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Introduction

The main purpose of this thesis is to apply the modular approach to study some Fermat-

type Diophantine equations of signature (r, r, p).

We begin by recalling Fermat’s Last Theorem (FLT) whose proof was a turning point in

the way that people looked at Diophantine equations.

Theorem 0.0.1 (Fermat-Wiles) Let n > 2 be an integer. Then, the equation xn+ yn = zn

has no solutions (a, b, c) such that abc �= 0.

The strategy that led to the proof of FLT is called the modular approach and makes a

remarkable use of elliptic curves, modular forms and Galois representations. It started with

ideas which came from Frey, Hellegouarch and Serre, followed up by Ribet and taken to a

conclusion by Andrew Wiles (see [76]). After Wiles’ completion of the proof, the original

strategy was strengthened and several mathematicians achieved great success in solving

other equations that previously seemed intractable. As a consequence of these efforts, the

generalized Fermat equation

Axp +Byq = Czr, where 1/p+ 1/q + 1/r < 1, (1)

with p, q, r primes and A,B,C pairwise coprime integers became the new center of attention.

We call the triple of exponents (p, q, r) as in (1) the signature of the equation. In general,

for fixed pairwise coprime integers A,B,C, equation (1) may have infinitely many solutions

for a fixed signature. For example, if z = a3 + b3, x = az, y = bz then (x, y, z) satisfies

x3+y3 = z4. However, if we assume the abc-conjecture it follows that there are only a finite

number of solutions (a, b, c) to the generalized Fermat equation (1) satisfying gcd(a, b, c) = 1

(see Section 5.2 in [20] and the references there). More precisely,

Conjecture 0.0.2 Let A,B,C ∈ Z be fixed and pairwise coprime. There is only a finite

number of sextuples (a, b, c, p, q, r) satisfying:

1. p, q, r ∈ Z primes such that 1/p+ 1/q + 1/r < 1,

2. (a, b, c) ∈ (Z \ {0})3 and gcd(a, b, c) = 1 (primitive solutions),

3. Aap +Bbq = Ccr.
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Remark 0.0.3 For the conjecture we count solutions like 1p + 23 = 32 only once.

As evidence for this conjecture, an important result due to Darmon-Granville [20] states

that for fixed A,B,C as above and a fixed triple (p, q, r) such that 1/p + 1/q + 1/r < 1

there exists only a finite number of primitive solutions. Also, the modular approach has

been successfully used to prove the non-existence of solutions for several particular cases,

including infinite subfamilies. For example, xp + yp = z2 or xp + yp = z3 were settled

by Darmon-Merel [21] and both are special cases of the important equation xp + yq = zr.

Another important step forward was the work of Ellenberg on the representations attached to

Q-curves. It allowed him to introduce the use of Q-curves as Frey curves and, in particular,

allowed him to solve the equations x4 + y2 = zp (see [29]). For a recent overview and

summary of known results on Fermat-type equations see the introduction in [3] and [18].

Another important subfamily are the equations of signature (r, r, p) for r a fixed prime,

i.e.

Axr +Byr = Czp (p is allowed to vary).

Concerning these equations there are works for signature (3, 3, p) by Kraus [45], Bruin [10],

Chen-Siksek [16] and Dahmen [18]; for (5, 5, p) by Billerey [5] and Billerey-Dieulefait [6].

The successive generalizations of the modular approach to attack new equations are all

highly dependent on the specific equation under analysis. As a general method to attack the

generalized Fermat equation of signature (p, q, r) there is a remarkable program explained

by Darmon in [19] which makes use of Frey abelian varieties of higher dimension. However,

it seems that currently little is known about these varieties and in [19] only a few particular

cases of the equation xp + yp = zr (for small values of r) are solved.

Broadly speaking, we can divide the modular approach to Diophantine equations into

three main steps:

(I) [Construction of a Frey curve] Attach an appropriate elliptic curve E (often called a

Frey or Hellegouarch-Frey curve) to a putative solution (of a certain type);

(II) [Modularity/Level Lowering] Prove modularity of E and irreducibility of some Galois

representations attached to it, to conclude (via level lowering results), that the Frey

curve (or a related object) corresponds to a (Hilbert) modular form whose level is

almost independent of the choice of the solution;

(III) [Contradiction] Contradict the previous step by showing that among the (finitely

many) (Hilbert) modular forms of predicted type, none of them corresponds to E.

In this thesis we will use the modular approach to go further into equations of signature

(r, r, p) of the particular form xr + yr = Czp, where C is an integer divisible only by primes

q �≡ 1, 0 modulo r. In particular, we will improve the results for r = 5 and provide new

results for r = 7 and r = 13. Furthermore, using elliptic curves, we will outline a strategy
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that can be used to attack the previous equation for any prime r. Indeed, we complete Step

(I) and partly Step (II) of the modular approach for all r (Step (III) is highly dependent

on r). Moreover, we will also prove a modularity result of independent interest for elliptic

curves with good reduction at 3 over certain number fields.

The results in Chapter 2 regarding the equation x5 + y5 = Czp have been accepted for a

joint publication with L. Dieulefait in Mathematics of Computation (see [27]).

Thesis outline and statement of results

We will now describe the content of each chapter in this thesis. In particular, we will

state the results that we obtained and comment on the main strategies used.

In this work we will call a solution (a, b, c) ∈ Z3 to xr+yr = Czp primitive if gcd(a, b) = 1.

Moreover, we will say it is trivial if |abc| ≤ 1 and non-trivial otherwise. In particular, our

primitive solutions are primitive in the sense that gcd(a, b, c) = 1 as above. We will also say

that a primitive solution is a first case solution if r � c and a second case solution otherwise.

Chapter 1 is mainly devoted to cover background material necessary to the modular ap-

proach via elliptic curves over Q. It includes the basic definitions and theorems about elliptic

curves, modular forms and their attached representations. In particular, we will prove in

detail a theorem due to Hellegouarch about the ramification of the mod p representations

attached to some elliptic curves that will be used recurrently in later chapters. We will also

state modularity theorems over Q, Ribet’s level lowering theorem and Serre’s conjecture.

We end Chapter 1 with a sketch of the proof of Fermat’s Last Theorem as motivation for

the generalizations in subsequent chapters.

In Chapter 2 we will work with equations of the form x5 + y5 = Czp. Regarding these

equations the following theorem is a consequence of the work of Billerey [5] later improved

by Billerey-Dieulefait in [6].

Theorem 0.0.4 Let C = 2α3β5γ where α ≥ 2, β, γ ≥ 0, or C = 7, 13. Then, for p > 19

the equation x5 + y5 = Czp has no non-trivial primitive solution.

Note that in their theorem |C| ≥ 4. We will improve on their result by proving the following.

Theorem 0.0.5 Let β be an integer divisible only by primes l �≡ 1 (mod 5). Suppose that

p ≡ 1 (mod 4) or p ≡ ±1 (mod 5). Then,

(A) If p > 13, the equation x5 + y5 = 2βzp has no non-trivial primitive solutions.

(B) If p > 73, the equation x5 + y5 = 3βzp has no non-trivial primitive solutions.

Along this chapter, we will introduce the necessary theory used in the proof of this theorem.

In particular, we will cover material on the theory of abelian varieties attached to Q-curves
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and embedding problems from the works of J. Quer [54], [55]. Moreover, Ellenberg’s results

on the Galois representations attached to Q-curves from [29] are also stated and used.

The first important idea for the proof of the previous theorem is to relate a non-trivial

primitive solution of x5+y5 = Czp to a solution (a, b, c) of a related equation (not depending

on C and defined over Q) satisfying C | a + b. Then we apply the modular approach with

Q-curves to show that the solution (a, b, c) to the latter equation cannot exist. For this

purpose, we first attach to (a, b, c) a Frey curve E(a,b) over Q(
√
5) and we prove that it is a

Q-curve (Step (I)). Second, using Quer’s theory from [54], [55] we produce a suitable twist

Eγ(a, b) of E(a,b) completely defined over a certain cyclic number field K of degree four.

The idea of using embedding problems to determine Eγ is not new in the literature (see

[20]), but it seems to be the first time that a cyclic extension of degree four is necessary,

which makes the computations technically difficult. We then show that the Weil restriction

(denoted B) from K to Q of Eγ is a product of varieties of GL2-type. This is fundamental,

because we are able to compute all the Serre invariants associated with a representation ρ̄

attached to B and then we apply Serre’s conjecture to it, concluding Step (II). Finally, to

complete the proof we have to perform Step (III). This is done by a case-by-case analysis of

the newforms in the spaces predicted by Serre’s conjecture. We use several known methods

for eliminating newforms and we introduce a new one via a theorem of Carayol. Up to this

point we will have proved a weaker version of the previous theorem. Then, we introduce an

extra Frey curve F and making use of Siksek’s multi-Frey technique (see [11]) we complete

its proof.

Chapter 3 is devoted to developing a new general strategy to attack infinitely many equa-

tions of signature (r, r, p) for each fixed prime r ≥ 7. On the one hand, in [19] Darmon

develops a program to attack Fermat equations of general signature (p, q, r) using higher

dimensional abelian varieties. On the other hand, there is no general algorithm that per-

forms Step (I) for a random Diophantine equation, even of Fermat type. Our method,

despite being limited to signature (r, r, p) has the advantage that it gives an algorithm for

constructing several Frey elliptic curves. This is an advantage over [19] because it allows a

better understanding of the representations involved.

We start Chapter 3 by introducing Hilbert modular forms and the level lowering theorems

due to Jarvis, Rajaei and Fujiwara. Then we proceed to the description of a general method

that allows one to complete Step (I) and part of Step (II) of the modular approach for

infinitely many equations of the form xr + yr = Czp. In the next paragraphs we will

summarize the main ideas.

Fix a prime r ≥ 7 and let K+ be the maximal totally real subfield of Q(ζr). Let C �= 0

be an integer divisible only by primes q �= r not congruent to 1 (mod r). Generalizing the

idea in Chapter 2, we start by relating a non-trivial primitive solution (a, b, c′) to xr + yr =
Czp to solutions (a, b, c), such that C | a + b, of several other Diophantine equations (not

depending on C) defined over K+. Then we attach Frey curves E = E(a,b) to solutions of

the latter equations. Very briefly: we let φr(x, y) = (xr + yr)/(x + y) and pick a certain
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three different factors f1, f2, f3 defined over K
+ of φr(x, y); then we find α, β, γ such that

αf1 + βf2 + γf3 = 0 and we apply over K+ the original construction of Frey. Since E will

only depend on a, b and these are constant during the process we obtain several Frey curves

attached to the initial solution (a, b, c′). This completes Step (I) in complete generality.

Although Step (II) (modularity / irreducibility) is a classical application of deep results

mainly due to Mazur, Ribet and Wiles when the curve E is defined over Q, the situation is

much more complicated when E is defined over a bigger field. In particular, analogues of

these results are mostly conjectural. In this direction, we will prove a rather general result

regarding irreducibility of the mod p representations attached to some elliptic curves and a

new modularity statement for elliptic curves over totally real number fields under certain

local conditions at 3. More precisely, we will prove the following theorems

Theorem 0.0.6 Let F be a totally real number field and C/F be an elliptic curve with

conductor NE. Let A be the factor of NE corresponding to the additive primes. Suppose

further that q � NC is a fixed prime of good reduction. Then, there exists an explicit constant

M(F,A, q) such that, if

1. p is odd and unramified in F ,

2. all primes p | p are of semistable reduction for C,

3. p > M(F,A, q),

then, the representation ρ̄C,p is absolutely irreducible.

Theorem 0.0.7 Let F be a totally real abelian number field and C an elliptic curve defined

over F . Suppose that 3 splits in F and C has good reduction at the primes above 3. Then

C is modular.

A fundamental step in the proof of the modularity statement is to guarantee residual modu-

larity of ρ̄C,p which is achieved as a consequence of a deep theorem due to Langlands-Tunnell.

The rest of the proof is divided into three cases: (i) ρ̄C,3 and ρ̄C,3|GF (
√−3) both abs. irre-

ducible; (ii) ρ̄C,3 abs. irreducible and ρ̄E,3|GF (
√−3) reducible; (iii) ρ̄C,3 reducible. In each

case we have to show that all the conditions are satisfied for a suitable modularity lifting

theorem due to Kisin or Skinner-Wiles to apply. In particular, we need to use Savitt and

Breuil’s work to guarantee the existence of ordinary liftings.

The previous theorems provide a complete answer to the irreducibility part of Step (II)

and a partial answer regarding the modularity part. More precisely, it is a consequence of

the irreducibility theorem that for each prime r ≥ 7 there exists a constant M(r) such that,

if p > M(r) then the representation ρ̄E,p is absolutely irreducible. Moreover, it is a corollary

of the modularity statement that our method of constructing Frey curves is able to produce

modular Frey curves for r = 7 and r = 13. The main obstacle to proving modularity of the

Frey curves for all r is the difficulty in guaranteeing the existence of modular nearly-ordinary
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liftings (in the residually locally reducible case) when 3 is unramified and non-split in F .

Nevertheless, we will also discuss a method that for particular values of r may allow one to

check if a Frey curve is modular.

Finally, we will compute the conductors of all Frey curves E and for p a semistable prime

for E we also compute the Artin conductors of ρ̄E,p and prove that ρ̄E,p is finite at all

p | p. We will also include the statements of the level lowering results for Hilbert modular

forms due to Jarvis, Rajaei and Fujiwara and explain how to apply them in our situation,

leading to a modular approach via HMF. The limitations of our method will become clear in

Chapter 4 when performing Step (III) in the cases r = 7, 13. Nevertheless, in Chapter 3 we

also include a discussion concerning the two major limitations of the method: 1) limitations

due to the existence of trivial solutions; 2) computational limitations. Limitations of type 1)

lead one to solve equations only for first case solutions. Furthermore, regarding limitations

of type 2) we will prove that when r is congruent to 1 modulo 6, one can construct a Frey

curve defined over the totally real subfield of K+ of degree (r− 1)/6. This observation will

be crucial when dealing with specific examples in Chapter 4, as it considerably reduces the

amount of computations that are needed to perform Step (III).

In Chapter 4 we will apply the general strategy developed in Chapter 3 to some specific

values of r and C. In particular, we will give explicit examples of Frey curves for r =

7, 11, 13, 17, 19 and complete Step (III) in the cases r = 7 and r = 13. To our knowledge, no

arithmetic results on equations of signature (7, 7, p) and (13, 13, p) were previously known.

Moreover, the case r = 13 seems to be the first occurrence where the Weil restrictions of the

Frey curves involved are not of GL2-type over Q. In particular, this means that instead of

classical cuspforms one must use Hilbert cuspforms (in this case over Q(
√
13)). So, leaving

aside the intrinsic interest of the arithmetic statements obtained, the results in Chapter 4

illustrate the strengths of the general methods developed in the previous chapter.

We start Chapter 4 by completing Step (III) for r = 7 by proving the following

Theorem 0.0.8 Let d = 2s03s15s2 and γ be an integer only divisible by primes l �≡ 1, 0 (mod 7).

Then, if p ≥ 17 we have that

(I) The equation x7+y7 = dγzp has no non-trivial first case solutions if (s0, s1, s2) satisfies

any of the following three conditions (≥ 2,≥ 0,≥ 0), (= 1,≥ 1,≥ 0) or (= 0,≥ 0,≥ 1).

(II) The equation x14 + y14 = dγzp has no non-trivial primitive solutions if s1 > 0 or

s2 > 0 or s0 ≥ 2.

With similar techniques to those in the proof of the previous theorem we will also prove

Theorem 0.0.9 Let p > 2542873 be a prime. Then the equation

x6 − x5y + x4y2 − x3y3 + x2y4 − xy5 + y6 = 71zp

has no solutions (x, y, z) = (a, b, c) such that (a, b) = 1 and |abc| > 1.
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Although the Frey curve used in the proof of these theorems was known (but obtained by

different methods), no previous arithmetic application of it seemed to exist. Finally, we will

perform Step (III) for r = 13. The curve used in this case is new and its Hilbert modularity

follows from the results in Chapter 3. In particular, we will prove

Theorem 0.0.10 Let d = 3, 5, 7 or 11 and γ be an integer divisible only by primes l �≡ 1, 0

(mod 13). If p > 4992539 is a prime, then:

(I) The equation x13 + y13 = dγzp has no non-trivial primitive first case solutions.

(II) The equation x26 + y26 = 10γzp has no non-trivial primitive solutions.

The large bounds for the exponent p in the previous two theorems may look surprising

at a first glance. The reason for them is that computing completely the relevant spaces of

newforms is computationally impossible. Nevertheless, we are able to complete Step (III) by

computing only the newforms with the field of coefficients Q (and some partial information

about the other newforms in the case r = 13). To compensate this lack of information we

will use theoretical arguments that require to impose the bounds. In particular, for the

proof in the case r = 13 we needed to compute Hilbert newforms over Q(
√
13) with level

104 and 208 of parallel weight 2. This was beyond our computational resources, but John

Voight was able to compute for us all the newforms with coefficient field equal to Q and the

factorization of the characteristic polynomial of one Hecke operator in the whole space (the

data he computed can be found in the appendix).

In Chapter 5 we will propose two more Frey curves attached to solutions of xr+yr = Czp

for primes r = 4m + 1. To do this we will adapt the ideas in Chapter 3 on how to relate

solutions of different equations and then we generalize the method that led to the Q-curves

E and F in Chapter 2. The resulting curves are defined over K+ and we will show that they

are k-curves, where k is the only number field such that [K+ : k] = 2. Then we compute

their discriminant and the Artin conductor of its attached mod p representations, showing

that they satisfy the required properties to be a useful Frey curve. To end the chapter, we

will discuss how the theory of J. Quer on embedding problems can be applied to extend the

representations of GK+ attached to the new Frey curves to representations of Gk.
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Notation

We fix algebraic closures Q, R = C and Qp for all p. Choose embeddings of Q into C

and Qp for all p so that we can identify Gal(C/R) and Gal(Qp/Qp) with decomposition

subgroups of GQ = Gal(Q/Q). GQ is endowed with the Krull topology.

K will always denote a number field (i.e. a finite extension of Q) and OK its ring of

integers. For any number field K we fix an embedding into Q so we can write GK =

Gal(K/K) = Gal(Q/K) as an open subgroup of GQ.

In a number field K, the symbols P, Pq will denote primes in K above the rational prime

p or q and FrobP a corresponding Frobenius element.

For a prime ideal P we let υP denote the normalized P-adic valuation and KP the P-adic

completion of the number field K. L will denote a finite extension of Ql.

Fpf will denote the finite field with pf elements with discrete topology. Fp is a fixed

algebraic closure of Fp and we denote its Galois group by GFp = Gal(Fp/Fp).

An elliptic curve will always be denoted by E or C.

For a, d ∈ K the symbol (a, b) will denote the quaternion algebra with basis {1, i, j, k}
and product determined by i2 = a, j2 = d,ij = −ji = k.

rad(c) will denote the product of the prime (ideals) factors of the algebraic integer c.
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Chapter 1

The Modular Approach to

Fermat’s Last Theorem

In this chapter we will introduce some of the ideas and tools that are part the modular

approach. Then we will prove Fermat’s Last Theorem (FLT) as motivation for the work in

later chapters. All the content in this chapter is standard in the literature and can be found

in [25], [51], [35] and [66].

1.1 Galois Representations

The core of the modular approach is the interplay between Galois representations arising

from distinct mathematical objects. In this section we will briefly recall some well established

facts (some very deep) about representations arising from elliptic curves and modular forms.

Let K be a number field and recall that we are considering the absolute Galois groups

GK endowed with the Krull topology.

Definition 1.1.1 Let L be a finite extension of Ql. A continuous group homomorphism

ρ : GK → GLd(L) is called a d-dimensional l-adic Galois representation. Any two d-

dimensional l-adic representations ρ, ρ′ are said to be isomorphic (ρ ∼ ρ′) over the field

L′ ⊂ Q̄l if L ⊂ L′ and there exists an element M ∈ GLd(L
′) such that ρ′(σ) =Mρ(σ)M−1

for all σ ∈ GK .

For ρ as above, if L coincides withKλ, the localization of a number fieldK at a prime λ | l,
we say that ρ is a λ-adic representation. For example, we will see that λ-adic representations

arise naturally from modular forms.

Proposition 1.1.2 Let ρ : GK → GLd(L) be an l-adic representation. Then ρ is isomor-

phic to a representation ρ′ : GK → GLd(OL)

Proof: See [25] Proposition 9.3.5 for the case K = Q. The general case follows analogously,

because the core of the argument is the compacity of GQ which is also true for GK .
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Definition 1.1.3 A d-dimensional mod p Galois representation is a continuous group ho-

momorphism ρ : GK → GLd(F̄p). Any two d-dimensional mod p representations ρ, ρ′

are said to be isomorphic (ρ ∼ ρ′) over the field Fpr ⊂ F̄p if there exists an element

M ∈ GLd(Fpr ) such that ρ′(σ) =Mρ(σ)M−1 for all σ ∈ GK .

Given an l-adic representation ρ of GK by Proposition 1.1.2 we can suppose it has values

in GLd(OL). This corresponds to finding a lattice that is invariant under GK . Then by re-

ducing modulo the maximal ideal of OL we obtain a mod l representation ρ̄ : GK → GLd(k),

where k = Flr is the residue field of L. A representation ρ̄ constructed this way is called a

residual representation of ρ. Changing the lattice would give us a different representation,

but it is know that this process is well defined up to semisiplification. In particular, if one

ρ̄ is irreducible then all residual representations obtained from ρ are isomorphic.

We will now briefly recall the definitions and some facts about the Frobenius elements

inside GQ (see [25]).

Definition 1.1.4 Let p be a prime and P ⊂ Z̄ any maximal ideal over p. The decomposition

and inertia groups at P are defined by

DP = {σ ∈ GQ : Pσ = P}
IP = {σ ∈ DP : xσ ≡ x (mod P) for all x ∈ Z̄}

Then σ ∈ DP acts on Z̄/P = F̄p as (x+P)σ = xσ+P and IP is the kernel of the reduction

DP → GFp
. An (absolute) Frobenius element over p is any preimage FrobP ∈ DP of the

Frobenius automorphism in GFp
(x �→ xp).

Frobp is defined only up to the inertia subgroup at p. For each number field K the

restriction map GQ → Gal(K/Q) takes an absolute Frobenius to a corresponding Frobenius

for K (see sec. 9.1 in [25]). There is a natural isomorphisms between DP and the local

absolute Galois group Gp = Gal(Q̄p/Qp). For a finite extension F/K, if p is a prime in K

below p in F we have Dp � Gal(Fp/Kp).

Theorem 1.1.5 (Chebotarev) For each maximal ideal P of Z lying over any but a finite set

of rational primes p, choose an absolute Frobenius element FrobP. The set of such elements

is a dense subset of GQ.

Definition 1.1.6 Let ρ be a Galois representation of GK and let p be a prime in K. Then

ρ is said to be unramified at p if the inertia subgroup IP is contained in kerρ for some

maximal ideal P ⊂ Z̄ lying over p.

Theorem 1.1.7 Let ρ and ρ′ be two irreducible continuous l-adic or mod p Galois repre-

sentations both ramified only at a finite set of primes. If for all but finitely many primes q,
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where both representations are unramified, we have

Trace(ρ(Frobq)) = Trace(ρ′(Frobq))

Det(ρ(Frobq)) = Det(ρ′(Frobq))

then ρ and ρ′ are isomorphic.

Let F be a totally real number field F of degree d and ιi for i = 1, .., d its embeddings into

C. Since F is totally real, each ιi sends F into R and induces an inclusion φi of Gal(C/R)

into GF . To the image of the generator of Gal(C/R) via φi we call a complex conjugation.

Definition 1.1.8 Let F be a totally real field. A 2-dimensional Galois representation ρ of

GF is said to be totally odd if det(ρ(c)) = −1, for c any complex conjugation.

1.1.1 Elliptic Curves

Elliptic curves are algebraic curves of genus 1 having a specified base point. They play a

key role in the modular approach since we will attach to a putative solution of a particular

Diophantine equation an elliptic curve.

Definition 1.1.9 Let k be a field and k̄ an algebraic closure of k. A Weierstrass equation

over k is any cubic equation of the form

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6

where all ai ∈ k. If char(k) �= 2, 3, by a change of coordinates, it can be written in the form

y2 = x3 +Ax+B, A,B ∈ k

and has discriminant Δ(E) = −16(4A3 + 27B2). If Δ(E) �= 0 then E is nonsingular and

the set

E = {(x, y) ∈ k̄2 satisfying E(x, y)} ∪ {∞}

is an elliptic curve over k.

Let E be an elliptic curve defined over a number field K. It is known that there is a group

structure on E and for n ≥ 1 let V = E(Q̄)[n] be the n-torsion points. V is a free Z/nZ-

module of rank 2 and the group GK acts linearly on V . Indeed, if P1, P2 is a basis of V , for

each element σ ∈ GK we have

(σ(P1), σ(P2)) = (P1, P2)

[
aσ bσ

cσ dσ

]
.
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If Q1, Q2 is an arbitrary pair of points in V such that

(
Q1

Q2

)
=

[
λ ν

μ δ

](
P1

P2

)

then by linearity we have

(
σ(Q1)

σ(Q2)

)
=

[
λ ν

μ δ

][
aσ bσ

cσ dσ

](
P1

P2

)
.

Also it can easily be checked that

[
aσ◦τ bσ◦τ
cσ◦τ dσ◦τ

]
=

[
aσ bσ

cσ dσ

][
aτ bτ

cτ dτ

]

and in particular, [
1 0

0 1

]
=

[
aσ bσ

cσ dσ

][
aσ−1 bσ−1

cσ−1 dσ−1

]
.

Hence we have,

Theorem 1.1.10 The action of GK on V defines a representation

ρ̄E,n : GK −→ GL2(Z/nZ).

The image is isomorphic to the Galois group of the extension K(E[n])/K.

Proposition 1.1.11 Let p be a prime. The representations ρ̄E,p : GK → GL2(Fp) arising

from the p-torsion of elliptic curves E defined over a totally real field K are totally odd.

An important step of the modular method is to guarantee the absolute irreducibility of

the representations ρ̄E,p for primes p greater than a constant.

Proposition 1.1.12 Let p be an odd prime. Let F be a totally real field and ρ̄ : GF →
GL2(Fp) a totally odd representation. Then ρ̄ is irreducible if and only if it is absolutely

irreducible.

Proof: If ρ̄ is absolutely irreducible then it is irreducible. Suppose that ρ̄ is not absolutely

irreducible and let c be a complex conjugation. Since det(ρ̄(c)) = −1 and c has order 2 it
follows that there exist a matrix M ∈ GL2(Fp) such that Mρ̄(c)M−1 is a diagonal matrix

having distinct eigenvalues 1 and -1. Furthermore, we have that ρ̄(c) has two 1-dimensional

eigenspaces, generated by, v+, v− ∈ F2
p. Since ρ̄ is absolutely reducible there exists a basis

such that ρ̄ is upper triangular leaving invariant a one dimensional subspace generated by

w ∈ F̄2
p. In particular, w is an eigenvector of ρ̄(c), hence v+ or v− is a scalar multiple of w

and we obtain a 1-dimensional subspace of F2
p left invariant by ρ̄, i.e. ρ̄ is not irreducible.
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We will say that an elliptic curve E is semistable if all primes of bad reduction are of mul-

tiplicative reduction. In particular, the conductor of E is square-free. For semistable elliptic

curves over Q there is Theorem 1.1.13 below (due to Mazur [48]), regarding irreducibility of

ρ̄E,p (see also Theorem 22 in [18]). However, for curves over number fields we need to use

other arguments that depend on the particular curve E. This will be clear in later chapters.

Theorem 1.1.13 (Mazur) Let E be an elliptic curve over Q and p a prime.

(i) If p ≥ 11 and E is semistable, or

(ii) If p ≥ 5, E is semistable and all the 2-torsion is rational.

Then, the representation ρ̄E,p is irreducible

Together with irreducibility of ρ̄E,p we are also interested in studying its ramification.

Let E/K be an elliptic curve and l a prime in K. ρ̄E,p ramifies at l if and only if the action

of Il on E[p] is non-trivial if and only if the field extension Kp = K(E[p])/K has non-trivial

inertia subgroup at l, that is Kp ramifies at l. The next theorem will be used over Q in the

proof of FLT and over number fields in later chapters.

Theorem 1.1.14 (Hellegouarch) Let E/K be an elliptic curve and l an odd prime unram-

ified in K not above the rational prime p. Let Δ(E) be the discriminant of a minimal model

at l of E. If l is a prime of multiplicative reduction and p | υl(Δ) then ρ̄E,p is unramified

at l.

Proof: We start by showing that Kp always contain a primitive p-root of unity ζp. It is

known (see Section III.8 in [66]) that there exists a Weil pairing ep : E[p]× E[p]→ μp(Q̄),

where μp(Q̄) are the p-roots of unity. This pairing is bilinear, alternating, non-degenerate

and compatible with the action of GK in the sense that ep(S, T )
σ = ep(S

σ, Tσ) for all

σ ∈ GK . In particular, since E[p] ⊂ Kp we have for each pair of p-torsion points (S, T )

ep(S, T )
σ = ep(S

σ, Tσ) = ep(S, T ) for all σ ∈ GQ̄/Kp
.

Hence ep(S, T ) ∈ Kp thus μp(Q̄) ⊂ Kp.

In what follows l will be used to denote both a prime inK and a normalizer of the valuation

corresponding to it. The rest of the argument follows from the theory of Tate curves (see

Chapter 5 in [67]). Since we want to know if Kp ramifies at l we can suppose that K

and Kp are localized at l. Since l is of multiplicative reduction we have that υl(j(E)) < 1

then |j|l > 1 and from Tate’s uniformization theorem (see Chapter 5, Theorem 5.3 in [67])

there exists q ∈ K∗ with |q|l < 1 such that Eq is equivalent to E at most over a quadratic

extension of K. Suppose that the isomorphism is over K and let L = K(ζp). Then from
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Tate’s theorem we have Eq(L) isomorphic to L
∗/〈q〉. Since j = c33/Δ by the hypothesis we

conclude that j = μl−pk in L with μ an unit. On the other hand j = 1/q+744+196884q+ ...

and by multiplying both sides by q we get qμl−pk = 1+ 744q+196884q2 + ... meaning that

q = μ′q′p for some μ′, q′ ∈ L∗ with μ′ a unit. Thus, 〈ζp, q′〉/〈q〉 is contained in L∗/〈q〉. Since
〈ζp, q′〉/〈q〉 is isomorphic to Z/pZ×Z/pZ we conclude that L∗/〈q〉 � Eq(L) already contains

all the p-torsion, implying Kp ⊂ L. Since L is unramified at l we have that Kp also is.

If the isomorphism above were over a quadratic extensionK ′/K, since E has multiplicative

reduction at l it is know from Tate’s theorem that K ′/K is unramified. Then the same

argument works by replacing K by K ′.
�

For a generic elliptic curve E/K it is usually the case that EndK̄(E)
∼= Z. In the excep-

tional cases, Z is strictly contained in EndK̄(E) and EndK̄(E) is isomorphic to an order in

an imaginary quadratic field. In the later case we say that E has complex multiplication.

Before proceeding to the construction of p-adic representations attached to elliptic curves

we will prove a useful result regarding the image of ρ̄E,p for elliptic curves with complex

multiplication.

Definition 1.1.15 Let R be a subring of Mat2×2(Fp) with R � Fp × Fp or R � Fp2 .

A subgroup subgroup G of GL2(Fp) such that G � R∗ is called a Cartan subgroup. If

R � Fp × Fp then G is called split, otherwise G is called non-split.

Lemma 1.1.16 Let E/K be an elliptic curve with complex multiplication by an order O in

an imaginary quadratic number field F . If p does not divide the discriminant Δ(O), then
the image of ρ̄E,p is contained in the normalizer of a split (resp. non-split) Cartan subgroup

of GL2(Fp) if p splits (resp. is inert) in F .

Proof: Denote by E[p] the p-torsion points of E and let π : O ∼ End(E) → End(E[p])

be the restriction homomorphism. It is clear that pO ⊂ Ker(π). We will now show that

Ker(π) ⊂ pO. Given an ideal I in O and a set of points X ⊂ E we define

E[I] = {P ∈ E : φ(P ) = 0 for all φ ∈ I},
Ann(X) = {φ ∈ End(E) : φ(P ) = 0 for all P ∈ X}.

Let pi for i = 1, 2 denote the ideals in OF above p (if p is inert p1 = p2) and define Ii

to be the maximal ideals in O given by O ∩ pi. We have Ii ⊂ Ann(E[Ii]) �= O as ideals

then Ann(E[Ii]) = Ii by maximality. Also, E[p] = E[(p)] and pO ⊂ Ii then E[Ii] ⊂ E[p].

Then we can write Ker(π) = Ann(E[p]) ⊂ Ann(E[Ii]) = Ii for both i. Thus we have

Ker(π) ⊂ I1 ∩ I2 = pO. We conclude that pO = Ker(π).

Let R = Im(π). Since p � Δ(O) we have R ∼ O/(p) ∼ OF /(p), which is isomorphic

to Fp × Fp or F2
p depending on whether p splits or is inert in F . So R∗ is a split resp.

non-split Cartan subgroup of GL2(Fp). Consider the natural action of GK on End(E) given
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by φσ(P ) := φ(Pσ−1

)σ, where σ ∈ GK and φ ∈ End(E). It induces an action of GK on R

and on R∗. Recall that ρ̄E,p(σ)(P ) = Pσ for P ∈ E[p]. One easily checks that for ψ ∈ R∗
we have ρ̄E,p(σ)ψρ̄E,p(σ)

−1 = ψσ ∈ R∗ and so Im(ρ̄E,p) is contained in the normalizer of

R∗.
�

Fix a prime l. We will now attach to E an l-adic Galois representation. Consider the

representations of the ln-torsion for all n ∈ N and put them all together in the following

sequence

E[l]←− E[l2]←− E[l3]←− ...,

where the arrows correspond to multiplication by l (denoted [l]). By taking the inverse limit

we obtain the l-adic Tate module of E,

Tl(E) = lim
←−
n

{E[ln]}.

For each n, choose a basis (Pn, Qn) of E[l
n] compatible with [l], that is [l]Pn+1 = Pn and

[l]Qn+1 = Qn. Each basis determines an isomorphism between E[ln] and (Z/lnZ)2, hence

Tl(E) ∼= Zl ⊕ Zl.

Moreover, the action of GK commutes with [l] so there is a continuous action of GK on

Zl, which is thus an Zl[GK ]-module. Since each basis (Pn, Qn) determines an isomorphism

between Aut(E[ln]) and GL2(Z/l
nZ) we have Aut(Tl(E))

∼→ GL2(Zl) and also a continuous

homomorphism

ρE,l : GK → GL2(Zl) ⊂ GL2(Ql).

We say that ρE,l is the 2-dimensional l-adic Galois representation attached to E/K. For a

prime p of good reduction for E denote by Ẽ the reduction mod p of a minimal model at p

of E. Let also pf denote the number of elements in the residue field at p and define

ap(E) = pf + 1−#Ẽ(Fpf ) (1.1)

Theorem 1.1.17 Let l be a prime and E be an elliptic curve over K with conductor N

(an ideal in OK). The Galois representation ρE,l is unramified at every prime p � lN . For

any such p let P ⊂ Z̄ be any maximal ideal over p. Then the characteristic equation of

ρE,l(FrobP) is

x2 − ap(E)x+Norm(p) = 0.

The Galois representation ρE,l is irreducible.

The information on the ramification in the previous theorem follows from

Theorem 1.1.18 (Néron-Ogg-Shafarevich) Let E/K be an elliptic curve and l a prime of

K. E has good reduction at l if and only if ρE,p is unramified at l for some prime p �= l if
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and only if ρE,p is unramified at l for all primes p �= l.

