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Introduction

The well-known Hodge Decomposition Theorem states that the n-th Betti
cohomology vector space with complex coefficients of every compact Kéahler
manifold admits a direct sum decomposition induced by the type of complex-
valued differential forms. This result is the prototypical example of a pure
Hodge structure of weight n, and it imposes strong topological restrictions
for a compact complex manifold to be Kéahlerian. For instance, all Betti
numbers of odd order must be even, and all Betti numbers of even order,

from zero to twice the dimension, must be non-zero.

Influenced by Grothendieck’s philosophy of mized motives, and motivated
by the Weil Conjectures, Deligne sought for a generalization of Hodge’s
theory to arbitrary complex algebraic varieties. His key idea was to foresee
the existence of a natural increasing weight filtration on the Betti coho-
mology of algebraic varieties, in such a way that the successive quotients
become pure Hodge structures of different weights. This led to the notion of
mized Hodge structure, first introduced in [Del71a]. Based on Hironaka’s
resolution of singularities and the logarithmic de Rham complex, Deligne
[Del71b]| proved that the n-th cohomology group of every smooth complex
algebraic variety carries a functorial mixed Hodge structure, which for com-
pact Kéahler manifolds, coincides with the original pure Hodge structure.
This result has important topological consequences, such as the theorem
of the fixed part (see Theorem 4.1.1 of loc.cit). In [Del74b], Deligne in-
troduced mized Hodge compleres and extended his own results to singular
varieties, using simplicial resolutions. As an alternative to simplicial reso-
lutions, Guillén-Navarro developed the theory of cubical hyperresolutions.
Its application to mixed Hodge theory is presented in [GNPP88|.
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Considerations related to the Weil Conjecture on the action of the Frobenius
automorphism for l-adic cohomology in positive characteristic [Del74a] led
to the expectation that, as a consequence of Hodge theory, triple Massey
products of compact Kéahler manifolds should vanish. In response to this
problem, Deligne-Griffiths-Morgan-Sullivan [DGMS75] proved the Formal-
ity Theorem of compact Kahler manifolds, stating that the real homotopy
type of every compact Kéhler manifold is entirely determined by its coho-
mology ring. In particular, higher order Massey products are trivial.

Rational homotopy theory originated with the works of Quillen [Qui69]
and Sullivan [Sul77]. First, Quillen established an equivalence between the
homotopy category of simply connected rational spaces and the homotopy
category of connected differential graded Lie algebras. Such equivalence is
the composite of a long chain of intermediate equivalences, which make the
construction quite complex. To better understand this mechanism, Sulli-
van introduced polynomial de Rham forms and proved that the rational
homotopy type of every rational space is determined by a minimal model
of its differential graded algebra of rational polynomial linear forms. Since
the development of Sullivan’s work, minimal models have found significant
applications of both topological and geometric origin, one of the first and
most striking being the Formality Theorem of compact Kéhler manifolds.

Addressing homotopical aspects and multiplicative features of mixed Hodge
theory, Morgan [Mor78] introduced mized Hodge diagrams of differential
graded algebras and proved the existence of functorial mixed Hodge struc-
tures on the rational homotopy type of smooth complex algebraic varieties.
As an application, he obtained a formality result with respect to the first
term of the spectral sequence associated with the weight filtration. In this
line of work, Deligne [Del80] defined the Q;-homotopy type of an algebraic
variety. Using the weights of the Frobenius action in the l-adic cohomology
and his solution of the Riemann hypothesis, he proved a formality result
of the Q;-homotopy type for smooth projective varieties defined over finite
fields. Continuing the study of mixed Hodge structures on the rational
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homotopy type, Navarro [Nav87] introduced, in the context of sheaf coho-
mology of differential graded algebras, the Thom-Whitney simple functor,
and used his construction to establish the functoriality of mixed Hodge di-
agrams associated with open smooth varieties, providing a multiplicative
version of Deligne’s theory. Thanks to this functoriality, and using sim-
plicial hyperresolutions, he extended Morgan’s result to possibly singular
varieties. Alternatively, there is Hain’s approach [Hai87] based on the bar
construction and Chen'’s iterated integrals. Both extensions to the singular
case depend on the initial constructions of Morgan.

One can interpret the theory of mixed Hodge diagrams of Morgan and his
results on the existence of mixed Hodge structures on the rational homotopy
type, as a multiplicative analogue of Beilinson’s homotopy theory of Hodge
complexes. Driven by motivic and Deligne cohomology, Beilinson [Bei86]
introduced absolute Hodge complexes, which are related with the original
mixed Hodge complexes of Deligne by a shift on the weight filtration, and
studied their homotopy category. He proved formality for objects, show-
ing that every absolute Hodge complex can be represented by the complex
of mixed Hodge structures defined by taking cohomology, and established
an equivalence with the derived category of mixed Hodge structures. This
equivalence allows an interpretation of Deligne’s cohomology in terms of
extensions of mixed Hodge structures in the derived category. Though suf-
ficient for its original purposes, in this sense Morgan’s homotopy theory of
mixed Hodge diagrams is incomplete, since it provides the existence of cer-
tain minimal models, but these are not shown to be cofibrant or minimal in
any abstract categorical framework. Moreover, Morgan allows morphisms
between diagrams to be homotopy commutative and does not claim any
composition law. As a consequence, his results fall out of the realm of cat-
egories. This is one aspect that we intend to solve in this thesis.

The study of derived functors in duality theory led Grothendieck to the
localization of a category of complexes with respect to the class of quasi-
isomorphisms. The essential constructions were worked out by Verdier
[Ver96], resulting in the theory of derived categories of abelian categories.
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Simultaneously, and mimicking the idea of motives of Grothendieck, the
study of spectra in algebraic topology led Quillen [Qui67] to the introduc-
tion of model categories. In [BGT76], Bousfield-Gugenheim reformulated
Sullivan’s rational homotopy theory of differential graded algebras in the
context of Quillen model categories. Following this line, it would be desir-
able to establish an analogous formulation for mixed Hodge complexes and
mixed Hodge diagrams of differential graded algebras. Unfortunately, none
of the contexts provided by the derived categories of Verdier and Quillen’s
model categories, considered nowadays as the standard basis of homological
and homotopical algebra respectively, satisfy the needs to express the prop-
erties of diagram categories with filtrations.

Inspired by the original work of Cartan-Eilenberg [CE56] on derivation of
additive functors between categories of modules, Guillén-Navarro-Pascual-
Roig [GINPR10] introduced Cartan-Eilenberg categories, as a homotopical
approach weaker than the one provided by Quillen model categories, but
sufficient to study homotopy categories and to extend the classical theory
of derived additive functors, to non-additive settings. In this context they
introduced a notion of cofibrant minimal model, as an abstract character-
ization of the original minimal models of Sullivan. On the other hand,
following Guillén-Navarro [GNO02], we observe that it is advisable that the
categories receiving functors defined over algebraic varieties are equipped,
in addition to a model-type structure allowing to derive functors, with a
cohomological descent structure, which provides the basis to extend some

particular functors defined over smooth varieties, to singular varieties.

In the present work, we analyse the categories of mixed Hodge complexes
and mixed Hodge diagrams of differential graded algebras in these two di-
rections: we prove the existence of both a Cartan-Eilenberg structure, via
the construction of cofibrant minimal models, and a cohomological descent
structure. This allows to interpret the results of Deligne, Beilinson, Morgan

and Navarro within a common homotopical framework.



