener-

ated in degree d whose form ring is Gorenstein. Setl = I(I). Then
(i) maxe>o{a«(1¢) —de} = d(—a*(G) — 1) —n.
(i) For e > a*(G) — a(F), depth(A/I¢) = n —1 and a.(I°) = an—1(A/1%) =
d(e — a*(G@) —1) —n.

For instance, we may apply this result to determinantal ideals generated by
the maximal minors of a generic matrix as well as to strongly Cohen-Macaulay

ideals satisfying condition (F7).
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The computation of the a.-invariants of the powers of these families of
ideals is then applied to determine the Cohen-Macaulay diagonals of a Rees
algebra. For equimultiple ideals, we have

Proposition 32 [Proposition 5.2.20] Let I be an equimultiple ideal generated
in degree d whose Rees algebra is Cohen-Macaulay. For any ¢ > de+1, E[(I%).]
is Cohen-Macaulay if and only if ¢ > d(e — 1) + a(A/I).

For strongly Cohen-Macaulay ideals, we have

Proposition 33 [Proposition 5.2.21] Let I be a strongly Cohen-Macaulay ideal
such that p(ly) < ht (p) for any prime ideal p D I. Assume that I is minimally
generdated by forms of degree d = dy > ... > d,, and let h = ht (I). For
c>dle—1)+di+...+dy—n, k[(I).] is Cohen-Macaulay.

If the Rees algebra is Cohen-Macaulay, we have proved the existence of an
integer a such that k[(1¢).] is a Cohen-Macaulay ring for any ¢ > de + o and
¢ > 0 by Theorem 16. For equigenerated ideals we had @ = d(I — 1) as an

upper bound. We can determine the best «.

Proposition 34 [Proposition 5.2.15, Corollary 5.2.16] Let I be an ideal in
the polynomial ring A = k[X1,...,X,] generated by forms in degree d whose
Rees algebra is Cohen-Macaulay. Set | = I(I). For a > 0, the following are

equivalent
(1) k[(I¢)c] is CM for ¢ > de + .
(it) a;(I°) < de + «, Vi, Ve.
(iii) a;(I°) < de+a, Vi, Ve <l —1.
(iv) H}(‘jl(RA(I))(p,q) =0, Vp>dg+ a, that is, a > a'(R¥).

(v) The minimal bigraded free resolution of Ra(I) is good for any diagonal
A = (c,e) such that ¢ > de + .

If the form ring is Gorenstein, these conditions are equivalent to
(vi) o> d(—a?*(G) —1) —n.
Up to now, we have used Theorem 27 to bound the a.-invariants of the

powers of an ideal, which has been applied to study the Cohen-Macaulayness
of the diagonals. In the last section, we use this theorem to prove a bigraded
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version of the Bayer-Stillman theorem which characterizes the bigraded reg-
ularity of a homogeneous ideal of S by means of generic homogeneous forms.
Next, similarly to the graded case, we define the generic initial ideal ginl of
a homogeneous ideal I of S and we establish its basic properties. In partic-
ular, we may use the Bayer-Stillman theorem to compute the regularity of a
Borel-fix ideal in S when k has characteristic zero. For j = 1,2, let us denote
by 6;(I) the maximum of the j-th component of the degrees in a minimal

homogeneous system of generators of I. Then we have

Proposition 35 [Proposition 5.3.10] Let I C S be a Borel-fiz ideal. If chark =
0, then
reg (1) = 61(I),

reg2(I) = d2(1).

This result has been also proved by A. Aramova et al. [ACD] by different
methods. In the graded case, D. Bayer and M. Stillman [BaSt] also proved the
existence of an order in the polynomial ring A = k[X\,..., X,] (the reverse
lexicographic order) such that regl = reg(gin/) for any homogeneous ideal
I of A. We finish the chapter by showing that the analogous bigraded result
does not hold because we can find a homogeneous ideal I of S such that for

any order reg(l) # reg(ginl).

In Chapter 6 we study the asymptotic properties of the powers of a
homogeneous ideal I in the polynomial ring A = k[Xq,...,X,). We will
show how the bigraded structure of the Rees algebra provides information
about the Hilbert polynomials, the Hilbert series and the graded minimal free
resolutions of the powers of I. This grading of the Rees algebra will be also
useful to study the mixed multiplicities of the Rees algebra and the form ring

of an equigenerated ideal.