1.1.2 Modular Forms

Modular forms are functions on the complex upper half plane which are nearly invariant

under the action of a certain group and satisfy some holomorphy conditions. The modular

group is the group of 2-by-2 matrices with integer entries and determinant 1,

SL2(Z) =

{[
a b

c d

]
: a, b, c, d ∈ Z, ad− bc = 1

}

which is generated by the two matrices

T =

[
1 1

0 1

]
and S =

[
0 −1
1 0

]

Let N be a positive integer. The principal congruence subgroup of level N is

Γ(N) =

{[
a b

c d

]
∈ SL2(Z) :

[
a b

c d

]
≡
[
1 0

0 1

]
mod N

}

This subgroup is the kernel of the natural homomorphism SL2(Z) −→ SL2(Z/NZ) so it is

normal in SL2(Z).

Definition 1.1.19 A subgroup Γ of SL2(Z) is a congruence subgroup if Γ(N) ⊂ Γ for some

N ∈ Z+. We say that Γ is a congruence subgroup of level N .

Every congruence subgroup Γ has finite index in SL2(Z). Besides Γ(N), the most important

congruence subgroups are

Γ0(N) =

{[
a b

c d

]
∈ SL2(Z) :

[
a b

c d

]
≡
[
∗ ∗
0 ∗

]
mod N

}

(where “∗” means unspecified) and

Γ1(N) =

{[
a b

c d

]
∈ SL2(Z) :

[
a b

c d

]
≡
[
1 ∗
0 1

]
mod N

}
.

Let the upper half plane be denoted by H = {τ ∈ C : �(τ) > 0}.

Definition 1.1.20 Let Γ ⊂ SL2(Z) be a congruence subgroup of level N . An holomorphic

function f : H → C is a modular form of weight k ≥ 2 with respect to Γ if
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(1) For all τ ∈ H and α =

(
a b

c d

)
∈ Γ,

f(
aτ + b

cτ + d
) = (cτ + d)kf(τ)

(2) For all α =

(
a b

c d

)
∈ SL2(Z), there exists a Fourier expansion

(cτ + d)−kf(
aτ + b

cτ + d
) =

∞∑
n=0

cnq
n/N

where q = e2πiτ .

When α = Id we denote the Fourier coefficients cn in (2) by an(f). If c0 = 0 in all the

Fourier expansions above we say that f is a cusp form. We denote by Sk(Γ) the space of all

modular cusp forms of weight k respect to Γ.

Sk(Γ) forms a vector space over C of finite dimension. For k ≥ 2 there are formu-

las to compute its dimension and algorithms to compute their elements. In particular,

S2(Γ0(2
t)) = {0} for t ∈ {0, 1, 2, 3, 4} and S2(Γ0(32)) has dimension 1.

Remark 1.1.21 Not being able to compute these spaces for large levels is one of the barriers

to the application of the modular approach to more equations. This will be clear in later

chapters.

Given a cusp for f ∈ Sk(Γ1(M)) it is clear that it can be thought also as a cusp form in

f ∈ Sk(Γ1(N)) of any level N multiple of M . Fix a level N . For each M strictly dividing N

there are various degeneracy maps sending the cusp forms on Sk(Γ1(M)) into Sk(Γ1(N)).

The subspace of Sk(Γ1(N)) spanned by the cusp forms of smaller levels under the various

degeneracy maps is called the old space (of level N). If f ∈ Sk(Γ1(N)) does not belong to

the old space we say it is a new cusp form (of level N). We denote by Snew
k (Γ1(N)) the

subspace of all new cusp forms in Sk(Γ1(N)).

We do not intend to define it here, but there is a family of operators {Tn}n∈N, called the
Hecke operators, that act on the space Sk(Γ1(N)). It can be shown that Snew

k (Γ) admits a

basis of simultaneous eigenvectors for all the operators Tn. To such a cusp form f we will

call eigenform and if a1 = 1 we say it is normalized. To a new normalized eigenform (of

level N) we call it a newform (of level N).

Proposition 1.1.22 Let f =
∑∞

n=1 anq
n be an eigenform, say Tnf = λ(n)f for all n.

Then an = λ(n)a1.

Let J1(N) be the Jacobian of the modular curve X1(N). Since it is an abelian variety,

similarly to what happen with elliptic curves, from the torsion points of J1(N) we can
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construct associated l-adic Galois representations. These representations, after extending

scalars, decompose into 2-dimensional representations associated to modular forms. Indeed,

we have

Theorem 1.1.23 Let f ∈ S2(Γ0(N)) be a normalized eigenform and denote by Qf the

number field generated by its Fourier coefficients. For each maximal ideal λ of OQf
lying

over l there is a Galois representation

ρf,λ : GQ :→ GL2(Qf,λ).

This representation is unramified at every prime p � lN . For any such p let p ⊂ Z be any

maximal ideal lying over p. Then ρf,λ(Frobp) satisfies the polynomial equation

x2 − ap(f)x+ p = 0.

There exists a decomposition

Sk(Γ1(N)) =
⊕
ε

Sk(N, ε),

where the sum is over the Dirichlet characters ε of modulus N. Moreover, if f ∈ Sk(N, ε)

then

f(
aτ + b

cτ + d
) = ε(d)(cτ + d)kf(τ)

for matrices

[
a b

c d

]
∈ Γ0(N). Note that for trivial ε we have Sk(N, ε) = Sk(Γ0(N)). Actu-

ally, due to the work of Deligne (see [22]), the previous theorem with suitable modifications

is also true for weight k > 2 and non trivial ε .

Theorem 1.1.24 Let f ∈ Sk(N, ε) be a normalized eigenform. Let l be a prime. For each

maximal ideal λ of OQf
lying over l there is an irreducible 2-dimensional Galois represen-

tation

ρf,λ : GQ → GL2(Qf,λ).

This representation is unramified at every prime p � lN . For any such p let p ⊂ Z be any

maximal ideal lying over p. Then ρf,λ(Frobp) satisfies the polynomial equation

x2 − ap(f)x+ ε(p)pk−1 = 0.

Given a newform f ∈ S2(N, ε) we can also attach a mod l representation to f . Indeed,
up to similarity we may assume that the representation ρf,λ maps to GL2(OQf ,λ), hence it

reduces modulo the maximal ideal to a representation

ρ̄f,λ : GQ → GL2(OQf ,λ/λOQf ,λ) � GL2(Flr ).
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1.2 Modularity and level lowering over Q

Since we now know that there are Galois representations attached to modular forms it is

natural to ask when a given representation ρ arises this way.

Definition 1.2.1 Let L be a finite extension of Ql and consider a Galois representation

ρ : GQ → GL2(L). Suppose that ρ is irreducible, odd and that det ρ = εχk−1
l where ε has

finite image. Then ρ is modular of level Mf if there exists a newform f ∈ Sk(Mf , ε) and a

prime λ above l such that Qf,λ embeds in L and such ρf,λ ∼ ρ.

Wiles proved [76] that the l-adic Galois representations attached to all semistable elliptic

curves over Q are modular. Then, Breuil, Conrad, Diamond and Taylor in [9] generalized

the result for all elliptic curves over Q. This general version of Wiles’ Theorem is known

as Modularity Theorem and there are several equivalent versions of it. Below we will state

two versions: the first one is the more arithmetic and the other uses Galois representations.

The proof of the equivalence between the two statements can be found in [25].

Let E/Q be an elliptic curve (with defining coefficients ai) and for primes p of good

reduction denote by Ẽ the reduction mod p of a minimal model of E. Let NE be the

conductor of E and define{
ap(E) = #{ solutions of x2 + a1x− a2 ≡ 0 (mod p)} − 1 if p | NE

ap(E) = p+ 1−#Ẽ(Fp) if p � NE

Theorem 1.2.2 (Modularity Theorem) Let E be an elliptic curve over Q with conductor

NE. Then for some newform f ∈ S2(Γ0(NE)),

ap(f) = ap(E) for all primes p.

Theorem 1.2.3 (Modularity Theorem) Let E be an elliptic curve over Q with conductor

N . Then for some newform f ∈ S2(Γ0(N)) with number field Qf = Q,

ρf,l ∼ ρE,l for all l.

Before proceeding to Ribet’s level lowering theorem and Serre’s conjecture we need to

extend the idea of modularity for mod l representations and introduce a few more concepts

related to mod l Galois representations.

Definition 1.2.4 An irreducible representation ρ̄ : GQ → GL2(F̄l) is modular of type

(N, k, ε) if there exists a newform f ∈ Sk(N, ε) and a maximal ideal λ ⊂ OQf
lying over l

such that ρ̄f,λ ∼ ρ̄

In order to formulate his conjecture Serre gives recipes to compute three quantities: Serre’s

level N(ρ̄), Serre’s weight k(ρ̄) and Serre’s character ε(ρ̄) attached to a given representation
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ρ̄ (see Conjecture 1.2.7 and [64]). Here we will recall only the definition of N(ρ̄) that

measures the minimal level of the modular forms giving rise to the given ρ̄. Indeed, given

a 2-dimensional Galois representation ρ̄ : GQ → GL2(F̄p) we can think of it given by the

action of GQ in a two dimensional F̄p vector space V . Let l �= p be a prime number and

choose an extension to Q̄ of the l-adic valuation on Q. Let G0 ⊃ G1 ⊃ ... ⊃ Gi ⊃ ... be

the sequence of ramification subgroups corresponding to that valuation (see [65], Chap. IV)

and let Vi be the subspace of V fixed by the action of Gi. Moreover, define also

n(l, ρ̄) =

∞∑
i=0

1

(G0 : Gi)
dimV/Vi.

Finally, Serre’s level N(ρ̄) is defined to be the Artin conductor (as in characteristic zero cf.

[65]) taken outside of p. That is,

N(ρ̄) =
∏
l 	=p

ln(l,ρ̄).

We want to emphasize that p � N(ρ̄) by construction. Analogously we can define the Artin

conductor outside of p for representations of GK , in which case none of the primes above p

divides it.

In the rest of this work, when talking about the conductor of a mod p representation ρ̄

we will be always considering it outside of p. In particular, by abuse of language, given a

mod p representation ρ̄ we will refer to its Artin conductor outside of p (i.e. Serre’s level)

simply by its Artin conductor.

Another important idea is the notion of ρ̄ being finite at p. This notion has a quite involved

definition and can be defined by means of group schemes or in a more Galois theoretical

way. For details and the definition in complete generality see [64]. In our applications we

will always check finiteness of ρ̄ via the following criterion.

Lemma 1.2.5 Let E/K be an elliptic curve and put ρ̄ := ρ̄E,p.

(1) Let K = Q, L0 be the maximal unramified extension of Qp and χ̄p be the mod p

cyclotomic character. Suppose that E has multiplicative reduction at p and is such

that

ρ̄|Ip =
(
χ̄p ∗
0 1

)
.

The image of ρ̄|Ip is isomorphic to the Galois group of some totally ramified extension

L/L0. Let Lt be the biggest tamely ramified extension of L0 inside L. It follows from

Kummer theory that L = Lt(x
1/p
1 , ..., x

1/p
m ) with pm = [L : Lt] and xi elements in

L∗0/L
∗p
0 . If υp is the valuation in L0 normalized by υp(p) = 1 and υp(xi) ≡ 0 (mod p)

then ρ̄ is finite at p.

(2) If E/K has multiplicative reduction at p and p | υp(Δ) then ρ̄ is finite at p.
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(3) If p is of good reduction for E/K then ρ̄ is finite at p.

Proof: See pages 186-191 in [64].

�

In what follows, whenever we need to check finiteness of a representation ρ̄ we will use

(2) or (3) in the lemma above. We decided to also include (1) because it is close to the

definition in the case of elliptic curves over Q (it does not include the good supersingular

reduction) and it is used on the proof of parts (2) and (3) of the previous lemma.

It was Ribet’s level lowering theorem (see [57]) that reduced the proof of FLT to the

Shimura-Tanyama conjecture for semistable elliptic curves over Q.

Theorem 1.2.6 (Mazur-Ribet) Let p ≥ 3 be a prime. Let ρ̄ : GQ → GL2(Fpr ) be irreducible

over F̄p and modular of type (N, 2, 1). If ρ̄ is finite at p then it is modular of type (N(ρ̄), 2, 1).

In later chapters we will make use of results similar to this but for Hilbert modular

forms. In particular, we will be interested in the difference between the conductor of the

representation attached to Frey curves and the Artin conductor of its residual representation.

Let ρ be a modular representation such that ρ̄ is irreducible. It is known from the work

of Carayol (see [14]) that the possible differences between its conductor Nρ and the Artin

conductor N(ρ̄) at primes P not above the characteristic l are given by Table 1.1.

υp(Nρ) n+ 2(n ≥ 1) 2 2 1
υp(N(ρ̄)) n+ 1(n ≥ 1) 1 0 0

Table 1.1: Conductors differences

Furthermore, it is also known from Carayol’s work that in order for the level lowering

to happen there is a congruence between the prime p and the characteristic l that must be

satisfied. Only in the case corresponding to the last column the level lowering is independent

of such a congruence. In particular, for a fixed prime p and l big enough this implies that

only the last case of level lowering can happen. This fact will be very important in later

chapters when we will lower the level of representations attached to our Frey curves.

We end this section by stating Serre’s conjecture regarding the modularity of mod l

representations (see [64]). Nowadays the conjecture is known to be true, but at the time of

the proof of FLT it was still a conjecture.

Conjecture 1.2.7 (Serre) Let ρ̄ : GQ → GL2(F̄p) be odd and irreducible. The ρ̄ is modular

of type (N(ρ̄), k(ρ̄), ε(ρ̄)).

Theorem 1.2.8 (Khare-Wintenberger) Serre’s conjecture holds.

Proof: See [39] and [40].
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1.3 Fermat’s Last Theorem

To end this chapter we will prove FLT. The reason for this is twofold. On one hand we

want to recall the original application of the modular approach. On the other hand this

way we hope to motivate the generalizations of some aspects of the approach that we will

make in the next chapters.

Theorem 1.3.1 (Fermat-Wiles) Let p ≥ 3 be a prime. The equation xp + yp = zp has no

solutions (a, b, c) such that gcd(a, b, c) = 1 (primitive) and abc �= 0 (non-trivial).

Proof: We will prove it for p ≥ 5. If (a, b, c) is a non-trivial primitive solution of Fermat’s

equation it is easy to see that we can suppose that b is even and a, c are odd and also that

a ≡ −1 (mod 4) (if a ≡ 1 (mod 4) we take the solution (−a,−b,−c)).

Now consider the Frey curve

E = Eap,bp,cp : y2 = x(x− ap)(x+ bp)

which has discriminant of the form Δ = 24(abc)2p. Since p ≥ 5 from Tate’s algorithm

can be seen that E is semistable and has conductor NE = rad(abc). From the modularity

theorem ρE,p is modular of level NE , hence ρ̄E,p is modular of type (NE , 2, 1). By Theorem

1.1.13 the representation ρ̄E,p is irreducible. ρ̄E,p is finite at p by the paragraph following

Definition 1.2.4, hence by the Mazur-Ribet Theorem ρ̄E,p is modular of type (N(ρ̄), 2, 1).

From Proposition 1.3.2 below and since ρ̄E,p is finite at p we have N(ρ̄E,p) = 2. Recall that

S2(Γ0(2)) = {0} hence ρ̄E,p can not be modular. We have a contradiction.

�

Proposition 1.3.2 If p ≥ 5 then ρ̄E,p : GQ → GL2(Fp) is unramified outside 2p.

Proof: Let l �= p be an odd prime. If l � abc then l � Δ and E has good reduction at l.

By theorem 1.1.18 we have that ρE,p is unramified at l, hence ρ̄E,p also is. If l|abc then the
given equation is minimal at l and by Hellegouarch theorem follows that ρ̄E,p is unramified

at l. Thus ρ̄E,p is unramified outside 2p.

�

As a final observation, we could have made the proof above shorter by applying Serre’s

conjecture. Instead, we decided to illustrate the use of a level lowering theorem. Despite of

the existence of an analogous statement of Serre’s conjecture for totally real fields due to

Buzzard, Diamond and Jarvis (see [12]) it is still a conjecture. On the other hand, the level

lowering theorems for totally real fields are completely proved and we will extensively use

them in the rest of this work.
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Chapter 2

Equations of signature (5, 5, p)

via Q-curves

The use of Q-curves in the modular approach was introduced by Ellenberg in [29] to deal

with the equation x4+y2 = zp. Since then other Diophantine equations were solved through

Q-curves, as in work from Dieulefait-Jimenez [28], I.Chen [15] and Bennett-Chen [3].

In this chapter we will study equations of the form x5+y5 = Czp via a multi-Frey approach

with Q-curves. In section 2.1 we start with some comments on Galois representations

attached to elliptic curves and we state results from Ellenberg that we need later. In section

2.2 and 2.3 we will prove (modulo the proof of Theorem 2.1.10) Theorem 2.0.3 below. In

section 2.4 and 2.5 we will introduce tools from the theory of abelian varieties attached

to Q-curves and embedding problems. The material in these two sections can be found in

detail in [54] and [55]. Finally, in the last section we will give a proof of Theorem 2.1.10.

Theorem 2.0.3 Let β be an integer divisible only by primes l �≡ 1 (mod 5). Suppose that

p ≡ 1 mod 4 or p ≡ ±1 mod 5. Then, the equation

x5 + y5 = Czp, (2.1)

has no non-trivial primitive solutions if

(A) C = 2β and p > 13 or

(B) C = 3β and p > 73.

2.1 A Frey curve to the equations x5 + y5 = Czp

In this section, to a putative solution (a, b, c) of (2.1) we will attach a Frey curve Eγ(a, b)

over a number field K. Despite Eγ(a, b) being defined over a number field we will show that

there is a mod p Galois representation of GQ attached to it, to which we can apply Serre’s

Conjecture. Recall that to a triple (a, b, c) such that a5 + b5 = Ccp we call a primitive

solution if (a, b) = 1 and a trivial solution if |abc| ≤ 1.
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2.1.1 Q-curves and Galois representations.

Definition 2.1.1 Let C be an elliptic curve over Q̄. We say that C is a Q-curve if for

every σ ∈ GQ there is an isogeny φσ : σC → C. We say that a Q-curve C is completely

defined over a number field K if all the conjugates of C and the isogenies between them are

defined over K.

To an elliptic curve C over Q we can attach an l-adic representations ρC,l of GQ. Since

the isomorphism class of ρC,l depends only on the isogeny class of C it is natural to expect

that if C/K is a Q-curve then we can also attach to its isogeny class one (or more) Galois

representations ρ′C,l : GQ → GL2(Q̄l). This is indeed the case and we may think of it as

ρ′C,l being attached to an abelian variety of GL2-type over Q admitting C as a factor over

Q̄. Then ρ′C,l|GK agrees with the Galois representation obtained from the action of GK on

the l-adic Tate module of C. Moreover, if we start with a Q-curve C we can always find a

suitable field of complete definition K ′ such that the representation ρC,l : GK′ → GL2(Ql)

extends to a Galois representation of GQ after a suitable twist.

It is a consequence of Serre’s conjecture that Q-curves are modular. However, modularity

results from Ellenberg-Skinner [31] were previously available under a local condition at 3.

In our argument we will use Serre’s conjecture, although since our curves will have good

reduction at 3 their modularity would follow from [31]. We will now state two results due to

Ellenberg (Propositions 3.2 and 3.4 in [29]) about representations attached to Q-curves that

we need in the following sections. Given a mod p Galois representation ρ̄ : GK → GL2(Fp)

we will denote its projectivization into PGL2(Fp) by Pρ̄.

Theorem 2.1.2 (Ellenberg) Let K be a quadratic field, E/K be a Q-curve admitting a

cyclic isogeny of degree d to its Galois conjugate. Suppose Pρ̄E,p is reducible for some

p = 11 or p > 13 with (p, d) = 1. Then E has potentially good reduction at all primes of K

of characteristic greater than 3.

Theorem 2.1.3 (Ellenberg) Let K be a quadratic field, E/K be a Q-curve admitting a

cyclic isogeny of degree d to its Galois conjugate. Suppose the image of Pρ̄E,p lies in the

normalizer of a split Cartan subgroup of PGL2(Fp), for p = 11 or p > 13 with (p, d) = 1.

Then E has good reduction at all primes of K not dividing 6.

2.1.2 A pair of Diophantine equations

From now on we will consider a, b to be coprime integers, thus we will always be talking

about primitive solutions. The first observation in order to solve equation (2.1) is that we

will use the factorization

a5 + b5 = (a+ b)(a4 − a3b+ a2b2 − ab3 + b4) (2.2)
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to relate a solution of (2.1) with a solution of another Diophantine equation. With that

in mind, we let φ(a, b) = a4 − a3b + a2b2 − ab3 + b4 and we will prove a few elementary

results about the factorization (2.2). Given integersm,n, s we will say thatm,n are coprime

outside s if gcd(m,n) is divisible at most by the prime factors of s.

Lemma 2.1.4 Let l be a prime number dividing a+ b. Then, φ(a, b) ≡ 5a2b2 (mod l2).

Proof: Let l be a prime number dividing a + b. We have a2 + b2 ≡ −2ab (mod l2). Since
φ(a, b) = (a2 + b2)2 − ab(a2 + b2 + ab), then φ(a, b) ≡ 5a2b2 (mod l2).

�

Lemma 2.1.5 The integers a+ b and φ(a, b) are coprime outside 5. Moreover, if 5 divides

a+ b then υ5(φ(a, b)) = 1

Proof: Let l be a prime divisor of a+ b. If l �= 5 we have 5a2b2 �≡ 0 (mod l) because l � ab

and by the previous lemma we conclude that l does not divide φ(a, b). If l = 5 then the

congruence in the lemma implies that l|φ(a, b) and ν5(φ(a, b)) = 1.

�

Lemma 2.1.6 Let l �≡ 1 (mod 5) be a prime number dividing a5+ b5. Then, l divides a+ b.

Proof: Since l|a5 + b5 and (a, b) = 1 then l � ab. Let b′ be the inverse of −b mod l. Since
a5 ≡ (−b)5 (mod l) we have (ab′)5 ≡ 1 (mod l). Hence ab′ has order 1 or 5. If ab′ has order
1 then a+ b ≡ 0 (mod l). Hence if l � a+ b then ab′ must have order 5 thus 5|l− 1, i.e l ≡ 1

(mod 5).

�

Corollary 2.1.7 Suppose (a, b) = 1. If a prime number q �= 5 divides φ(a, b) then q ≡ 1

mod 5. Also, if 5 � a+ b then ν5(φ(a, b)) = 0.

Proof: Let q �= 5 be a prime dividing φ(a, b). Then q | a5 + b5 by (2.2) and q � a + b by

Lemma 2.1.5. Hence by Lemma 2.1.6 we must have q ≡ 1 (mod 5). Since 5 �≡ 1 (mod 5), if

5 � a+ b it follows from Lemma 2.1.6 that 5 � a5 + b5 thus 5 � φ(a, b).
�

The following lemma relates two Diophantine equations.

Lemma 2.1.8 Suppose there exists a non-trivial primitive solution (a, b, c′) to x5+y5 = Czp

with C �= 0 an integer divisible only by primes q �= 5 satisfying q �≡ 1 (mod 5). Then there

exists a solution (a, b, c) such that (a, b) = 1 (primitive) and |abc| > 1 (non-trivial) to

φ(a, b) = cp or (2.3)
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φ(a, b) = 5cp (2.4)

which satisfies 5 � a+ b in case (2.3) and 5 | a+ b in case (2.4). Moreover:

• if d | C, then d | a+ b;

• the prime divisors of c are all congruent to 1 (mod 5). In particular, neither 2, nor 5

divide c.

Proof: This follows from the equalities x5 + y5 = (x+ y)φ(x, y) = Czp, Lemma 2.1.6 and

Corollary 2.1.7. Also, it is a particular case of Lemma 3.2.6.

�

From the lemma above we see that Theorem 2.0.3 will follow if we prove that there are no

solutions (a, b, c) to (2.3) and (2.4) such that (a, b) = 1 (primitive), |abc| > 1 (non-trivial)

and C | a + b. We want to remark that despite of C = 2β or C = 3β in the statement of

Theorem 2.0.3, in its proof we will only need 2 | C or 3 | C, because this already implies
that 2 | a+ b or 3 | a+ b which is enough to prove part (A) or part (B), respectively.

2.1.3 The Q-curve

To apply the modular approach we need to find an appropriate Frey Q-curve. Consider

the polynomial

φ(x, y) = x4 − x3y + x2y2 − xy3 + y4

and its factorization over Q(
√
5)

φ(x, y) = φ1(x, y)φ2(x, y),

where

φ1(x, y) = x2 + ωxy + y2,

φ2(x, y) = x2 + ω̄xy + y2,

ω =
−1 +√5

2
,

ω̄ =
−1−√5

2
.

Proposition 2.1.9 If (a, b) is a pair of coprime integers then φ1(a, b) and φ2(a, b) are

coprime outside 5.

Proof: Suppose that l is a prime in Q(
√
5) dividing both φi(a, b), then l also divides

φ1 − φ2 =
√
5ab. If l divides ab, then we can suppose that l divides a, but dividing a

and φ1(a, b) implies that divides b which is a contradiction since a, b are coprime. Thus we

conclude that l is above 5.
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�

Let (a, b, c) be a non-trivial primitive solution to (2.3) or (2.4), we define an elliptic curve

over Q(
√
5)

E(a,b) : y
2 = x3 + 2(a+ b)x2 − ω̄φ1(a, b)x.

To ease notation we will omit the pair (a, b) when writing E(a,b), φ(a, b), φ1(a, b), φ2(a, b).

Observing that (a+ b)2 = −ω̄φ1 − ωφ2 we compute

Δ(E) = 26ω̄φφ1. (2.5)

Consider the Galois conjugated curve for the non-trivial element in Gal(Q(
√
5)/Q)

σE : y2 = x3 + 2(a+ b)x2 − ωφ2x,

and the 2-isogeny μ : σE → E given by

(x, y) �→ (− y2

2x2
,

√−2
4

y

x2
(ωφ2 + x2)).

with dual isogeny μ̂ : E → σE given by

(x, y) �→ (− y2

2x2
,−
√−2
4

y

x2
(ω̄φ1 + x2)),

showing that E is a Q-curve. In order to apply the modular approach to our equation,

we need to find a twist of E, Eγ such that its Weil restriction decomposes as a product of

abelian varieties of GL2-type. That is the content of the following theorem, whose proof we

postpone until section 2.3.3.

Theorem 2.1.10 Let K = Q(θ) where θ =
√

1
2 (5 +

√
5) is a root of the polynomial x4 −

5x2 + 5, and put γ = 2θ2 − θ − 5. Then, the twisted curve

Eγ : y
2 = x3 + 2γ(a+ b)x2 − γ2ω̄φ1(a, b)x

is completely defined over K and its Weil restriction from K to Q decomposes as the product

of two non-isogenous abelian surfaces of GL2-type each of them with endomorphism algebra

over Q isomorphic to Q(i).

2.1.4 The conductor of Eγ and Eγ,2

Now we will determine the conductor of Eγ . These conductors are needed to compute

the conductor of Weil restriction of Eγ and consequently the level of the associated modular

forms. Let K = Q(θ) and denote by P2 and P5 the only primes above 2 and 5, respectively.

Also, denote the conductor of Eγ by NEγ and let rad(c) be the product of the prime factors
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of c. The curves Eγ(a, b) have associated the following quantities

Δ(Eγ) = γ6Δ(E) = γ626ω̄φφ1,

c4(Eγ) = γ2Δ(E) = −γ224(ω̄φ1 − 22ωφ2),

c6(Eγ) = γ3Δ(E) = −γ326(a+ b)(ω̄φ1 − 23ωφ2)

Recall that φ = φ1φ2 over Q(
√
5). If φ(a, b) = cp or φ(a, b) = 5cp then φi(a, b) = cpi or

φi(a, b) =
√
5cpi up to units, with ci ∈ OQ(

√
5). In the proofs of this section we follow the

tables of Papadopoulos in [52].

Proposition 2.1.11 Let P be a prime in K distinct from P2, P5. Then Eγ has good

(υP(NEγ
) = 0) or multiplicative (υP(NEγ

) = 1) reduction if P � c or P | c, respectively.

Proof: Observe that ω and ω̄ are units. Then υP(Δ) = pυP(c) + pυP(c1). Hence, if P � c

we have υP(Δ) = 0 and the curve has good reduction. If P | c we have υP(Δ) > 0 and

since P divides only one of the ci it is clear from the form of c4 that υP(c4) = 0, thus the

curve has multiplicative reduction.

�

Proposition 2.1.12 Let P = P5. The curve Eγ has bad additive reduction (υP(N) = 2)

or good reduction if 5 � a+ b or 5 | a+ b, respectively.

Proof: Note that γOK = P5. If 5 � a + b we have υP(Δ) = υP(γ
626ω̄cpcp1) = 6 and

υP(c4) > 0 then by table I in [52] the curve has bad additive reduction and υP(N) = 2.

In 5 | a+ b we have

υP(Δ) = υP(ω̄γ
6265

√
5cpcp1) = υP(γ

6) + υP(5) + υP(
√
5) =

= 6 + 4 + 2 = 12.

This means that the equation is not minimal. Any change of variable leading to a minimal

equation will decrease the valuation of the discriminant by 12, hence υP(Δ) = 0, i.e. the

curve as good reduction.

�

Let π = P2 and we note that υπ(2) = 2

Proposition 2.1.13 The conductor at π of Eγ satisfies:

υπ(NEγ ) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

8 or 6 if 2 � a+ b,

8 if 2 ‖ a+ b,

0 if 4 ‖ a+ b,

4 if 8 | a+ b,
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Proof: Observe that (υπ(c4), υπ(c6), υπ(Δ)) = (8, 12+2υ2(a+b), 12). According to Table V

in [52] these values can correspond to the Tate cases 3, 6, 7(ν odd), 7(ν even), 9, 10 or non-

minimal. The fact υπ(Δ) = 12 tells us that if arrive at the non-minimal case then the curve

has good reduction hence we go through each case only once. Observe from Proposition 6

in [52] that π10 is the highest power of π appearing in the congruences used to decide in

which case we are for each (a, b). Since between our possible cases the coordinate changes

are translations it follows that all the possible values for the conductor at π must appear by

considering the pairs (a, b) (mod 25). Using SAGE we compute these conductors and easily

observe that they divide into categories according to the statement.

�

Let Eγ,2 be the twist of Eγ by 2 and denote its conductor by NEγ,2
. This conductor

will later be used to reach a contradiction when analyzing representations coming from

newforms. Actually, we will only need it in the case of congruences between representations

coming from newforms with level 1600 and Eγ(a, b) where 2 ‖ a+ b.

Proposition 2.1.14 Suppose that (a, b, c) is a solution to (2.3) or (2.4) such that 2 ‖ a+ b.
Then the conductor at π of Eγ,2 is π0 or π4.

Proof: Observe that when twisting a curve by 2 the quantities Δ, c4 and c6 change by

the factors 26,22 and 23, respectively. Then for Eγ,2 we have (υπ(c4), υπ(c6), υπ(Δ)) =

(12, 18 + 2υ2(a + b), 24) and by table V in [52] follows that the equation is not minimal.

After the change (x, y) = (π2x, π3y) we have (υπ(c4), υπ(c6), υπ(Δ)) = (8, 12+2υ2(a+b), 12).

Now exactly as above but with the extra condition 2 ‖ a+ b we use SAGE to compute the

conductors.

�

2.1.5 Modularity of Eγ

Here we go into determining the precise Serre’s parameters k(ρ̄), N(ρ̄) and ε(ρ̄), where

ρ̄ is the residual representation of a p-adic representation attached to a GL2-type abelian

variety given by Theorem 2.1.10.

Let B = ResK/Q(Eγ/K), where K = Q(θ) is the cyclic Galois extension in Theorem

2.1.10, and denote its conductor by NB . To compute this conductor we will use a formula

of Milne (see [50]), which in our case tells us that the conductor satisfies

NB = NmK/Q(NEγ
)Disc(K/Q)2,

where Disc and Nm denote the discriminant and norm of K/Q, respectively. Since c is odd

and Disc(K/Q) = 2453, then the primes dividing c do not ramify in K. Being K/Q of
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degree 4 we have that a prime p dividing c is inert, splits completely or is the product of two

primes in K with residual degree 2 thus Nm((c)) = c4. Also, Nm(P5) = 5 and Nm(P2) = 4.

By applying the above formula we obtain the following results:

Proposition 2.1.15 If (a, b, c) is a primitive solution of equation (2.3) then B has conduc-

tor:

NB =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

22458rad(c)4 or 22058rad(c)4 if 2 � a+ b,

22458rad(c)4 if 2 ‖ a+ b,

2858rad(c)4 if 4 ‖ a+ b,

21658rad(c)4 if 8 | a+ b.

Proposition 2.1.16 If (a, b, c) is a primitive solution of equation (2.4) then B has conduc-

tor:

NB =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

22456rad(c)4 or 22056rad(c)4 if 2 � a+ b,

22456rad(c)4 if 2 ‖ a+ b,

2856rad(c)4 if 4 ‖ a+ b,

21656rad(c)4 if 8 | a+ b.

We know from Theorem 2.1.10 that B � S1×S2 where Si are two non Q-isogenous abelian

surfaces of GL2-type with Q-endomorphism algebras equal to Q(i). So the conductor of B

satisfies NB = NS1NS2 .

For a prime l and each Si the action on the Tate module TlSi induces a 4-dimensional

l-adic representation of GQ that decomposes into two 2-dimensional λ-adic representations

ρSi,λ and ρσSi,λ
, where λ is a prime of Q(i) above l. Then we have four 2-dimensional

representations of GQ extending the l-adic representation ρEγ ,l of Gal(Q̄/K) induced by the

action on the Tate module of Eγ . Since extensions of absolutely irreducible representations

are unique up to twists we have the following relations between them:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
ρS1,λ ⊗ ε ∼ ρσS1,λ

ρS1,λ ⊗ ε2 ∼ ρS2,λ

ρS1,λ ⊗ ε3 ∼ ρσS2,λ

where ε is the character of K (see section 2.3.3, formula (2.10)) and ε2 is the character

of Q(
√
5). It is known that the conductors of ρSi,λ and ρσSi,λ

are equal and that their

product is equal to the conductor of Si, which means that every prime in the conductor of

Si appears to an even power. From the second relation and the fact that ε2 has conductor

5 we see that the only possible difference in the conductors of ρS1,λ and ρS2,λ may occur at

5. Furthermore, the conductor at 5 of ρS1,λ ⊗ ε2 is smaller or equal to the least common

multiple between the conductor at 5 of ρS1,λ and cond5(ε
2)2, that is

cond5(ρS1,λ ⊗ ε2) ≤ lcm(cond5(ρS1,λ), cond5(ε
2)2) = lcm(cond5(ρS1,λ), 5

2).
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The inequality may hold only if the conductor at 5 of ρS1,λ is equal to 5
2. Using these facts

together with a case checking allow us to determine all the possibilities for the conductors

of the four 2-dimensional representations (see Table 2.1).