In the additive context of mixed Hodge complexes we recover Beilinson’s
results. In our study we go a little further and show that the homotopy cat-
egory of mixed Hodge complexes, and the derived category of mixed Hodge
structures are equivalent to a third category whose objects are graded mixed
Hodge structures and whose morphisms are certain homotopy classes, which
are easier to manipulate. In particular, we obtain a description of the mor-
phisms in the homotopy category in terms of morphisms and extensions
of mixed Hodge structures, and recover the results of Carlson [Car80] in
this area. As for the multiplicative analogue, we show that every mixed
Hodge diagram can be represented by a mixed Hodge algebra which is Sul-
livan minimal, and establish a multiplicative version of Beilinson’s Theorem.
This provides an alternative to Morgan’s construction. The main difference
between the two approaches is that Morgan uses ad hoc constructions of
models a la Sullivan, specially designed for mixed Hodge theory, while we
follow the line of Quillen’s model categories or Cartan-Filenberg categories,
in which the main results are expressed in terms of equivalences of homo-
topy categories, and the existence of certain derived functors. In particular,
we obtain not only a description of mixed Hodge diagrams in terms of Sul-
livan minimal algebras, but we also have a description of the morphisms
in the homotopy category in terms of certain homotopy classes, parallel to
the additive case. In addition, our approach generalizes to broader settings,
such as the study of compactificable analytic spaces, for which the Hodge
and weight filtrations can be defined, but do not satisfy the properties of
mixed Hodge theory.

Combining these results with Navarro’s functorial construction of mixed
Hodge diagrams, and using the cohomological descent structure defined via
the Thom-Whitney simple, we obtain a more precise and alternative proof
of that the rational homotopy type, and the rational homotopy groups of
every simply connected complex algebraic variety inherit functorial mixed
Hodge structures. As an application, and extending the Formality Theo-
rem of Deligne-Griffiths-Morgan-Sullivan for compact Kéhler varieties and
the results of Morgan for open smooth varieties, we prove that every sim-
ply connected complex algebraic variety (possibly open and singular) and
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every morphism between such varieties is filtered formal: its rational homo-
topy type is entirely determined by the first term of the spectral sequence
associated with the multiplicative weight filtration.

% 3k 3k

The categories of mixed Hodge complexes and mixed Hodge diagrams of
algebras are examples of subcategories of a category of diagrams with vari-
able vertices, defined as the category of sections of the projection of the
Grothendieck construction. In order to study the homotopy theory of such
diagram categories and, in particular, to build cofibrant minimal models,
one must first prove the existence of cofibrant minimal models for the ver-
tex categories, and second, rectify homotopy commutative morphisms of
diagrams, taking into account that each arrow lives in a different category.
Hence an essential preliminary step is to understand the homotopy theory
of each of the vertex categories, which in our case, are given by filtered and
bifiltered complexes of vector spaces and differential graded algebras, over
the fields Q and C.

The homotopy theory of filtered complexes was first studied by Illusie [I1171],
who defined the derived category of a filtered abelian category in an ad hoc
scheme, studying the localization with respect to the class of weak equiv-
alences defined by those morphisms inducing a quasi-isomorphism at the
graded level. An alternative approach using exact categories is detailed in
the work of Laumon [Lau83]. In certain situations, the filtrations under
study are not well defined, and become a proper invariant only in higher
stages of the associated spectral sequences. This is the case of the mixed
Hodge theory of Deligne, in which the weight filtration of a variety depends
on the choice of a hyperresolution, and is only well defined at the second
stage. This circumstance is somewhat hidden by the degeneration of the
spectral sequences, but it already highlights the interest of studying higher
structures. In the context of rational homotopy, Halperin-Tanré [HT90]
studied the class of weak equivalences defined by morphisms inducing an
isomorphism at a certain stage of the associated spectral sequences and
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proved the existence of minimal models of filtered differential graded alge-
bras with respect to this class of weak equivalences. Likewise, Paranjape
[Par96] studied the existence of higher injective resolutions for filtered com-
plexes of abelian categories.

In this thesis we show how all these homotopical approaches fit within the
common framework of Cartan-Eilenberg categories and provide analogous
results for bifiltered categories. In particular, we prove the existence of cofi-
brant minimal models in each of the above mentioned settings. In order
to transfer these homotopical structures at the level of diagrams, we de-
velop an abstract axiomatic which allows to rectify homotopy commutative
morphisms of diagrams. This leads to the existence of a Cartan-Filenberg
structure on the diagram category, with level-wise weak equivalences and

level-wise cofibrant minimal models.

We have structured our work into five interrelated chapters. We next detail

our contributions regarding each of them.

Chapter 1. Homotopical Algebra and Diagram Categories. We
develop an abstract axiomatic which allows to define level-wise cofibrant
minimal models for a certain type of diagram categories.

Denote by I'C the category of diagrams associated with a functor C : I — Cat
(see Definition 1.3.1). A natural question in homotopy theory is if whether
given compatible homotopical structures on the vertex categories C;, there
exists an induced homotopical structure on I'C with level-wise weak equiv-
alences. For categories of diagrams C! associated with a constant functor
there are partial answers in terms of Quillen model structures: if C is cofi-
brantly generated, or I has a Reedy structure, then the category C! inherits
a level-wise model structure (see for example [Hov99], Theorem 5.2.5). It is
also well known that if C is a Brown category of (co)fibrant objects [Bro73],
then C! inherits a Brown category structure, with weak equivalences and
(co)fibrations defined level-wise. In this thesis we study the transfer of cofi-
brant minimal models in the context of Cartan-Eilenberg structures, and
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provide a positive answer for a certain type of diagram categories, whose
vertex categories are endowed with a functorial path.

A P-category is a category C with a functorial path P : C — C and two
classes of morphisms F and W of fibrations and weak equivalences satisfy-
ing certain axioms close to those of Brown categories of cofibrant objects,
together with a homotopy lifting property with respect to trivial fibrations.
Examples of P-categories are the category of differential graded algebras
over a field, or the category of topological spaces.

We define a notion of cofibrant object via a lifting property with respect to
trivial fibrations: an object C' of a P-category C is called F-cofibrant if any
morphism w : A — B in FNW induces a surjection wy : C(C, A) — C(C, B).
The functorial path defines a notion of homotopy between morphisms of C,
which becomes an equivalence relation for those morphisms whose source
is F-cofibrant. We prove that if C is F-cofibrant, then every weak equiva-
lence w : A — B induces a bijection wy : [C, A] — [C, B] between homotopy
classes of morphisms. In particular, F-cofibrant objects are cofibrant in the
sense of Cartan-Eilenberg categories, with the class S of homotopy equiv-
alences defined by the functorial path, and the class W of weak equivalences.

We say that a P-category has cofibrant models if for any object A of C there
exists an F-cofibrant object C' and a weak equivalence C' — A. Denote by
C£ £ the full subcategory of F-cofibrant objects, and by 7rC£f the quotient
category defined modulo homotopy. We prove:

Theorem 1.2.30. Let (C, P,W,F) be a P-category with cofibrant models.
Then the triple (C,S, W) is a left Cartan-Filenberg category with cofibrant

models in Cc];f' The inclusion induces an equivalence of categories
nCl; — CW .