Theorem 36 [Theorem 6.1.1] Let I be a homogeneous ideal of A. Setc =
a2(Ra(I)), h = ht (I). Then there are polynomials e0(7);- - s en—n-1(j) with
integer values such that for all j > c¢+1

n—h~1
Pyi(s)= Y, (—1)" P e ik (d) (S —;; k)

k=0

Purthermore, degen_p_1-5(J) <n—k—1 for all k.
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In particular, this result says that a finite set of Hilbert polynomials of
the powers of an ideal allows to compute the Hilbert polynomials of its Rees
algebra and its form ring, without needing an explicit presentation of these
bigraded algebras. For equigenerated ideals, we may also compute the multi-

plicities of their Rees algebras and form rings.

Corollary 37 [Corollary 6.1.8] Let I be a homogeneous ideal in A. Let ¢ =
a2(Ra(I)), h = ht (I). Then the Hilbert polynomials of I forc+1<j < c+n

determine
(i) The polynomials en_p_1_1(j) fork=0,...,n—h—1.
(i) The Hilbert polynomials of A/I7 for j > ¢ +n.
(i4i) The Hilbert polynomial of Ra(I) and the Hilbert polynomial of G4(I).

(iv) If I is equigenerated and not m-primary, the mized multiplicities of
Ra(I) and Ga(I).

A similar result can be proved for the Hilbert series of the powers of a

homogeneous ideal. Namely,

Proposition 38 [Theorem 6.2.1, Proposition 6.2.7] Let I be a homogeneous
ideal. Set r = p(I), | =1(I), c = a?(Ra(I)): Then:

(i) The Hilbert series of IV for j < ¢ +r determine the Hilbert series of I’
forjg>c+r.

(i) If I is an equigenerated ideal, the Hilbert series of IV for c4+1 < j < c+1
determine the Hilbert series of I for j > ¢ + 1.

Next we study the behaviour of the projective dimension of the powers of
an ideal. As a by-product, we recover the classic result of M. P. Brodmann
[Bro] which says that the depth of the powers of an ideal becomes constant
asymptotically, and a result of D. Eisenbud and C. Huneke [EH] which precises
this asymptotic value under some restrictions. Moreover, for ideals whose form
ring is Gorenstein we may determine exactly the powers of the ideal for which

the projective dimension takes the asymptotic value. Namely,

Proposition 39 [Proposition 6.3.2] Let I be a homogeneous ideal in A and set
L =1(I). If G is Gorenstein, proj.dim4(I7) < -1 for all §, and proj.dim 4 I7 =
I =1 if and only if § > a*(G) — a(F).
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Finally, we show that the graded minimal free resolutions of the powers
of an ideal also have a uniform behaviour. For equigenerated ideals, we can
prove that the shifts which arise in the minimal resolutions are linear func-
tions asymptotically and the Betti numbers are polynomial functions asymp-

totically. More explicitly,

Proposition 40 [Proposition 6.3.6] Let I be a homogeneous ideal generated
in degree d. Set | = I(I), s = n — depth(,g)(R). Then there is a finite set
of integers {ap; | 0 < p < 5,1 <4 < ky} and polynomials {Qa, (7)1 0<p <
5,1 <i < kp} of degree <1 —1 such that the graded minimal free resolution
of I for j large enough is

05 DI —...=D)—1 =0,

with D} = @; A(—opi — dj)’» and f; = Qay (7).

From this result, we may deduce that a finite number of the graded minimal
free resolutions of the powers of an ideal determine the rest of them. This finite
set of resolutions can be found for ideals with a very particular behaviour. For

instance, we get

Proposition 41 [Proposition 6.3.10] Let I be an equigenerated homogeneous
ideal, and b = a2(Ra(I)) + I(I). If the graded minimal free resolutions of
I,12,...,I" are linear, then the graded minimal free resolutions of 17 are also
linear for any j. Furthermore, the minimal free resolutions of I, 2,....1°

determine the minimal graded free resolutions of IV for any 7.

Some parts of this work have already appeared published in:

- 0. Lavila-Vidal, On the Cohen-Macaulay property of diagonal subalgebras of
the Rees algebra, manuscripta math. 95 (1998), 47-58.

- O. Lavila—Vidal, S. Zarzuela, On the Gorenstein property of the diagonals of
the Rees algebra, Collect. Math. 49, 2-3 (1998), 383-397.




It is a pleasure to thank my thesis advisor Santiago Zarzuela for his help,
guidance and support throughout these years.

I ' would also thank the late Pr.Dr. Manfred Herrmann and his Seminar for
their hospitality while I was visiting the Mathematisches Institut der Univer-
sitat zu Koln.

I'also wish to thank my fellows at the Departament d’AIgebra i Geometria,
and at the Seminari d’Algebra Commutativa, especially Maria Alberich.

Finally, let me thank my friends, my family and Eduard for their love,

patience and encouragement.

XXX