Equation ν2(a+ b) ρS1,λ ρσS1,λ
ρS2,λ ρσS2,λ

(2.3) 0 2652c0 2652c0 2652c0 2652c0
(2.3) 0 2552c0 2552c0 2552c0 2552c0
(2.3) 1 2652c0 2652c0 2652c0 2652c0
(2.3) 2 2252c0 2252c0 2252c0 2252c0
(2.3) ≥ 3 2452c0 2452c0 2452c0 2452c0
(2.4) 0 2652c0 2652c0 265c0 265c0
(2.4) 0 2552c0 2552c0 255c0 255c0
(2.4) 1 2652c0 2652c0 265c0 265c0
(2.4) 2 2252c0 2252c0 225c0 225c0
(2.4) ≥ 3 2452c0 2452c0 245c0 245c0

Table 2.1: Values of conductors, where c0 = rad(c)

Now pick a prime λ in Q(i) above p, let ρ := ρS1,λ and ρ̄ := ρ̄S1,λ be its residual

representation. Recall that by Theorem 1.1.14 a prime of semistable reduction of an elliptic

curve C which appear in the discriminant of C to a p-power will not ramify in the mod p

representation induced by the p-torsion points. From formula (2.5), Proposition 2.1.9 and

the fact that the primes in K dividing c are of semistable reduction for Eγ we can apply

Theorem 1.1.14 to conclude that the restriction ρ̄|GK
of ρ̄ to Gal(Q̄/K), which coincides

with ρ̄Eγ ,p, will not ramify at primes dividing c. Since K only ramifies at 2 and 5 then we

see that ρ̄ can not ramify outside 2 and 5. On the other hand it is known (see comments

after Table 1.1) that in the presence of wild ramification the conductor does not decrease

when reducing mod p, so the possible conductors of ρ̄ are exactly the values in the third

column of Table 2.1 without the factor c0. Thus we have determined Serre’s level N(ρ̄).

Proposition 2.1.17 The representation ρ̄ has character ε(ρ̄) = ε̄ (complex conjugate of ε).

Proof: By Theorem 5.12 of [53] we know that the character associated to ρS1,λ is equal to

ε−1 where ε is the splitting character defined by formula (2.10) in section 2.3.3. Furthermore,

since ε has order 4, for any prime p distinct from 2 the representation ρ̄ has the same

character of the non residual one. Then ρ̄ is modular with character ε−1 = ε̄.

�

Proposition 2.1.18 The Serre weight of the representation ρ̄ is k(ρ̄) = 2.

Proof: We divide in two cases. If p � c then S1 has good reduction at p and ρ̄ comes from

an abelian variety with good reduction at p hence k = 2. If p | c, the fact that p | νP(Δ)
for any P above p implies by Proposition 1.2.5 (see also [29]) that ρ̄ is finite and so k = 2.
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Finally, to apply the Serre’s conjecture we still need irreducibility.

Proposition 2.1.19 The representation ρ̄ is absolutely irreducible.

Proof: If (a, b, c) is a non-trivial solution then there is a prime of characteristic greater that

3 of semistable reduction, hence by Theorem 2.1.2 we conclude that ρ̄ irreducible for p > 13.

�

Now from Serre’s strong conjecture we know that there is a newform f in the space

S2(M, ε̄) with M = 1600, 800, 400 or 100 and P | p in Qf such that the residual represen-

tation ρ̄f,P attached to f is isomorphic to our residual representation ρ̄.

2.2 Eliminating Newforms

Using software we will compute the newforms in the spaces S2(M, ε̄) withM = 1600, 800,

400 or 100, determined in the previous section. Then, in order to reach a contradiction, we

need to show that our representation ρ̄ can not be isomorphic to a representation of the

form ρ̄f,P where f is one of the computed newforms.

Note that equations φ(a, b) = ±1 and φ(a, b) = ±5 have trivial solutions (±1, 0), (0,±1),
(1, 1), (−1,−1) and (1,−1), (−1, 1), respectively. This means that for these pairs (a, b) the
Frey Q-curves do exist and so if their corresponding newforms lie in level 100, 400, 800 or

1600 and a priori we may not be able to eliminate those forms. From now on, when we say

‘eliminate a newform f ’ we mean that we show that the isomorphism ρ̄ ∼ ρ̄f,P can not hold

for any prime P | p. Recall that when treating the cases 2 | C or 3 | C we have a+ b even or

3 | a+b, respectively. As we will see this will turn out to be a key information. Now observe

that (±1, 0), (0,±1) will not be a problem for equation (2.1) when 2 | C, because a + b is

odd; since the elliptic curves E(−1,1), E(1,−1), E(1,1) and E(−1,−1) correspond to newforms

with complex multiplication we will also be able to eliminate them.

To eliminate the newforms we will separate them into three sets and then we apply a

different strategy for each of the sets. Given a newform f let Qf = Q({aq(f)}) be its field
of coefficients and note that for those we will compute we have Q(i) = Q(ε) ⊆ Qf . Now let

S1, S2 and S3 be as follows:

S1: Newforms with CM (Complex Multiplication),

S2: Newforms without CM and field of coefficients strictly containing Q(i),

S3: Newforms without CM and field of coefficients Q(i)
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In the following two sections we will find a contradiction for each set above, first in the case

2 | C and second when 3 | C, which will give us the partial results in Theorem 2.2.1 and

Theorem 2.2.2. We want to remark that up to the end of section 2.2.2 everything will be

done using only the Frey curves E = Eγ(a, b).

Finally, we will introduce a new Frey Q-curve F (see equation (2.7)) and, from the fact

that the pairs E(1,−1), F(1,−1) and E(1,1), F(1,−1) have CM by different field, together with

the multi-Frey technique we will finish the proof of Theorem 2.0.3.

2.2.1 The case 2 | C

Since 2 | a + b then 800 = 2552 is not a possible level. We compute the spaces S2(M, ε̄)

with M = 1600, 400 and 100 and divide the newforms into the sets S1, S2 and S3 defined

above.

Newforms in S1: Modulo Galois conjugation there are 8 newforms with complex mul-

tiplication, half of them with CM by Q(i) and the other half by Q(
√−5). If there is a

non-trivial solution (a, b, c) to equation (2.3) or (2.4) then there exists a prime not dividing

6 of semistable reduction for E. Hence if p > 13 by Theorem 2.1.3 the images of ρ̄ will not

lie in the normalizer of a split Cartan subgroup. Then if p splits in both Q(i) and Q(
√−5),

i.e. p ≡ 1 (mod 4) and p ≡ ±1 (mod 5) we can not have ρ̄ ∼ ρ̄f,P for f in S1. This is because

by Lemma 1.1.16 we know that for p’s that are split on the field of complex multiplication

the image of the attached representation will be in a normalizer of a split Cartan subgroup.

Newforms in S2: There are 12 newforms (modulo conjugation) in this group. For each

prime q of good reduction for S1 we consider the quantity

aq(S1) := Trace(ρS1,λ(Frobq)).

We know that it satisfies aq(S1) = āq(S1)ε̄(q) from propositions 4.3 and 3.4 in [59]. In the

previous equality ε is the character of order 4 defined in section 2.3.3; in particular, the

inner twist implies that

aq(S1) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

t if q ≡ 1 or 19 mod 20

it if q ≡ 9 or 11 mod 20

t− it if q ≡ 3 or 17 mod 20

t+ it if q ≡ 7 or 13 mod 20

where t is an integer. Recall from Table 2.1 that a prime q �= 2, 5 of bad reduction for S1

must divide c, that is, it must divide φ(a, b). Since 3 �≡ 1 (mod 5) it follows from Corollary

2.1.7 that 3 is a prime of good reduction for S1. Hence, a3(S1) must be of the form t − ti

and from the Weil bound |a3(S1)| ≤ 2
√
3 follows that |t| ≤ 2. If f = q +

∑
n=2 cnq

n is one
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of these 12 newforms in S2 then the congruence

a3(S1) ≡ c3(f) (mod P) (2.6)

for a prime P in Q̄ above p, must hold. Now for each newform in S2 we use the coefficient

c3(f) to derive a contradiction, because none of them has c3(f) of the form t− ti. As an ex-
ample, there is a newform f in S2 of level 400 with c3(f) having minimal polynomial x

2+10i;

thus if the congruence (2.6) holds we must have c3(f) ≡ t− it (mod P) with t = 0,±1,±2.
Taking fourth powers we get 100 ≡ 4t4 (mod P) which means 25 − t4 ≡ 0 (mod P) and

finally, substituting for the possible values of t we reach a contradiction if p > 5. A similar

argument works for every newform in S2 and we conclude that if p > 7 the newform pre-

dicted by Serre’s conjecture can not be in S2.

Newforms in S3: There are 10 newforms in this group all with level 1600. Recall that

ρ̄ := ρ̄S1,λ and suppose that ρ̄ ∼ ρ̄f,P for some f in S3. A priori all newforms in S3 are

inconvenient, in the sense that their Fourier coefficients aq(f) behave exactly as those of

our surface S1. That is, each aq(f) lies in Q(i), they respect the rule aq(f) = āq(f)ε̄(p)

(by construction) and they are even (this is true for our surface because Eγ has a 2-torsion

point). To deal with this problem we will twist each newform in S3 by the character of

Q(
√
2), which we denote by χ. Note that cond(χ)2 = 82 = 26 and the power of 2 in 1600

is also 26 so as mentioned before we are in a situation where the power of 2 in the level

of the twist can decrease. Indeed, using SAGE, we pick f in S3, we consider f ⊗ χ and

compare the coefficients of f ⊗ χ up to the Sturm bound with those of the newforms with

level dividing 1600 to find that f ⊗ χ is a newform of level 800 for all f in S3.

On the other hand, let Eγ,2 be as in section 2.1.4 and ρEγ,2,p be the representation coming

from the action of GK on the Tate module TpEγ,2. Note that

(ρS1,λ ⊗ χ)|K = (ρS1,λ)|K ⊗ χ|K = ρEγ ,p ⊗ χ|K ,

that is ρS1,λ ⊗ χ extends ρEγ ,p ⊗ χ|K and this one is precisely ρEγ,2,p. The same is true for

the other three representations coming from the Weil restriction B � S1 × S2. Moreover,

ρB,p = Ind
GQ

GK
ρEγ ,p and we have

ρB,p ⊗ χ = (Ind
GQ

GK
ρEγ ,p)⊗ χ = Ind

GQ

GK
(ρEγ ,p ⊗ χ|K) = Ind

GQ

GK
ρEγ,2,p,

and this means that ρB,p ⊗ χ is the representation coming from the action of GQ on the

p-adic Tate module of ResK/Q(Eγ,2/K). Let ρ1 denote the 2-dimensional factor ρS1,λ ⊗ χ

of ρB,p⊗χ. From Proposition 2.1.14, Milne’s formula and an analysis identical to that used

to compute Table 2.1 we conclude that N(ρ̄1) = 400 or 100. ρ̄1 is also irreducible and has

character and Serre’s weight equal to those of ρ̄, because the same arguments hold. We now

apply Serre’s strong conjecture to ρ̄1 and we conclude that there must be a newform g in

level 400 or 100 and a prime P′ above p such that ρ̄1 ∼ ρ̄g,P′ . But at the same time we also
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have

ρ̄1 = ρS1,λ ⊗ χ ∼ ρ̄⊗ χ ∼ ρ̄f,P ⊗ χ ∼ ρ̄f⊗χ,P ∼ ρ̄f ′,P,

where f ′ is of level 800 by the previous paragraph. Hence the isomorphism

ρ̄g,P′ ∼ ρ̄f ′,P

must hold between a newform of level 800 and another of level 400 or 100, but as we know

this kind of level lowering can not happen. At this point we have proved

Theorem 2.2.1 Let β be an integer divisible only by primes �≡ 1 (mod 5). For any p > 13

such that p ≡ 1 mod 4 and p ≡ ±1 mod 5, the equation x5 + y5 = 2βzp has no non-trivial

primitive solutions.

2.2.2 The case 3 | C

In this case a + b may be odd, hence we also need to consider level 800, but in our

favor we have 3 | a + b. We compute the spaces S2(M, ε̄) with M = 1600, 800, 400 or

100 and again we divide them into the sets S1, S2 and S3. This time we will also need

to make some further subdivisions according to the parity of a + b and the level. Let P3

be the prime ofK above 3 and note that for a+b odd the possible levels are only 800 or 1600.

a+ b odd and level 800: There are 4 newforms of type S2 and 10 of type S3 and none

of type S1. Recall from the previous section that 3 is a prime of good reduction for S1

because 3 � φ(a, b).

Newforms in S2: We use the same type of argument as for 2 | C. Indeed, we already
know that a3(S1) = t − it, with t ∈ Z such that |t| ≤ 2. Again, if f = q +

∑
n=2 cnq

n is a

newforms in S2 then the congruence

a3(S1) ≡ c3(f) (mod P)

for a prime P in Q̄ above p, must hold. In particular, there is a newform in S2 having c3(f)

with minimal polynomial x2 ± (2 − 2i)x + i. For such a form we apply the polynomial to

both sides of the congruence above and then replace x by all its possible values to find a

contradiction with p > 73. By repeating this process for all forms in S2 we find that 73

works as bound for all cases.

Newforms in S3: First recall that ρ|GK
= ρEγ ,p. Suppose now that ρ̄ ∼ ρ̄f,P for some

newform f in S3, in particular, ρ̄|GK
∼ ρ̄f,P|GK

. Let aP3
(f) = tr(ρf,P|GK

(FrobP3
)), which

is an integer by Proposition 2.2.3. By evaluating both sides in the previous isomorphism at
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FrobP3 and taking traces we see that

aP3
(Eγ) = tr(ρ|GK

(FrobP3
)) ≡ aP3

(f) (mod p).

On one hand, for a prime L of good reduction for Eγ , the quantity aL(Eγ) is equal to

ls + 1 − #Ẽγ(Fls), where l
s is the number of elements of the residue field at L and Ẽγ is

the elliptic curve obtained by reducing Eγ modulo L. It is easy to see that the hypothesis

3 | a+ b implies that Eγ mod P3 is the same for any pair (a, b) and by direct computation

with SAGE we check that Eγ has aP3
(Eγ) = −18 for all a, b. On the other hand, looking

for the a3(f) coefficients of the newforms of type S3 we find four possibilities ±(2i − 2)

and ±(i − 1). It is known that if α, β are the roots of the polynomial x2 − a3(f)x + ε̄(3)3

(the characteristic polynomial of ρf,P(Frob3)), then aP3
(f) = α4 + β4. Since ε̄(3) = −i, by

substituting for each of the four values of a3(f) we find out that aP3
(f) = 14 or 2. Hence

ρ̄ ∼ ρ̄f,P is not possible if p > 3.

a+ b odd and level 1600:

Newforms in S1: The newforms with complex multiplication by Q(
√−5) verify a3(f) =

±(i−1) then we use the argument we have just described to get a contradiction with 3 | a+b.
Thus we have to eliminate only newforms with CM by Q(i) and for that we use the same

argument as for the case 2 | C. For p > 13, if we suppose that p is split in Q(i), i.e. p ≡ 1

(mod 4), we have a contradiction with Theorem 2.1.3.

Newforms in S2: Since we have considered separately the newforms of level 800 the set

S2 that we are considering now is a subset of the one considered for 2 | C. Also, we are
assuming p > 73 then the exact same argument as for 2 | C holds, i.e. the argument in the

Section 2.2.1 in paragraph starting with “Newforms in S2:..”.

Newforms in S3: For f in S3 we first twist them by the Dirichlet character of Q(
√
2)

and we already know that f ⊗ χ is a newform of level 800. On the other hand we twist the

Frey curve Eγ(a, b) by the same character. If the conductor at 2 of the twisted curve is not

25 we have a contradiction via Carayol as in the case 2 | C; if it is 25, then since Eγ ⊗ χ

modulo P3 is equal to Eγ(a, b) mod P3 we are in the same situation as above (with forms of

level 800 and type S3) and the argument used there with the values of aP3
(Eγ) and aP3

(f)

gives us the desired contradiction.

a+b even and any level: In this case 6 = 2×3 | a+b then all the arguments described
for both cases 2 | C and 3 | C can be used. For newforms of type S2 and S3 we apply exactly

the same arguments used in section 2.2.1 for 2 | C but with p > 73. For newforms of type

S1 we only need to suppose that is p ≡ 1 (mod 4) to get a contradiction. As we already
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observed, this is because the newforms with CM by Q(
√−5) satisfy a3 = ±(i − 1) which

contradicts 3 | a+ b. Up to now we have just proved

Theorem 2.2.2 Let β be an integer divisible only by primes �≡ 1 (mod 5). For any p > 73

such that p ≡ 1 mod 4, the equation x5 + y5 = 3βzp has no non-trivial primitive solutions.

2.2.3 The multi-Frey approach

In this section we end the proof of Theorem 2.0.3 via Siksek multi-Frey technique. As it

name suggests the multi-Frey approach is a modular approach which makes use of more than

one Frey curve. This technique was introduced by Siksek in [11] and further generalized

in [3]. The main observation being that if we have n distinct modular Frey curves Ei for

2 ≤ i ≤ n attached to a putative solution (a, b, c) then this will imply several simultaneous

isomorphisms between the Galois representations ρ̄Ei,p and the representations ρ̄fi,Pi
at-

tached to their corresponding modular forms. In general, this should allow to give a better

bound for the exponent p in (2.1).

We start by giving a second Frey curve. From the relation

(
−3
10

√
5 +

1

2
)φ1 + (

3

10

√
5 +

1

2
)φ2 = (a− b)2

we can consider the curves F(a,b) defined also over Q(
√
5) and given by

F = F(a,b) : y
2 = x3 + 2(a− b)x2 + (

−3
10

√
5 +

1

2
)φ1(a, b)x. (2.7)

We have checked that these are Q-curves and after applying Quer’s theory analogously to

what we did for E(a,b) we find that the same splitting character/field and twist γ computed

previously work also for F . After computing the conductor of Fγ/K, applying Milne’s

formula and Serre’s conjecture we find that we need to eliminate newforms with level 100,

400 or 1600 if 8 | a+ b, 4 ‖ a+ b or 2 ‖ a+ b, respectively. Also, if 2 � a+ b we can suppose

that a is even and we are in level 800 or 1600 if 4 | a or 4 � a, respectively. Moreover, it also
follows from the conductor of Fγ that if l � 2, 5 is a prime in K of bad reduction for Fγ then

l must divide φ(a, b).

We now recall that, in the previous sections, when working with Eγ we needed to elimi-

nate newforms with level 400, 100 or 1600 if 8 | a + b, 4 ‖ a + b or 2 ‖ a + b, respectively.

Also, when 2 � a + b and a is even we were in level 800 or 1600 depending if 4 | a or 4 � a,

respectively. Thus interchanging Eγ by Fγ only switches the levels 100 and 400. The reason

for this observation will be clear below.

To apply the multi-Frey technique with the curves E(a,b) and F(a,b) we first need to give

the definitions according to our case. For that we will need
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Proposition 2.2.3 Let f be one of the computed newforms with coefficient field Qf = Q(i).

Let P be a prime in K = Q(θ). Then aP(f) = tr(ρf,λ|GK(FrobP)) is an integer number.

Proof: The nebentypus ε̄ fixes K. Let F = Q({aP(f)}) be the field generated by all the
traces aP(f) = tr(ρf,λ|GK(FrobP)). Actually, we can generate F by adjoining to Q only

the values aP(f) corresponding to primes P | p such that p splits in K.

Since f satisfies ap(f) = āp(f)ε̄(p), in particular, for P | p a prime splitting in K we have

aP(f) = ap(f) = āp(f)ε̄(p) = āp(f) = āP(f)

and we see that aP(f) belongs to the maximal totally real subfield of Qf , that is Q. Thus

F = Q.

�

Recall that K = Q(θ) is of degree 4 and for an inert prime q denote by Pq the only

prime of K above q. Let q ∈ Z be a prime inert in K of good reduction to both families

E(a,b), F(a,b). Given a newform f , if α, β are the roots of the characteristic polynomial of

ρf,P(Frobq), i.e. x
2 − aq(f)x+ ε̄(q)q then aPq (f) = α4 + β4 (in the previous section, in the

sub-case corresponding to a+ b odd and level 800, we used this for q = 3). Now, let f be a

newform satisfying the hypothesis of Proposition 2.2.3. Then, aPq (f) is an integer and for

a non-zero pair (x, y) ∈ Fq4 × Fq4 we can define the following quantities

E(x,y)(q, f) := aPq
(E(x,y))− aPq

(f),

F(x,y)(q, f) := aPq (F(x,y))− aPq (f).

Moreover, given a pair of such newforms (f, g) we put

Aq(f, g) :=
∏

(x,y)∈F2
q4
−{(0,0)}

gcd(E(x,y)(q, f), F(x,y)(q, g)).

Now, if (a, b, c) is a primitive solution to (2.3) or (2.4) there is a pair of newforms (f, g) and

primes P and P′ above p such that

⎧⎨
⎩ρ̄E,p ∼ ρ̄f,P|GK

ρ̄F,p ∼ ρ̄g,P′ |GK

Instead of eliminating newforms as in the previous section, we are now interested in elim-

inating pairs, and for that we will use information from both E and F . For example, if

both f, g have coefficient field Q(i) and q is a prime as above then, by evaluating the two

isomorphisms above at FrobPq
and taking traces, we see that p | Aq(f, g). Thus we can

eliminate a pair (f, g) if Aq(f, g) �= 0 by imposing (for example) p > Aq(f, g). Note also

that there is only a finite number of pairs to eliminate.
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We will now finish the proofs of Theorem 2.0.3. Note that the differences between what

we have already proved in the previous two sections and the statement of Theorem 2.0.3

(A) and (B) are the congruence conditions on the exponent p. Those conditions arise from

Ellenberg’s theorem when eliminating the newforms with CM. We observe that in level 800

there are no newforms with CM and in level 1600 there are four corresponding to the elliptic

curves E(1,1), F(1,1), E(1,−1) and F(1,−1). Let f1,f2 denote the two forms with CM by Q(i)

and g1,g2 those with CM by Q(
√−5). Let χ be the character of Q(√2). On level 100 there

are three newforms with CM: g1 ⊗ χ, g2 ⊗ χ, f1 ⊗ χ and on level 400 there is f2 ⊗ χ. Since
there are no newforms with CM in level 800 the argument that follows can be applied to

both cases 2 | C and 3 | C.

Given a primitive solution (a, b, c) to (2.3) or (2.4) we have a double isomorphism as

explained above ⎧⎨
⎩ρ̄E,p ∼ ρ̄f,P|GK

ρ̄F,p ∼ ρ̄g,P′ |GK

where f ∈ S2(Mf , ε̄) and g ∈ S2(Mg, ε̄) where the pair of levels (Mf ,Mg) may be (400, 100),

(100, 400), (1600, 1600) or (800, 800). We consider all the pairs (f, g) of newforms respecting

the previous pairs of levels and we divide them in two sets: let SS1 be the set of pairs (f, g)

where f has no CM and SS2 the set of those where f has CM. We eliminate a pair (f, g) in

SS1 by applying the arguments on f explained in the previous two sections. For pairs (f, g)

in SS2 such that g has coefficient field strictly containing Q(i) we eliminate them by applying

to g the exact same argument as in the previous two sections in the subcase Newforms in

S2. We are left with pairs in SS2 such that both forms have coefficient field Q(i). Note

that q = 3, 7, 13, 17 satisfy q �≡ 1 (mod 5) hence by Corollary 2.1.7 q � φ(a, b) thus it is of

good reduction to both families E(a,b) and F(a,b). Given (f, g) in SS2 such that both f, g

have coefficient field Q(i) we compute Aq(f, g) using the auxiliary primes q = 3, 7, 13, 17

to find that Aq(f, g) = 0 for all the auxiliary primes only if f, g have CM by distinct

fields. Moreover, when Aq(f, g) �= 0 we check that all prime factors of Aq(f, g) are ≤ 13.

Hence there are eight surviving pairs: (f1, g1), (f1, g2), (g1, f1), (g2, f2), (g1 ⊗ χ, f2 ⊗ χ),

(g2 ⊗ χ, f2 ⊗ χ), (f2 ⊗ χ, g1 ⊗ χ) and (f2 ⊗ χ, g2 ⊗ χ). For a prime p ≡ 1 (mod 4) or p ≡ ±1
(mod 5) we can eliminate these pairs by conveniently applying Theorem 2.1.3 to E or F .

Thus Theorem 2.0.3 follows.

2.3 Finding Eγ

In this section we will first introduce background theory on Q-curves, abelian varieties

and embedding problems and then we will give a proof of Theorem 2.1.10.
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2.3.1 Q-curves and abelian varieties

From a Q-curve C we are interested in consider the abelian variety obtained by the

Weil restriction B = ResK/Q(C/K), where K is a large enough number field. The Galois

representations attached to B when B is a product of abelian varieties of GL2-type are going

to play a central role in our argument. In order to understand them we first need to know

the form of B which we will do via Theorem 5.4 in [54]. Below we will restate the specific

case of that theorem that is of interest to us (see Theorem 2.3.3), but first we need to recall

some of the machinery in [54].

We say that a Q-curve C is completely defined over a number field K if all the conjugates

of C and the isogenies between them are defined over K. Let C be a Q-curve without

complex multiplication completely defined K. For every σ ∈ Gal(K/Q) we choose an

isogeny φσ :
σC → C. We denote by φ̂τ the dual isogeny of φσ and given τ ∈ Gal(K/Q) we

define φ−1
τ := (1/deg(φτ ))φ̂τ . Moreover, there is an isogeny

τφσ :
τσC → τC that allows to

define a map cK : Gal(K/Q)×Gal(K/Q)→ End(C)∗ � Q∗, given by

cK(σ, τ) = φσ
σφτφ

−1
στ .

The map cK is known to be a 2-cocycle of Gal(K/Q) with values in Q∗ with trivial action
and the corresponding cohomology class by ξK(C) ∈ H2(K/Q,Q∗) depends only on the

K-isogeny class of C. Now for every σ ∈ GQ we consider an isogeny corresponding to

the action of σ in K; this gives a locally constant set of isogenies {φσ}σ∈GQ
and we can

define as above a continuous 2-cocycle c of GQ whose cohomology class ξ(C) is the inflation

of ξK(C) and depends only on the isogeny class of C. Let d : GQ → Q∗/Q∗2 be given

by d(σ) = deg(σ); this homomorphism depends only on the isogeny class of C. Its fixed

field Kd is a polyquadratic number field Q(
√
a1,
√
a2, ...,

√
am) and is the smallest field of

definition of the curve C up to isogeny. Let also {d1, ..., dm} be squarefree integers forming
a Kummer dual basis for the ai, i.e. a basis of the group d(GQ). The pair of sets {ai}, {di}
is said to be a dual basis respect to the degree map.

Let Br2(Q) be the 2-torsion of the Brauer group of Q. Let also ξ(C)± ∈ H2(GQ, {±1}) �
Br2(Q) denote the cohomology class corresponding to the 2-cocycle given by the sign of the

2-cocycle ξ(C). Then ξ(C)± can be expressed as a product of quaternion algebras in the

following way

Theorem 2.3.1 (Quer) Let C be a Q-curve. Let {ai}, {di} be a dual base to the corre-

sponding degree map. Then,

ξ(C)± =
∏

(ai, di),

where (ai, bi) are quaternion algebras.

A splitting map to the cocycle c is a locally constant map β : GQ → Q̄∗ such that

c(σ, τ) = β(σ)β(τ)β(στ)−1, for σ, τ ∈ GQ.
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Let C be a Q-curve, and β a splitting map for a two-cocycle c representing ξ(C). The map

GQ → Q̄∗/Q∗ given by σ �→ β(σ)(mod Q∗) is a group homomorphism, and we denote by

Kβ the fixed field of its kernel, which is an abelian extension of Q. We will say that Kβ

is a splitting field. In general, there is no minimal splitting field for a Q-curve C, but only

fields that are minimal in the set of splitting fields for C. For a splitting map β we define

a character ε(σ) := β(σ)2

d(σ) and we let Kε be the fixed field of its kernel. It can be shown

that every splitting field is of the form KεKd, and we will say that ε is a splitting character

corresponding to β, or simply a splitting character.

Any 2-cocycle in H2(K/Q,Q∗) can be viewed as taking values on Q̄∗, considered as a

Gal(K/Q)-module with trivial action. To the image of cK (or its cohomology class ξK(C))

in H2(K/Q, Q̄∗) we will call the Schur class of cK . Given any Galois character ε : GQ → Q̄∗

define

θε(σ, τ) =
√
ε(σ)

√
ε(τ)

√
ε(στ)

−1
for σ, τ ∈ GQ. (2.8)

The map θε is a 2-cocycle of GQ with values in {±1} and its cohomology class is independent
of the choice of the roots.

Theorem 2.3.2 (Quer) Let C be a Q-curve. Let {ai}, {di} be a dual base to the corre-

sponding degree map. A Galois character ε : GQ → Q̄∗ is a splitting character for ξ(C) if,

and only if,

[θε] = ξ(C)± in H2(GQ, {±1}) � Br2(Q).

Furthermore, if ε is a splitting character then there exists a curve in the isogeny class of C

completely defined over L = KεKd such that ξL(C) has trivial Schur class.

Furthermore, Quer proves that there exists an element γ ∈ L such that the curve C provided

by the previous theorem is obtained by twisting E by γ. He also proves that γ is a solution

of a specific embedding problem (see section 2.3.2 for this).

It is useful to note that splitting characters can be determined by local information. From

the well known sequence

1→ Br2(Q)→ ⊕Br2(Qp)→ {±1} → 1,

and the usual identification of Br2(Qp) with {±1}, an element ξ of Br2(Q) its completely
determined by its local components ξp ∈ Br2(Qp) = {±1}.

For a quaternion algebra the local components are given by the Hilbert symbol and for the

element [θε] the local component at a finite prime p is given by the parity of the p-component

of the character ε,

[θε]p = εp(−1)

where we identify ε with a Dirichlet character by class field theory.

Finally, since we will be interested in finding curves for which B := ResK/Q(E/K) decom-

poses as a product of abelian varieties of GL2-type we have the following theorem, which is
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a particular case of Theorem 5.4 in [54].

Theorem 2.3.3 (Quer) Let C be a Q-curve without complex multiplication completely de-

fined over a minimal splitting field K and such that ξK(C) has trivial Schur class. Let ε be

a splitting character for ξK(C). Let {ai} and {di} be dual bases with respect to the degree

map chosen such that corresponding to C.

Then, if ε has order 4, Kε ∩ Kd = Q(
√
a1) and d1 = 2, then the abelian variety B

decomposes over Q as a product of two non Q-isogenous abelian varieties of GL2-type both

of them with Q-endomorphism algebra isomorphic to Q(ζ8
√
2,
√
d2, ...,

√
dm)

2.3.2 Q-curves and embedding problems

Let K/Q be a number field with group G = Gal(K/Q). Let {±1} the cyclic group of

order 2 be considered as a G-module with trivial action, and

ξ : 1→ {±1} → G̃→ G→ 1

be a central extension corresponding to the 2-cocycle class ξ ∈ H2(G, {±1}). The ex-

tension K/Q and ξ ∈ H2(G, {±1}) determine an embedding problem that we denote by

(K/Q, {±1}, ξ), whose solutions are Galois extensions K̃/Q containing K with Galois group

Gal(K̃/Q) � G̃ and such that the natural map Gal(K̃/Q) → Gal(K/Q) of Galois theory

corresponds to the epimorphisms in the exact sequence ξ. It is known that obstructions to

the solvability of this problem is the inflation Inf ξ ∈ H2(GQ, {±1}) and that if the problem
is unobstructed, then the solutions are the fields K(

√
γ) for the elements γ ∈ K∗ for which

there exist elements βs ∈ K∗ for s ∈ G with

sγ = β2
sγ, and (s, t) �→ βs

sβtβ
−1
st has cohomology class ξ.

Conversely, if s �→ βs : G → K∗ is a map such that ξ(s, t) = βs
sβtβ

−1
st takes values into

{±1} then c is a 2-two cocycle and (K/Q, {±1}, [ξ]) is solvable. We call such a map β a

splitting map for the cocycle ξ. Moreover, we can take a solution to this embedding problem

the field K(
√
γ) for any element γ ∈ K∗ of the form

γ =
∑
s∈G

sx

β2
s

, x ∈ K∗. (2.9)

Now we explain the embedding problem related to Q-curves. Let K be a number field

and G = Gal(K/Q). Assume that C is a Q-curve defined over the field Kd and let ξK ∈
H2(K/Q,Q∗) be an element whose inflation to GQ is ξ(C) so that by theorem 2.4 in [54]

we know there is a curve Cγ isomorphic to C completely defined over K and such that

ξK(Cγ) = ξK . Let L/Q be a Galois extension over which the curve C is completely defined.
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Consider the cohomology class in H2(KL/Q,Q∗) defined by

ξKL = Inf
Gal(KL/Q)
G ξK(C)× Inf

Gal(KL/Q)
Gal(L/Q) ξL(C)

−1.

Then,

Inf
GQ

Gal(KL/Q)ξKL = Inf
GQ

G ξK × Inf
GQ

Gal(L/Q)ξ
−1
L = ξ(C)ξ(C)−1 = 1.

From the decomposition Q∗ = {±1} ×Q+ we have the decomposition

H2(KL/Q,Q∗) = H2(KL/Q, {±1})×H2(KL/Q,Q+)

and the inflation maps splits as the product of the two corresponding inflation maps. Since

Q∗ is torsion free the inflation map on the second factor is injective. Then it follows that
ξKL has only sign component and we can identify it with an element of H2(KL/Q, {±1})
corresponding to an unobstructed embedding problem. Furthermore, it can be seen that we

are identifying ξLK with the product of the sign components of the inflations of ξK and ξL

to Gal(KL/Q). Moreover, in [54] it is shown that there are solutions γ to this problem as-

sociated with particular choices of {βs} such that γ ∈ K and not in KL as one would expect.

In order to find γ explicitly we will make use of the theory in [55] of which we now recall

the important points.

Let S ⊂ Q∗/Q∗2 be finite subgroup and K2 = Q(
√
S) be the corresponding polyquadratic

number field. Every homomorphism χ : G = Gal(K2/Q) → Z/2Z can be written as
σ
√
a = (−1)χ(σ)√a for some a ∈ S; we denote by χa this homomorphism. Given a, b ∈ S

let ca,b be the map G×G→ {±1} defined by

ca,b(σ, τ) = (−1)χa(σ)χb(τ), σ, τ ∈ G.

This is a 2-cocycle, it is multiplicative in a and b and the class Inf[ca,b] ∈ Br2(Q) =

H2(GQ, {±1}) is that of the cyclic algebra (a, b). In general, if A = {ai}1≤i≤m and

B = {bi}1≤i≤m are two ordered sets of elements of S we denote by cA,B the product of

the cai,bi .

Let L/Q be a cyclic extension of degree a power of 2 and let ε : Gal(L/Q) → Q̄∗ be
an injective character. Let M/Q be a polyquadratic extension and A = {a1, ..., am} a

basis of the subgroup Q∗/Q∗2 corresponding to it by Kummer theory. We assume that if

L ∩M �= Q then A has been chosen with L ∩M = Q(
√
a1). Let B = {b1, ..., bm} be any

subset of Q∗/Q∗2. Put K = LM(
√
b1, ...,

√
bm). Let ξA,B be the inflation to Gal(K/Q)

of the 2-cocycle class [cA,B ] defined above; let [cε] be the inflation to Gal(K/Q) of a the

2-cocycle class corresponding to the 2-cocycle θε of Gal(L/Q) defined by the formula (2.8).

Consider the decomposition of K as a composition of linearly disjoint extensions of Q,

K = L ·Q(√ae) · · ·Q(√am) ·N,
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(with e = 1 if L∩M = Q or e = 2 if L∩M = Q(
√
a1)), where N is obtained by adjoining to

Q some of the
√
bi. Let σ0 (if L �= Q), σe,...,σm,τ1,...τs be a basis of G = Gal(K/Q) reflecting

that decomposition, meaning that each of them only act non-trivially on one component

of the composition. Let r be the order of σ0 and all the other generators σi and τi have

order 2. Denote by Nσ(x) the norm of x with respect to the extension K/K〈σ〉. Letting
[c] = ξA,B [cε] we have the following theorem.