It is quite immediate, that if the vertices of a diagram category I'C are en-
dowed with compatible P-category structures, then the diagram category
inherits a level-wise P-category structure. However, the existence of cofi-
brant and minimal models of diagrams is not straightforward, and requires
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a theory of rectification of homotopy commutative morphisms. We focus on
diagrams indexed by a finite directed category of binary degree (see 1.3.4).

We call ho-morphisms those maps between diagrams that commute up to
homotopy. In general, ho-morphisms cannot be composed. However, the
level-wise functorial path of I'C defines a notion of homotopy between ho-
morphisms. Denote by I'C., s the full subcategory of I'C defined by level-wise
Fi-cofibrant objects. Its objects, together with the homotopy classes of ho-
morphisms define a category 7"T'C,, I

Define a new class of strong equivalences of I'C as follows. A morphism
of I'C is called a ho-equivalence if it has a homotopy inverse which is a
ho-morphism. The class H defined by the closure by composition of ho-
equivalences satisfies S C ‘H C W, where S denotes the class of homotopy
equivalences defined by the natural path of I'C and W denotes the class of

level-wise weak equivalences. We prove:

Theorem 1.4.11. Let I'C be a diagram category indexed by a directed cat-
egory I as in 1.3.4. Assume that for each i € I, the categories C; are
P-categories with F;-cofibrant models, and that the functors us : C; — C;
are compatible with the P-category structures preserving J;-cofibrant ob-
jects. Then (I'C,H,W) is a left Cartan-FEilenberg category with models in
I'Ceop. The inclusion induces an equivalence of categories

T"TCeop — TCIW ).

In particular, the vertices of a cofibrant model of a given diagram, are cofi-
brant models of its vertices. We prove an analogous result with minimal
models (see Theorem 1.4.12), and a relative version concerning a full sub-
category of a diagram category, closed by weak equivalences (see Lemma
1.4.13), useful in the applications to mixed Hodge theory.

Chapter 2. Filtered Derived Categories. We study filtered complexes
within the framework of Cartan-Eilenberg categories. Although most of the
contents of this chapter are possibly known, there seems to be a generalized
lack of bibliography on the subject. Thus, this chapter is intended as a
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self-contained exposition of the main results on (bi)filtered complexes. This
paves the way in two directions: the study of mixed Hodge complexes of
Chapter 3, and the study of filtered differential graded algebras of Chapter 4.

The category FA of filtered objects (with finite filtrations) of an abelian
category A is additive, but not abelian in general. Consider the category
CT(FA) of bounded below complexes of FA. For r > 0, denote by &, the
class of E,.-quasi-isomorphisms: these are morphisms of filtered complexes
inducing a quasi-isomorphism at the FE,-stage of the associated spectral
sequences. We are interested in the r-derived category defined by

D (FA) := CT(FA)E).

The case r = 0 corresponds to the original filtered derived category, studied
by Hlusie in [I1171]. There is a chain of functors

D (FA) - D (FA) - - - D/ (FA) = --- - DT (FA),

where the rightmost category denotes the localization with respect to quasi-
isomorphisms. Each of these categories keeps less and less information of
the original filtered homotopy type.

In order to deal with the weight filtration, in [Del71b] Deligne introduced
the décalage of a filtered complex, which shifts the associated spectral se-
quence of the original filtered complex by one stage. This defines a functor

Dec: CT(FA) — CT(FA)

which is the identity on morphisms and sends morphisms in &, to mor-
phisms in &.. The décalage does not admit an inverse, but it has a left
adjoint S, defined by a shift of the filtration. Using this adjoint pair and

the relation with the spectral sequences, we prove:
Theorem 2.2.15. Deligne’s décalage induces an equivalence of categories
Dec : D), | (FA) = D, (FA),

for every r > 0.
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The notion of homotopy between morphisms of complexes over an additive
category is defined via a translation functor, and provides the homotopy
category with a triangulated structure. In the filtered setting, we find that
different choices of the filtration of the translation functor, lead to different
notions of r-homotopy, suitable to the study of the r-derived category. The
r-homotopy category is still triangulated, and for each » > 0 we obtain a

class S, of r-homotopy equivalences satisfying S, C &,.

As in the classical case, we address the study of the r-derived category of
filtered objects F.A under the assumption that A has enough injectives. De-
note by C;(FInj.A) the full subcategory of those filtered complexes over in-
jective objects of A whose differential satisfies dF'P C FP*", for allp € Z. In
particular, the induced differential at the s-stage of the associated spectral
sequence is trivial for all s < r. Its objects are called r-injective complexes
and satisfy the classical property of fibrant objects: if I is an r-injective
complex then every E,.-quasi-isomorphism w : K — L induces a bijection

w* : [L, I], — [K, I], between r-homotopy classes of morphisms.

We show that if A is an abelian category with enough injectives, then every
filtered complex K has an r-injective model: this is an r-injective complex
I, together with an E,-quasi-isomorphism K—I (a similar result had been
previously found by Paranjape in [Par96]). As a consequence, we have:

Theorem 2.2.26. Let A be an abelian category with enough injectives,
and let v > 0. The triple (CY(F.A),S,, &) is a (right) Cartan-FEilenberg
category. The inclusion induces an equivalence of categories

K, (FInjA) — D (FA)

between the category of r-injective compleres modulo r-homotopy and the
r-derived category of filtered objects.

Note that for r = 0 we recover a result of Illusie (see [Il171], Cor. V.1.4.7).
Consider the particular case in which A is the category of vector spaces over

a field k. In this case, every object of A is injective and the classical calculus
of derived categories does not provide any additional information. However,
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we can consider minimal models: every complex K is quasi-isomorphic to
its cohomology K— H (K). This gives an equivalence

GT(k) — D' (k)

between the category of non-negatively graded vector spaces and the derived
category of vector spaces over a field k. We provide an analogous result for

(bi)filtered complexes of vector spaces defined over a field as follows.

A filtered complex of CT(Fk) is called E,-minimal if it is an object of
C;,,(Fk). That is, its differential satisfies dFP C FFT"1 for all p € Z.
We show that every F,-quasi-isomorphism between FE,-minimal objects is
an isomorphism, and that every filtered complex has an F,.-minimal model.

As a consequence, we have:

Theorem 2.3.7. Let r > 0. The triple (CT(Fk),S,, &) is a Sullivan
category, and C;"H(Fk) s a full subcategory of minimal models.

Note that for » = 0, the minimal models are those complexes whose differen-
tial is trivial at the graded level. This follows the pattern of the non-filtered
case, in which the cohomology of a complex with the trivial differential, is
a minimal model of the complex. The above result can be adapted to com-
plexes having multiple filtrations. For the sake of simplicity and given our
interests in mixed Hodge theory, in this thesis we only present the bifiltered
case with respect to the classes & and & (see Theorem 2.4.12).

Chapter 3. Mixed Hodge Complexes. We study the homotopy theory
of mixed Hodge complexes within the framework of Cartan-Eilenberg cate-

gories, via the construction of cofibrant minimal models.