Theorem 2.3.4 (Quer) Under the assumptions of the previous paragraphs, the embedding

problem (K/Q, {±1}, [c]) is solvable if, and only if, there exist elements α0, αe,...,αm ∈ LM
such that

(i) If L �= Q, put ζ = c(1, σ0)c(σ0, σ0)c(σ
2
0 , σ0)...c(σ

r−1
0 , σ0)

Nσ0(α0) =

{
ζ if e = 1

ζb
r/2
1 if e = 2

,

(ii) Nσ0
(αi) = bi for e ≤ i ≤ m, and

(iii) σi−1αj =
σj−1αi for all i, j

Moreover, in that case there exists a splitting map β for the cocycle c with, if L �= Q,

βσ0
=

{
α0 if e = 1

α0/
√
b1 if e = 2

,

βσi
=

αi√
bi
, e ≤ i ≤ m,βτi = 1, 1 ≤ i ≤ s

and every solution γ corresponding to it belongs to the subfield LM ⊂ K.

2.3.3 Proof of Theorem 2.1.10

In this section we prove Theorem 2.1.10 by using the theory on the previous two sections.

First we need to find an adequate γ and then Theorem 2.1.10 will follows by applying

Theorem 2.3.3 to Eγ . We need Eγ not to have complex multiplication.

Theorem 2.3.5 Let (a, b, c) be a primitive non-trivial solution of equation (2.3) or (2.4).

Then the curve E = E(a,b) has no complex multiplication.

Proof: From Corollary 3.2.8 we have |c| > 1. Since the primes dividing c are of semistable

reduction of E, the theorem follows from Theorem 2.1.2.

�

The minimal field of definition of E is Kd = Q(
√
5) and {a1} = {5}, {d1} = {2} is a dual

base respect to the corresponding degree map. Since the quaternion algebra (5,±1) �= 1
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from Proposition 4.3b of [54] we know that Kd is not a splitting field. Let L = Q(
√
5,
√−2)

be a biquadratic field of complete definition of E (i.e. a field where all the conjugates of E

and isogenies between them are defined) and let σ, τ ∈ Gal(L/Q) be such that
{

σ(
√
5) =

√
5 and σ(

√−2) = −√−2
τ(
√
5) = −√5 and τ(

√−2) = √−2

From the explicit expression for the isogeny we compute cL(g, h) = φg
gφhφ

−1
gh

h
1 σ τ στ

g

1 1 1 1 1
σ 1 1 -1 -1
τ 1 1 -2 -2
στ 1 1 2 2

Table 2.2: Values of cL

From Table 2.2 we see that cK(σ, τ) �= cK(τ, σ) hence we can not find a splitting map

Gal(L/Q)→ Q̄∗ such that

cK(g, h) =
β(g)β(h)

β(gh)
,

hence L does not contain a splitting field for ξ(C). We want to apply the second statement

in Theorem 2.3.2. By Theorem 2.3.1 one sees that ξ(C)± = (5, 2). Using the first statement

in Theorem 2.3.2 and local information we check that the character ε : (Z/20Z)∗ → Q(ζ4)

of order 4 and conductor 20 given by

ε = ε2ε5, (2.10)

where ε2 is the quadratic character of conductor 4 and ε5 is the character of order 4 and

conductor 5 given by ε5(2) = ζ4 = i is an appropriate splitting character. Its fixed field

is Kε = Q(θ), where θ =
√

1
2 (5 +

√
5). Then it follows from Theorem 2.3.2 that there is

a representative in the isogeny class of E which is completely defined over Kβ = KεKd =

Q(θ)Q(
√
5) = Q(θ) and has trivial Schur class. We denote it by Eγ .

Now we will explicitly solve an embedding problem to find γ. As explained before, let

ξKβL = (Inf
Gal(KβL/Q)

Gal(Kβ/Q) cKβ
(Eγ))±(Inf

Gal(KβL/Q)

Gal(L/Q) cL(E))± (2.11)

after the identification with an element of H2(KβL/Q, {±1}). The embedding problem

associated with ξKβL is unobstructed and admits solutions γ ∈ Kβ . Applying Theorem

2.3.4 will give one of these solutions, but first we need to restate our embedding problem

in a way compatible with the notation of the theorem. Note that cL(E)± = cA,B with

A = {−10} and B = {5} where cL(E)± is given by the signs in Table 2.2. Let ξA,B and
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cε be as in the previous section, where the character ε is the one above. Now using to the

notation of Theorem 2.3.4 we consider the decomposition

K = Q(θ,
√−2) = LMN = Q(θ)Q(

√−10)Q,

which gives e = 1 (L ∩M = Q), m = 1 and s = 0, and let σ0, σ1 ∈ Gal(K/Q) reflect this

decomposition, that is

{
σ0(
√
5) = −√5 and σ0(

√−2) = −√−2
σ1(
√
5) =

√
5 and σ1(

√−2) = −√−2 .

We put c = ξA,Bcε and compute ζ = c(1, σ0)c(σ0, σ0)c(σ
2
0 , σ0)c(σ

3
0 , σ0) = −1 from the

Tables 2.3 and 2.4.

h
1 σ0 σ2

0 σ3
0 σ1 σ1σ0 σ1σ

2
0 σ1σ

3
0

g

1 1 1 1 1 1 1 1 1
σ0 1 1 1 -1 1 1 1 -1
σ2
0 1 1 -1 -1 1 1 -1 -1
σ3
0 1 -1 -1 -1 1 -1 -1 -1
σ1 1 1 1 1 1 1 1 1
σ1σ0 1 1 1 -1 1 1 1 -1
σ1σ

2
0 1 1 -1 -1 1 1 -1 -1

σ1σ
3
0 1 -1 -1 -1 1 -1 -1 -1

Table 2.3: Values of θε

h
1 σ0 σ2

0 σ3
0 σ1 σ1σ0 σ1σ

2
0 σ1σ

3
0

g

1 1 1 1 1 1 1 1 1
σ0 1 1 1 1 1 1 1 1
σ2
0 1 1 1 1 1 1 1 1
σ3
0 1 1 1 1 1 1 1 1
σ1 1 -1 1 -1 1 -1 1 -1
σ1σ0 1 -1 1 -1 1 -1 1 -1
σ1σ

2
0 1 -1 1 -1 1 -1 1 -1

σ1σ
3
0 1 -1 1 -1 1 -1 1 -1

Table 2.4: Values of ξA,B

Theorem 2.3.4 says that the embedding problem (K/Q, {±1}, [c]) is solvable if and only
if we can find elements α0, α1 such that

Nσ0
(α0) = −1

Nσ1
(α1) = 5
σ1α0

α0
=

σ0α1

α1
.
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Since c = ξKβL (here we are using notation of equation (2.11)) we already know that this

problem is unobstructed and a small search leads us to

α0 =
1

2
(−1 + θ + θ2)

√−2
α1 = −5 + 2θ2.

Moreover, the same theorem gives us a splitting map for the cocycle c given by

βid = βσ1 = 1,

βσ0
= βσ1σ0

= α0,

βσ2
0

= βσ1σ2
0
= 2− θ − θ2,

βσ3
0

= βσ1σ3
0
=

√−2
2

(−θ2 − θ + 3).

Finally, taking x = 1/4 in formula (2.9) we conclude that γ = 2θ2− θ− 5 ∈ K is a solution.

Now a direct application of Theorem 2.3.3 to Eγ yields Theorem 2.1.10.

�
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Chapter 3

Equations of signature (r, r, p)

The objective of this chapter is to describe a general strategy to study some Fermat-type

equations of the form signature (r, r, p). In section 3.1 we will recall some background on

Hilbert modular forms and state the level lowering results from Jarvis, Rajaei and Fujiwara.

In section 3.2 we will give the general method for constructing Frey curves and applying

a modular approach via Hilbert modular forms. Finally, in section 3.3 we will recall some

modularity results of Kisin and Skinner-Wiles and prove modularity of our Frey curves

under certain conditions as well as irreducibility of the mod p representations attached to

them.

3.1 Galois representations attached to Hilbert modular

forms

In this section we will briefly recall the basics of Hilbert modular forms (HMF) and results

on level lowering from Jarvis, Rajaei and Fujiwara. Since elliptic curves correspond to HMF

of parallel weigh 2 and trivial character we will only define those here. For details and more

general definitions see [24] and the references there. For the level lowering theorems see [56],

[36] and [32].

Let F be a totally real number field of degree d > 1 and let ι1, ...ιd be the distinct real

embeddings of F . For an element x ∈ F let xi = ιi(x). There is an embedding of the group

GL2(F ) into GL2(R)
d by sending

(
a b

c d

)
−→

((
ai bi

ci di

))
1≤i≤d

.

This embedding allows the group

GL2(F )
+ = {γ ∈ GL2(F ) : (det γ)i > 0 for 1 ≤ i ≤ d}

to act on Hd, the product of d copies of the upper half plane, by the following rule: if
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γ ∈ GL2(F )
+ and τ = (τ1, .., τd) ∈ Hd, then

γ =

(
a b

c d

)
acts on τ by γτ :=

(
aiτi + bi
ciτi + di

)
1≤i≤d

.

Let d be the different of F and n an ideal of F . Let also h be the narrow class number of F

and cj a system of representative ideals for the narrow ideal classes of F . Assume further

that the cj are coprime to n and define

Γ0(cj , n) := {
(
a b

c d

)
∈
(
OF (dcj)

−1

dcjn OF

)
: ad− bc ∈ O×+

F },

where O×+
F are the totally positive units of F . If f : Hd → C is an holomorphic function

and γ ∈ Γ0(cj , n) we define

(f |2γ)(τ) =
d∏

i=1

det(γ)i(ciτi + di)
−2f(γτ).

Definition 3.1.1 A classic Hilbert modular form of weight 2 on Γ0(cj , n) is a holomorphic

function on Hd satisfying the transformation rule f |2γ = f for all γ ∈ Γ0(cj , n). We denote

by M2(cj , n) the set of all classic Hilbert modular forms of weight 2 on Γ0(cj , n).

Remark 3.1.2 There is no holomorphy condition at the cusps as in the case of classic

modular forms. This conditions follows from Koecher’s principle in the case [F : Q] > 1

(see [73], Chapter 1).

Since f ∈ M2(cj , n) is Γ0(cj , n)-invariant it satisfies f(τ + μ) = f(τ) for all τ ∈ Hd and

μ ∈ c−1
j . In particular, it admits a Fourier expansion

f(τ) = cj0 +
∑

μ∈(cj)−1
+

cμe
2πiTr(μτ), where Tr(μτ) =

∑
i

μiτi

If f vanishes at the cusps it is called a cusp form on Γ0(ci, n). Denote by S2(Γ0(ci, n))

the set of Hilbert cusp forms on Γ0(ci, n).

Definition 3.1.3 Let h be the narrow class number of F . A cusp form of parallel weight 2

and level n is an h-tuple (fi, ..., fh) where fi ∈ S2(Γ0(ci, n)). We denote by S2(n) the space

of Hilbert cusp forms of parallel weight 2 and level n.

We will say that f = (fi) ∈ S2(n) is normalized if c(1)(fi) = 1 for i = 1, .., h. The space

S2(n) is a finite dimensional vector space over C and it admits an action of the commuting

self-adjoint Hecke operators Tp for all prime ideal p not dividing n (see [74], section 1.2). A

cusp form S2(n) is called an eigenform if it is a simultaneous eigenvector for these operators.

For f = (fi) ∈ S2(n) an eigenform one denotes by ap(f) the eigenvalue of Tp acting on f .
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In the particular case of F having narrow class number 1, for a non-zero ideal n we have

that n = υd−1 for some υ ∈ d+ and an(f) = cυ. Denote by Qf the totally real number

field field generated by adding to Q the values ap(f). The following theorem is a particular

case the work of Shimura, Jacquet-Langlands, Carayol, Wiles and Taylor on representations

attached to Hilbert modular forms. References include [75], [13] and [70]. See also [62] for

the definition of compatible system of �-adic representations.

Theorem 3.1.4 Let f be an eigenform in S2(n). There exists a compatible system of λ-adic

representations unramified outside nl

ρf,λ : GK −→ GL2(Of,λ)

for each prime λ | l in Qf , satisfying:

Trace(ρf,λ(Frobq)) = aq(f), det(ρf,λ(Frobq)) = Norm(q)

for all primes q not dividing nl.

We have not defined Hilbert modular forms of more general weight because except for

the proof of Theorem 3.3.9 we will always work in parallel weight 2. Nevertheless, we want

to stress that for modularity purposes sometimes we want to think more generally, that is,

allowing Hilbert eigenforms of any parallel weight k ≥ 2.

Definition 3.1.5 Let ρ̄ : GF → GL2(Fpr ) be a continuous representation. We say that ρ̄

is modular of level n if there exists an eigenform f ∈ S2(n) over F and a homomorphism

j : OQf
→ Fpr such that, for all primes q � n,

Trace(ρ̄(Frobq)) = j(aq(f))

If f can be chosen to be of (parallel) weight k and level n, we say that ρ̄ is modular of

(parallel) weight k and level n.

To end this section we will state level lowering theorems from Fujiwara, Jarvis and Rajaei.

Theorem 3.1.6 (Fujiwara) Let ρ̄ : GF → GL2(F̄p) be a continuous irreducible represen-

tation attached to an eigenform f ∈ S2(qn) where q � pn is a prime ideal in F . Suppose

[F (μp) : F ] ≥ 4. Then if ρ̄ is unramified at q, and NF/Q(q) �≡ 1 (mod p), there exists a

Hilbert cuspidal eigenform f ′ ∈ S2(n) to which ρ̄ is attached.

Theorem 3.1.7 (Jarvis) Let F be a totally real number field, and p be a prime of F di-

viding the rational prime p. Suppose that ρ̄ : GF → GL2(F̄p) is a continuous irreducible

representation which is attached to some cusp form f ∈ S2(pn), where p � n. Suppose also

1) If [F (μp) : F ] = 2, then ρ̄ is not induced from a character of GF (
√−3).
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2) e < p− 1, where e denotes the absolute ramification of Fp.

Then if ρ̄ is finite at p, there exists an Hilbert eigenform f ′ ∈ S2(n) to which ρ̄ is attached.

Theorem 3.1.8 (Rajaei) Let p be an odd prime and ρ̄ : GF → GL2(F̄p) an irreducible

representation attached to an eigenform f ∈ S2(qn) where q � pn is a prime ideal in F . If

Q(ζp)
+ ⊂ F assume that ρ̄ is not induced from a character and if [F : Q] is even assume

moreover that f is either special or supercuspidal at a finite prime q0 (prime to pq). Then

if ρ̄ is unramified at q, ρ̄ comes from an Hilbert cuspidal eigenform in S2(n).

3.2 A Recipe for xr + yr = Czp

For a fixed prime r > 5 our method will allow us to attack equations with shape

xr + yr = Czp, (3.1)

for C in an infinite family of integers only divisible by primes q �≡ 1, 0 (mod r). Let (a, b, c)

be a triple of integers such that ar + br = Ccp. We say that it is a primitive solution if

(a, b) = 1 and we will say that it is a trivial solution if |abc| ≤ 1. Following the terminology

introduced by Sophie Germain in her work on the FLT we will divide solutions to (3.1) into

two cases.

Definition 3.2.1 A primitive solution (a, b, c) of xr+yr = Czp is called a first case solution

if r does not divide c, and a second case solution otherwise.

In general, the method presented here can only succeed in proving the non-existence of

primitive first case solutions (see also Remark 3.2.17). Briefly, it goes as follows: we first

relate a non-trivial primitive solution (a, b, c′) of (3.1) to a non-trivial primitive solution
(a, b, c) of another Diophantine equation (independent of C) with coefficients in the maximal

totally real subfield of the cyclotomic field Q(ζr), denoted by K
+. For the latter equation we

will be interested only in the non-existence of solutions (a, b, c) such that C | a+ b. We will

attach to such a solution (a, b, c) a Frey curve E(a,b) defined over K
+ which is not a Q-curve.

We prove the absolutely irreducibility of ρ̄E,p for p greater than a constant M(r). Then

if the Frey curves E(a,b) are supposed modular (in some cases we can prove they actually

are) we are able to apply the level lowering results for Hilbert modular forms over K+ to

get an isomorphism ρ̄E,p ∼ ρ̄f,P, where f belongs to a space of Hilbert newforms almost

not depending on the solution (a, b, c). In the rest of this chapter we will treat in detail

the method just described which corresponds to perform steps (I) and (II) of the modular

approach as explained in the introduction.

Remark 3.2.2 Actually, we will relate a solution (a, b, c′) ∈ Z3 of (3.1) to solutions (a, b, c)

of several new equations over K+. We will see that the new solutions differ only in the value
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of c ∈ OK+ . Since the Frey curves attached to each of the new equations depend only on

(a, b) we are able to attach several Frey curves to a single putative solution of (3.1). In

theory, this would allow to apply the multi-Frey technique as in Chapter 2. Unfortunately,

due to computational limitations, in the application to r = 13 in Chapter 4 we are be able

to apply the method using only one curve.

To prove the non-existence of solutions of a particular equation we also need to complete

Step (III) which is highly dependent on the value of r. Since the next chapter is mainly

devoted to Step (III) for the particular cases r = 7, 13, by now we will only make a couple

of observations that will became clear later. To contradict the isomorphism ρ̄E,p ∼ ρ̄f,P

(step III) we will need to compute newforms in previously determined spaces and use the

values aq(E), the fact that C | a+ b and r � c (first case solution) to derive a contradiction.

Unfortunately, the computation of the newforms is in general impossible. The problem being

that the degree of K+ is (r − 1)/2, which grows with r, and consequently the dimension

of the cusp spaces that we need to consider will grow extremely fast. Actually, already for

small values of r we will find impossible computations. Nevertheless, if r ≡ 1 (mod 6) we

will show that Frey curves over a subfield K0 of K
+ exist. In this case K+ has degree 3k,

K0 will have degree k and this difference is enough for the computation of newforms to be

possible for r = 7 and 13 as we will see in the next chapter.

3.2.1 Relating Diophantine equations.

The factorization xr + yr = (x+ y)φr(x, y) will play a key role in the strategy so we start

by proving a few properties about φr(x, y). Let ζ denote a primitive r-th root of unity.

Observe that

φr(x, y) =

r−1∑
i=0

(−1)ixr−1−iyi.

and consider the decomposition over the cyclotomic field Q(ζ)

φr(x, y) =

r−1∏
i=1

(x+ ζiy). (3.2)

Proposition 3.2.3 Let Pr be the prime in Q(ζ) above the rational prime r and suppose

that (a, b) = 1. Then, any two different factors a+ ζib and a+ ζjb in the factorization (3.2)

are coprime outside Pr. Furthermore, if r | a+ b then υPr
(a+ ζib) = 1 for all i.

Proof: Suppose that (a, b) = 1. Let P be a prime in Q(ζ) above p ∈ Q and a common prime

factor of a+ζib and a+ζjb, with i > j. Observe that (a+ζib)−(a+ζjb) = bζj(1−ζi−j) ∈ P.

Since P can not divide b because in this case it would also divide a we conclude that

ζi(1 − ζi−j) ∈ P but ζi is a unit so 1 − ζi−j ∈ P, that is P = Pr. Now for the last

statement in the proposition, suppose that r | a+ b. Then,

a+ ζib = a+ b− b+ ζib = (a+ b) + (ζi − 1)b,
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and since υPr (ζ
i − 1) = 1 we have υPr (a+ ζib) = min{(r − 1)υr(a+ b), 1} = 1

�

Corollary 3.2.4 If (a, b) = 1, then a+ b and φr(a, b) are coprime outside r. Furthermore,

if r | a+ b then υr(φr(a, b)) = 1.

Proof: Let p be a prime dividing a+ b and φr(a, b) and denote by P a prime in Q(ζ) above

p. P must divide at least one of the factors a+ ζib. Since a, b are integers P can not divide

b then it follows from

a+ b = a+ ζib− ζib+ b = (a+ ζib) + (1− ζi)b

that P = Pr. Moreover, if r | a + b it follows from the proposition that υPr (a + ζib) = 1

for all i then υPr (φr(a, b)) = r − 1 thus υr(φr(a, b)) = 1.

�

Proposition 3.2.5 Let (a, b) = 1 and l �≡ 1 (mod r) be a prime dividing ar + br. Then

l | a+ b.

Proof: This is exactly as the proof of Lemma 2.1.6 but with 5 replaced by r.

Since l divides ar + br, l � ab. Let b0 be the inverse of −b modulo l. We have ar ≡ (−b)r
(mod l), hence (ab0)

r ≡ 1 (mod l). Thus the multiplicative order of ab0 in Fl is 1 or r. From

the congruence ab0 ≡ 1 (mod l) it follows a + b ≡ 0 (mod l). If l � a + b then the order of

ab0 is r and l ≡ 1 (mod r).

�

Analogous to what we have done in Chapter 2 we will now relate our initial equation (3.1)

with new equations. The following elementary lemma is a generalization of Lemma 2.1.8.

Lemma 3.2.6 Let p be a prime and suppose there exists a non-trivial primitive solution

(a, b, c′) to xr + yr = Czp with C �= 0 an integer divisible only by primes q �= r satisfying

q �≡ 1 (mod r). Then there exists a solution (a, b, c) ∈ Z3 such that (a, b) = 1 (primitive)

and |abc| > 1 (non-trivial) to

φr(a, b) = cp or (3.3)

φr(a, b) = rcp (3.4)

which satisfies r � a+ b in case (3.3) and r | a+ b in case (3.4). Moreover:

• if d | C, then d | a+ b;

• the prime divisors of c are all congruent to 1 (mod r). In particular, neither 2, nor r

divide c.
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Proof: Suppose there exists a non-trivial primitive solution (a, b, c′) to xr + yr = Czp and

recall that ar + br = (a+ b)φr(a, b). Write c′ = pn1
1 ...pns

s rmqk1
1 ...qkl

l , where for all i pi, qi are

primes, pi �≡ 1 (mod r), pi �= r and qi ≡ 1 (mod r).

If a prime q �≡ 1 (mod r) divides ar + br then by Proposition 3.2.5 we have q | a+ b. Let

c0 = pn1
1 ...pns

s . Then, Ccp0 | a+ b. Moreover, if q �= r divides φr(a, b) then q | ar + br and by
Corollary 3.2.4 q � a+ b. Hence by Proposition 3.2.5 we have q ≡ 1 (mod r).

Suppose r � a + b. Hence m = 0 in the decomposition of c′ and since a + b and φr(a, b)

are coprime we have φr(a, b) = cp, where c′ = c0c1c, with c1c = qk1
1 ...qkl

l .

Suppose r | a+b. Hencem �= 0, and φr(a, b) = rcp by Corollary 3.2.4, where c′ = c0r
mc1c,

with c1c = qk1
1 ...qkl

l .

We will now prove |abc| > 1. Suppose we have a non-trivial primitive solution (a, b, c′) of
xr + yr = Czp, in particular, |ab| > 1 or |c′| > 1. If |ab| > 1 then the new solution (a, b, c)

is obviously non-trivial. If |c′| > 1 and |c| > 1 it is immediately non-trivial. If |c′| > 1 but

|c| ≤ 1 we must have that (c′)p | a + b. This implies a + b = 0 or |a| > 1 or |b| > 1. If

a + b = 0 then (a, b) = ±(1,−1) (because (a, b) = 1) which implies c′ = 0 contradicting

|c′| > 1. Then |a| > 1 or |b| > 1 and we are done.

�

Proposition 3.2.7 Let r ≥ 5 be a prime. The equation

φr(x, y) = 1 or φr(x, y) = r

admit only the solutions ±(1, 0), ±(0, 1), ±(1, 1) or ±(1,−1), respectively.

Proof: Recall that φr(x, y) =
∑r−1

i=0 (−1)ixr−1−iyi and suppose (a, b) is a solution of any

of the equations in the statement. From the symmetry of φr and the fact that r− 1− i and
i have the same parity we can suppose that we are in one of three possible cases: (i) a = 0

or (ii) a > 0 and b < 0 or (iii) a ≥ b > 0.

Case (i): suppose a = 0. Replacing on the equations, we have br−1 = 1 or br−1 = r. The

first possibility gives the solutions ±(0, 1) of the equation φr(x, y) = 1 and by symmetry

±(1, 0). The second is impossible because r is prime > 2.

Case (ii): suppose a > 0 and b < 0. Then b = −b0, with b0 positive. We see that

φr(a, b) =
∑r−1

i=0 a
r−1−ibi0 ≥ r, and it is clear that the equality holds only if a = 1 and

b = −1, corresponding to the solution (1,−1) of the equation φr(x, y) = r. We also have

(−1, 1) by symmetry.

Case (iii): suppose a ≥ b > 0. Note that φr(a, b) can be written in the form

φr(a, b) =
∑
i

(ar−1−ibi − ar−1−(i+1)b(i+1)) + br−1,
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where the sum is over the even numbers i satisfying 0 ≤ i ≤ r − 3. Suppose a > b and

observe that

ar−1−ibi − ar−1−(i+1)b(i+1) = ar−1−i−1bi(a− b) ≥ ar−1−i−1bi ≥ 2r−1−i−1.

Moreover, 2r−1−i−1 ≥ 2 and the equality holds only for i = r − 3. Thus,

φr(a, b) =
∑
i

(ar−1−ibi − ar−1−(i+1)b(i+1)) + br−1 > (r − 1)/2× 2 + 1 ≥ r.

This shows that there are no Case (iii) solutions to both equations if a > b. Suppose a = b,

then φr(a, b) = ar−1. This can be a solution of φr(x, y) = 1 only if a = b = 1. It can never

be a solution of φr(x, y) = r because r is prime > 2.

�

Corollary 3.2.8 Let (a, b, c) be a solution to equation (3.3) or (3.4). Then (a, b, c) is non-

trivial, i.e |abc| > 1, if and only if |c| > 1.

Proof: Suppose |abc| > 1. Then |ab| > 1 or |c| > 1. If |c| > 1 it is automatic. From

Proposition 3.2.7 we see that all solutions with |c| = 1 also satisfy |ab| = 1, hence, if |ab| > 1

we must have |c| > 1. The other direction is immediate.

�

Now we will take further the idea of relating different equations, by relating solutions of

equations (3.3) and (3.4) to solutions of several equations. Recall that K+ = Q(ζ + ζ−1)

is the maximal totally real subfield of Q(ζ) and let h+r be its class number. Let πr be such

that rOK+ = (πr)
(r−1)/2. For r > 5 a prime, we observe that r− 1 ≥ 6 is even then we can

pick three different degree two factors of φr of the form fi = (x + ζkiy)(x + ζr−kiy) with

coefficients in K+. We identify this choice of fi with the triple (k1, k2, k3). Furthermore,

we will say that a triple of integers (k1, k2, k3), with 1 ≤ ki ≤ r − 1, is a valid triple if

the corresponding three polynomials fi are different. Changing the order of the ki gives

us the same set of polynomials. Indeed, without loss of generality we can suppose that

1 ≤ k1 < k2 < k3 ≤ (r − 1)/2 which implies that there are
(
(r−1)/2

3

)
different valid triples.

Lemma 3.2.9 Let p be a prime not dividing h+r . Suppose there is a non-trivial primitive

solution (a, b, c′) to xr + yr = Czp with C �= 0 an integer divisible only by primes q �= r

satisfying q �≡ 1 (mod r). Pick a valid triple (k1, k2, k3) and let f1, f2, f3 be the corresponding

polynomials. Then, there exists a unit μ ∈ O×K+ and a solution (a, b, c) in Z2 × OK+ such

that (a, b) = 1 (primitive) and |NormK+/Q(abc)| > 1 (non-trivial) to

f1(x, y)f2(x, y)f3(x, y) = μzp or (3.5)

f1(x, y)f2(x, y)f3(x, y) = μπ3
rz

p, (3.6)

which satisfies r � a+ b in case (3.5) and r | a+ b in case (3.6). Moreover:
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• if d | C, then d | a+ b;

• the primes in K+ divisors of c are all above primes of Q that are congruent to 1

(mod r). In particular, neither the primes above 2 nor the primes above r divide c.

Proof: Suppose that there is a non-trivial primitive solution (a, b, c′) ∈ Z3 to xr+yr = Czp

and fix a valid triple (k1, k2, k3). Then, by Lemma 3.2.6 there is a non-trivial primitive

solution (a, b, c′′) ∈ Z3 to equation (3.3) or (3.4). By Proposition 3.2.3 we know that the

fi(a, b) are pairwise coprimes outside Pr. Then since OK+ is a Dedekind domain we have

that: if (a, b, c′′) is a solution of (3.3) or (3.4) then (fi(a, b)) = Ip or (fi(a, b)) = (πr)Ip as
ideals in OK+ , respectively. These identities show that the order of I in the ideal class group
of K+ divides p. Since p � h+r we have that I is principal and we can write fi(a, b) = μic

p
i or

fi(a, b) = μiπrc
p
i , where μi, ci ∈ OK+ with μi an unit and the ci are pairwise coprime. Thus,

by multiplying the fi, we have transformed the solution (a, b, c
′′) into a solution (a, b, c) in

Z2 ×OK+ of the equation (with coefficients in K+)

f1(a, b)f2(a, b)f3(a, b) = μcp if r � a+ b or

f1(a, b)f2(a, b)f3(a, b) = μπ3
rc

p if r | a+ b.

The conditions (a, b) = 1, C | a + b and the fact that the primes in K+ dividing c are all

above primes of Q that are congruent to 1 (mod r) follow trivially from the application of

Lemma 3.2.6 in this proof.

We are left to show that (a, b, c) is non-trivial. We have |c′′| > 1 by Corollary 3.2.8 and we

have to show that |NormK+/Q(abc)| > 1. Let q be a prime dividing c′′, hence q is congruent
to 1 (mod r), i.e. q splits in Q(ζ). Since the factors a+ ζib of φr(a, b) are pairwise coprime,

each of them contains a non-trivial prime in Q(ζ) above q. Thus, ci is divisible by some

prime, hence (a, b, c) is non-trivial.

�

Corollary 3.2.10 Let (a, b, c) ∈ Z2 ×OK+ be a solution to (3.5) or (3.6). Then (a, b, c) is

non-trivial if and only if |NormK+/Q(c)| > 1.

Proof: Suppose |NormK+/Q(abc)| > 1. Then |ab| > 1 or |NormK+/Q(c)| > 1. In the

latter case we are done. Suppose |ab| > 1, then by Corollary 3.2.8 there is a prime q |
φr(a, b) different from r. Since the factors a + ζib of φr(a, b) are pairwise coprime, each

of them contains a non-trivial prime in Q(ζ) above q. Thus, any product (a + ζib)(a +

ζr−ib) is divisible by some prime. In particular, f1,f2,f3 are divisible by some prime, hence

|NormK+/Q(c)| > 1. The other direction is immediate.

�

Remark 3.2.11 From Corollaries 3.2.8 and 3.2.10 we see that a solution (a, b, c) of (3.3),

(3.4), (3.5) or (3.6) is non-trivial (|NormK+/Q(abc)| > 1) if and only if c is divisible by some
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prime. As we will see later the primes dividing c will correspond to multiplicative primes of

the Frey curves. Moreover, we will see that they are the primes where level lowering actually

happens. We want to keep in mind this way of thinking about non-trivial solutions.

To end this section we now summarize the main idea. As long as p � h+r , in particular for

all p > h+r , we have related an integer non-trivial primitive solution (a, b, c
′) of xr+yr = Czp

to a non-trivial primitive solution (a, b, c) ∈ Z2×OK+ of several Diophantine equations not

depending on C. That is, equations (3.5) or (3.6) for each valid triple (k1, k2, k3) (hence

choice of fi for i = 1, 2, 3).

From now when we talk about solutions (a, b, c) of (3.5) or (3.6) we are always considering

solutions in Z2×OK+ . In the rest of this work we will study these solutions using the modular

approach via Hilbert modular forms.

3.2.2 The Frey-Hellegouarch curves

Fix a valid triple (k1, k2, k3). From now on, everytime we will refer to equations (3.5) and

(3.6) we are considering them with respect to the fixed triple. We want to attach a Frey

curve to a putative primitive solution (a, b, c) ∈ Z2 × OK+ to (3.5) or (3.6). Let fi be the

degree two factors of φr with coefficients in K
+ corresponding to the fixed triple, that is

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
f1(x, y) = x2 + (ζk1 + ζr−k1)xy + y2,

f2(x, y) = x2 + (ζk2 + ζr−k2)xy + y2,

f3(x, y) = x2 + (ζk3 + ζr−k3)xy + y2.

We are interested in finding a triple (α, β, γ) such that

αf1 + βf2 + γf3 = 0.

We see from the form of the fi that finding (α, β, γ) is always possible, because it is a

solution of a linear system with two equations and three variables. In particular, we choose

the solution ⎧⎪⎪⎪⎨
⎪⎪⎪⎩
α = −(ζk2 + ζr−k2 − ζk3 − ζr−k3),

β = ζk1 + ζr−k1 − ζk3 − ζr−k3 ,

γ = −ζk1 − ζr−k1 + ζk2 + ζr−k2 .

Finally, given a primitive solution (a, b, c) to equation (3.5) or (3.6) we put

A(a, b) = αf1(a, b), B(a, b) = βf2(a, b), C(a, b) = γf3(a, b),

and we attach to (a, b, c) the Frey curves over K+ with classical form

E(a,b) : y
2 = x(x−A(a, b))(x+B(a, b)). (3.7)
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We want to remark that if we change the valid triple we change the Frey curve attached to a

solution of xr + yr = Czp. Actually, we already know that we can find
(
(r−1)/2

3

)
families of

Frey curves. Since most of the theory in this chapter holds for any valid triple, we decided

not to include the dependence of the curve on (k1, k2, k3) in the notation E(a,b). Whenever

we need to change the valid triple it will be made clear in the text.

Suppose that (a, b, c) is a primitive solution to (3.5) or (3.6). The curves E(a,b) have

associated the following quantities:

Δ(E) = 24(ABC)2,

c4(E) = 24(AB +BC +AC),

c6(E) = −25(C + 2B)(A+ 2B)(2A+B),

j(E) = 28
(AB +BC +AC)3

(ABC)2
.

In particular,

Δ(E) =

⎧⎨
⎩μ

224(αβγ)2c2p if r � a+ b,

μ224(αβγ)2π6
rc

2p if r | a+ b.

As expected, c appears to a p-power in the discriminant which is fundamental for the

modular approach to work.

Let P, Pr and P2 denote a prime in K
+ above p, r and 2, respectively. Denote by rad(c)

the product of the primes dividing c.

Proposition 3.2.12 Let (a, b, c) be a primitive solution of equation (3.5) or (3.6). The

conductor of the curves E(a,b) is of the form

NE = 2sPt
rrad(c),

where s may be 2, 3 or 4 and t = 0 or 2 if r | a+ b or r � a+ b, respectively.

Proof: To the results used in this proof we follow [52]. First note that α, β, γ can be written

in the form ±ζs(1− ζt)(1− ζu), where neither t nor u are ≡ 0 (mod r), which means that

the only prime dividing αβγ is Pr and υPr
(αβγ) = 3.

Let P be a prime in K+ different from Pr and P2. Observe that υP(Δ(E)) = 2pυP(c).

Then if P � c we have υP(Δ) = 0 and the curve has good reduction. If P | c then υP(Δ) > 0

and P must divide only one among A,B or C (see Proposition 3.2.3). From the form of c4

it can be seen that υP(c4) = 0 thus E has multiplicative reduction at P.

Since (πr) = Pr we see from the form of Δ(E) that υPr (Δ) = 6 or 12 if r � a + b or

r | a + b, respectively. This translate to E bad additive reduction (υPr (NE) = 2) or good

reduction (υPr (NE) = 0) at Pr if r � a+ b or r | a+ b, respectively.

Since 2 do not ramifies in Q(ζ) we use Table IV in [52]. It is easily seen by from the
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shape of Δ, c4 and c6 that υP2(Δ) = 4, υP2(c6) = 5 and υP2(c4) ≥ 4 for any P2 above

2. Then the equation is minimal (υP2(Δ) < 12) and we check in Table IV [52] for the

columns corresponding to the previous valuations and observe that υP2(NE) can be 2, 3, 4

corresponding to Kodaira type II, III or IV.

�

Proposition 3.2.13 Let (a, b, c) be a primitive solution of equation (3.5) or (3.6) and l �= p

be a prime in K+ dividing c. Then, the representation ρ̄E,p attached to the Frey curve

E = E(a,b) is unramified at l.

Proof: l is unramified in K+ because l � r. From l | c and Proposition 3.2.12 it follows that
l is of multiplicative reduction of E. Since it appears to a p-th power in the discriminant of

a minimal model at l of E (Δ(E)) we know by Theorem 1.1.14 that the representation ρ̄E,p

will not ramify at l.

�

Corollary 3.2.14 Let ρ̄E,p be as in the previous proposition. Then, the Artin conductor

N(ρ̄E,p) is equal to 2iPt
r, where i and t are given as in Proposition 3.2.12.

Proof: Recall that the Artin conductor N(ρ̄E,p) is not divisible by primes above p by

definition. Also, when reducing ρE,p to its residual representation ρ̄E,p, by the discussion

regarding the work of Carayol in the end of section 1.2, the conductor at the bad addi-

tive primes do not decrease. Hence, by Propositions 3.2.13 and 3.2.12 we conclude that

N(ρ̄E,p) = 2iPt
r.

�

In the next section we will prove the following theorem and a particular case of the

conjecture below, but by now we will suppose both to be true.

Theorem 3.2.15 Suppose that (a, b, c) is a primitive solution to (3.5) or (3.6). Let ρ̄E,p be

the mod p Galois representation attached to E(a,b). Then, there exists a constant M(r) such

that if p > M(r) then the representation ρ̄E,p is absolutely irreducible.

Conjecture 3.2.16 Suppose that (a, b, c) is a primitive solution to (3.5) or (3.6). Then,

the curves E(a,b) over K+ are modular.

For an ideal N of K+ we denote by S2(N) the set of Hilbert modular cusp forms of

parallel weight 2 and level N . Suppose that (a, b, c) is a primitive solution to (3.5) or (3.6).

It follows from modularity that there exists a newform f0 in S2(2
iPt

rrad(c)), with i = 2, 3

or 4 and t = 0 or 2, such that ρE,p is isomorphic to the p-adic representation attached to

f0, which we denote by ρf0,p. In this situation, for p > M(r) we have that ρ̄E,p is modular
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and irreducible and we can apply the level lowering results for Hilbert modular forms from

Jarvis, Rajaei and Fujiwara.

From Corollary 3.2.14 we know thatN(ρ̄E,p) = 2iPt
r. We will now apply the level lowering

results to show that ρ̄E,p is modular of level N(ρ̄E,p). Since K
+ might be of even degree, in

order to apply Theorem 3.1.8, we need to add an auxiliary (special or supercuspidal) prime

to the level. From [56], section 4, Theorem 5, we can add an auxiliary (special) prime q0

that, in particular, satisfies that ρ̄f0,p(Frobq0
) is conjugated to ρ̄f0,p(σ), where σ is complex

conjugation. We now apply Theorem 3.1.8 to remove from the level all primes except those

above 2, p, the prime Pr and q0. Now we will remove from the level the primes above p

and for that we need ρ̄E,p|GP to be finite at all primes P | p. If P � c it is of good reduction

for E then ρ̄E,p|GP is finite by Lemma 1.2.5; if P | c it is of multiplicative reduction for E
and since we have p | υP(Δ) it follows from Lemma 1.2.5 that ρ̄E,p|GP is finite. Thus from

Theorem 3.1.7 we can remove the primes above p without changing the weight. Finally,

from the condition imposed on q0 follows that Nm(q0) �≡ 1 (mod p) and we can apply

Theorem 3.1.6 to remove q0 from the level. Then we conclude that there exists a newform f

in S2(2
iPt

r) and a prime P | p in Qf such that its associated residual Galois representation

satisfies

ρ̄E,p ∼ ρ̄f0,p ∼ ρ̄f,P. (3.8)

As already mentioned, if we show that this congruence can not hold (step (III)) for all the

newforms in the corresponding cusp spaces S2(2
iPt

r) we have proved that our putative non-

trivial primitive solution (a, b, c) to (3.5) or (3.6) can not exist hence (3.1) also can not have

non-trivial primitive solutions by Lemma 3.2.9. The most common method to contradict

the previous isomorphism is to look at the values aq(E) and aq(f) and verify that they can

not be congruent modulo P if p is greater than a constant. However, this method is limited

by the existence of trivial solutions. In particular, an intrinsic problem of our method is that

for some μ the equations (3.5) and (3.6) have trivial solutions ±(1, 0, 1), ±(0, 1, 1), (1, 1, 1)
and (1,−1, 1), (−1, 1, 1) that are associated with the Frey curves E(1,0), E(1,1) and E(1,−1),

respectively, that do exist. Then we will not be able to eliminate their (conjecturally)

associated newforms simply by comparing the values of aq. However, for suitable values of

C the extra condition C | a+ b will be enough to deal with E(1,0) and E(1,1), but the curve

E(1,−1) will survive. To eliminate the newform corresponding to E(1,−1) we need the extra

hypothesis r � a+ b to achieve a contradiction at the inertia at Pr. From Proposition 3.2.5

it follows that for a primitive solution (a, b, c) of (3.1) we have r � a+ b⇔ r � c thus we are

limited to solve the equation (3.1) only for first case solutions (see Definition 3.2.1).

Remark 3.2.17 Our method can be adapted to solve some equations completely, i.e remov-

ing the restriction r � c. This is the case if we consider the equation x2r + y2r = Czp and

use the Frey curves F(a,b) := E(a2,b2). Since the trivial solutions (1,−1) will correspond to

the curve F(1,−1) = E(1,1), in principle, we will be able to eliminate its attached modular

form because of the condition C | a+ b. This will be illustrated in the next chapter.

As we have commented there are computational limitations to the strategy, because the
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dimension of K+ is (r − 1)/2 and increases with r. In particular, the norm of the ideals

(2) and Pr will increase and consequently also the norm of the conductor of E(a,b) increases

making the dimension of the corresponding space of Hilbert modular cuspforms became

very large fast. For example, when r = 11 the norm of 24P2
r is 2

20112 and the dimension

of S2(2
4P2

r) is 5406721. Thus, already for small values of r computing the corresponding

newspace of Hilbert modular forms of S2(2
4P2

r) is infeasible.

However, if r ≡ 1 (mod 6) the computational requirements can be reduced. Let r = 6k+1

be a prime. The degree of φr is 6k then it admits k factors φi for 1 ≤ i ≤ k with degree six

and coefficients in the totally real subfield of K+ with degree k, that we denote by K0. Let

σ be the generator of Gal(Q(ζ)/Q) and let φ1 be the factor of φr given by

φ1 =

5∏
i=0

(x+ σik(ζ)y).

Let also the polynomials fi be given by⎧⎪⎪⎪⎨
⎪⎪⎪⎩
f1(x, y) = (x+ ζy)(x+ σ3k(ζ)y),

f2(x, y) = (x+ σ2k(ζ)y)(x+ σ5k(ζ)y),

f3(x, y) = (x+ σ4k(ζ)y)(x+ σk(ζ)y).

Observe that this choice of polynomials correspond to the valid triple (1, n2, n3), where

ζn2 = σ2k(ζ) and ζn3 = σ4k(ζ). Note also that φ1 = f1f2f3 is defined over K0 hence, in

this case, equations (3.5) and (3.6) are defined over K0. As explained before these factors

give rise to the following linear system

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
α+ β + γ = 0

α(ζ + σ3k(ζ)) + β(σ2k(ζ) + σ5k(ζ)) + γ(σ4k(ζ) + σk(ζ)) = 0

α+ β + γ = 0

that obviously has infinitely many solutions. We pick the solution given by

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
α = −σ2k(ζ)− σ5k(ζ) + σ4k(ζ) + σk(ζ)

β = ζ + σ3k(ζ)− σ4k(ζ)− σk(ζ)

γ = σ2k(ζ) + σ5k(ζ)− ζ − σ3k(ζ)

We remark that this choice for (α, β, γ) is the same as before, that is, we could also have

obtained it by replacing in the general description the triple (k1, k2, k3) by (1, n2, n3). Let

A(a, b) = αf1(a, b) , B(a, b) = βf2(a, b) , C(a, b) = γf3(a, b). As before, we have A+B+C =

0 then we can consider the Frey curves over K+ given by

E(a,b) : y
2 = x(x−A(a, b))(x+B(a, b)).
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For the rest of this section the results depend on the specific triple (1, n2, n3). Recall that

n2 and n3 are defined by ζ
n2 = σ2k(ζ) and ζn3 = σ4k(ζ).

Proposition 3.2.18 Let r = 6k + 1 ≥ 7 be a prime. Fix the triple (k1, k2, k3) to be

(1, n2, n3). Suppose that (a, b, c) is a primitive solution of (3.5) or (3.6). Then the Frey

curves E(a,b)/K
+ has a model over K0.

Proof: First observe that σ2k (mod σ3k) has order 3 and generates Gal(K+/K0). Since

the curves E are defined over K+ they are invariant under the order 2 element σ3kand in

particular j(E) is invariant under σ3k. Moreover,

σ2k(α) = β, σ2k(β) = γ, σ2k(γ) = α,

and also

σ2k(f1) = f2, σ2k(f2) = f3, σ2k(f3) = f1,

then

σ2k(A) = B, σ2k(B) = C, σ2k(C) = A.

Since

j(E) = 28
(AB +BC + CA)3

(ABC)2

it is clearly invariant under σ2k then the j-invariant actually is in K0. Now we write E(a,b)

in the short Weierstrass form to get a model

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
E : y2 = x3 + a4x+ a6, where

a4 = −432(AB +BC + CA)

a6 = −1728(2A3 + 3A2B − 3AB2 − 2B3)

Since a4 is clearly invariant under σ
2k and

a6 = −1728(2A3 + 3A2B − 3AB2 − 2B3) =

= −1728(2(−B − C)3 + 3(−B − C)2B − 3(−B − C)B2 − 2B3) =

= −1728(2B3 + 3B2C − 3BC2 − 2C3) = σ2k(a6)

we conclude that the short Weierstrass model is defined over K0.

�

Let π2 and πr denote a prime in K0 above 2 and r, respectively.

Proposition 3.2.19 Let r = 6k + 1 ≥ 7 be a prime. Fix the triple (k1, k2, k3) to be

(1, n2, n3). Suppose that (a, b, c) is a primitive solution of (3.5) or (3.6). The conductor of

the curves E(a,b) over K0 is of the form

NE = 2sπ2
rrad(c),
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where s may be 2, 3 or 4.

Proof: Writing a curve in short Weierstrass form changes the values of Δ, c4 and c6 by a

factor of 612, 64 and 66. Since the primes dividing 6 do not ramify in K/K0 and do not

divide c the conductor of E at primes dividing c is the same as before.

Since πr = P3
r in K

+ we see from the third paragraph in the proof of Proposition 3.2.12

that υπr
(Δ(E)) = 4 or 2. Also, υπr

(c4(E)) > 0 and since we are in characteristic ≥ 5 this

implies that the equation is minimal and has bad additive reduction with υπr
(NE) = 2.

It easily can be seen that υπ2
(Δ(E)) = 16, υπ2

(c6(E)) = 11 and υπ2
(c4(E)) ≥ 8. Table

IV in [52] tell us that the equation is not minimal and after a change of variables we

have υ2(Δ(E)) = 4, υπ2
(c6(E)) = 5 and υπ2

(c4(E)) ≥ 4. Now exactly as in the proof of

Proposition 3.2.12 we can conclude that υπ2
(NE) may be 2, 3, or 4.

�

The existence of a model over K0 has advantages. For example, a trivial adaptation of

the proof of Theorem 3.2.15 will give us a smaller constant M(r). Also, by arguing exactly

as in the proofs of Proposition 3.2.13 and Corollary 3.2.14, where instead of Proposition

3.2.12 we use Proposition 3.2.19, it follows

Proposition 3.2.20 Let (a, b, c) be a primitive solution of equation (3.5) or (3.6). Then,

1. If l �= p is a prime dividing c then the representation ρ̄E,p attached to the Frey curve

E = E(a,b) is unramified at l.

2. The Artin conductor N(ρ̄E,p) is equal to 2iπ2
r , where i is as in Proposition 3.2.19.

Moreover, assuming modularity of the curves E(a,b)/K0 we can argue exactly as we did

over K+ to apply the results on level lowering. This leads to the computation of Hilbert

newforms over K0 which is a number field of dimension k when a priori we were over K+

of dimension 3k. In the next chapter we will use this fact to solve equations for r = 7 and

r = 13.

3.3 Modularity of E and Irreducibility of ρ̄E,p

Denote by ρE,p and ρ̄E,p the p-adic and the mod p representations associated with E(a,b).

In the discussion in the previous section we postponed two fundamental steps in the modular

approach: irreducibility of ρ̄E,p and modularity of the Frey curves (i.e. modularity of ρE,p).

The content of this section is devoted to these two steps.
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3.3.1 Modularity lifting theorems

We start by recalling important results on modularity and ordinarity lifting from Kisin,

Skinner-Wiles, Savitt, Langlands and Tunnel. The definitions and statements below are

adapted according to our needs. For their full generality see [68], [69], [41], [8] and [61]. The

results in this section will take a main role in the proof of Theorem 3.3.10.

Definition 3.3.1 Let ρ : GF → GL2(Q̄p) be an odd continuous and irreducible representa-

tion ramified only at a finite set of primes S and such that det(ρ) = εχk−1
p with ε a finite

order character and k > 1. Let t | p be a prime.

We say that ρ is ordinary at t if ρ|Dt has a rank 1 quotient on which the action of inertia

at t is trivial, that is

ρ|It =
(
ε′χk−1

p ∗
0 1

)
,

where ε′ = ε|It. Moreover, we say that ρ is potentially ordinary at t if the previous condition

holds for the restriction of ρ to an open subgroup of Dt.

Furthermore, we say that ρ is nearly-ordinary at t if

ρ|Dt =

(
ψ
(t)
1 ∗
0 ψ

(t)
2

)
,

with ψ
(t)
2 |It having finite order.

For definitions of (potentially) crystalline and (potentially) Barsotti-Tate representations

see [61], [8], section 1.1 of [17] and references there. Later we will need the following result

of Savitt that generalizes work of Breuil concerning crystalline ordinary representations.

Theorem 3.3.2 (Savitt) Let p > 2 and ρ : GQp
→ GL2(Q̄p) be a potentially Barsotti-Tate

Galois representation. Suppose also that ρ|GQp(ζp) is Barsotti-Tate and that ρ̄ is reducible.

Then ρ is nearly-ordinary. Furthermore, if ρ is Barsotti-Tate then it is ordinary.

Proof: The first sentence is an application of Theorem 6.11 in [61] as in Theorem 6.1 in

[38]. For the last statement: we have ρ nearly-ordinary and Barsotti-Tate (hence crystalline)

then by the description of lattices in section 9.1 of [8] we find that we are in case (i). Indeed,

from ρ being crystalline it follows that we are in cases (i) or (ii). Moreover, from ρ being

nearly-ordinary it follows that we are in the reducible case, hence (i). But in case (i) μ2 is

a unit then ρ is ordinary.

�

We now proceed to the modularity theorems. Let F be a totally real field, S a finite set

of finite primes of F and E a finite extension of Qp. We will denote by GF,S the absolute

Galois group of the maximal Galois extension of F unramified outside S. The following
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deep theorem is a consequence of the work of Langlands [47] and Tunnell [72]. See also the

lectures in [33] for a discussion regarding its proof in the classic case F = Q.

Theorem 3.3.3 (Langlands-Tunnell) Let ρ̄ : GF → GL2(C) be a continuous, irreducible

with solvable image in PGL2(C). Suppose also that det(ρ̄(c)) = −1 for all complex conju-

gations c. Then, there exists a normalized Hilbert eigenform f1 of parallel weight 1 giving

rise to ρ̄.

The following theorem is Corollary 2.1.3 in [41].

Theorem 3.3.4 (Kisin) Let p > 2 and ρ : GF,S → GL2(E) be a continuous representation

such that det(ρ) = εχp. Suppose that

(1) ρ is potentially Barsotti-Tate at each prime t | p of F , and if ρ is potentially ordinary

at t then Ft = Qp.

(2) ρ̄ ∼ ¯ρf,λ for some Hilbert modular form f over F of parallel weight 2.

(3) ρ̄|F (μp) is absolutely irreducible, and [F (ζp) : F ] > 2 if p = 5.

Then ρ ∼ ρf ′,λ for some Hilbert modular form f ′ over F of parallel weight 2.

Definition 3.3.5 Let ρ̄ : Gal(Q̄/F )→ GL2(Fp) be a Galois representation, and let P | p be

a prime of F. We say that ρ is DP-distinguished if the semisimplification of the restriction

ρ̄|DP is isomorphic to θ1 ⊕ θ2, with θ1 and θ2 distinct characters from DP to F̄∗.

The following two theorems correspond to Theorem 5.1 in [69] and Theorem A in [68],

respectively.

Theorem 3.3.6 (Skinner-Wiles) Let F be a totally real field and ρ : Gal(Q̄/F )→ GL2(Q̄p)

be a continuous odd absolutely irreducible representation ramified only at finitely many

primes. Suppose further that det(ρ) = εχk−1
p and

(1) ρ is nearly-ordinary at all primes t above p.

(2) ρ̄ is absolutely irreducible and DP-distinguished for all primes t | p.

(3) There exists a modular representation ρf,λ nearly-ordinary at all primes above p such

that ρ̄ and ρ̄f,λ are isomorphic.

Then ρ is modular.

Theorem 3.3.7 (Skinner-Wiles) Let p > 2 and ρ : Gal(Q̄/F )→ GL2(Q̄p) be a continuous,

irreducible and unramified away from a finite number of places of F . Suppose that ρ̄ss is

isomorphic to χ1 ⊕ χ2. Suppose further that
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(1) The splitting field F (χ1/χ2) of χ1/χ2 is abelian over Q.

(2) (χ1/χ2)(z) = −1 for each complex conjugation

(3) (χ1/χ2)|Dv �= 1 for each v | p

(4) ρ is potentially ordinary

(5) det(ρ) = εχk−1
p

Then ρ is modular.

3.3.2 Modularity of E(a,b)

It is known that all elliptic curves over Q are modular and is expected the same to be

true over totally real number fields but there are no complete general results in the latter

situation. Thus, in general, we can only conjecture modularity of our Frey curves E(a,b).

Conjecture 3.3.8 Let r > 5 be a prime. Let (k1, k2, k3) be a valid triple for this r. Suppose

that (a, b, c) is a primitive solution of (3.5) or (3.6). Then, the curves E(a,b) over K+ or

K0 are modular.

This conjecture holds for specific valid triples. For example, for r = 7 there is only one

valid triple (up to order) and the corresponding Frey curve is defined over Q (see section

4.1.1) hence it is modular by the Modularity Theorem; for r = 13 and triple (1, 4, 3) it is a

consequence of Theorem 3.3.10 below (see section 4.2, in particular Theorem 4.2.3).

The following important consequence of Langlands-Tunnell Theorem is key in the proof

of Theorem 3.3.10.

Theorem 3.3.9 Let C/F be an elliptic curve defined over a totally real field F and put

ρ = ρC,3. If ρ̄ is irreducible then it is modular arising from an Hilbert newform f over F of

parallel weight 2.

Proof: The first step is a consequence of Theorem 3.3.3. Observe that ρ̄ : GF → GL2(F3)

is totally odd, absolutely irreducible and of solvable image. The discussion after Theorem

5.1 in [76] can be reproduced also over the totally real field F . Indeed, in Lecture I of [33]

the details over Q are given and and with small natural adjustments it directly generalizes

to F . Thus there is an Hilbert eigenform f1 of parallel weight 1 defined over F such that

ρ̄ ∼ ρ̄f1,λ, where λ | 3 is a prime in Q̄. This is a known application and can be found, for

example, in page 1133 of [30] or in the proof of Theorem 3.3.1 in [2].

From Lemma 1.4.2 in [75] we know there exists a normalized Hilbert modular form θ of

parallel weight 2i+1 for some integer i ≥ 0 such that θ ≡ 1 (mod 3). Consider the product

θf1 of parallel weight w = 2i+1+1. Since θf1 ≡ f1 (mod 3) we have that θf1 is a modulo 3
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eigenform and by the Deligne-Serre Lemma (see [23], Lemma 6.11) we can find an eigenform

fw of parallel weight w such that ρ̄ ∼ ρ̄fw,λ. Finally, from the comments preceding corollary

2.12 in [12] it follows that there is a Hilbert eigenform f2 of parallel weight 2 (and level not

necessary prime to 3) such that ρ̄ ∼ ρ̄f2,λ for a prime λ above 3. We take f = f2.

�

Theorem 3.3.10 Let F be a totally real abelian number field and C and elliptic curve

defined over F . Suppose that 3 splits completely in F and C has good reduction at the

primes above 3. Then C is modular.

Proof: Let ρ̄ = ρ̄C,3 be as before. Observe that ρ̄, when irreducible, is modular by

Theorem 3.3.9. We now divide the proof into three cases:

(1) Suppose that ρ̄ and ρ̄|GF (
√−3) are both abs. irreducible. Here we will apply Theorem

3.3.4. Condition (1) holds because C has good reduction at the primes above 3 and

3 splits in F . Theorem 3.3.9 guarantees condition (2) and (3) holds by hypothesis.

Then ρ is modular.

(2) Suppose that ρ̄ is abs. irreducible and ρ̄|GF (
√−3) abs. reducible. This means that the

image of P(ρ̄) is Dihedral. Namely, that the image of ρ̄ is contained in the normalizerN

of a Cartan subgroup C0 of GL2(F̄3) but not contained in C0. Moreover, the restriction

to F (
√−3) of our representation has its image inside C0. Thus, the composition of ρ̄

with the quotient N/C0,

Gal(Q̄/F )→ N → N/C0, (3.9)

gives the quadratic character of F (
√−3)/F which ramifies at 3 because 3 is unramified

in F .

Let t be a prime in F above 3. Since C has good reduction at t and 3 splits in F

the restriction of the residual representation ρ̄ to the inertia subgroup It has only two

possibilities

ρ̄|It =
(
χ̄ ∗
0 1

)
or

(
ψ2 0

0 ψ3
2

)
, (3.10)

where χ is the 3-adic cyclotomic character and ψ2 is a fundamental character of level

2.

If we suppose that ρ̄|It acts through level 2 fundamental characters, the image of It
by P(ρ̄) gives a cyclic group of order 4 > 2, thus it has to be contained in P(C0) (if it

not contained in P(C0) and has order 4 it must be isomorphic to C2 × C2). But this

implies that the quadratic character defined by composition (3.9) should be unramified

at 3, contradicting the fact that this character corresponds to F (
√−3). Thus we can

assume that we are in the first case, that is, ρ̄|It is reducible.
The previous holds for all primes t | 3 hence we can apply Lemma 3.3.11 below to ρ̄.

Let ψ and f2 be given by applying Lemma 3.3.11 to ρ̄. Let ψ0 be a finite order lifting
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of ψ satisfying ρ⊗ ψ0 = ρ̄ ⊗ ψ. Note that ρf2,λ is a nearly-ordinary lifting of ρ̄ ⊗ ψ.

Since ρ is Barsotti-Tate (C has good reduction at all t | 3) then ρ|Dt is ordinary for

all t by Theorem 3.3.2. Then ρ⊗ψ0 satisfy all the conditions of Theorem 3.3.6. Thus

ρ⊗ ψ0 is modular hence ρ is also modular.

(3) Suppose that ρ̄ is abs. reducible. We want to apply Theorem 3.3.7. Since the rep-

resentation is totally odd and F is totally real ρ̄ is reducible if and only if it is abs.

reducible by Proposition 1.1.12, hence reducibility of ρ̄ must take place over F3. Using

this, together with C having good reduction at t | 3, we restrict ρ̄ to It, we see that the
case of the fundamental characters of level 2 in (3.10) can not occur. Thus we have

ρ̄ss = χ1 ⊕ χ2, where χ1 = ψχ̄, χ2 = ψ−1 where χ̄ is the mod 3 cyclotomic character

and ψ is ramified only at primes dividing the conductor of E. Note also that ψ must be

quadratic because F∗3 has only two elements. Then χ1/χ2 = ψ2χ̄ = χ̄ and conditions

(2) and (3) are satisfied. Moreover, ρ|Dt is Barsotti-Tate (C has good reduction at t)

then by Theorem 3.3.2 we conclude that ρ|Dt is ordinary for all t, which establishes

condition (4). Finally, the extension F (χ1/χ2) = F (
√−3) of Q is abelian because F

and Q(
√−3) are both abelian. This establishes condition (1) and condition (5) holds

because ρ arises from an elliptic curve. Thus by Theorem 3.3.7 we conclude that ρ is

modular.
�

Lemma 3.3.11 Let C and F be has in the Theorem 3.3.10. Suppose also that for all t | 3
we have that ρ̄ = ρ̄C,3 satisfies

ρ̄|It =
(
χ̄ ∗
0 1

)
.

Suppose further that ρ̄ is modular. Then, there is a character ψ of GF of finite order and a

Hilbert modular form f2 over F of parallel weight 2 such that ρ̄⊗ψ ∼ ρ̄f2,λ for some prime

λ | 3. Furthermore, the level N of f2 divides n3 for some n prime to 3. Moreover, for each

t | 3, f2 is ordinary or nearly-ordinary at t if t � N or t | N , respectively.

Proof: From the comments preceding Corollary 2.12 in [12] (also used in the proof of

Theorem 3.3.9) it follows that there is a character ψ of finite order and a Hilbert eigenform

f2 of parallel weight 2 such that ρ̄⊗ψ ∼ ρ̄f2,λ for a prime λ above 3. Moreover, the level N

of f2 divides n3 with 3 and n coprime.

Let t | 3 be a prime and recall that 3 splits in F . We now divide into two cases:

1) Suppose that t � N . From f2 being of parallel weight 2 and 3 unramified in F it follows

that ρf2,λ|Dt is Barsotti-Tate. Since ρ̄f2,λ|Dt ≡ (ρ̄⊗ ψ)|Dt is residually reducible we apply

Theorem 3.3.2 to conclude that ρf2,λ|Dt is ordinary.

2) Suppose that t | N . We know that in this case t strictly divides N , hence we have two

cases: f2 is Steinberg or principal series at t.

If f2 is Steinberg at t then ρf2,λ|Dt is semi-stable non crystalline (see [60], Theorem 1),

hence we are in case (iii) of section 9.1 in [8], then ρf2,λ is ordinary at t.
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If f2 is a principal series of conductor t at t then ρf2,λ|Dt is potentially Barsotti-Tate and

Barsotti-Tate over Q3(ζ3). From ρ̄ ⊗ ψ ∼ ρ̄f2,λ follows that ρ̄f2,λ|Dt is reducible and by

Theorem 3.3.2 ρf2,λ|Dt is nearly-ordinary at t. The first sentence in the paragraph follows

from Theorem 1 in [60] if [F : Q] is odd and from Lemma 2.9 in [12] followed by Theorem

1 in [60] if [F : Q] is even.

�

We will now comment on the proof of the general case. To achieve modularity of the Frey

curves for all values of r and all valid triples we need Theorem 3.3.10 to hold without the

splitting hypothesis on 3. Above we divided the proof into 3 cases: (i) ρ̄E,3 and ρ̄E,3|GF (
√−3)

both abs. irreducible; (ii) ρ̄E,3 abs. irreducible and ρ̄E,3|GF (
√−3) reducible; (iii) ρ̄E,3 re-

ducible. When trying to mimic the proof for the general case we will have trouble due to

the fact that 3 is not necessarily split in K+, because in that case we can not guarantee the

existence of a nearly-ordinary lifting of ρ̄E,3 (in the residually ordinary case) by means of

Savitt’s results. In section 6 of [1] the authors prove modularity lifting without assuming

ordinarity at specific places. Unfortunately, the results there are limited for the case p = 3.

However, in a mail conversation with T. Gee we have learned that a generalization of the

theorems there to p = 3 (possibly with some additional restrictions on the image of the

mod p Galois representation) should follow from current techniques. In this scenario we can

expect the curves E(a,b) to be proven modular in case (i), where we apply this more general

result. And if the curve has ordinary good reduction at all primes above 3 also in case (iii),

where modularity follows from an application of Theorem 3.3.6. With these observations in

mind we may be able to achieve modularity for particular values of r. A possible way is to

first check if ρ̄E,3 is abs. irreducible, for example via Proposition 3.3.15, to conclude that we

are in case (i) or (ii). Then by computing the 3-division polynomial and verifying that it is

irreducible over K+(
√−3) (or K0(

√−3)) we conclude that we are in case (i). Alternatively,
if we can only prove that we are not in case (ii) modularity also follows if we have that

the Frey curves are ordinary at all primes above 3. This can be seen by computing all the

possible values aP3
(E(a,b)) for all (a, b) �= (0, 0) in F2 where F is the residual field at P3 and

checking that 3 | aP3
never happens.

3.3.3 Irreducibility of ρ̄E,p

In this section we are concerned with the irreducibility of ρ̄E,p that is fundamental ingre-

dient for applying level lowering theorems. We will achieve this objective by proving a more

general statement regarding elliptic curves over totally real fields.

Theorem 3.3.12 Let F be a totally real number field and C/F be an elliptic curve with

conductor NE. Let A be the factor of NE corresponding to the additive primes. Suppose

further that q � NC is a fixed prime of good reduction. Then, there exist an explicit constant

M(F,A, q) such that, if
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1. p is odd and unramified in F ;

2. all primes p | p are of semistable reduction for C;

3. p > M(F,A, q)

Then, the representation ρ̄C,p is absolutely irreducible.

Proof: Let p be a prime satisfying 1. and 2. in the statement of the theorem. Since ρ̄C,p

is totally odd and F is totally real ρ̄C,p is absolutely reducible if and only if it is reducible

(Proposition 1.1.12). Suppose that ρ̄C,p is abs. reducible. In the rest of this proof we will

first determine M(F,A, q) and then derive a contradiction with p > M(F,A, q).

Let P be a prime above p hence it is of good or multiplicative reduction for C. In sections

1.11 and 1.12 in [63] Serre describers the possibilities for ρ̄C,p|Ip. From that description and

since ρ̄C,p must be reducible over Fp, by restricting ρ̄C,p to IP we see that the fundamental

characters of level ≥ 2 can not occur. Hence ρ̄C,p must have the form

ρ̄C,p =

(
ε−1χ̄p ∗
0 ε

)
, (3.11)

where χ̄p is the mod p cyclotomic character (restricted to GF ) and ε is a character of GF

(depending on p) unramified at all P | p with values in F∗p.

The Artin conductor of ρ̄C,p is a factor of NE . The image via ρ̄C,p of the inertia at

semistable primes not dividing p is of the form

(
1 ∗
0 1

)
then the conductor of ε contains

only bad additive primes. Let A0 be the factor of A such that A2
0 is the maximal square

dividing A. Let c denote the conductor of ε and ε−1 (they are the same), we have c | A0.

The finite order characters of GF with conductor dividing A0 are in correspondence with

the characters of a finite group H = H(F,A). Moreover, H is a subgroup of (OF /A0)
∗. The

group of characters of H is dual of H then, in particular, ε has order dividing the cardinality

of H.

Let q � NE be the fixed prime of good reduction and qf the order of its residue field. Since

C has good reduction at q by taking traces on equality (3.11) we get

aq(C) ≡ ε(Frobq) + qf ε−1(Frobq) (mod p),

which implies that ε(Frobq) satisfies the polynomial q1 := x2−aqx+ qf (mod p). Note that
ε(Frobq) is also a root of the polynomial q2 := x|H|− 1 (mod p). Let ζ = ζ|H| be a primitive
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|H(F,A)|-th root of unity and we have the resultant of q1 and q2 given by

res(q1, q2) =

|H|∏
i=1

(
aq +

√
a2q − 4qf

2
− ζi)(

aq −
√
a2q − 4qf

2
− ζi)

=

|H|∏
i=1

(ζ2i − aqζi + qf )

Since aq is an integer such that |aq| ≤ 2
√
qf we have

|res(q1, q2)| ≤
|H|∏
i=1

(|ζ|2i + |aq||ζ|i + qf ) ≤
|H|∏
i=1

(1 + 2
√
qf × 1 + qf ) = (1 + 2

√
qf + qf )|H|

We now take M(F,A, q) = (1 + 2
√
qf + qf )|H(F,A)| = (1 +

√
qf )2|H(F,A)|.

Now note that all the roots of q2 have absolute value 1 and those of q1 have absolute

value equal to
√
qf (see [66], Chapter V, section 2). On one hand, q1 and q2 have integer

coefficients and no common roots hence res(q1, q2) is a non-zero integer. On the other hand,

ε(Frobq) is a common root of the qi (mod p) then res(q1, q2) ≡ 0 (mod p). This is impossible

if p > M(F,A, q).

�

Recall that we have fixed r as the exponent on the left-hand side of the equation (3.1). A

major ingredient of our argument is to guarantee irreducibility of the representations ρ̄E,p

attached to our Frey curves E = E(a,b). That is the content of the following theorem.

Theorem 3.3.13 Let (a, b, c) ∈ Z2 ×OK+ be a primitive solution of (3.5) or (3.6). There

exists a constant M(r) such that, if p > M(r) then the representation ρ̄E,p is absolutely

irreducible.

Proof: In the previous proof we let F = K+, C = E(a,b); From Proposition 3.2.12 we see

that we can also take A = P4
2P

2
r (hence A0 = P2

2Pr) and q = P3 (a prime above 3) with

residue field of order 3f(r). This gives us that F,A and 3f(r) only depend on r and we denote

M(F,A, q) by M(r). Now, if p > M(r) then p > r and conditions 1. and 2. on the previous

theorem are automatically satisfied, because of our specific F and C. Then we conclude

ρ̄E,p is irreducible for p > M(r) by the previous theorem.

�

For proving the previous theorem we used little information about our specific Frey curves.

Actually, by using more information about them we will now prove a much better result in

some cases (Theorem 3.3.15).

Theorem 3.3.14 Let F be a number field and P2 | 2 a prime in F with inertial degree

f = f(P2/2). Let C/F be an elliptic curve with potentially good reduction at P2 and define
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ΦP2 as in the introduction of [43]. Then, if |ΦP2 | does not divide 2nf (2f − 1) for all n ≥ 0

the representation ρ̄C,p is irreducible for all p ≥ 3.

Proof: This theorem is just a particular case of Proposition 3.3 in [4], where we are con-

sidering q = P2.

�

Recall that K+ = Q(ζr + ζ−1
r )/Q is Galois then inertial degree f(r) = f(P2/2) is the

same for all primes P2 above 2.

Theorem 3.3.15 Let r be such that the inertial degree f(r) = f(P2/2) in K
+ is odd. Let

(a, b, c) ∈ Z2 × OK+ be a primitive solution of (3.5) or (3.6) for this fixed r. Then ρ̄E,p is

irreducible for all primes p ≥ 3.

Proof: It is clear from the expression of j(E) that υP2
(j(E)) ≥ 0 then E has potentially

good reduction at P2. Also, υP2
(Δ) = 4 �≡ 0 (mod 3), where Δ is minimal at P2, then

we are in case (ii) of Theorem 3 in [43]. Then, from the same Theorem 3 we conclude

|ΦP2
| = 3, 6, 24. Moreover, 2nf (2f −1) is divisible by 3 only if f is even. Since we have f(r)

odd we apply Theorem 3.3.14 to conclude that ρ̄E,p is irreducible for all primes p ≥ 3.