A mized Hodge complex over Q consists in a filtered complex (Kgq, W) over
Q, a bifiltered complex (K¢, W, F') over C, together with a finite string of
morphisms ¢ : (Kg, W) ® C <— (K¢, W) satistying the following axioms:
(MHCy) The comparison map ¢ is a string of E}"-quasi-isomorphisms.
(MHC,) For all p € Z, the filtered complex (GTZVK(C, F) is d-strict.
(MHC3) The filtration F' induced on H "(GTZV Kc¢), defines a pure Hodge
structure of weight p+n on H"(GTXVKQ), for all n, and all p € Z.
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The filtration W is known as the weight filtration, while F' is called the
Hodge filtration. A shift on the induced weight filtration endows the n-th
cohomology of every mixed Hodge complex with mixed Hodge structures.
Denote by MHC the category of mixed Hodge complexes over Q.

To study the homotopy theory of mixed Hodge complexes it is more con-
venient to work with the category AHC of absolute Hodge complexes as
introduced by Beilinson. The main advantage is that in this case, the spec-
tral sequences associated with both W and F' degenerate at the first stage
and the cohomology is a graded mixed Hodge structure. We have functors

MHC 2% AHC . G+(MHS),

where Dec" is the functor induced by décalage of the weight filtration.

Since the category of mixed Hodge structures is abelian, every graded mixed
Hodge structure, and more generally, every complex of mixed Hodge struc-
tures is an absolute Hodge complex. We have a chain of full subcategories

GT(MHS) — C*(MHS) — AHC.

The category of mixed (resp. absolute) Hodge complexes is a category of
diagrams, whose vertices are filtered and bifiltered complexes. Hence the
construction of minimal models involves a rectification of homotopy com-
mutative morphisms of diagrams. We show that for every absolute Hodge
complex is conected with its cohomology by a ho-morphism which is a level-
wise quasi-isomorphism. This can be seen as the formality result for objects
already stated by Beilinson in [Bei86]|. However, morphisms are not formal.

Denote by "G+ (MHS) the category whose objects are non-negatively graded
mixed Hodge structures and whose morphisms are homotopy classes of ho-
morphisms. Denote by H the class of morphisms of absolute Hodge com-
plexes that are homotopy equivalences as ho-morphisms, and by Q the class
of quasi-isomorphisms of AHC. We prove:

Theorem 3.3.12. The triple (AHC,H,Q) is a Sullivan category, and
G (MHS) is a full subcategory of minimal models. The inclusion induces
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an equivalence of categories
"G (MHS) =5 Ho (AHC) := AHC[Q 1]

Note that although every absolute Hodge complex is quasi-isomorphic to its
cohomology (which has trivial differentials), the full subcategory of minimal
models has non-trivial homotopies. This reflects the fact that mixed Hodge
structures have non-trivial extensions.

The above result allows to endow the category MHC with a Sullivan cate-
gory structure via Deligne’s décalage (see Theorem 3.3.13). We prove:

Theorem 3.3.14. Deligne’s décalage induces an equivalence of categories
Dec”V : Ho(MHC) — Ho(AHC).

Using the equivalence of categories of Theorem 3.3.12 we recover Beilinson’s
result (see [Bei86], Thm. 3.2), providing an equivalence of categories

D' (MHS) = Ho (AHC)

between the derived category of mixed Hodge structures and the homotopy
category of absolute Hodge complexes. As an application of the above
results, we read off the morphisms in the homotopy category of absolute and
Hodge complexes, in terms of morphisms and extensions of mixed Hodge
structures.

Theorem 3.3.17. Let K and L be absolute Hodge complexes. Then
Ho(AHC)(K, L) = P (Homwus(H"K, H"L) ® Extyys(H"K, H"'L)).

n
In particular, we recover the results of Carlson [Car80] and Beilinson
[Bei86] on extensions of mixed Hodge structures.

Chapter 4. Filtrations in Rational Homotopy. The category of fil-
tered differential graded algebras (dga’s for short) over a field k of charac-
teristic 0 does not admit a Quillen model structure. However, the existence
of filtered minimal models allows to define a homotopy theory in a non-
axiomatic conceptual framework, as done by Halperin-Tanré [HT90]. We
develop an alternative construction of filtered minimal models, which is an
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adaptation to the classical construction of Sullivan minimal models of dga’s
presented in [GM81]. The main advantage of this alternative method is
that it is easily generalizable to differential algebras having multiple filtra-
tions. Then, we study the homotopy theory of filtered dga’s within the
axiomatic framework of Cartan-Eilenberg categories.

As in the setting of filtered complexes, denote by &, the class of E,.-quasi-
isomorphisms of filtered dga’s, and let

Ho, (FDGA (k)) := FDGA (K)[£."!]

denote the corresponding localized category. The localization with respect
to & is the ordinary filtered category. There is a chain of functors

Hop (FDGA(k)) — Ho, (FDGA (k) — - - - — Ho (FDGA (k))

where the rightmost category denotes the localization with respect to the
class of quasi-isomorphisms. The main invariant for an object of Ho is the
cohomology algebra H(A). In contrast, in Ho, we have a family of invariants
Es(A) with s > r, where E5(A) is an s-bigraded dga, the main invariant
being F,41(A). Analogously to the theory of filtered complexes, we prove:

Theorem 4.3.7. Deligne’s décalage induces an equivalence of categories
Dec : Ho,;1 (FDGA(k)) — Ho, (FDGA(k)) .
for every r > 0.

To study the homotopy theory of filtered dga’s we introduce a notion of
r-homotopy via a weighted functorial r-path object. This defines a class S,
of r-homotopy equivalences satisfying S, C &, and endows the category of
filtered dga’s with a P-category structure, for each r > 0.

Define a generalized notion of Sullivan minimal dga as follows. A filtered
KS-extension of degree n and weight p of an augmented filtered dga (A, d, F)
is a filtered dga A ®¢ A(V'), where V is a graded vector space of degree n
and pure weight p, and £ : V — FPA is a linear map of degree 1 satisfying
d§ = 0. The filtration on A ®¢ A(V) is defined by multiplicative extension.
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Such an extension is said to be E,.-minimal if
(V) C FPIm(AT . AT) + Fprtlgl

where A' denotes the kernel of the augmentation. Define an E,-minimal
dga as the colimit of a sequence of F,-minimal extensions, starting from the
base field. In particular, every E,-minimal dga A is free and augmented,
and satisfies

d(FPA) C FPTT(AT . AT) 4 FPirTig,
Note that for the trivial filtration, the notion of Ey-minimal dga coincides
with the notion of a Sullivan minimal dga.

Every E,-minimal dga M is E,-cofibrant: the map w, : [A, M|, — [B, M],
induced by any E,-quasi-isomorphism w : A — B is bijective. Furthermore,
any F,-quasi-isomorphism between E,.-minimal dga’s is an isomorphism.

An E.-minimal model of a filtered dga A is an E,.-minimal dga M, together
with an E,-quasi-isomorphism M — A. We prove the existence of such
models for F,-1-connected dga’s (these are filtered dga’s whose E,-stage is
a 1-connected bigraded dga).

Theorem 4.3.27 (cf. [HT90]). Let r > 0. Every E,-1-connected filtered

dga has an E,.-minimal model.

We prove an analogous result for bifiltered dga’s (see Theorem 4.4.9). The
homotopy theory of filtered dga’s is summarized in the following theorem.

Theorem 4.3.28. Let v > 0. The triple (FDGA'(k),S,,&,) is a Sullivan
category. The inclusion induces an equivalence of categories

7, (Er-min' (k)) — Ho, (FDGA'(k)) .

between the quotient category of 1-connected E,.-minimal dga’s modulo r-
homotopy equivalence, and the localized category of E,-1-connected filtered

dga’s with respect to the class of Ey-quasi-isomorphisms.