�
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Chapter 4

The cases r = 7, r = 13 and

further examples.

In this chapter we will particularize the strategy in Chapter 3 to solve equations for r = 7

and r = 13. Then, we will end by giving examples of Frey curves generated by our method

for r = 11, 17, 19.

4.1 The equation x7 + y7 = Czp

We will prove the following theorem

Theorem 4.1.1 Let d = 2s03s15s2 and γ be an integer only divisible by primes l �≡ 1, 0 (mod 7).

Then, if p ≥ 17 we have that

(I) The equation x7+y7 = dγzp has no non-trivial first case solutions if (s0, s1, s2) satisfies

any of the following three conditions (≥ 2,≥ 0,≥ 0), (= 1,≥ 1,≥ 0) or (= 0,≥ 0,≥ 1).

(II) The equation x14 + y14 = dγzp has no non-trivial primitive solutions if s1 > 0 or

s2 > 0 or s0 ≥ 2.

We will start by proving (I) by following the strategy delineated in the previous chapter.

First note that 7 = 6k+1 for k = 1 then we are in a case of less computational requirements

and K0 has degree 1, that is K0 = Q.

Let (a, b, c′) ∈ Z3 be a non-trivial primitive solution to the equation

x7 + y7 = (x+ y)φ7(x, y) = dγzp. (4.1)

Note that φ7 is of degree 6 then the only factor of φ7 defined over K0 = Q is φ7. Then,

in the notation of the previous chapter φ1 = φ7 = f1f2f3. From Lemma 3.2.9 there must

exists a non-trivial primitive solution (a, b, c) in Z3 to

f1(x, y)f2(x, y)f3(x, y) = zp, (4.2)
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with dγ | a+ b and 7 � a+ b or to

f1(x, y)f2(x, y)f3(x, y) = 7zp (4.3)

with dγ | a+ b and 7 | a+ b, where in both cases c is only divisible by primes congruent to

1 modulo 7. Even though dγ | a+ b, it will became clear in the sequel that for the proof of

Theorem 4.1.1 we will only need d | a+ b.

We now construct the Frey curves attached to a primitive solution (a, b, c) of (4.2) or

(4.3). Let ζ = ζ7 be a primitive 7-th root of unity. Following the construction in the

previous section we get φ1 = f1f2f3, where the fi correspond to the valid triple (1, 4, 5),

that is,

f1(x, y) = x2 + (ζ + ζ6)xy + y2

f2(x, y) = x2 + (ζ4 + ζ3)xy + y2

f3(x, y) = x2 + (ζ5 + ζ2)xy + y2
.

and we find a triple (α, β, γ) such that αf1 + βf2 + γf3 = 0 given by

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
α = ζ5 − ζ4 − ζ3 + ζ2

β = −2ζ5 − ζ4 − ζ3 − 2ζ2 − 1

γ = ζ5 + 2ζ4 + 2ζ3 + c2 + 1.

.

This results in the Frey curves with short Weierstrass model E(a,b) : y
2 = x3 + a4x + a6

defined over Q, where

⎧⎨
⎩a4 = −3024(a

4 − a3b+ 3a2b2 − ab3 + b4)

a6 = 12096(a6 − 15a5b+ 15a4b2 − 29a3b3 + 15a2b4 − 15ab5 + b6).

These curves were already known to Kraus (in [46] he gives a Frey curve with the same

short Weierstrass model of ours) and Dahmen also found a twist of them with a different

method in [18]. Since αβγ = −7 the discriminant is of the form

Δ(E) = 21631272+sc2, (4.4)

where s = 0 or s = 2 if (a, b, c) is a solution to (4.2) or (4.3), respectively.

Proposition 4.1.2 Let (a, b, c) be a primitive solution of (4.2) or (4.3). Then, the curves

E(a,b) have conductor given by

NE =

⎧⎪⎨
⎪⎩

2272rad(c) or 2372rad(c) if 2 � a+ b

2472rad(c) if 2 ‖ a+ b

2372rad(c) if 4 | a+ b
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Moreover, if 2 � a+ b we can suppose that a is even and the conductor is

NE =

{
2272rad(c) if 4 | a
2372rad(c) if 4 � a

Proof: From Proposition 3.2.19 we know the set of possible values for the conductor. With

the help of SAGE we compute the values of the conductor for all pairs (a, b) mod 26 and

observe how they relate to a+ b.

�

From Proposition 3.2.20 we have that N(ρ̄E,p) is 2
s72, where s = 2, 3 or 4. Lemma 1.2.5

guarantees that ρ̄E,p is finite at p. For a non-trivial primitive solution (a, b, c) of (4.2) or

(4.3) there exists a prime greater than six and dividing c, i.e. of multiplicative reduction for

E(a,b). Then if p ≥ 17 we have that ρ̄E,p is absolutely irreducible (see Theorem 22 in [18]).

Let S2(M) denote the set of cusp forms of weight 2, trivial nebentypus and level M . By

Serre’s conjecture there must exist a newform f ∈ S2(2
s72) with s = 2, 3 or 4 and a prime

P | p in Q̄ such that

ρ̄E,p ∼ ρ̄f,P. (4.5)

To finish the argument we need to contradict (4.5). Using SAGE software we compute the

newforms in S2(2
s72) with s = 2, 3 or 4 and we divide them into two sets

S1: Newforms with Qf = Q

S2: Newforms such that Q is strictly contained in Qf

Now we will look for a contradiction to (4.5) for each newform in both sets, starting with

S1. For each pair (a, b) mod l with l ∈ {3, 5, 11, 13, 17, 19, 23} we computed with SAGE all

the possible values al(E) for our Frey curves E = E(a,b):

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a3(E) ∈ {−1, 3},
a5(E) ∈ {−3,−1, 1, 3},
a11(E) ∈ {−5,−3, 1, 3},
a13(E) ∈ {−6,−2, 2, 6},
a17(E) ∈ {−5,−3, 1, 3, 5},
a19(E) ∈ {−7,−5, 1, 5, 7},
a23(E) ∈ {−9,−7,−5,−1, 1, 3}

Furthermore, we also see that

al(E(a,b)) = −1 if l = 3 or 5 and l | a+ b. (4.6)

Given a newform f in S1 we want to find a prime l such that al(f) is not in the corre-

sponding set above, because this will give a contradiction if p is large enough. Indeed, as
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long as p > 7, by comparing the coefficients of the newforms in S1 against the values in the

previous sets we find a contradiction to the isomorphism (4.5) for all f in S1 except for the

newforms corresponding to the curves E(0,1), E(1,−1) and E(1,1). These three forms were ex-

pected to survive since (0, 1, 1) and (1, 1, 1) are solutions of (4.2) and (1,−1, 1) is a solution
of (4.3). Since these curves have no complex multiplication in order to eliminate them we

need to use the information d | a+ b. By Proposition 4.1.2 we see that if (s0, s1, s2) satisfies
the conditions (≥ 0,≥ 0,≥ 1), (= 1,≥ 1,≥ 0) or (≥ 2,≥ 0,≥ 0) to finish the proof we have

to eliminate {E(0,1), E(1,−1), E(1,1)}, {E(1,−1), E(1,1)} or E(1,−1), respectively. Observing

that

(a3(E(0,1)), a3(E(1,−1)), a3(E(1,1))) = (−1,−1, 3)

and

(a5(E(0,1)), a5(E(1,−1)), a5(E(1,1))) = (−3,−1, 1)

we see that the conditions in (s0, s1, s2) together with (4.6) are enough to deal with the

newforms associated with E(0,1) and E(1,1) but not with E(1,−1). Recall that this was

expected, because d | (1 + (−1)) = 0.

To eliminate the newform corresponding to E(1,−1) we will use the inertia at 7 by following

Kraus [43]. Let C/Q7 be an elliptic curve and Φ7(C) be the Galois group of the extension

(of the maximal unramified extension of Q7) where C acquire good reduction at 7. From

Proposition 1 in [43] we see that

|Φ7(C)| = denominator of (
υ7(Δmin(C))

12
),

and by formula (4.4) we find that |Φ7(E(a,b))| = 3 or 6, if 7 | a+ b or 7 � a+ b, respectively.

In particular |Φ7(E(1,−1))| = 3 and (4.5) can not hold if 7 � a + b, because the inertia at

7 will not match if p > 7. This eliminates all the newforms in S1 if our putative solution

(a, b, c) is a non-trivial primitive first case solution (see Definition 3.2.1).

Now suppose that (4.5) holds for some f in S2 then the congruence

a3(E) ≡ c3(f) (mod P) (4.7)

must hold, for some newform f = q+
∑

n≥2 cnq
n in S2 and a prime P in Q̄ above p. This is

not possible if p > 7. Indeed, for all newforms in S2 the minimal polynomial of the Fourier

coefficient c3 is x
2 − 2 or x2 − 8 then, for example, in the latter case we must have

0 ≡ c23 − 8 ≡ a23 − 8 (mod p).

Since our curves verify a3 ∈ {−1, 3} the previous congruence implies that 0 ≡ −7, 1 (mod p)
which is impossible if p > 7. The same holds with the other minimal polynomial and this

concludes the proof of part (I) of Theorem 4.1.1.

�
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We will now prove part (II). Recall that d = 2s03s15s3 and suppose that (a, b, c0) is a

non-trivial primitive solution to x14 + y14 = dzp. Observe that we have the factorization

a14 + b14 = (a2 + b2)φ7(a
2, b2) = dcp0

and also that d | a2 + b2. By looking modulo 3 and 4 we find that a2 + b2 with (a, b) = 1 is

never divisible by 3 or 4. Thus for s0 ≥ 2 or s1 > 0 Theorem 4.1.1 (II) immediately holds.

We are left to deal with the exponent s2. By looking modulo 7 we find that a
2+ b2 is never

divisible by 7 then the solution a14 + b14 = (a2 + b2)φ7(a
2, b2) = dcp0 will correspond to a

solution (a, b, c) of the equation

φ7(a
2, b2) = cp with d | a2 + b2 (4.8)

Given a primitive solution (a, b, c) of (4.8) we attach to it E = E(a2,b2) as a Frey curve.

From the fact 4 � a2+ b2, Proposition 4.1.2 and Serre’s conjecture it follows that there exist

a newform f ∈ S2(M) with M = 2272 or 2472 satisfying ρ̄E,p ∼ ρ̄f,P. We do as above and

divide the newforms into the same sets S1 and S2. Since the newform associated with the

solution (1,−1, 0) has level 2372 it will not belong to S1 nor to S2. Hence the restriction
7 � c is not needed. If s2 > 0 then 5s2 | a2 + b2 and we have a5(E(a2,b2)) = −1. We already

know that this condition is enough to eliminate the newforms associated with E(0,1) and

E(1,1). This eliminates all the newforms in S1 and we treat those in S2 exactly as in the

proof of (I).

�

4.1.1 The equation φ7(x, y) = 71zp

From the discriminant of the curves E(a,b) it is clear that we can use them to attack

equations of the form φ(x, y) = φ7(x, y) = dzp, where

φ(x, y) = x6 − x5y + x4y2 − x3y3 + x2y4 − xy5 + y6.

Recall that if (a, b) = 1 then φ(a, b) is only divisible by primes congruent to 1 modulo 7.

We will now prove the following result

Theorem 4.1.3 If p > 2542873 is a prime, then the equation

φ(x, y) = 71zp (4.9)

has no non-trivial primitive solutions.

Since φ = φ7 is the same of the previous section, for a putative primitive solution (a, b, c)

of (4.9) we will use the same Frey curves E(a,b) as before. That is, we let A(a, b) = αf1(a, b),
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B(a, b) = βf2(a, b) and C(a, b) = γf3(a, b) and we obtain the curves⎧⎪⎪⎪⎨
⎪⎪⎪⎩
E(a,b) : y

2 = x3 + a4x+ a6, with

a4 = −3024(a4 − a3b+ 3a2b2 − ab3 + b4)

a6 = 12096(a6 − 15a5b+ 15a4b2 − 29a3b3 + 15a2b4 − 15ab5 + b6).

This time, from the form of (4.9) we have that

Δ(E) = 2163127s712c2p.

Denote by c0 the product of the primes q �= 71 dividing c.

Proposition 4.1.4 The curves E(a,b) have conductor given by

NE = 2s7271c0,

where s ∈ {2, 3, 4}.

Proof: The same proof of Proposition 4.1.2 works for all primes p �= 71. For p = 71 we

have υp(Δ) ≥ 2 for all (a, b). Observe that 71 splits in K+ = Q(ζ7 + ζ−1
7 ) (degree 3) and

also that A,B,C are conjugate and coprime at primes outside 7. Then, A,B,C are divisible

by exactly one different prime above 71 in K+. From

c4 = 24(AB +BC +AC)

it follows that υ71(c4) = 0. Then E(a,b) has multiplicative reduction at p = 71.

�

Since all the primes q dividing c0 are of multiplicative reduction we can apply again

Hellegouarch argument to conclude that ρ̄E.p will not ramify at q | c0. Furthermore, as

in the previous section we have that ρ̄E,p is finite at p and absolutely irreducible for p ≥
17. Then again by Serre’s conjecture there must exist a newform f in S2(N(ρ̄E,p)) where

N(ρ̄E,p) = 2s7271 with s ∈ {2, 3, 4} such that

ρ̄E,p ∼ ρ̄f,P, (4.10)

where P | p is a prime in Q̄. The space Snew
2 (247271) is too large to compute completely

its eigenforms. Nevertheless, we are able to finish the proof but the price for it is the large

bound for p in the statement of Theorem 4.1.3. As before we divide the newforms in the

spaces S2(2
s7271) where s ∈ {2, 3, 4} into two sets:

S1: Newforms with Qf = Q

S2: Newforms such that Q is strictly contained in Qf
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Since the newforms in S1, by the Modularity Theorem, correspond to elliptic curves over

Q we use SAGE to consult Cremona’s Table of elliptic curves for conductors up to 130000

to get the complete list of elliptic curves with conductor 2s7271 for s = 2, 3, 4. For each

curve C in the list we computed the values aq(C) for q ∈ {3, 5, 11, 13, 17, 19, 23}. Comparing
the values aq(C) obtained this way with the possibilities allowed by our Frey curves that

we computed in the previous section (see the list above (4.6)) we can eliminate all the

curves. Since p > 2542873, here we can eliminate the newforms exactly as in the previous

section, by checking if the values aq(C) for the curves in Cremona’s list do not belong to

our corresponding list.

To deal with the newforms f = q +
∑

n≥2 cn(f)q
n in S2 we will use the Weil bound

|cl(f)| ≤ 2
√
l and the following proposition.

Proposition 4.1.5 If f is a newform of level N such that Qf �= Q then there exists a

prime number q ≤ SB such that the coefficient cq(f) does not belong to Q, where SB

(Sturm bound) is given by

SB =
N

6

∏
primes q|N

(1 +
1

q
)

.

Proof: See [44], Lemme 1.

Now suppose that (4.10) holds for an f in S2 and let q be a prime given by the proposition

above. We can suppose that f is of level 247271 because the smaller levels would give smaller

bounds for p. We use SAGE to compute the dimension D of the space Snew
2 (247271), which

gives D = 1435 and the Sturm bound SB = 16128. Then we have

⎧⎨
⎩|aq(E)|, |cq(f)| ≤ 2

√
q ≤ 2

√
SB ≤ 254

[Qf : Q] ≤ D = 1435

and also

aq(E) ≡ cq(f) (mod P).

Let pf (x) be the minimal polynomial of cq(f), which is of degree at most D, and can not

have integer roots because cq(f) is not an integer. Then pf (aq(E)) �= 0 and

pf (aq) ≡ pf (cq) ≡ 0 (mod P).

Since there are only a finite number of possibilities for aq(E) then also for pf (aq(E)) thus

there is a constant Cf such that if p > Cf , the congruence pf (aq(E)) ≡ 0 (mod p) can not

hold. Thus (4.10) can not hold for this f .

Now we proceed to the computation of a concrete value for C that works for all f . First

observe that the roots ri of pf are the Galois conjugates cσq of cq and they also satisfy

|ri| ≤ 2
√
q ≤ 254. Let bn be the coefficients of pf =

∑
bnx

n. Since we know that the bn
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are given by the symmetric functions in ri we can find a upper bound for each bn easily, for

example

bn−2 = r0r1 + r0r2 + ...+ rn−2rn−1 ≤
(
1435

2

)
2542,

and the biggest upper bound that we find this way is

(
1435

1430

)
2541430. Hence we have

|pf (x)| ≤ 1435(max{bn})|x|1435

and thus

|pf (aq(E))| ≤ 1435

(
1435

1429

)
25414292541435 ≤ 254225472542864 ≤ 2542873,

where the last two inequalities were taken only for aesthetic purposes. Then taking C =

2542873 ends the proof of Theorem 4.1.3.

4.2 The equations x13 + y13 = Czp

In this section we will apply our method to equations with form

x13 + y13 = Czp (4.11)

and prove the following result

Theorem 4.2.1 Let d = 3, 5, 7 or 11 and γ be an integer divisible only by primes l �≡ 1, 0

(mod 13). If p > 4992539 is a prime, then:

(I) The equation x13 + y13 = dγzp has no non-trivial primitive first case solutions.

(II) The equation x26 + y26 = 10γzp has no non-trivial primitive solutions.

In what follows we will first prove part (I) of Theorem 4.2.1 and in the end we will explain

the small tweak needed to conclude part (II). Observe that in part (II) replacing 10 by twice

d for d = 3, 7, 11 the statement is also true but trivial, because the left-hand side is a sum

of two relatively prime squares.

We have x13 + y13 = (x+ y)φ(x, y), where

φ(x, y) = x12 − x11y + x10y2 − x9y3 + x8y4 − x7y5 + x6y6

− x5y7 + x4y8 − x3y9 + x2y10 − xy11 + y12.
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Suppose that there exists a primitive solution (a, b, c′) to (4.11) with C = dγ, where d and

γ are as in Theorem 4.2.1. Then it follows that there exists a primitive solution (a, b, c0) to

φ(a, b) = cp0, (4.12)

with C | a+ b and 13 � a+ b or to

φ(a, b) = 13cp0 (4.13)

with C | a + b and 13 | a + b, where in both cases c0 is only divisible by primes congruent

to 1 modulo 13. Now consider the degree 6 factor of φ with coefficients in Q(
√
13) given by

φ1(x, y) = (x+ ζy)(x+ ζ12y)(x+ ζ4y)(x+ ζ9y)(x+ ζ3y)(x+ ζ10y).

By the method in the previous chapter then for some unit μ there exists a solution (a, b, c)

(with c an integer in Q(
√
13)) to the equation

φ1(a, b) = μcp, (4.14)

with C | a+ b and 13 � a+ b or to

φ1(a, b) = μ
√
13cp, (4.15)

with C | a+ b and 13 | a+ b, respectively. Recall that that 13 | c is equivalent to 13 | a+ b.

Then, we will prove Theorem 4.2.1 (I) if we prove that there are no primitive solutions

(a, b, c) to (4.14) or (4.15) such that |NormQ(
√
13)/Q(abc)| > 1, C = dγ | a+ b and 13 � a+ b.

As for r = 7, in the proof that follows, we will only need to use that d | a+ b.

We now construct the Frey curves. Consider the factorization φ1 = f1f2f3 where⎧⎪⎪⎪⎨
⎪⎪⎪⎩
f1(x, y) = (x+ ζy)(x+ ζ12y) = x2 + (ζ + ζ12)xy + y2

f2(x, y) = (x+ ζ4y)(x+ ζ9y) = x2 + (ζ4 + ζ9)xy + y2

f3(x, y) = (x+ ζ3y)(x+ ζ10y) = x2 + (ζ3 + ζ10)xy + y2

are the degree two factors of φ1 with coefficients in K
+. As before, solving a linear system

in the coefficients of the fi we find that one of its infinite solutions in O3
K+ is given by

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
α = −ζ10 + ζ9 + ζ4 − ζ3
β = ζ12 − ζ9 − ζ4 + ζ

γ = −ζ12 + ζ10 + ζ3 − ζ

and satisfies υP13(α) = υP13(β) = υP13(γ) = 1.

This results in the Frey curves with short Weierstrass form over Q(
√
13) given by

E(a,b) : y
2 = x3 + a4(a, b)x+ a6(a, b),
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a4(a, b) = (216w − 2808)a4 + (−1728w + 5616)a3b

+(1728w − 11232)a2b2 + (−1728w + 5616)ab3

+(216w − 2808)b4,

a6(a, b) = (−8640w + 44928)a6 + (49248w − 235872)a5b

+(−129600w + 471744)a4b2 + (152928w − 662688)a3b3 +

+(−129600w + 471744)a2b4 + (49248w − 235872)ab5 +

+(−8640w + 44928)b6 + (50193w + 182520)b6,

where w2 = 13. Note that 2 is inert in Q(
√
13). In what follows we use 2 and w to denote

also the ideals in Q(
√
13) above 2 and 13, respectively.

Proposition 4.2.2 The possible values for the conductors of E(a,b) are

NE = 2sw2rad(c),

where s = 3, 4 and rad(c) is the product of the prime factors of c. Moreover, if 2 | a+ b then
s = 3 if 4 | a+ b and s = 4 if 4 � a+ b.

Proof: From Proposition 3.2.19 we know the set of possible values for the conductor and

using SAGE we easily check for all pairs (a, b) mod 26 that s = 2 does not happen.

�

The next two theorems follow easily from the theory on Chapter 3 and are fundamental

for our argument.

Theorem 4.2.3 Let (a, b, c) be a non-trivial primitive solution of (4.14) or (4.15). Then

the Frey curves E(a,b) over Q(
√
13) are modular.

Proof: Q(
√
13) is an abelian extension in which 3 splits. Since the primes t | 3 in Q(

√
13)

do not divide c (because 3 � φ(a, b)) it follows from Proposition 3.2.12 that E(a,b) has good

reduction at all t | 3. Now the result is immediate from Theorem 3.3.10.

�

Theorem 4.2.4 Let p > 97 be a prime. The representation ρ̄E,p is absolutely irreducible.

Proof: This follows immediately from the proof of Theorem 3.2.15. We just have to replace

in there q = 3 and H = (OQ(
√
13)/2

2w)∗ ∼= Z/12Z× Z/6Z× Z/2Z.

�

As we have explained in Chapter 3, Theorems 4.2.3 and 4.2.4 allow us to lower the level.

In the present case we apply these results along the same lines. For N an ideal in Q(
√
13)

we denote by S2(N) the set of Hilbert modular cusp forms of parallel weight (2, 2) and level
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N . It follows from the modularity that there exists a newform f0 in S2(2
iw2rad(c)) where

i = 3 or 4 with Qf0 = Q such that ρE,p is isomorphic to the p-adic representation ρf0,p.

Since the primes p of multiplicative reduction of E, i.e. p | c, appear to a p-th power in the
(minimal at p) discriminant Δ(E) we know by Theorem 1.1.14 that the representation ρ̄E,p

will not ramify at these primes. Since ρE,p is modular then ρ̄E,p is also modular and, when

irreducible, by the results on level lowering for Hilbert modular forms it is modular of level

2iw2. Thus there exists a newform f in S2(2
iw2) and a prime P | p such that its associated

residual Galois representation ρ̄f,P satisfies

ρ̄E,p ∼ ρ̄f0,p ∼ ρ̄f,P. (4.16)

If now we find a contradiction to (4.16), this shows that the Frey curves associated with

primitive non-trivial first case solutions (a, b, c) to equation (4.14) or (4.15) can not exist

and ends the proof of part (I) in Theorem 4.2.1. To find the desired contradiction we use the

trace values aL(ρE,p) and aL(ρf,p) for some primes L of Q(
√
13) and the Hilbert modular

newforms f in S2(2
iw2) for i = 3, 4. Let w ∈ Q(

√
13) be such that w2 = 13 and consider

the following prime ideals in Q(
√
13):

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

L2 = 〈2〉, L13 = 〈w〉
L0
3 = 〈 12 (w + 1)〉, L1

3 = 〈 12 (−w + 1)〉,
L0
17 = 〈 12 (w + 9)〉, L1

17 = 〈 12 (−w + 9)〉,
L0
23 = 〈 12 (−3w − 5)〉, L1

23 = 〈 12 (−3w + 5)〉,
L0
29 = 〈 12 (3w + 1)〉, L1

29 = 〈 12 (3w − 1)〉,
L5 = 〈5〉, L7 = 〈7〉, L11 = 〈11〉.

On one hand, to obtain the values of aL(ρf,p), with the aid of John Voight we used al-

gorithms to compute Hilbert modular forms implemented in MAGMA [7] (an expository

account can be found in [24]). John Voight gave us two lists corresponding to all forms (not

necessarily newforms) with integer coefficients such that aL2 = aL13 = 0 and of levels 2iw2

for i = 3, 4. With MAGMA we have done the same to all dividing levels and by putting

together both informations we obtained all newforms in the spaces S2(2
iw2) for i = 3, 4 such

that Qf = Q. A list of coefficients corresponding to the newforms obtained this way can

be found in the appendix (sec. 6.1). Moreover, a consequence of the method used is that

any newform in the two previous spaces with Qf strictly containing Q must have a Fourier

coefficient outside Q at the prime L0
3 above 3. John Voight also computed the factorization

of the characteristic polynomial of the Hecke operator TL0
3
in both spaces (see appendix,

sec. 6.2).

On the other hand, for every prime L in Q(
√
13) of good reduction for E, such that L

is above a rational prime l ≤ 29 and l �= 19, we use SAGE to go through all the possible

residual elliptic curves for all non-zero pairs (a, b) ∈ Fl × Fl and compute all the possible
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values for aL(ρE,p) = aL(E), that are given by formula (1.1):⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

aL0
3
∈ {−3,−1},

aL1
3
∈ {−3,−1, 1},

aL5
∈ {−6,−2, 2},

aL7
∈ {11,−11,−1,−5},

aL11 ∈ {−15, 3, 5,−7, 9,−1, 15},
aL0

17
∈ {1, 3, 5, 7,−3,−1},

aL1
17
∈ {3, 5, 7,−7,−5,−3},

aL0
23
∈ {1, 3, 5, 7,−9,−7,−5,−3},

aL1
23
∈ {1, 3, 7,−9,−3,−1},

aL0
29
∈ {1, 3, 5,−9,−7,−5,−3,−1},

aL1
29
∈ {1, 3, 5, 9,−9,−7,−5,−3,−1}

Before proceeding to eliminate the newforms we divide them into two sets:

S1: The newforms in S2(2
iw2) for i = 3, 4 such that Qf = Q.

S2: The newforms in the same levels with Qf strictly containing Q.

Note that equations (4.14) and (4.15) have trivial solutions (1, 1, 1), ±(0, 1, 1), ±(1, 0, 1)
and (1,−1, 1), (−1, 1, 1), respectively. These solutions correspond to the Frey curves E(1,1),

E(0,1) and E(1,−1) that indeed exist and so there must be newforms associated with them

in S1 which a priori will not be possible to eliminate only by comparing the aL.

Going through all the forms in S1 and comparing the corresponding values of the aL
′s

with the possibilities for our Frey curves we immediately eliminate all except 4 newforms.

Here we have eliminated a newform f if at least one of its coefficients aL(f) is not on the

corresponding list above. This can be done because the value of p in the statement of

Theorem 4.2.1 is very large hence the isomorphism (4.16), when specified at a trace at L for

a prime L of small norm, does not hold modulo such large prime p unless aL(f) = aL(E) for

some aL(E) in the list. For example, the first form in the appendix satisfies aL5(f) = −9
and since aL5(E) ∈ {−6,−2, 2} it is clear that −9 ≡ −6,−2, 2 (mod p) can not hold for

p > 11. The four remaining newforms correspond to the trivial solutions above plus the

twist by −1 of E(1,1). The one associated with E(1,1) has level 2
4w2 and the other three

23w2. In Table 4.1 we list their first eigenvalues.

To be able to eliminate these remaining newforms we need to use the condition d | a+ b.

Recomputing the values for some aL(E) but with this extra condition we find that aL0
3
= −3

and aL1
3
= −1 (if d = 3) , aL5

= −2 (if d = 5) , aL7
= −11 (if d = 7) or aL11

= −15 (if
d = 11). By checking in Table 4.1 we see that any of the previous conditions is enough

to eliminate all fi except for f4. Actually, f4 is the newform associated with the trivial

solution (1,−1, 0) and can not be eliminated this way as expected. Finally, if we assume
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aL0
3

aL1
3

aL0
17

aL1
17

aL0
23

aL1
23

aL5
aL0

29
aL1

29
aL7

aL11

f1 -1 1 7 3 1 7 2 -7 -3 -1 3
f2 -1 1 3 7 -7 -1 2 -3 -7 -1 3
f3 -1 -3 -1 -5 5 -9 -6 -3 1 -5 15
f4 -3 -1 1 -3 -3 -9 -2 -7 5 -11 -15

Table 4.1: Values of aL

that the solution is first case, that is 13 � c ⇔ 13 � a + b, Proposition 3.2.12 says that the

conductors at P13 of ρf4,p|GK+ and ρE,p|GK+ are P0
13 and P2

13, respectively. Then, their

reduction modulo p will also have different conductors at P13 if p > 13. Thus they can not

be isomorphic.

To finish the argument we have to eliminate also the newforms in S2. Recall that we know

the factorization (see appendix) of the characteristic polynomial of TL0
3
which we denote by

p3. If for f in S2 the isomorphism (4.16) holds we also have

aL0
3
(E) ≡ cL0

3
(f) (mod P).

Let pf (x) be the minimal polynomial of cL0
3
(f) which must be a non-linear factor of p3,

because we also know from J. Voights algorithm that cL0
3
(f) is not in Q. Thus,

pf (aL0
3
(E)) ≡ pf (cL0

3
(f)) ≡ 0 (mod P) (4.17)

and pf (aL0
3
(E)) �= 0 because cL0

3
(f) �∈ Z. Since aL0

3
(E) ∈ {3,−1} by computing pf (3) and

pf (−1) for all pf a non-linear factors of p3 we have all the possibilities for pf (aL0
3
(E)) and

we can see that congruence (4.17) can not hold if p > 4992539. Therefore (4.16) also can

not hold if p > 4992539 and this ends the proof of part (I) in Theorem 4.2.1.

�

Remark 4.2.5 It is also possible to eliminate the newforms in S2 without knowing the

factorization of p3 but this would result in the bound p > 214546 for the exponent. Indeed, let

pf =
∑
rnx

n be the minimal polynomial of a non integer cL3(f). All the roots cσL3
satisfy

the Weil bound since they are coefficients of the conjugated form fσ. Moreover, by knowing

the dimension of S2(2
sw2) we can bound all |rn| using the binomial coefficients. Putting

these bounds together we find only a finite number of possibilities for the non-zero value

pf (aL3(E)). The details for this argument can be found at http://arxiv.org/abs/1112.4521.

Observe that we have already applied the same strategy for another equation in section 4.1.1.

Part (II) now follows easily from the proof of part (I). First note that as before it follows

from the factorization

x26 + y26 = (x2 + y2)φ(x2, y2) = 10zp, (4.18)
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Proposition 3.2.5 and Corollary 3.2.4, that a solution (a, b, c) must verify 10 | a2 + b2. To

a primitive solution (a, b, c) of (4.18) we now attach the Frey curve E(a2,b2). Recall that

4 � a2 + b2. It now follows from Proposition 4.2.2, modularity and level lowering that the

set S1 will only have newforms of level 24w2. This means that after comparing the values

aL(E) with aL(f) for f in S1 we eliminate all newforms except for the one corresponding

to the curve E(1,1). As we already know, the extra restriction 5 | a2 + b2 is enough to deal

with this newform. In fact, recall that in this case the Frey curve has a5(E) = −2, and
this is different from the corresponding coefficient a5 of E(1,1). The newforms in S2 can be

eliminated exactly as in the proof of part (I).

�

4.3 More examples: the cases r = 11, 17, 19

Recall that for each r we constructed Frey curves over K+ = Q(ζr+ ζ
−1
r ). Let πr be such

that (r)OK+ = (πr)
(r−1)/2

4.3.1 The equation x11 + y11 = Czp

Note that 11 ≡ −1 (mod 6) so this is computationally difficult case. We have K+ = Q(w),

where the minimal polynomial of w is t5 + t4 − 4t3 − 3t2 + 3t + 1. We pick φ1 = f1f2f3,

where ⎧⎪⎪⎪⎨
⎪⎪⎪⎩
f1(x, y) = x2 + (ζ + ζ10)xy + y2,

f2(x, y) = x2 + (ζ2 + ζ9)xy + y2,

f3(x, y) = x2 + (ζ3 + ζ8)xy + y2.

Let (a, b, c) be a non-trivial primitive solution of x11 + y11 = Czp. Then for some unit

μ ∈ OK+ we also have a non-trivial primitive solution of

φ1(x, y) = μzp or

φ1(x, y) = μπ3
11z

p

if 11 � a+ b or 11 | a+ b, respectively. The resulting F-H-curves over K+ is given by

E(a,b) : y
2 = x3 + a4x+ a6, where
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a4(a, b) = (432w3 − 432w − 2592)a4

+(−432w4 − 3888w3 + 1296w2 + 7776w + 3024)a3b

+(3456w3 − 432w2 − 6480w − 8208)a2b2,

+(−432w4 − 3888w3 + 1296w2 + 7776w + 3024)ab3

+(432w3 − 432w − 2592)b4

a6(a, b) = (8640w4 + 25920w3 − 39744w2 − 48384w + 5184)a6

+(5184w4 − 98496w3 + 10368w2 + 176256w + 139968)a5b

+(285120w3 − 57024w2 − 570240w − 171072)a4b2

+(25920w4 − 302400w3 − 5184w2 + 596160w + 338688)a3b3

+(285120w3 − 57024w2 − 570240w − 171072)a2b4

+(5184w4 − 98496w3 + 10368w2 + 176256w + 139968)ab5

+(8640w4 + 25920w3 − 39744w2 − 48384w + 5184)b6

We observe that 3 is inert in K+ and with the help of SAGE we computed a3(E(a,b)) for

all pairs (a, b) (mod 3) and obtained that a3(E) ∈ {−16, 16} which shows that E(a,b) are

ordinary at 3.

4.3.2 The equation x17 + y17 = Czp

Note that 17 ≡ −1 (mod 6) so this is a bad case. We have K+ = Q(w), where the minimal

polynomial of w is t8 + t7 − 7t6 − 6t5 + 15t4 + 10t3 − 10t2 − 4t + 1. Following the method

we pick φ1 = f1f2f3, with⎧⎪⎪⎪⎨
⎪⎪⎪⎩
f1(x, y) = x2 + (ζ + ζ16)xy + y2,

f2(x, y) = x2 + (ζ2 + ζ15)xy + y2,

f3(x, y) = x2 + (ζ3 + ζ14)xy + y2.