The Sullivan category structure allows to define the E,.-homotopy of a fil-
tered dga via the derived functor of the complex of indecomposables ) of
augmented filtered dga’s, parallel to the classical setting.



xvii

Theorem 4.3.47. Let r > 0. The functor Q : FDGA'(k), — C*(Fk)
admits a left derived functor

L,Q : Ho, (FDGA'(k),) — D;"(Fk).
The composition of functors
Ho, (FDGA!(k)) <= Ho, (FDGA! (k),) =% D (Fk) 25 CF,, (Fk)
defines a functor
g, : Ho, (FDGA!(k)) — C;", ; (Fk)

which associates to every object A, the E.-minimal complex g, (A) = Q(Ma),
where M4 — A is an E.-minimal model of A.

The E,-minimal model of a filtered dga is related to the bigraded minimal
model of the FE,-stage of its associated spectral sequence. This gives a
spectral sequence relating the E,-homotopy 7g, (A) of a filtered dga A with
its classical homotopy 7(A). Likewise, we have a notion of filtered formality,
which generalizes the classical notion of formality. Let r > 0. A filtered dga
(A,d, F) is said to be E,.-formal if there is an isomorphism

(A,d, F) <= (Ery1(A),dri1, F)

in the homotopy category Ho,(FDGA (k)), where the filtration F on E,;(A)
is induced by the filtering degree. In particular, the Ey-formality of the Dol-
beault algebra of forms of a complex manifold coincides with the notion of
Dolbeault formality introduced by Neisendorfer-Taylor in [NT78|.

Chapter 5. Mixed Hodge Theory and Rational Homotopy. In this
last chapter we bring together the results of the previous chapters to study
the homotopy theory of mixed Hodge diagrams, and their cohomological
descent structure. We then provide applications to algebraic geometry.

The category MHD of mixed Hodge diagrams of dga’s is defined analo-
gously to that of mixed Hodge complexes, by replacing every complex by
a dga. As in the additive case, to study the homotopy category of mixed
Hodge diagrams it is more convenient to work with the shifted version AHD
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of absolute Hodge diagrams. Deligne’s décalage with respect to the weight
filtration induces a functor

Dec” : MHD — AHD.

The multiplicative analogue of a complex of mixed Hodge structures leads
to the notion of mized Hodge dga: this is a dga (A, d) such that each A™ is
endowed with a mixed Hodge structure, and the differentials are morphisms
of mixed Hodge structures. Denote by MHDGA the category of mixed
Hodge dga’s over Q. The cohomology of every absolute Hodge diagram is
a mixed Hodge dga with trivial differential. We have a functor

AHD -5 MHDGA.

Conversely, since the category of mixed Hodge structures is abelian, every
mixed Hodge dga is an absolute Hodge diagram. There is an inclusion
functor

1 : MHDGA — AHD.

We show that every 1-connected absolute Hodge diagram is quasi-isomorphic
to a mixed Hodge dga which is Sullivan minimal. More precisely, define a
mized Hodge Sullivan minimal dga as a Sullivan minimal dga M = (AV,d)
over Q such that each V" is endowed with a mixed Hodge structure, and
the differentials are compatible with the filtrations. In particular, the mixed
Hodge structures on V", define a mixed Hodge structure on A™. Hence every
mixed Hodge Sullivan minimal dga is a mixed Hodge dga. We prove:

Theorem 5.1.17. For every 1-connected absolute Hodge diagram A, there
exists a 1-connected mixzed Hodge Sullivan minimal dga M, together with a

ho-morphism p : M ~~ A, which is a quasi-isomorphism.

Combining this result with the homotopy theory of diagram categories of
Chapter 1 we prove the analogue of Theorem 3.3.12, which can be thought
as a multiplicative version of Beilinson’s Theorem.

Theorem 5.1.19. The triple (AHD!, H, Q) is a Sullivan category. The
category of mized Hodge Sullivan minimal dga’s is a full subcategory of

minimal models. The inclusion induces an equivalence of categories

7"MHDGA! . — AHD![Q7!]

min
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between the category whose objects are 1-connected mized Hodge Sullivan
minimal dga’s over Q and whose morphisms are classes of ho-morphisms
modulo homotopy equivalence and the localized category of 1-connected ab-

solute Hodge diagrams with respect to quasi-isomorphisms.

The above result allows to endow the category of mixed Hodge diagrams
with a Sullivan category structure via Deligne’s décalage. We prove:

Theorem 5.1.21. Deligne’s décalage induces an equivalence of categories
Dec" : Ho (MHD') = Ho (AHD').

As an application we define the homotopy of a mixed Hodge diagram via

the derived functor of indecomposables.

Theorem 5.1.23. The functor @ admits a left derived functor
LQ : Ho (MHD,) — Ho (MHC).
The composition of functors
Ho (MHD') <~ Ho (MHD!) X% Ho (MHC) 2<%, G+(MHS)

defines a functor
7 : Ho (MHD') — G™(MHS)
which associates to every 1-connected mired Hodge diagram A, the graded

mized Hodge structure m(A) = Q(Ma), where My ~ A is a minimal model
of A.

The rational part of the graded mixed Hodge structure associated with a
mixed Hodge diagram coincides with the classical homotopy of the rational
part of the original diagram. As a consequence, the homotopy groups of the
rational part of every 1-connected mixed Hodge diagram are endowed with

functorial mixed Hodge structures.

Deligne’s construction of functorial mixed Hodge structures can be restated
as having a functor

Hdg : V*(C) — MHC
sending every smooth compactification U C X of algebraic varieties over C
with D = X — U a normal crossings divisor, to a mixed Hodge complex,
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which computes the cohomology of U (see Theorem 5.3.3). Furthermore,
the object Hdg(X,U) € Ho(MHC) does not depend on X and is functorial
in U. Inspired by the work of Deligne and Morgan and with the objective
to extend Morgan’s result to singular varieties, Navarro [Nav87] defined a
multiplicative version of Deligne’s functor

Hdg : V*(C) — MHD

with values in the category of mixed Hodge diagrams of dga’s (see Theo-
rem 5.3.6). Both functors are known to extend to functors defined over all
complex algebraic varieties. We provide a proof via the extension criterion
of [GNO2], which is based on the assumption that the target category is
a cohomological descent category. This is essentially a category D together
with a saturated class W of weak equivalences and a simple functor s send-
ing every cubical codiagram of D to an object of D, and satisfying certain
conditions analogous to those of the total complex of a double complex.

The primary example of a cohomological descent structure is given by the
category of complexes CT(A) of an abelian category A with the class of
quasi-isomorphisms and the simple functor s given by the total complez.
The choice of certain filtrations originally introduced by Deligne leads to a
simple sp for cubical codiagrams of mixed Hodge diagrams, defined level-
wise. We restate the key Theorem 8.1.15 of Deligne [Del74b] as:

Theorem 5.2.20. The category of mixed Hodge complexes MHC with the
class Q of quasi-isomorphisms and the simple functor sp is a cohomological
descent category.

An analogous result in the context of simplicial descent categories appears
in [Rod12b]. Following Deligne’s work, the main application of this result
is the extension of Deligne’s functor to possibly singular varieties.