Let (a, b, c) be a non-trivial primitive solution of x17 + y17 = Czp. Then for some unit

μ ∈ OK+ we also have a non-trivial primitive solution of

φ1(x, y) = μzp or

φ1(x, y) = μπ3
17z

p

if 17 � a+ b or 17 | a+ b, respectively. The resulting F-H-curves over K+ are given by

E(a,b) : y
2 = x3 + a4x+ a6, where
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a4(a, b) = (−432w6 + 432w5 + 2592w4 − 1728w3 − 3888w2 + 1728w − 1728)a4

+(−432w7 + 3024w6 + 2160w5 − 15984w4 − 3456w3 + 19872w2

+1728w + 432)a3b+ (−3024w6 + 1728w5 + 16416w4 − 6048w3

−22032w2 + 4320w − 3888)a2b2 + (−432w7 + 3024w6 + 2160w5

−15984w4 − 3456w3 + 19872w2 + 1728w + 432)ab3 + (−432w6

+432w5 + 2592w4 − 1728w3 − 3888w2 + 1728w − 1728)b4

a6(a, b) = (−8640w7 + 25920w6 + 46656w5 − 143424w4 − 62208w3 + 196992w2

+3456w − 19008)a6 + (5184w7 − 93312w6 + 25920w5 + 497664w4

−160704w3 − 663552w2 + 150336w − 20736)a5b+ (−51840w7

+254016w6 + 238464w5 − 1316736w4 − 295488w3 + 1653696w2

+82944w − 72576)a4b2 + (39744w7 − 269568w6 − 101952w5

+1397952w4 − 53568w3 − 1802304w2 + 114048w)a3b3

+(−51840w7 + 254016w6 + 238464w5 − 1316736w4 − 295488w3

+1653696w2 + 82944w − 72576)a2b4 + (5184w7 − 93312w6

+25920w5 + 497664w4 − 160704w3 − 663552w2 + 150336w

−20736)ab5 + (−8640w7 + 25920w6 + 46656w5 − 143424w4

−62208w3 + 196992w2 + 3456w − 19008)b6

We observe that 3 is inert in K+ and with the help of SAGE we computed a3(E(a,b)) for

all pairs (a, b) (mod 3) and obtained that a3(E) ∈ {−94,−62, 118} which shows that E(a,b)

are ordinary at 3.

4.3.3 The equation x19 + y19 = Czp

Note that 19 ≡ 1 (mod 6) so this is a good case. We have K0 = Q(w), where the minimal

polynomial of w is t3 + t2 − 6t− 7 and following the method we pick φ1 = f1f2f3, with⎧⎪⎪⎪⎨
⎪⎪⎪⎩
f1(x, y) = x2 + (ζ + ζ18)xy + y2,

f2(x, y) = x2 + (ζ12 + ζ7)xy + y2,

f3(x, y) = x2 + (ζ11 + ζ8)xy + y2.

Let (a, b, c) be a non-trivial primitive solution of x19 + y19 = Czp. Then for some unit

μ ∈ OK0 we also have a non-trivial primitive solution of

φ1(x, y) = μzp or

φ1(x, y) = μπ3
19z

p
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if 19 � a+ b or 19 | a+ b, respectively. The resulting F-H-curves over K0 are given by

E(a,b) : y
2 = x3 + a4x+ a6, where

a4(a, b) = (864w2 − 6480)a4

+(−3456w2 − 432w + 20304)a3b

+(4320w2 − 432w − 29808)a2b2

+(−3456w2 − 432w + 20304)ab3

+(864w2 − 6480)b4,

a6(a, b) = (−34560w2 + 5184w + 195264)a6

+(150336w2 − 25920w − 922752)a5b

+(−342144w2 + 31104w + 1985472)a4b2

+(418176w2 − 76032w − 2548800)a3b3

+(−342144w2 + 31104w + 1985472)a2b4

+(150336w2 − 25920w − 922752)ab5

+(−34560w2 + 5184w + 195264)b6.

Here 3 is also inert in K0 and computations allowed to see that a3(E) ∈ {−1, 7} which
shows that the curves E(a,b) are ordinary at 3.

Although we are in a case of favorable computer requirements the dimension of S(24P2
19)

is 437761 which is already too big even for computing with J. Voight algorithm only the

newforms with coefficients in Q.
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Chapter 5

The case r = 4m + 1

In this chapter we will construct two extra Frey curves attached to solutions of the equa-

tion xr + yr = Czp for primes of the form r = 4m+ 1. This will be achieved in two steps.

First, using observations about the factors of φr as in Chapter 3, we will again relate two

Diophantine equations. Second, we will generalize the ideas that led to the construction of

the Q-curves in Chapter 2.

We need to introduce the definition of k-curve generalizing the notion of Q-curve.

Definition 5.0.1 Let k be a number field and Gk = Gal(Q̄/k) its absolute Galois group.

We will say that an elliptic curve C over k̄ is a k-curve if for every σ ∈ Gk there exists an

isogeny φσ : σC → C defined over k̄. We say that a k-curve C is completely defined over

a number field K ⊃ k if all the conjugates of C and the isogenies between them are defined

over K.

Let r = 4m + 1 be a prime and ζ := ζr a r-th primitive root of unity. Recall that

K+ = Q(ζ + ζ−1) is the maximal totally real subfield of the cyclotomic field Q(ζ). Then

K+ has degree 2m and there exists a subfield k ⊂ K+ such that [K+/k] = 2 and [k/Q] =

m. Let σ be the generator of Gal(K+/Q) then σm generates Gal(K+/k). Recall that

xr + yr = (x+ y)φr(x, y) and φr(x, y) factors as a product of 2m degree two polynomials fi

with coefficients in K+. Let h+r be the class number of K+ and πr be such that rOK+ =

(πr)
(r−1)/2. The following lemma is similar to Lemma 3.2.9 and relates our initial equation

to a new one.

Lemma 5.0.2 Let p be a prime not dividing h+r . Suppose there is a non-trivial primitive

solution to xr + yr = Czp with C �= 0 an integer divisible only by primes q �= r satisfying

q �≡ 1 (mod r). Let f1, f2 be the factors of φr given by

⎧⎨
⎩f1(x, y) = x2 + (ζ + ζ4m)xy + y2

f2(x, y) = x2 + σm(ζ + ζ4m)xy + y2.

Then, there exists a unit μ ∈ O×K+ and a solution (a, b, c) in Z2 ×OK+ such that (a, b) = 1

(primitive) and |NormK+/Q(abc)| > 1 (non-trivial) to

f1(x, y)f2(x, y) = μzp or (5.1)
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f1(x, y)f2(x, y) = μπ2
rz

p, (5.2)

which satisfies r � a+ b in case (5.1) and r | a+ b in case (5.2). Moreover:

• if d | C, then d | a+ b;

• the primes in K+ divisors of c are all above primes of Q that are congruent to 1

(mod r). In particular, neither the primes above 2 nor the primes above r divide c.

Proof: Exactly the same proof of Lemma 3.2.9 where we use only the two factors fi in the

statement.

�

We are now going to construct Frey curves attached to solutions of equations (5.1) or

(5.2). The curves will be defined over K+ and then we will show that they are k-curves.

In order to construct a useful k-curve we first need to find α, β such that

(a+ b)2 = αf1(a, b) + βf2(a, b).

That is, solve the linear system

⎧⎨
⎩α+ β = 1

α(ζ + ζ4m) + βσm(ζ + ζ4m) = 2,

which has a solution for α, β ∈ K+ given by

⎧⎨
⎩α = (σm(ζ + ζ4m)− 2)(σm(ζ + ζ4m)− ζ4m − ζ)−1

β = (2− (ζ + ζ4m))(σm(ζ + ζ4m)− ζ − ζ4m)−1,

that easily can be seen to satisfy σm(α) = β. Now, given a putative solution (a, b, c) to (5.1)

or (5.2) we can consider the Frey curves of the form y2 = x3 + a2x
2 + a4x defined over K

+

and given by

E(a,b) : y
2 = x3 + 2(a+ b)x2 + αf1(a, b)x.

Their Galois conjugate by σm is given by

σm

E(a,b) : y
2 = x3 + 2(a+ b)x2 + βf2(a, b)x,

and they admit a 2-isogeny μ : σ
m

E → E given by

(x, y) �→ (− y2

2x2
,

√−2
4

y

x2
(−βf2 + x2)).

The dual isogeny μ̂ : E → σE is given by

(x, y) �→ (− y2

2x2
,−
√−2
4

y

x2
(−αf1 + x2)).
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This shows that E(a,b) is a k-curve withK
+(
√−2) as a field of complete definition. From the

proof of Lemma 5.0.2 we know that fi(a, b) = μici or fi(a, b) = μiπrci, with c1, c2 coprime.

We now compute the discriminant of E = E(a,b)

Δ(E) = 16a24(a
2
2 − 4a4) = 16α2β(4(a+ b)2 − 4αf1) = 64α2βf21 f2.

In particular,

Δ(E) =

⎧⎨
⎩μμ12

6α2βcp if r � a+ b,

μμ12
6α2βπ3

rc
p if r | a+ b.

Moreover, the following quantities are also associated with E

c4(E) = 24(αf1 + 22βf2),

c6(E) = 26(a+ b)(αf1 − 23βf2)

Proposition 5.0.3 Let (a, b, c) be a primitive solution to (5.1) or (5.2). Then, the conduc-

tor of the curves E(a,b) is given by

NE =

⎧⎨
⎩2

srad(c) if r � a+ b,

2sπ2
rrad(c) if r | a+ b,

where s = 5 or s = 6.

Proof: Recall that μ, μi are units. We will now see that α, β are also units. First we observe

that the elements of the form ζc(1− ζa)(1− ζb), where a, b �≡ 0 (mod r) are divisible only

by the prime ideal (πr) | r and their (πr)-adic valuation is 1. Moreover,

ζc(1− ζa)(1− ζb) = ζc − ζa+c − ζb+c + ζa+b+c = ζx − ζy − ζz + ζy+z−x,

where the last equality is a change of variables. Note that 2− ζ − ζ−1 = (1− ζ)(1− ζ−1) is

the numerator of β. Also, σm(ζ+ ζ−1) = ζk+ ζ−k for some integer k, then the denominator

of β is of the form ζk − ζ − ζ−1 + ζ−k. Since both numerator and denominator of β are of

the shape above we conclude that β is a unit, hence α = σm(β) is also a unit.

Let q | c be a prime in K+. We have υq(Δ) > 0 and since q divides only one of the ci it

is clear from the form of c4 that υq(c4) = 0, thus the reduction is multiplicative at q.

Let q | 2. We have υq(Δ) = 6, υq(c4) = 4, υq(c6) = 6, hence the equation is minimal and

υq(NE) = 5 or 6 by Table IV in [52].

Let q = (πr). Then υq(Δ) = 0 or υq(Δ) = 3 if r � a + b or r | a + b, respectively. In

particular, υq(NE) = 0 (good reduction) if r � a+ b. Suppose r | a+ b, then υq(fi(a, b)) = 1,

hence υq(c4) > 0. Thus E has additive reduction and υq(NE) = 2 by Table I in [52].

�
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The next theorem shows that the curves E(a,b) have the necessary properties in order

to be used as Frey curves. In particular, we can combine them with those constructed in

Chapter 3 and apply a multi-Frey technique. Unfortunately, in practice we can not do it,

because already for r = 13 we can not compute the relevant newspaces.

Theorem 5.0.4 Let (a, b, c) be a primitive solution to (5.1) or (5.2). Let ρ̄E,p be the mod

p Galois representation arising from the p-torsion of E(a,b). Then,

1. The mArtin conductor of ρ̄E,p is not divisible by primes dividing c.

2. ρ̄E,p is finite at all primes p dividing p.

Proof: Part (1) follows as in the proof of Proposition The Artin conductor is not divisible

by primes dividing p by definition. Let l � p be a prime dividing c, hence l is of multiplicative

reduction by Proposition 5.0.3. l is unramified in K+ because l � r. Since it appears to a

p-th power in the discriminant of a minimal model at l of E (Δ(E)) we know by Theorem

1.1.14 that the representation ρ̄E,p will not ramify at l. This proves 1.

Let p | p. If p � c it is of good reduction for E then ρ̄E,p is finite by Lemma 1.2.5; if p | c
it is of multiplicative reduction for E and since we have p | υp(Δ) it follows from Lemma

1.2.5 that ρ̄E,p is finite. We have proved 2.

�

Proposition 5.0.5 Let (a, b, c) ∈ Z2 ×OK+ be a non-trivial primitive solution to (5.1) or

(5.2). Then E(a,b) has no complex multiplication.

Proof: |NormK+/Q(abc)| > 1 hence |ab| > 1 or there is some prime p dividing c. In the

latter case, the prime p | c is of multiplicative reduction by Proposition 5.0.3, hence E can

not have complex multiplication. Suppose |ab| > 1. From the proof of Corollary 3.2.10 we

know that for all i, (a + ζib)(a + ζr−ib) is divisible by some prime, hence c is divisible by

some prime. Again, this prime is of multiplicative reduction and E can not have CM.

�

Remark 5.0.6 By looking for α, β such that (a− b)2 = αf1(a, b) + βf2(a, b) we can use an

analogous construction to get another Frey curve F . The same type of properties proved for

E so far would also hold for F .

The definitions and properties that we use in what follows are generalizations of the work

of Quer with Q-curves. Details on the generalizations can be found in X. Guitart thesis (see

[34]).

Let (a, b, c) be a non-trivial primitive solution to (5.1) or (5.2) and denote E(a,b) simply

by E. From Proposition 5.0.5 E has no complex multiplication. Since E is a k-curve we

have for each element g ∈ Gk an isogeny φg :
gE → E by definition. Analogously to what
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we have done in Section 2.3, from this family of isogenies, we can attach to E a 2-cocycle

cE : Gk × Gk → Q∗ defined by cE(g, h) = φg
gφhφ

−1
gh . Let ξ(E) ∈ H2(Gk,Q

∗)[2] denote its
cohomology class,Kd be a field of complete definition of E andG = Gal(Kd/k). There is also

an analogous cohomology class [cE/Kd
] ∈ H2(G,Q∗)[2] that satisfies InfGk

G [cE/Kd
] = ξ(E).

Moreover, B = ResKd/k(E/Kd) has endomorphism algebra isomorphic to the twisted group

algebra QcE/Kd [G] (Proposition 5.32 in [34]) and B is a product of abelian varieties of GL2-

type if and only if QcE/Kd [G] is abelian (Proposition 5.36 in [34]). If G is abelian then the

algebra QcE/Kd [G] is abelian if and only if the the cocycle cE/Kd
is symmetric. Moreover,

from Proposition 3.22 in [34] we have a non-canonical isomorphism

H2(G,Q∗)[2] � H2(G, {±1})×Hom(G,P/P 2)

where P = Q∗/{±1}. The elements in Hom(G,P/P 2) are symmetric (because G is abelian)

then cE/Kd
is symmetric if and only if its component in H2(G, {±1}), denoted c±E/Kd

, is

symmetric.

We now particularize to our curves. Observe that K+ = k(
√
s) for some s ∈ k and

take Kd = k(
√
s,
√−2) as field of complete definition of E. In this case G is abelian with

generators τ and σm, where

{
σm(

√
s) = −√s and σm(

√−2) = √−2
τ(
√
s) =

√
s and τ(

√−2) = −√−2

The values of cE/Kd
were computed from the expressions of μ and μ̂ an can be found in

Table 5.1. The sign component c±E/Kd
is not symmetric and is given by the signs in the

same table.

h
1 τ σm σmτ

g

1 1 1 1 1
τ 1 1 -1 -1
σm 1 1 -2 -2
σmτ 1 1 2 2

Table 5.1: Values of cE/Kd

Thus we need to look for another field of complete definition Kβ satisfying that cE/Kβ

is symmetric. To achieve this we are going to use the theory on of Quer on embedding

problems. A few computations shows that c±E/Kd
= c−2s,s (we are using the notation in

section 2.3.2) then InfGk

G (c±E/Kd
) ∈ H2(Gk, {±1})[2] � Br2(k) is the quaternion algebra

(−2s, s). At this point our aim is to apply Theorem 2.3.4. An application of this theorem

is dependent on the value of r, nevertheless in what follows we will show that if m is odd

and 2 inert in k it can be done in general.
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Suppose r = 4m+ 1 with m odd. We have Q(
√
r) ⊂ K+ we also have k(

√
r) ⊂ K+ and

both fields have degree 2m thus K+ = k(
√
r).

Proposition 5.0.7 Suppose that r = 4m + 1 with m odd. If 2 is inert in k then the

discriminant of (−2r, r) is 2r.

Proof: Let Pr be the prime in k above r. If −2rx2 + ry2 − z2 represents 0 in kPr
= Qr

then Pr | z and so −2x2 + y2 ≡ 0 (mod Pr) hence 2 is a square modulo r. Since 2 is never

a square modulo r = 4m + 1 for m odd we conclude that (−2r, r)Pr
= −1. On one hand,

ι(−2r), ι(r) have opposite signs for all real places ι of L we conclude that (−2r, r) is not
ramified at the infinity primes. On the other hand, (−2r, r) must ramify at an even number
of places then the result follows.

�

Let ε be a character of GQ with order 4 and conductor 22r thus fixing a totally real cyclic

number field Kε. Put kε = Kεk, A = {−2r}, B = {r} and according to the notation in

section 2.3.2 consider the field K = LMN = kεk(
√−2r)k with Galois group G = Gal(K/k).

Note that k(
√
r) ⊂ kε and Kd ⊂ K. Let cε as in section 2.3.2 and c = θεcA,B , where

θε = InfGGal(kε/k)
[cε] and cA,B = InfGGal(Kd/k)

[c−2s,s]. After identifying InfGk

G [θε] with an

element of Br2(k) we can identify it with an element in ⊕Br2(kv) using the known exact

sequence on Brauer groups

0 −→ Br2(k) −→ ⊕Br2(kv) −→ {±1} −→ 0

Now if v is a finite prime the component (InfGk

G [θε])v in Br2(kv) is given by the parity

of the v-component of ε, εv(−1). Moreover, kε is totally real hence (InfGk

G [θε])v = 1 for all

infinite primes v of k. Since ε2(−1) = εr(−1) = 1 we have that (InfGk

G [θε]) = (−2r, r) and
the embedding problem (K/k, {±1}, [c]) is unobstructed because

InfGk

G [c] = (InfGk

G [θε])(Inf
Gk

G [cA,B ]) = (−2r, r)(−2r, r) = 1 ∈ Br2(k).

Now we see from Theorem 2.3.4 that there must exist elements α0 and α1 in kε(
√−2) such

that

Nσ0(α0) = −1
Nσ1

(α1) = r
σ1α0

α0
=

σ0α1

α1
.

For example, suppose that δ is an element of kε such that Nmkε/k(δ) = −4 and take

α0 = δ
2

√−2, α1 =
√
r. The same Theorem 2.3.4 also gives us a splitting map β for

the cocycle c. We observe that in particular βσ1 = α1/
√
r = 1, which means that we

actually have a splitting map for [cε]. Now we pick a solution γ ∈ kε to the embedding
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problem and by construction the twisted curve Eγ satisfies that c
±
Eγ/kε

is symmetric. Thus,

as we explained before B = Reskε/k(E/kε) is a product of abelian varieties of GL2 type

over k and our initial representation ρE,p of GK+ extends to Gk. At this point a suitable

generalization of Theorem 5.12 in [53] and Theorem 5.4 in [54] would give a description of

the exact decomposition of B and the character of ρE,p. We could then compute the exact

conductor of an extension of ρE,p to Gk and proceed with the modular approach. We do

not go further in this direction since the spaces of relevant newforms that we would need

are already impossible to compute for r = 13. For r = 13 we need to compute HMF over a

cubic field with level of large norm. For r = 5 then k = Q and we are in the case of Chapter

2.
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Chapter 6

Appendix

In section 6.1 we provide the tables with the values of aL(f) of the newforms of level 2
3w2

and 24w2 such that Qf = Q used in section 4.2. In sec. 6.2 we give the factorization of the

polnomial p3 also used there.

6.1 Tables with values aL(f)

aL0
3

aL1
3

aL0
17

aL1
17

aL0
23

aL1
23

aL5
aL0

29
aL1

29
aL7

aL11

-3 -3 -3 -3 -4 -4 -9 2 2 -13 -18
-3 -1 -5 -1 -9 5 -6 1 -3 -5 15
-3 -1 -1 3 3 9 2 -7 5 11 15
-3 -1 1 -3 -3 -9 -2 -7 5 -11 -15
-3 -1 5 1 9 -5 6 1 -3 5 -15
-3 1 -7 -7 3 -1 6 7 -9 1 9
-3 1 7 7 -3 1 -6 7 -9 -1 -9
-1 -3 -3 1 -9 -3 -2 5 -7 -11 -15
-1 -3 -1 -5 5 -9 -6 -3 1 -5 15
-1 -3 1 5 -5 9 6 -3 1 5 -15
-1 -3 3 -1 9 3 2 5 -7 11 15
-1 -1 3 3 -6 -6 1 0 0 5 22
-1 1 -7 -3 -1 -7 -2 -7 -3 1 -3
-1 1 -5 7 5 3 -6 1 5 -1 3
-1 1 5 -7 -5 -3 6 1 5 1 -3
-1 1 7 3 1 7 2 -7 -3 -1 3
-1 3 -1 7 2 2 -7 -8 0 1 6
-1 3 1 -7 -2 -2 7 -8 0 -1 -6
0 0 6 6 8 8 -6 2 2 -10 -18
1 -3 -7 -7 -1 3 6 -9 7 1 9
1 -3 7 7 1 -3 -6 -9 7 -1 -9
1 -1 -7 5 -3 -5 6 5 1 1 -3

Table 6.1: aL values for newforms of level 23w2
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aL0
3

aL1
3

aL0
17

aL1
17

aL0
23

aL1
23

aL5
aL0

29
aL1

29
aL7

aL11

1 -1 -3 -7 -7 -1 -2 -3 -7 1 -3
1 -1 3 7 7 1 2 -3 -7 -1 3
1 -1 7 -5 3 5 -6 5 1 -1 3
1 1 -3 -3 -1 -1 6 3 3 13 21
1 1 -3 -3 0 0 -1 6 6 -13 14
1 1 -3 -3 4 4 -9 -6 -6 11 -18
1 1 3 3 -4 -4 9 -6 -6 -11 18

Table 6.2: aL values for newforms of level 23w2 (cont)

aL0
3

aL1
3

aL0
17

aL1
17

aL0
23

aL1
23

aL5
aL0

29
aL1

29
aL7

aL11

1 1 3 3 1 1 -6 3 3 -13 -21
3 -1 -7 1 -2 -2 7 0 -8 -1 -6
3 -1 7 -1 2 2 -7 0 -8 1 6
-3 -3 -3 -3 -1 -1 6 -1 -1 13 -3
-3 -3 3 3 1 1 -6 -1 -1 -13 3
-3 -1 -7 -7 -3 -1 -6 -7 9 1 9
-3 -1 -7 1 -2 2 -7 0 8 -1 -6
-3 -1 7 -1 2 -2 7 0 8 1 6
-3 -1 7 7 3 1 6 -7 9 -1 -9
-3 1 -7 1 2 2 7 0 -8 -1 -6
-3 1 -5 -1 9 5 6 -1 3 -5 15
-3 1 -1 3 -3 9 -2 7 -5 11 15
-3 1 1 -3 3 -9 2 7 -5 -11 -15
-3 1 5 1 -9 -5 -6 -1 3 5 -15
-3 1 7 -1 -2 -2 -7 0 -8 1 6
-3 3 -3 -3 1 -1 -6 1 1 13 -3
-3 3 -3 -3 4 -4 9 -2 -2 -13 -18
-3 3 3 3 -4 4 -9 -2 -2 13 18
-3 3 3 3 -1 1 6 1 1 -13 3
-2 -2 -3 -3 6 6 7 3 3 14 22
-2 -2 3 3 -6 -6 -7 3 3 -14 -22
-2 2 -3 -3 -6 6 -7 -3 -3 14 22
-2 2 -3 -3 -6 6 -1 -9 -9 -2 22

Table 6.3: aL values for newforms of level 24w2
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aL0
3

aL1
3

aL0
17

aL1
17

aL0
23

aL1
23

aL5
aL0

29
aL1

29
aL7

aL11

-2 2 3 3 6 -6 1 -9 -9 2 -22
-2 2 3 3 6 -6 7 -3 -3 -14 -22
-1 -3 -7 -7 -1 -3 -6 9 -7 1 9
-1 -3 -1 7 -2 2 7 8 0 1 6
-1 -3 1 -7 2 -2 -7 8 0 -1 -6
-1 -3 7 7 1 3 6 9 -7 -1 -9
-1 -1 -7 -3 1 -7 2 7 3 1 -3
-1 -1 -7 5 -3 5 -6 -5 -1 1 -3
-1 -1 -5 7 -5 3 6 -1 -5 -1 3
-1 -1 -3 -7 -7 1 2 3 7 1 -3
-1 -1 -3 -3 1 1 6 3 3 13 21
-1 -1 3 3 -1 -1 -6 3 3 -13 -21
-1 -1 3 3 0 0 1 6 6 13 -14
-1 -1 3 3 4 4 9 -6 -6 -11 18
-1 -1 3 7 7 -1 -2 3 7 -1 3
-1 -1 5 -7 5 -3 -6 -1 -5 1 -3
-1 -1 7 -5 3 -5 6 -5 -1 -1 3
-1 -1 7 3 -1 7 -2 7 3 -1 3
-1 1 -7 5 3 5 6 5 1 1 -3
-1 1 -3 -7 7 1 -2 -3 -7 1 -3
-1 1 -3 -3 -6 6 1 0 0 -5 -22
-1 1 -3 -3 -1 1 -6 -3 -3 13 21
-1 1 -3 -3 0 0 1 -6 -6 -13 14
-1 1 -3 -3 3 -3 10 9 9 -11 5
-1 1 -3 -3 4 -4 9 6 6 11 -18
-1 1 3 3 -4 4 -9 6 6 -11 18
-1 1 3 3 -3 3 -10 9 9 11 -5
-1 1 3 3 0 0 -1 -6 -6 13 -14
-1 1 3 3 1 -1 6 -3 -3 -13 -21
-1 1 3 3 6 -6 -1 0 0 5 22
-1 1 3 7 -7 -1 2 -3 -7 -1 3
-1 1 7 -5 -3 -5 -6 5 1 -1 3
-1 3 -7 -7 1 -3 6 -9 7 1 9
-1 3 -3 1 9 -3 2 -5 7 -11 -15
-1 3 -1 -5 -5 -9 6 3 -1 -5 15
-1 3 1 5 5 9 -6 3 -1 5 -15

Table 6.4: aL values for newforms of level 24w2 (cont.)
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aL0
3

aL1
3

aL0
17

aL1
17

aL0
23

aL1
23

aL5
aL0

29
aL1

29
aL7

aL11

-1 3 3 -1 -9 3 -2 -5 7 11 15
-1 3 7 7 -1 3 -6 -9 7 -1 -9
0 0 -6 -6 -8 8 -6 -2 -2 10 18
0 0 -6 -6 8 -8 -6 -2 -2 10 18
0 0 -6 -6 8 8 6 2 2 10 18
0 0 -3 -3 -4 -4 9 -1 -1 -2 6
0 0 -3 -3 -4 4 -9 1 1 -2 6
0 0 -3 -3 4 -4 -9 1 1 -2 6
0 0 3 3 -4 4 9 1 1 2 -6
0 0 3 3 4 -4 9 1 1 2 -6
0 0 3 3 4 4 -9 -1 -1 2 -6
0 0 6 6 -8 -8 -6 2 2 -10 -18
0 0 6 6 -8 8 6 -2 -2 -10 -18
0 0 6 6 8 -8 6 -2 -2 -10 -18
1 -3 -3 1 -9 3 2 -5 7 -11 -15
1 -3 -1 -5 5 9 6 3 -1 -5 15
1 -3 -1 7 -2 -2 -7 -8 0 1 6
1 -3 1 -7 2 2 7 -8 0 -1 -6
1 -3 1 5 -5 -9 -6 3 -1 5 -15
1 -3 3 -1 9 -3 -2 -5 7 11 15
1 -1 -7 -3 1 7 -2 -7 -3 1 -3
1 -1 -5 7 -5 -3 -6 1 5 -1 3
1 -1 -3 -3 -4 4 9 6 6 11 -18
1 -1 -3 -3 -3 3 10 9 9 -11 5
1 -1 -3 -3 0 0 1 -6 -6 -13 14
1 -1 -3 -3 1 -1 -6 -3 -3 13 21
1 -1 -3 -3 6 -6 1 0 0 -5 -22
1 -1 3 3 -6 6 -1 0 0 5 22
1 -1 3 3 -1 1 6 -3 -3 -13 -21
1 -1 3 3 0 0 -1 -6 -6 13 -14
1 -1 3 3 3 -3 -10 9 9 11 -5
1 -1 3 3 4 -4 -9 6 6 -11 18
1 -1 5 -7 5 3 6 1 5 1 -3

Table 6.5: aL values for newforms of level 24w2 (cont.)
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aL0
3

aL1
3

aL0
17

aL1
17

aL0
23

aL1
23

aL5
aL0

29
aL1

29
aL7

aL11

1 -1 7 3 -1 -7 2 -7 -3 -1 3
1 1 -7 -3 -1 7 2 7 3 1 -3
1 1 -7 5 3 -5 -6 -5 -1 1 -3
1 1 -5 7 5 -3 6 -1 -5 -1 3
1 1 -3 -7 7 -1 2 3 7 1 -3
1 1 -3 -3 -6 -6 -1 0 0 -5 -22
1 1 -3 -3 3 3 -10 -9 -9 -11 5
1 1 3 3 -3 -3 10 -9 -9 11 -5
1 1 3 3 6 6 1 0 0 5 22
1 1 3 7 -7 1 -2 3 7 -1 3
1 1 5 -7 -5 3 -6 -1 -5 1 -3
1 1 7 -5 -3 5 6 -5 -1 -1 3
1 1 7 3 1 -7 -2 7 3 -1 3
1 3 -7 -7 1 3 -6 9 -7 1 9
1 3 -3 1 9 3 -2 5 -7 -11 -15
1 3 -1 -5 -5 9 -6 -3 1 -5 15
1 3 -1 7 2 -2 7 8 0 1 6
1 3 1 -7 -2 2 -7 8 0 -1 -6
1 3 1 5 5 -9 6 -3 1 5 -15
1 3 3 -1 -9 -3 2 5 -7 11 15
1 3 7 7 -1 -3 6 9 -7 -1 -9
2 -2 -3 -3 6 -6 -7 -3 -3 14 22
2 -2 -3 -3 6 -6 -1 -9 -9 -2 22
2 -2 3 3 -6 6 1 -9 -9 2 -22
2 -2 3 3 -6 6 7 -3 -3 -14 -22
2 2 -3 -3 -6 -6 1 9 9 -2 22
2 2 3 3 6 6 -1 9 9 2 -22
3 -3 -3 -3 -4 4 9 -2 -2 -13 -18
3 -3 -3 -3 -1 1 -6 1 1 13 -3
3 -3 3 3 1 -1 6 1 1 -13 3
3 -3 3 3 4 -4 -9 -2 -2 13 18

Table 6.6: aL values for newforms of level 24w2 (cont.)
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aL0
3

aL1
3

aL0
17

aL1
17

aL0
23

aL1
23

aL5
aL0

29
aL1

29
aL7

aL11

3 -1 -7 -7 -3 1 6 7 -9 1 9
3 -1 -5 -1 -9 -5 6 -1 3 -5 15
3 -1 -1 3 3 -9 -2 7 -5 11 15
3 -1 1 -3 -3 9 2 7 -5 -11 -15
3 -1 5 1 9 5 -6 -1 3 5 -15
3 -1 7 7 3 -1 -6 7 -9 -1 -9
3 1 -7 -7 3 1 -6 -7 9 1 9
3 1 -7 1 2 -2 -7 0 8 -1 -6
3 1 -5 -1 9 -5 -6 1 -3 -5 15
3 1 -1 3 -3 -9 2 -7 5 11 15
3 1 1 -3 3 9 -2 -7 5 -11 -15
3 1 5 1 -9 5 6 1 -3 5 -15
3 1 7 -1 -2 2 7 0 8 1 6
3 1 7 7 -3 -1 6 -7 9 -1 -9
3 3 -3 -3 4 4 -9 2 2 -13 -18
3 3 3 3 -4 -4 9 2 2 13 18
-1 -1 -3 -3 -4 -4 -9 -6 -6 11 -18
-1 -1 -3 -3 0 0 -1 6 6 -13 14

Table 6.7: aL values for newforms of level 24w2 (cont.)