Theorem 5.3.4. There exists an essentially unique ®-rectified functor
Hdg' : Sch(C) — Ho (MHC)

extending the functor Hdg : V% — MHC of Theorem 5.3.3 such that:
(1) Hdg' satisfies the descent property (D) of Theorem 5.2.7.
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(2) The cohomology H(Hdg' (X)) is the mized Hodge structure of the coho-
mology of X.

The Thom Whitney simple for strict cosimplicial dga’s of Navarro [Nav87]
adapts to the cubical setting to provide the category DGA(k) of dga’s with
a cohomological descent structure. The definition of certain filtrations on
the Thom-Whitney simple leads to the construction of a simple sy for
cubical codiagrams of mixed Hodge diagrams, defined level-wise. We have a
quasi-isomorphism of simples sty — sp. Analogously to the additive case:

Theorem 5.2.30. The category of mixed Hodge diagrams MHD with the
class Q of quasi-isomorphisms and the Thom-Whitney simple functor sty

18 a cohomological descent category.

Following Navarros’s work, the main application of this result is the exten-
sion of Navarro’s functor to possibly singular varieties.

Theorem 5.3.7. There exists an essentially unique ®-rectified functor
Hdg' : Sch(C) — Ho (MHD)
extending the functor Hdg : V(% — MHD of Theorem 5.3.6 such that:

(1) Hdg' satisfies the descent property (D) of Theorem 5.2.7.

(2) The rational part of Hdg'(X) is Ax(Q) = Agy(X™).

(8) The cohomology H(Hdg' (X)) is the mixed Hodge structure of the coho-
mology of X.

As a consequence of Theorems 5.3.7 and 5.1.19, we recover the result of
[Nav87], stating that the minimal model of the rational homotopy type of
every simply connected complex algebraic variety is equipped with functo-
rial mixed Hodge structures.

Furthermore, we prove the following formality theorem, which extends the
results of [Mor78] concerning the filtered formality of the rational homotopy
type of smooth complex varieties.

Theorem 5.3.9. The rational homotopy type of every morphism of simply
connected complex algebraic varieties is a formal consequence of the first

term of the spectral sequence associated with the weight filtration, that is:
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(1) If X is a simply connected complex algebraic variety, there is a chain
of quasi-isomorphisms

(Ax(Q),d) +— (Mx,d) — (E\(Ax(Q), W), dy),

where (Mx,d) is a Sullivan minimal dga over Q and Ax(Q) is the de
Rham algebra of X over Q.

(2) If f : X — Y is a morphism of simply connected complex algebraic
varieties, there exists a diagram

(Ax(Q).d) = (Mx,d) — (E1(Ax(Q), W), di)
(Ay(Q),d) = (My,d) — (Ei(Ay(Q), W), d1)
which commutes up to homotopy.
These results can be summarized as having an isomorphism of functors
Ug o Hdg' = Fy o (Ug o Hdg') : Sch! (C) — Hoy (FDGA(Q)),

where Ug denotes the forgetful functor sending every mixed Hodge diagram
A to its rational part (Ag, W).



CHAPTER 1

Homotopical Algebra and Diagram Categories

One of the main objectives of abstract Homotopy Theory is to address the
problem of choosing a certain class of maps (called weak equivalences) in a
category, and studying the passage to the homotopy category: this is the lo-
calized category obtained by making weak equivalences into isomorphisms.
Originally inspired on the category of topological spaces, this is a problem
of a very general nature, and central in many problems of algebraic geom-
etry and topology. For example, the weak equivalences could be homology
isomorphisms or homotopy equivalences in a certain algebraic setting, weak
homotopy equivalences of topological spaces, or birational equivalences of
algebraic varieties.

By formally inverting weak equivalences, one can always obtain the homo-
topy category, but in general, the resulting category does not behave in a
controlled way. For example, the morphisms between two objects in the
localized category might not even be a set. In addition, the understanding
of the maps in the homotopy category can prove to be very difficult.

Quillen’s model categories [Qui67] solve this problem: the verification of
a set of axioms satisfied by three distinguished classes of morphisms (weak
equivalences, fibrations and cofibrations) gives a reasonably general context
in which it is possible to study homotopy theory. The axioms for Quillen’s
model categories are very powerful and they provide, not only a precise
description of the maps in the homotopy category, but also other higher
homotopical structures (such as the existence of homotopy (co)limits or
mapping spaces). As a counterpart, in some cases it can be really hard
to prove that a particular category is a model category. In addition, there
exist interesting categories from the homotopical point of view, which do
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not satisfy all the axioms. Examples are the category of filtered complexes
of an abelian category or the category of filtered dga’s, both considered in
this work.

A solution proposed by several authors consists in replacing the axioms
of Quillen by a left- (or right-) handed version. This is the case of the
categories of (co)fibrant objects introduced by Brown in [Bro73], or their
stronger versions, such as the (co)fibration categories defined by Baues in
[Bau89], or the Anderson-Brown-Cisinski categories presented in [RBO7].
These alternatives are very close to Quillen’s formulation.

The formalism of Cartan-Eilenberg categories was introduced in [GINPR10]
by Guillén-Navarro-Pascual-Roig, as an alternative approach to model cat-
egories. Based on the initial data of two classes of morphisms (strong and
weak equivalences), they define cofibrant objects and assume the existence
of enough cofibrant models of objects. This provides the sufficient structure
to study the homotopy category. An important observation is that in this
setting, one can consider minimal models, as a particular case of cofibrant
models, parallel to the theory of Sullivan [Sul77].

A desirable property of a homotopy theory is that its axiomatic is transferred
to diagram categories, with level-wise weak equivalences. For categories of
diagrams C! associated with a constant functor there are partial answers in
terms of Quillen model structures: if C is cofibrantly generated, or I has a
Reedy structure, then the category C’ inherits a level-wise model structure
(see for example [Hov99], Theorem 5.2.5). It is also well known that if C
is a Brown category of (co)fibrant objects, then C’ inherits a Brown cate-
gory structure, with weak equivalences and (co)fibrations defined level-wise.

In this chapter we study the homotopy theory of a certain type of dia-
gram categories with vertices in variable categories within the axiomatic
framework of Cartan-Eilenberg categories. We show that under certain hy-
pothesis, the cofibrant minimal models of the vertices of a diagram define a



cofibrant minimal model of the diagram. Hence the Cartan-Eilenberg struc-
ture transfers to diagram categories with level-wise weak equivalences and
level-wise models.

In Section 2 we introduce P-categories. These are categories with a func-
torial path and two distinguished classes of morphisms, called fibrations
and weak equivalences, satisfying a list of axioms similar to those of Brown
categories of fibrant objects. We define a notion of cofibrant object in a
P-category by means of a lifting property with respect to trivial fibrations,
and prove that every P-category with enough cofibrant models is a Cartan-
Eilenberg category with the same weak equivalences. An analogous result

is obtained with cofibrant minimal models.

In Section 3 we study the category of diagrams associated with a functor
whose target is the category of categories. Its objects are diagrams with
vertices lying in variable categories. A diagram category C! is a particular
case for which the underlying functor is constant. It is quite immediate,
that if the vertex categories are P-categories satisfying certain compatibil-
ity conditions, then the diagram category inherits a level-wise P-category
structure. However, the existence of cofibrant and minimal models of dia-
grams is not straightforward, and requires a careful study of morphisms of
diagrams.

In Section 4 we introduce a wider class of morphisms of diagrams, which
make squares commute up to homotopy (we call them ho-morphisms for
short), and show that if the index category of the diagram category is a di-
rected category satisfying certain conditions, then every ho-morphism can
be factored into a composition of morphisms in a certain localized category.
In this way we can rectify ho-morphisms.

In the last section we use the rectification of ho-morphisms to prove that if
the vertices of a diagram category are P-categories with cofibrant (minimal)
models, then the diagram category is a Cartan-Eilenberg category with
level-wise weak equivalences and level-wise cofibrant (minimal) models.
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1.1. PRELIMINARIES

In this section we provide the necessary background on homotopical algebra.
We first recall some facts about localization of categories. Then, we give a
basic overview of some of the distinct homotopical approaches existing in
the literature: Quillen model categories, Brown categories of fibrant objects
and Cartan-Eilenberg categories. We do not claim originality for any result
stated in this preliminary section.

Localization of Categories. We collect, for further reference, some well-
known facts about localization of categories.

Definition 1.1.1. A category with weak equivalences is a pair (C,V) where
C is a category and W is a class of morphisms of C, called weak equivalences,
which contains all isomorphisms of C and is stable by composition.

Definition 1.1.2. Let (C,W) be a category with weak equivalences. A
localization of C with respect to W is a category C[W™!], together with a
functor v : C — C[W~!] such that:

(i) The functor v sends all maps in W to isomorphisms.

(ii) For any category D and any functor F' : C — D sending maps in W
to isomorphisms, there exists a unique functor F’ : C[W~!] — D such
that F' oy = F.

The second condition implies that, when it exists, the localization is uniquely
defined up to isomorphism. The localization exists if VW is small and, in
general, it always exists in a higher universe.

Definition 1.1.3. A class of weak equivalences W of C is saturated if a
morphism f of C is in W whenever ~(f) is an isomorphism. The saturation
W of W is the pre-image by 7 of the isomorphisms in C)V™1], and it is the
smallest saturated class of morphisms of C which contains W.

Some authors assume that the class W satisfies the usual two out of three
property, or the stronger two out of six property, in which case, the pair
(C,W) is said to be a homotopical category. We do not assume that W
satisfies these conditions, but in any case, the saturation W always does.
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Definition 1.1.4. A class of morphisms W of a category C satisfies the two
out of three property if for all composable f, g of C we have that if two of
the three morphisms f, g and gf are in W, then so is the third.

We next describe the localization of categories using the Dwyer-Kan ham-
mocks introduced in [DK80].

Definition 1.1.5. Let (C, W) be a category with weak equivalences and let
X and Y be objects of C. A W-zigzag f from X to Y is a finite sequence
of morphisms of C, going in either direction, between X and Y,

X ) ° ° Y,

where the arrows going to the left are weak equivalences. Since each W-
zigzag is a diagram, it has a type, given by its index category.

Definition 1.1.6. A hammock between two W-zigzags f and g of the same
type is given by a commutative diagram in C

X1 ——— X e Xip
/X21 — X Xop
/ \

X z z 2 Y
N\ 7
Xn-1,1 Xn-12 s —— Xp-1p
X1 Xn,2 Xn’p
such that:

(i) in each column of arrows, all horizontal maps go in the same direction,
and if they go to the left they are in W (any row is a W-zigzag),
(ii) in each row of arrows, all vertical maps go in the same direction, and
they are arbitrary maps in C,
(iii) the top W-zigzag is f and the bottom is g.
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We next define an equivalence relation between W-zigzags.

Definition 1.1.7. Two W-zigzags f and g are related if there exist two
Wh-zigzags [’ and ¢’ of the same type, obtained from f and g by adding
identities, together a hammock H between f’ and ¢'.

Given a category with weak equivalences (C, W), consider the category Cyy
whose objects are those of C and whose morphisms are equivalence classes
of W-zigzags, with the composition defined by juxtaposition of W-zigzags.

Theorem 1.1.8 ([DHKSO04], 33.10.). The category Cyy, together with the
obvious functor C — Cyy is a solution to the universal problem of the localized
category CIW™1].

In the cited reference there is a general hypothesis concerning the class W,

which is not necessary for this result.

In absence of additional hypothesis on the pair (C, W), working with Cyy
is almost hopeless. However, there are some situations in which an easier
description of the morphisms of a localized category is possible. An example

is provided by categories with a congruence.

Definition 1.1.9. A congruence ~ on a category C is an equivalence re-
lation between morphisms of C, which is compatible with the composi-
tion. This defines an associated class of morphisms S of C: a morphism
f: X =Y of Cisin § if and only if there exists a morphism g : Y — X of
C such that fg ~ 1y and gf ~ 1x.

The pair (C,S) is a category with weak equivalences, and we can consider
the localization v : C — C[S™1] of C with respect to S. On the other hand,
we have the quotient category (C/ ~), whose objects are those of C, and
whose morphisms are given by the equivalence classes of morphisms defined
by the congruence.

Proposition 1.1.10 ([GNPR10], Prop. 1.3.3). Let ~ be a congruence on
a category C and let S be its associated class of equivalences. Assume that S
and ~ are compatible, that is, f ~ g implies vf = ~vg. Then the categories
(C/ ~) and C[S™Y] are canonically isomorphic.
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A particular case in which the congruence is compatible with its associated
class, occurs when the congruence is transitively generated by a cylinder or
a path object, as we shall later see.

We next introduce the relative localization of a subcategory. This will be
necessary in order to express the main results of Cartan-Eilenberg cate-

gories.

Definition 1.1.11. Let (C, W) be a category with weak equivalences, and
let D be a full subcategory of C. The relative localization of D with respect to
W, denoted by DW~1,C], is the full subcategory of C[WW~1] whose objects
are those of D.

In general, the category D[W~!, (] differs from the localization DW~1]. In
particular, the relative localization need not be a localized category.

In a variety of examples that we shall consider, the relative localization is
defined with respect to the class of morphisms associated with a compatible
congruence. Then the relative localization is a quotient category.

Corollary 1.1.12. Let (C,~) be a category with a congruence satisfying the
hypothesis of Proposition 1.1.10. For any full subcategory D of C, there is
an equivalence of categories

(D/ ~) = DIs™'.¢],
where ~ is the congruence induced on D by that of C.

PROOF. The quotient category (D/ ~) is a full subcategory of (C/ ~).
By Proposition 1.1.10 any pair of objects A, B of D we have

D[S™1,CI(A, B) = CISTY(A, B) = (C/ ~)(A, B) = (D/ ~)(A, B).
O

Quillen Model Categories. We provide a basic introduction to Quillen’s
model categories. We refer to [Hov99] for details.
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Definition 1.1.13. A model category is a category C together with three
distinguished classes of morphisms W, Cof and Fib, called weak equiva-
lences, cofibrations and fibrations respectively. A (co)fibration is said to
be trivial if it is also a weak equivalence. The following axioms must be
satisfied:

(MC;) The category C has finite limits and colimits.

(MCgz) The class W satisfies the two out of three property.

(MCj3) The three classes of maps W, Cof and Fib are closed under re-
tracts: consider a commutative diagram

1a
N

A—C —
/| ’
B—D——

\\/
1B

W<~—"
~

If ¢ is a weak equivalence, cofibration or fibration, then so is f.
(MCy) Given a solid diagram

A—F
7
1J/ Y
/

X—B
where 7 is a cofibration, p is a fibration, and where either i or p is
trivial, the dotted arrow exists, making the triangles commute.