6.2 Factorization of p3

The polynomial p3 on S2(2
4w2) has the following factors:

[x−3, 38], [x−2, 16], [x−1, 84], [x, 32], [x+1, 92], [x+2, 12], [x+3, 45][x2−4x+2, 6], [x2−
3x−1, 17], [x2−3x+1, 39], [x2−2x−2, 4], [x2−2x−1, 10], [x2−x−5, 18], [x2−x−4, 23], [x2−
x−3, 33], [x2−x−1, 25], [x2−8, 10], [x2−5, 12], [x2−3, 20], [x2−2, 10], [x2+x−5, 6], [x2+x−
4, 22], [x2+x−3, 42], [x2+x−1, 30], [x2+2x−2, 10], [x2+2x−1, 4], [x2+3x−1, 21], [x2+3x+
1, 37], [x2+4x+2, 4], [x3−4x2+3x+1, 4], [x3−3x2−4x+13, 10], [x3−2x2−4x+7, 6], [x3−
2x2−x+1, 4], [x3−7x−7, 4], [x3−7x+7, 8], [x3−4x−1, 9], [x3−4x+1, 6], [x3+2x2−4x−
7, 9], [x3+2x2−x−1, 12], [x3+3x2−4x−13, 4], [x3+4x2+3x−1, 6], [x4−4x3−x2+10x+
2, 6], [x4−4x3+8x−1, 4], [x4−3x3−6x2+23x−13, 4], [x4−2x3−9x2+22x−11, 12], [x4−2x3−
7x2+8x−1, 6], [x4−2x3−7x2+8x+4, 4], [x4−2x3−6x2+10x+1, 14], [x4−2x3−4x2+8x−
2, 4], [x4+2x3−9x2−22x−11, 6], [x4+2x3−7x2−8x−1, 9], [x4+2x3−7x2−8x+4, 6], [x4+
2x3−6x2−10x+1, 8], [x4+2x3−4x2−8x−2, 10], [x4+3x3−6x2−23x−13, 6], [x4+4x3−x2−
10x+2, 4], [x4+4x3−8x−1, 8], [x6−3x5−12x4+36x3+18x2−68x+29, 10], [x6−3x5−11x4+
31x3+15x2−25x−4, 9], [x6−3x5−9x4+23x3+15x2−13x−1, 6], [x6−2x5−11x4+16x3+
35x2−26x−25, 4], [x6−x5−13x4+11x3+49x2−27x−52, 9], [x6+x5−13x4−11x3+49x2+
27x−52, 6], [x6+2x5−11x4−16x3+35x2+26x−25, 8], [x6+3x5−12x4−36x3+18x2+68x+
29, 4], [x6+3x5−11x4−31x3+15x2+25x−4, 6], [x6+3x5−9x4−23x3+15x2+13x−1, 4], [x8−
6x7+x6+48x5−65x4−54x3+115x2−48x+4, 8], [x8−3x7−20x6+57x5+124x4−327x3−
245x2+588x+16, 4], [x8+3x7−20x6−57x5+124x4+327x3−245x2−588x+16, 2], [x8+6x7+
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x6−48x5−65x4+54x3+115x2+48x+4, 4], [x9−4x8−9x7+50x6−5x5−156x4+125x3+
50x2− 40x+4, 6], [x9− 3x8− 11x7+32x6+38x5− 100x4− 47x3+75x2+37x+4, 4], [x9−
2x8−17x7+34x6+75x5−158x4−31x3+106x2−20x−4, 4], [x9−x8−19x7+16x6+114x5−
76x4−251x3+165x2+181x−128, 6], [x9+x8−19x7−16x6+114x5+76x4−251x3−165x2+
181x+128, 4], [x9+2x8−17x7−34x6+75x5+158x4−31x3−106x2−20x+4, 6], [x9+3x8−
11x7−32x6+38x5+100x4−47x3−75x2+37x−4, 6], [x9+4x8−9x7−50x6−5x5+156x4+
125x3−50x2−40x−4, 4], [x12−x11−22x10+30x9+153x8−276x7−317x6+863x5−182x4−
513x3+242x2+22x−1, 4], [x12+x11−22x10−30x9+153x8+276x7−317x6−863x5−182x4+
513x3+242x2−22x−1, 8], [x16−2x15−26x14+48x13+261x12−442x11−1300x10+2024x9+
3449x8−4958x7−4874x6+6520x5+3355x4−4294x3−776x2+1104x−74, 6], [x16+2x15−
26x14−48x13+261x12+442x11−1300x10−2024x9+3449x8+4958x7−4874x6−6520x5+
3355x4+4294x3− 776x2− 1104x− 74, 4], [x18− 6x17− 22x16+184x15+101x14− 2206x13+
1048x12+13080x11−12983x10−39490x9+52906x8+54352x7−91701x6−23122x5+56412x4+
5600x3−13034x2−1480x+568, 4], [x18−4x17−33x16+150x15+387x14−2233x13−1578x12+
16799x11 − 4197x10 − 65971x9 + 59322x8 + 117310x7 − 188308x6 − 21264x5 + 190984x4 −
132221x3+32604x2−1200x−379, 6], [x18−3x17−28x16+82x15+318x14−915x13−1870x12+
5426x11+5939x10−18603x9−9152x8+37297x7+2528x6−41228x5+10028x4+20669x3−
9779x2−1970x+1259, 4], [x18−3x17−28x16+84x15+308x14−921x13−1692x12+4994x11+
4927x10−13943x9−7648x8+19011x7+6382x6−10700x5−3212x4+2003x3+627x2−20x−
1, 4], [x18−3x17−26x16+78x15+270x14−815x13−1436x12+4416x11+4153x10−13377x9−
6258x8 + 22693x7 + 3772x6 − 20184x5 + 782x4 + 7699x3 − 1277x2 − 514x + 13, 4], [x18 −
3x17−26x16+80x15+264x14−837x13−1362x12+4500x11+3737x10−13433x9−4682x8+
22123x7−202x6−18304x5+5878x4+5249x3−3531x2+688x−43, 4], [x18−2x17−34x16+
64x15 +461x14 − 802x13 − 3208x12 +4968x11 +12385x10 − 15862x9 − 26994x8 +24760x7 +

31587x6 − 14558x5 − 16140x4 − 640x3 + 910x2 + 56x− 8, 6], [x18 + 2x17 − 34x16 − 64x15 +

461x14+802x13−3208x12−4968x11+12385x10+15862x9−26994x8−24760x7+31587x6+
14558x5 − 16140x4 + 640x3 + 910x2 − 56x − 8, 4], [x18 + 3x17 − 28x16 − 84x15 + 308x14 +

921x13− 1692x12− 4994x11+4927x10+13943x9− 7648x8− 19011x7+6382x6+10700x5−
3212x4−2003x3+627x2+20x−1, 6], [x18+3x17−28x16−82x15+318x14+915x13−1870x12−
5426x11+5939x10+18603x9−9152x8−37297x7+2528x6+41228x5+10028x4−20669x3−
9779x2+1970x+1259, 8], [x18+3x17−26x16−80x15+264x14+837x13−1362x12−4500x11+
3737x10+13433x9−4682x8−22123x7−202x6+18304x5+5878x4−5249x3−3531x2−688x−
43, 6], [x18+3x17−26x16−78x15+270x14+815x13−1436x12−4416x11+4153x10+13377x9−
6258x8 − 22693x7 + 3772x6 + 20184x5 + 782x4 − 7699x3 − 1277x2 + 514x + 13, 6], [x18 +

4x17 − 33x16 − 150x15 + 387x14 + 2233x13 − 1578x12 − 16799x11 − 4197x10 + 65971x9 +

59322x8 − 117310x7 − 188308x6 + 21264x5 + 190984x4 + 132221x3 + 32604x2 + 1200x −
379, 4], [x18+6x17− 22x16− 184x15+101x14+2206x13+1048x12− 13080x11− 12983x10+
39490x9+52906x8−54352x7−91701x6+23122x5+56412x4−5600x3−13034x2+1480x+
568, 6], [x27−3x26−55x25+164x24+1304x23−3858x22−17519x21+51323x20+147499x19−
427049x18−812192x17+2322310x16+2957083x15−8374150x14−7010721x13+19892990x12+
10323950x11−30317349x10−8509315x9+28202264x8+2963409x7−14792310x6+220229x5+
3889959x4 − 397376x3 − 380960x2 + 72460x − 2647, 6], [x27 − 3x26 − 53x25 + 160x24 +
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1210x23−3680x22−15631x21+47937x20+126405x19−390929x18−670268x17+2085994x16+
2381831x15−7410738x14−5717857x13+17541450x12+9224648x11−27292133x10−9719725x9+
27067090x8 + 6187223x7 − 16180684x6 − 1937401x5 + 5264635x4 + 99800x3 − 738836x2 +

47264x+14987, 6], [x27+3x26−55x25−164x24+1304x23+3858x22−17519x21−51323x20+
147499x19+427049x18−812192x17−2322310x16+2957083x15+8374150x14−7010721x13−
19892990x12+10323950x11+30317349x10−8509315x9−28202264x8+2963409x7+14792310x6+
220229x5−3889959x4−397376x3+380960x2+72460x+2647, 4], [x27+3x26−53x25−160x24+
1210x23+3680x22−15631x21−47937x20+126405x19+390929x18−670268x17−2085994x16+
2381831x15+7410738x14−5717857x13−17541450x12+9224648x11+27292133x10−9719725x9−
27067090x8 + 6187223x7 + 16180684x6 − 1937401x5 − 5264635x4 + 99800x3 + 738836x2 +

47264x− 14987, 4]

The polynomial p3 on S2(2
3w2) has the following factors:

[x− 3, 8], [x− 2, 8], [x− 1, 20], [x, 12], [x+ 1, 28], [x+ 2, 4], [x+ 3, 15], [x2 − 4x+ 2, 2], [x2 −
3x−1, 3], [x2−3x+1, 11], [x2−2x−1, 6], [x2−x−5, 12], [x2−x−4, 5], [x2−x−3, 3], [x2−x−
1, 5], [x2−8, 2], [x2−5, 4], [x2−3, 4], [x2−2, 2], [x2+x−4, 4], [x2+x−3, 12], [x2+x−1, 10], [x2+
2x−2, 6], [x2+3x−1, 7], [x2+3x+1, 9], [x3−3x2−4x+13, 6], [x3−7x+7, 4], [x3−4x−1, 3], [x3+
2x2−4x−7, 3], [x3+2x2−x−1, 8], [x3+4x2+3x−1, 2], [x4−4x3−x2+10x+2, 2], [x4−2x3−
9x2+22x−11, 6], [x4−2x3−6x2+10x+1, 6], [x4+2x3−7x2−8x−1, 3], [x4+2x3−7x2−8x+
4, 2], [x4+2x3−4x2−8x−2, 6], [x4+3x3−6x2−23x−13, 2], [x4+4x3−8x−1, 4], [x6−3x5−
12x4+36x3+18x2−68x+29, 6], [x6−3x5−11x4+31x3+15x2−25x−4, 3], [x6−3x5−9x4+
23x3+15x2−13x−1, 2], [x6−x5−13x4+11x3+49x2−27x−52, 3], [x6+2x5−11x4−16x3+
35x2+26x−25, 4], [x8−6x7+x6+48x5−65x4−54x3+115x2−48x+4, 4], [x8−3x7−20x6+
57x5+124x4−327x3−245x2+588x+16, 2], [x9−4x8−9x7+50x6−5x5−156x4+125x3+
50x2−40x+4, 2], [x9−x8−19x7+16x6+114x5−76x4−251x3+165x2+181x−128, 2], [x9+
2x8−17x7−34x6+75x5+158x4−31x3−106x2−20x+4, 2], [x9+3x8−11x7−32x6+38x5+
100x4−47x3−75x2+37x−4, 2], [x12+x11−22x10−30x9+153x8+276x7−317x6−863x5−
182x4+513x3+242x2−22x−1, 4], [x16−2x15−26x14+48x13+261x12−442x11−1300x10+
2024x9+3449x8−4958x7−4874x6+6520x5+3355x4−4294x3−776x2+1104x−74, 2], [x18−
4x17−33x16+150x15+387x14−2233x13−1578x12+16799x11−4197x10−65971x9+59322x8+
117310x7 − 188308x6 − 21264x5 + 190984x4 − 132221x3 + 32604x2 − 1200x− 379, 2], [x18 −
2x17−34x16+64x15+461x14−802x13−3208x12+4968x11+12385x10−15862x9−26994x8+
24760x7+31587x6− 14558x5− 16140x4− 640x3+910x2+56x− 8, 2], [x18+3x17− 28x16−
84x15+308x14+921x13−1692x12−4994x11+4927x10+13943x9−7648x8−19011x7+6382x6+
10700x5−3212x4−2003x3+627x2+20x−1, 2], [x18+3x17−28x16−82x15+318x14+915x13−
1870x12−5426x11+5939x10+18603x9−9152x8−37297x7+2528x6+41228x5+10028x4−
20669x3−9779x2+1970x+1259, 4], [x18+3x17−26x16−80x15+264x14+837x13−1362x12−
4500x11 + 3737x10 + 13433x9 − 4682x8 − 22123x7 − 202x6 + 18304x5 + 5878x4 − 5249x3 −
3531x2− 688x− 43, 2], [x18+3x17− 26x16− 78x15+270x14+815x13− 1436x12− 4416x11+
4153x10+13377x9−6258x8−22693x7+3772x6+20184x5+782x4−7699x3−1277x2+514x+
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13, 2], [x18 + 6x17 − 22x16 − 184x15 + 101x14 + 2206x13 + 1048x12 − 13080x11 − 12983x10 +

39490x9+52906x8−54352x7−91701x6+23122x5+56412x4−5600x3−13034x2+1480x+
568, 2], [x27−3x26−55x25+164x24+1304x23−3858x22−17519x21+51323x20+147499x19−
427049x18−812192x17+2322310x16+2957083x15−8374150x14−7010721x13+19892990x12+
10323950x11−30317349x10−8509315x9+28202264x8+2963409x7−14792310x6+220229x5+
3889959x4 − 397376x3 − 380960x2 + 72460x − 2647, 2], [x27 − 3x26 − 53x25 + 160x24 +

1210x23−3680x22−15631x21+47937x20+126405x19−390929x18−670268x17+2085994x16+
2381831x15−7410738x14−5717857x13+17541450x12+9224648x11−27292133x10−9719725x9+
27067090x8 + 6187223x7 − 16180684x6 − 1937401x5 + 5264635x4 + 99800x3 − 738836x2 +

47264x+ 14987, 2]

6.3 Resumen en Castellano

Introducción:

El objetivo principal de esta tesis es aplicar el método modular para estudiar algunas

ecuaciones de Fermat generalizadas de tipo (r, r, p).

Empecemos por recordar el Último Teorema de Fermat (UTF), la demonstración del

cual ha proporcionado una técnica completamente novedosa en la resolución de ecuaciones

Diofánticas.

Teorema 6.3.1 (Fermat-Wiles) Si n > 2 es un entero, entonces la ecuación xn + yn = zn

no tiene soluciones (a, b, c) tales que abc �= 0.

La estrategia que llevó a la prueba del UTF se llama el método modular y utiliza de forma

notable curvas eĺıpticas, formas modulares y representaciones de Galois. Esta estrategia ha

empezado con ideas de Frey, Hellegouarch y Serre, seguidas de progresos de Ribet y final-

mente concluida por A. Wiles (ver [76]). Desde la prueba de Wiles la estrategia inicial ha

sido mejorada y varios matemáticos lograron tener éxito en solucionar ecuaciones que pre-

viamente parećıan intratables. Una consecuencia de estos esfuerzos ha sido que la ecuación

de Fermat generalizada

Axp +Byq = Czr, donde 1/p+ 1/q + 1/r < 1, (6.1)

con p, q, r primos y A,B,C enteros coprimos dos a dos, se ha convertido en el nuevo centro

de atención. Llamaremos a la terna de exponentes (p, q, r) en (6.1) el tipo de la ecuación.

En general, fijados A,B,C y el tipo, la ecuación (6.1) admite infinitas soluciones. Por

ejemplo, si z = a3 + b3, x = az, y = bz entonces (x, y, z) satisface x3 + y3 = z4. Sin

embargo, suponiendo cierta la conjetura abc se demuestra que solo existe un número finito

de soluciones (a, b, c) de la ecuación (6.1) que satisfacen gcd(a, b, c) = 1 (ver Sección 5.2 en

[20]). Más exactamente,
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Conjetura 6.3.1 Sean A,B,C ∈ Z coprimos dos a dos. Entonces, existe solo un número

finito de (a, b, c, p, q, r) que satisfacen:

1. p, q, r ∈ Z primos tales que 1/p+ 1/q + 1/r < 1,

2. (a, b, c) ∈ (Z \ {0})3 y gcd(a, b, c) = 1 (soluciones primitivas),

3. Aap +Bbq = Ccr.

Observación 6.3.2 Para la conjetura consideramos que soluciones del tipo 1p + 23 = 32

cuentan como una única solución.

Un resultado importante en esta dirección es un teorema de Darmon-Granville [20] que

demuestra que dados A,B,C y fijados (p, q, r) existe solo un número finito de soluciones

primitivas. Además, el método modular ha sido utilizado con éxito para dar evidencia a esta

conjectura, permitiendo la demostración de que no existen soluciones primitivas en varios

casos particulares, incluyendo familias infinitas. Por ejemplo, xp + yp = z2 o xp + yp =

z3 han sido solucionadas por Darmon-Merel [21]. Estas ecuaciones son casos particulares

de xp + yq = zr. Otro progreso importante ha sido el trabajo de Ellenberg sobre las

representaciones asociadas con Q-curvas. Su trabajo ha permitido introducir el uso de Q-

curvas como curvas de Frey y, en particular, le permitió solucionar la ecuación x4+ y2 = zp

(ver [29]). En las introducciones de [3] y [18] se puede encontrar una perspectiva actualizada

y un resumen de resultados conocidos sobre la ecuación xp + yq = zr.

Otra familia interesante está constituida por las ecuaciones de tipo (r, r, p) con r un

número primo fijado, es decir,

Axr +Byr = Czp (donde p vaŕıa).

En esta clase de ecuaciones hay trabajos para tipo (3, 3, p) de Kraus [45], Bruin [10], Chen-

Siksek [16] y Dahmen [18] y para tipo (5, 5, p) de Billerey [5], Billerey-Dieulefait [6].

Las distintas generalizaciones del método modular para atacar nuevas ecuaciones depen-

den de la ecuación en cuestión. Una estrategia universal para atacar la ecuación de Fermat

generalizada de tipo (p, q, r) ha sido desarollada por Darmon en [19]. Su método utiliza

variedades abelianas de Frey de gran dimensión. Sin embargo, al dia de hoy, poco se conoce

sobre tales variedades y en [19] Darmon solo consigue solucionar ecuaciones de la forma

xp + yp = zr en casos particulares y para valores de r pequeños.

Brevemente, el método modular se puede dividir en 3 partes:

(I) [Construcción de una curva de Frey] Asociar una curva eĺıptica E con ciertas propiedades

a una posible solución de una ecuación diofántica.

(II) [Modularidad / Bajada de Nivel] Demostrar que la curva E es modular, que su rep-

resentación asociada ρ̄E,p es absolutamente irreducible y aplicar resultados de bajada
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de nivel que darán lugar a un isomorfismo ρ̄E,p ∼ ρ̄f,P, donde f es una forma modular

clásica o de Hilbert con un nivel adecuado.

(III) [Contradicción] Contradecir el isomorfismo de representaciones residuales anterior para

todas las posibilidades para f .

En esta tesis, utilizaremos el método modular para profundizar en el estudio de las ecua-

ciones de tipo (r, r, p), más concretamente las de forma xr + yr = Czp, donde C es un

entero divisible solo por primos q �≡ 1, 0 modulo r. En particular, mejoraremos los resul-

tados existentes para r = 5 y daremos nuevos resultados para r = 7 y r = 13. Además,

haciendo uso de curvas eĺıpticas, delinearemos una estrategia que puede ser utilizada para

atacar la ecuación anterior para cualquier primo r. En efecto, completaremos la parte (I)

y parcialmente la parte (II) del método modular para cada r (la parte (III) depende del

valor de r). En el camino, en particular, demostraremos un resultado de modularidad para

curvas eĺıpticas con buena reducción en 3 definidas sobre ciertos cuerpos de numeros.

Los resultados contenidos en el Capitulo 2 sobre la ecuación x5+y5 = Czp han sido acep-

tados para publicación en un articulo conjunto con L. Dieulefait en la revista Mathematics

of Computation (ver [27]).

Resultados:

A continuación describiremos el contenido de cada caṕıtulo de esta tesis. En particular,

enunciaremos los resultados obtenidos y comentaremos las estrategias utilizadas.

En este trabajo, una solución (a, b, c) ∈ Z3 de xr+yr = Czp se dirá primitiva si (a, b) = 1

y trivial si |abc| ≤ 1. En particular, nuestras soluciones primitivas también lo son en el

sentido de que gcd(a, b, c) = 1 como arriba. Además, a una solución primitiva le diremos

solución de primer tipo si r � c y de segundo tipo si r | c.

El Caṕıtulo 1 cubre los requisitos previos que constituyen el método modular via cur-

vas eĺıpticas sobre Q. Incluiremos las definiciones y teoremas básicos de la teoŕıa de cur-

vas eĺıpticas, formas modulares y sus representaciones de Galois asociadas. En particular,

demostraremos en detalle un teorema de Hellegouarch, sobre la ramificación de la repre-

sentación modulo p asociadas con algunas curvas, que será utilizado en todos los caṕıtulos

posteriores. Enunciaremos también el teorema de modularidad sobre Q, el teorema de ba-

jada de nivel de Ribet y la conjetura de Serre. Terminaremos el caṕıtulo con la idea de la

prueba del Último Teorema de Fermat para motivar las generalizaciones que estudiaremos

en los caṕıtulos siguientes.

En el Caṕıtulo 2 nos dedicaremos a ecuaciones de la forma x5 + y5 = Czp. El teorema

siguiente es una consecuencia del trabajo de Billerey [5] y Billerey-Dieulefait [6],

Teorema 6.3.2 Sea C = 2α3β5γ donde α ≥ 2, β, γ,≥ 0, o C = 7, 13. Entonces, para

p > 19, la ecuación x5 + y5 = Czp no tiene soluciones primitivas no triviales.
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Nótese que en su teorema todos los valores de C satisfacen |C| ≥ 4. Nosotros demostraremos

el resultado siguiente

Teorema 6.3.3 Sea β un entero divisible solo por primos l �≡ 1 (mod 5). Supongamos que

p ≡ 1 (mod 4) o p ≡ ±1 (mod 5). Entonces,

(A) Si p > 13, la ecuación x5 + y5 = 2βzp no tiene soluciones primitivas no triviales.

(B) Si p > 73, la ecuación x5 + y5 = 3βzp no tiene soluciones primitivas no triviales.

A lo largo de este caṕıtulo introduciremos la teoŕıa necesaria para la prueba del teorema an-

terior. En particular, cubriremos los requisitos previos de la teoria de variedades abelianas

asociadas con Q-curvas y de embedding problems de los trabajos de J. Quer [54], [55].

Además, enunciaremos y utilizaremos los resultados de Ellenberg en [29] sobre las repre-

sentaciones asociadas con Q-curvas.

La primera idea importante de la prueba del teorema anterior es relacionar una solución

primitiva no trivial de x5 + y5 = Czp con una solución (a, b, c) de una ecuación relacionada

(que no depende de C y esta definida sobre Q) satisfaciendo C | a+ b. Después aplicamos el
metodo modular con Q-curvas para demostrar que la solución (a, b, c) de la nueva ecuación

no puede existir. Para esto, primero asociamos a (a, b, c) una curva de Frey E(a,b) so-

bre Q(
√
5) y demostraremos que es una Q-curva (Paso (I)). Segundo, utilizando la teoŕıa de

Quer produciremos una curva adecuada Eγ(a, b) twisteada de E(a,b) completamente definida

sobre un cierto cuerpo de numeros K, ćıclico de grado cuatro. La idea de utilizar embed-

ding problems para determinar Eγ no es nueva en la literatura (ver [20]), pero parece ser la

primera vez que una extensión ćıclica de grado cuatro es necesaria, lo que hace los cálculos

técnicamente bastante dif́ıciles. Después demostramos que la restricción de Weil (denotada

B) de K hasta Q de Eγ es un producto de variedades de tipo GL2. Esto es fundamental,

porque aśı somos capaces de calcular todos los invariantes de Serre asociados con una repre-

sentación ρ̄ asociada a B y aplicarle la conjectura de Serre, concluyendo el Paso (II). Por fin,

para completar la demostración, tenemos que ejecutar el Paso (III). Esto se hace mediante

una análisis caso por caso de las forma nuevas en los espacios previstos por la conjectura de

Serre. En particular, utilizaremos varios métodos conocidos para eliminar formas nuevas y

introduciremos un nuevo método via un teorema de Carayol. Hasta este punto tendremos

demostrado una versión más débil de nuestro resultado. Finalmente, introduciremos otra

curva de Frey F que, utilizando el método multi-Frey de Siksek, nos permitirá terminar la

prueba.

El Caṕıtulo 3 está dedicado a desarollar una estrategia general para atacar un número

infinito de ecuaciones de tipo (r, r, p) para cada primo r ≥ 7. Por un lado, en [19], Darmon

describe un programa para atacar ecuaciones de Fermat generales de tipo (p, q, r) utilizando

variedades abelianas de gran dimensión. Por otro lado, no existe ningún algoritmo para

ejecutar el Paso (I) del método modular para una ecuación Diophantica aleatoria, ni siquiera

para las de tipo Fermat. Nuestro método, aunque esté limitado para ecuaciones de tipo
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(r, r, p) tiene la ventaja de que da un algoritmo para construir varias curvas eĺıpticas de Frey.

Esto es una mejora respecto a [19] porque nos permite obtener un mejor entendimiento de

las representaciones de Galois involucradas.

Empezamos el Caṕıtulo 3 introduciendo formas modulares de Hilbert y los teoremas de

bajada de nivel de Jarvis, Rajaei y Fujiwara. Después procedemos a la descripción de un

método general que nos permite completar el Paso (I) y parcialmente el Paso (II) del método

modular para un número infinito de ecuaciones de la forma xr+ yr = Czp. En los próximos

párrafos resumiremos las ideas principales.

Fijemos un primo r ≥ 7 y sea K+ el subcuerpo totalmente real maximal del cuerpo

ciclotómico Q(ζr). Sea C �= 0 un entero divisible solo por primos q �= r congruentes con 1

(mod r). Generalizando la idea en el Capitulo 2, empezamos por relacionar una solución

primitiva no trivial (a, b, c′) de xr + yr = Czp con soluciones (a, b, c), tales que C | a+ b, de
varias otras ecuaciones diofánticas (que no dependen de C) definidas sobre K+. En seguida,

asociaremos curvas de Frey E(a,b) a las soluciones de las nuevas ecuaciones. Brevemente,

sea φr(x, y) = (xr + yr)/(x+ y) y escojemos tres factores f1, f2, f3 de φr distintos, de grado

2 y definidos sobre K+; después encontraremos α, β, γ tales que αf1 + βf2 + γf3 = 0 y

aplicaremos la construción de Frey original sobre K+. Como E dependerá solamente de a, b

y estos son constante durante todo el proceso, acabamos construyendo varias curvas de Frey

asociadas a la ecuancion inicial (a, b, c′). Esto completa el Paso (I) con total generalidad.

A pesar de que el Paso (II) (modularidad / irreducibilidad) es una aplicación clásica de

resultados profundos de Mazur, Ribet y Wiles cuando la curva E está definida sobre Q, la

situación se complica cuando E está definida sobre un cuerpo más grande. En particular,

análogos de estos teoremas son en su mayoŕıa conjecturas. En esta dirección, demostraremos

un resultado con cierta generalidad sobre la irreducibilidad de las representaciones modulo

p asociadas con ciertas curvas eĺıpticas y un resultado de modularidad nuevo para curvas

eĺıpticas sobre cuerpos totalmente reales con ciertas condiciones locales en 3. Más exacta-

mente, demostraremos los teoremas siguientes

Teorema 6.3.4 Sea F un cuerpo de números totalmente real y C/F una curva eĺıptica de

conductor NE. Sea A el factor de NE que corresponde a los primos de reducción aditiva.

Supongamos además que q � NC es un primo fijado de buena reducción. Existe una constante

expĺıcita M(F,A, q) tal que, si

1. p is impar y no ramificado en F ;

2. todos los primos p | p son de reducción semistable para C;

3. p > M(F,A, q).

Entonces, la representación ρ̄C,p es absolutamente irreducible.

Teorema 6.3.5 Sea F un cuerpo de números abeliano totalmente real y C una curva
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eĺıptica definida sobre F . Supongamos que 3 descompone totalmente en F y que C es de

buena reducción en todos los primos encima de 3. Entonces C es modular.

Un paso fundamental en la prueba del teorema de modularidad es garantizar modularidad

residual de ρ̄C,3, lo que se consigue como consecuencia de un teorema profundo de Langlands-

Tunnell. El resto de la demostración esta dividida en tres casos: (i) ρ̄C,3 y ρ̄C,3|GF (
√−3)

ambas abs. irreducibles; (ii) ρ̄C,3 abs. irreducible y ρ̄E,3|GF (
√−3) reducible; (iii) ρ̄C,3

reducible. En cada caso tenemos que verificar que todas las condiciones son satisfechas para

aplicar adecuadamente un teorema de levantamento de modularidad de Kisin o Skinner-

Wiles. En particular, necesitaremos utilizar el trabajo de Breuil y Savitt para garantizar la

existencia de levantamentos ordinarios.

Los dos teoremas anteriores contestan de forma completa a la parte de irreducibilidad del

Paso (II) y parcialmente a la parte de modularidad. Más exactamente, es una consecuencia

del teorema de irreducibilidad que para cada primo r ≥ 7 existe una constante M(r) tal

que, si p > M(r) entonces la representación ρ̄E,p es absolutamente irreducible. Además, es

un corolario del teorema de modularidad que en los casos r = 7 y r = 13 nuestro método

de construir curvas de Frey produce curvas que demostraremos modulares. El principal

obstáculo para demostrar modularidad de las curvas de Frey para todo r es la dificultad

de garantizar la existencia de levantamentos modulares ordinarios (en el caso residualmente

localmente reducible) cuando 3 es no ramificado y no descompone totalmente en F . No

obstante, también discutiremos ciertos resultados de modularidad recientes que para valores

particulares de r nos podŕıan permitir verificar si una curva de Frey es modular.

Finalmente, calcularemos los conductores de todas las curvas de Frey E, para primos

p semistables para E también determinaremos los conductores de Artin de ρ̄E,p y de-

mostraremos que ρ̄E,p es finita para todo primo p | p. Incluiremos los enunciados de los

teoremas de bajada de nivel para formas modulares de Hilbert (FMH) de Jarvis, Rajaei y

Fujiwara, y explicaremos como aplicarlos en nuestra situación, lo que nos lleva a un método

modular via FMH. Las limitaciones de nuestro método quedarán claras en el Caṕıtulo 4

cuando ejecutemos el Paso (III) en los casos r = 7 y r = 13. Sin embargo, en el Caṕıtulo

3 también incluiremos una discusión de las dos mayores limitaciones del metodo: 1) limita-

ciones debido a la existencia de soluciones triviales; 2) limitaciones computacionales. Las

limitaciones de tipo 1) resultan en que solo logramos solucionar las ecuaciones en el caso

de soluciones de primer tipo. Respecto a las de tipo 2) demostraremos que cuando r es

congruente con 1 modulo 6 se pueden construir curvas de Frey definidas sobre el subcuerpo

de K+ con grado (r − 1)/6. Esta observación es crucial a la hora de calcular ejemplos es-

pećıficos en el Caṕıtulo 4, pues reduce considerablemente la cantidad de cálculos necesarios

para completar el Paso (III).

En el Caṕıtulo 4 aplicaremos la estrategia desarollada en el Capitulo 3 para algunos

valores especificos de r. En particular, daremos ejemplos expĺıcitos de curvas de Frey para

r = 7, 11, 13, 17, 19 y completaremos el Paso (III) en los casos r = 7 y r = 13. Por lo

que sabemos, ningún resultado aritmético sobre ecuaciones de tipo (7, 7, p) y (13, 13, p)
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era conocido. Además, el caso r = 13 parece ser la primera vez donde las curvas de Frey

involucradas no són Q-curvas. En particular, esto significa que en lugar de formas modulares

clásicas uno está forzado a utilizar formas de Hilbert (en este caso sobre Q(
√
13)). Por lo

tanto, además del interés propio de los resultados aritméticos, los teoremas obtenidos en el

Caṕıtulo 4 también ilustran la fuerza de los métodos generales desarollados en el caṕıtulo

anterior.

Empezaremos el Caṕıtulo 4 por completar el Paso (III) para r = 7 demostrando el sigu-

iente teorema

Teorema 6.3.6 Sea d = 2s03s15s2 y γ un entero divisible solo por primos l �≡ 1, 0 (mod 7).

Entonces, si p ≥ 17 se tiene que

(I) La ecuación x7 + y7 = dγzp no tiene soluciones primitivas no triviales de primer tipo

si (s0, s1, s2) satisface alguna de las siguientes condiciones (≥ 2,≥ 0,≥ 0), (= 1,≥
1,≥ 0) o (= 0,≥ 0,≥ 1).

(II) La ecuación x14 + y14 = dγzp no tiene soluciones primitivas no triviales si s1 > 0 o

s2 > 0 o s0 ≥ 2.

Con técnicas análogas a la demostración del teorema anterior, también demostraremos

Teorema 6.3.7 Si p > 2542873 es un primo, entonces la ecuación

x6 − x5y + x4y2 − x3y3 + x2y4 − xy5 + y6 = 71zp

no tiene soluciones (x, y, z) = (a, b, c) tales que (a, b) = 1 and |abc| > 1.

A pesar de que la curva de Frey utilizada en las demostraciones de los teoremas anteriores ya

era conocida (habiéndose obtenido por métodos distintos a los aqúı presentados), ningúna

aplicación aritmética de ella era conocida. Finalmente, completaremos el Paso (III) para

r = 13. La curva de Frey en este caso es nueva, y su modularidad (de Hilbert) es consecuencia

de los resultados en el Capitulo 3. En particular, demostraremos

Teorema 6.3.8 Sea d = 3, 5, 7, 11 y γ un entero divisible solo por primos l �≡ 1, 0 (mod

13). Si p > 4992539 es primo, entonces:

(I) La ecuación x13 + y13 = dγzp no tiene soluciones primitivas no triviales de primer

tipo.

(II) La ecuación x26 + y26 = 10γzp no tiene soluciones primitivas no triviales.

Las grandes cotas obtenidas para el exponente p en los dos teoremas anteriores pueden

parecer sorprendentes. Su razón de ser es que calcular completamente los espacios relevantes

de formas nuevas no es factible. Sin embargo, somos capaces de completar el Paso (III)
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calculando solamente las formas nuevas con cuerpo de coeficientes Q (y alguma información

parcial más sobre las demás formas en el caso r = 13). Compensaremos esta falta de

información con argumentos teóricos para los cuales hace falta introducir tales cotas. En

particular, para la prueba del caso r = 13 necesitamos calcular formas nuevas de Hilbert

sobre Q(
√
13) con nivel 104 y 208 de peso paralelo 2. Estos cálculos estaban fuera de alcance

para los medios computacionales disponibles, pero gracias a los recursos aportados por John

Voight, fue posible el cómputo de todas las formas nuevas con cuerpo de coeficientes Q y

la factorización del polinomio caracteŕıstico de un operador de Hecke sobre todo el espacio

(los resultados de sus cálculos están en el Apéndice 6.1 y 6.2).

En el Caṕıtulo 5 propondremos dos curvas de Frey extra asociadas con soluciones de

xr + yr = Czp para primos de la forma r = 4m + 1. Para lograrlo adaptaremos las

ideas en el Capitulo 3 sobre como relacionar soluciones de ecuaciones distintas además

de generalizar el método que llevó a las Q-curvas E y F en el Capitulo 2. Las curvas

resultantes estan definidas sobre K+, y demostraremos que son k-curvas, donde k es el

único cuerpo de números que satisface [K+ : k] = 2. Después calcularemos su discriminante

y conductor de Artin de las representaciones mod p asociadas y aśı verificamos que las

curvas satisfacen las propriedades adecuadas para que sean útiles como curvas de Frey.

Para terminar el caṕıtulo discutiremos como la teoria de J. Quer sobre embedding problems

puede ser aplicada para extender las representaciones de GK+ asociadas con las nuevas

curvas de Frey a representaciones de Gk.
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[24] L. Dembélé and J. Voight. Explicit methods for Hilbert modular forms. Elliptic curves,

Hilbert modular forms and Galois deformations. Diamond et al. (eds.). Birkhauser,

Progress in Mathematics, to appear.

[25] F. Diamond and J. Shurman. A First Course in Modular Forms. Springer, 2005.

[26] L. Dieulefait. Modularity of abelian surfaces with quaternionic multiplication. Math.

Research. Letters, 10:145–150, 2003.

[27] L. Dieulefait and N. Freitas. The Fermat-type equations x5 + y5 = 2zp or 3zp solved

through Q-curves. To appear in Math. Comp.

[28] L. Dieulefait and J. Jiménez. Solving Fermat-type equations x4+dy2 = zp via modular

Q-curves over polyquadratic fields. J. Reine Angew. Math., 633:183–196, 2009.

[29] J. Ellenberg. Galois representations attached to Q-curves and the generalized Fermat

equation A4 +B2 = Cp. Amer. J. Math, 126:763–787, 2004.

114



[30] J. Ellenberg. Serre’s conjecture over F9. Annals of Math., 161:1111–1142, 2005.

[31] J. Ellenberg and C. Skinner. On the modularity of Q-curves. Duke Math. J., 109

(1):97–122, 2001.

[32] K. Fujiwara. Level optimisation in the totally real case, preprint. 2006.

[33] S. Gelbart. Three Lectures on the modularity of ρ̄E,p and Langlands Reciprocity Conjec-

ture. Modular forms and Fermat’s Last Theorem (Boston, MA, 1995). Springer, New

York.

[34] X. Guitart. Arithmetic properties of abelian varieties under Galois conjugation. PhD

thesis, Universitat Politecnica de Catalunya, 2010, available at

http://www-ma2.upc.es/xguitart/index_files/thesis.pdf.

[35] Y. Hellegouarch. Invitation to the Mathmatics of Fermat-Wiles. Academic Press, 2002.

[36] F. Jarvis. Correspondences on Shimura curves and Mazur’s Principle at p. Pacific J.

Math., 213:267–280, 2004.

[37] F. Jarvis and J. Manoharmayum. On the modularity of supersingular elliptic curves

over certain totally real number fields. J. Number Theory, 128 (3):589–618, 2008.

[38] C. Khare. Serre’s modularity conjecture: The level one case. Duke. Math. J., 134:557–

589, 2006.

[39] C. Khare and J.-P. Wintenberger. Serre’s modularity conjecture (I). Invent. Math.,

178 (3):485–504, 2009.

[40] C. Khare and J.-P. Wintenberger. Serre’s modularity conjecture (II). Invent. Math.,

178 (3):505–586, 2009.

[41] M. Kisin. Modularity of 2-dimensional Galois representations. Current Developments

in Mathematics, pages 191–230, 2005.

[42] M. Kisin. Moduli of finite flat group schemes, and modularity. Ann. of Math., 170:1082–

1180, 2009.

[43] A. Kraus. Sur le défaut de semi-stabilité des courbes elliptiques á réduction additive.
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