(MC5) Any map f of C has two factorizations:

(1) f = qi, where i is a trivial cofibration and ¢ is a fibration, and
(2) f = pj, where j is a cofibration and p is a trivial fibration.

If C is a model category, denote by 0 and 1 the initial and final objects.

Definition 1.1.14. An object A of a model category C is called cofibrant
if the map 0 — A is a cofibration. It is called fibrant if the map A — 1 is a
fibration.

Denote by C. (resp. Cy) the full subcategory of C of cofibrant (resp. fibrant)
objects of C. Denote by C.r the subcategory of fibrant and cofibrant objects.
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We next remark some properties of model categories, which follow directly

from the axioms.

(1) Cofibrations and trivial cofibrations are closed under composition and
push-out. Every isomorphism is a cofibration.

(2) Fibrations and trivial fibrations are closed under composition and pull-
back. Every isomorphism is a fibration. In particular, the product of
fibrant objects is fibrant.

(3) The lifting property (MCy) implies that two of the three distinguished
classes of maps determine the third.

(4) The axioms for a model category are self dual, in the sense that if
C is a model category, then so is C°?, and the roles of fibrations and

cofibrations are interchanged.

Example 1.1.15 (see [DS95], Ex. 3.5). The category Top of topological
spaces has a model category structure, where a map is:

(i) a weak equivalence: if it is a weak homotopy equivalence,
(ii) a fibration: if it is a Serre fibration (see Definition 1.2.35).

Every object is fibrant, and the cofibrant objects are exactly those spaces
which are retracts of generalized CW-complexes.

Example 1.1.16 (see [DS95], Ex. 3.7). The category CT(R) of bounded
below cochain complexes over a ring R has a model structure, where:

(i) weak equivalences are quasi-isomorphisms of complexes,
(ii) cofibrations are level-wise monomorphisms with level-wise projective
cokernels, and

(iii) fibrations are level-wise epimorphisms.

Example 1.1.17 (see [BGT76|, Thm. 4.3). The category DGA(k) of com-
mutative differential graded algebras over a field k of characteristic zero has
the structure of a model category, where:

(i) weak equivalences are quasi-isomorphisms,

(ii) fibrations are level-wise surjections.

All dga’s are fibrant, and all Sullivan dga’s are cofibrant.
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The axioms for a model category allow to define a cylinder (and dually, a
path) object, giving rise to the notion of left- (and right-) homotopies of

morphisms.

Definition 1.1.18. Let C be a model category. A cylinder of A € C is an
object Cyl(A) of C, giving a factorization of the folding map

ALUA 2 Cyl(A) 24 4,
such that ¢4 is a cofibration and p4 is a trivial fibration.

Given a cylinder object Cyl(A), we have maps %, Y : A — Cyl(A), defined
by Lg =14 0 ji, where jg,j1 : A = ALl A are the natural inclusions.

Definition 1.1.19. Two maps f,g : A — B are called left-homotopic if
there exists a map h : Cyl(A) — B such that h9 = f and hily = g.

If A is a cofibrant object in a model category C, left-homotopy of morphisms
defines an equivalence relation on C(A, X). Dually, one defines a path ob-
ject to be a factorization of the diagonal map. This gives the corresponding
notion of right-homotopy, and it induces an equivalence relation on C(A, X)
for every fibrant object X.

If A is cofibrant and X is fibrant, the left and right homotopy relations on
C(A, X) agree. Denote by 7C.¢ the quotient category of C.; defined by this

equivalence relation.

The factorization axiom (MCj) implies that given an object X of C, one can
always find a cofibrant replacement: this is a cofibrant object X, together
with a weak equivalence X, — X. Dually, a fibrant replacement for X is a
fibrant object X, together with a weak equivalence X — X ;. Animportant
consequence is the following:

Theorem 1.1.20 ([Qui67], Thm. 1). There is an equivalence of categories
7Cep — Ho(C) = CW™1].

Observe that in a model category, the weak equivalences carry the funda-
mental homotopy theoretic information, while the cofibrations, fibrations,
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and the axioms they satisfy serve as tools for obtaining the desired con-
structions. This suggests that in defining a model category structure on
a category, it is most important to focus on choosing the class of weak

equivalences.

Brown Categories of Fibrant Objects. Introducing the notion of cat-
egory of fibrant objects, Brown showed in [Bro73], how one can obtain a
large part of Quillen’s theory by using fibrant objects only.

Let C be a category with finite products and a final object e. Assume that
C has two distinguished classes of maps W and F called weak equivalences
and fibrations respectively. A map will be called a trivial fibration if it is
both a weak equivalence and a fibration.

Definition 1.1.21. The triple (C,W,F) is a Brown category of fibrant
objects if the following axioms are satisfied:

(BF1) The classes W and F are closed under composition and contain all
isomorphisms. The class W satisfies the two out of three property.
The map A — e is a fibration for every object A of C.

(BF3) Given a diagram A = C « B, where v is a fibration, the fibre
product A x¢ B exists, and the projection 7 : A xg B — Ais a
fibration. If v is a trivial fibration, then 7 is so.

(BF3) For every object A of C there exists a path object (not necessarily
functorial in A). This is a factorization of the diagonal map

Ay P g
where ¢4 is a weak equivalence, and (6%,8%) : P(A) - Ax Ais a
fibration. The maps 69 and 0 are necessarily trivial fibrations.

The basic result of Brown categories is the following.

Lemma 1.1.22 ([Bro73], Factorization Lemma). IfC is a Brown category
of fibrant objects, any morphism f: A — B in C factors as f = qyiy, where
Ly is Tight inverse to a trivial fibration and qy is a fibration. In particular,

the map vy is a weak equivalence.
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In Brown’s categories there is no notion of fibrant replacement, since every
object is already assumed to be fibrant. Therefore there is no construction
of models involved. The counterpart is that the resulting description of the
homotopy category might not be as satisfactory as in the case of Quillen’s
model categories. If C is a Quillen model category then C; is a Brown cat-
egory of fibrant objects.

To study the localization of C with respect to weak equivalences, introduce
a relation on C as follows: let f,g : A — B. Then f ~ g if and only if
there exists a weak equivalence t : A’ — A such that ft ~ gt, that is, there
exists a map h : A — P(B) such that §%h = ft and d5h = gt. This is an
equivalence relation, which is compatible with the composition. Denote by

mC the quotient category defined by this equivalence relation.

Given objects A, B of C, define a new set
[A, B] :=limnC(A’, B),
—
where the direct limit is taken over the weak equivalences t : A’ — A.

Theorem 1.1.23 ([Bro73|, Thm. 1). Let C be a Brown category of fibrant
objects, and let A and B be objects of C. There is a canonical isomorphism

Ho(C)(A, B) := C]W™'](A, B) = [A, B].

In general, the sets [A, B] defined above do not coincide with the usual

homotopy classes of maps. This is exhibited in the following example.

Example 1.1.24. The category of complexes of abelian groups is a category
of fibrant objects. Consider Z/Zg and Z as a complexes concentrated in
degree 0 and with trivial differential. It is a well known fact that

Howyo(z) (Z/Zs, Z[1])) = Ext!(Z/Zs, Z) # 0.

By the other hand, the homotopy classes of maps from Z/Zy to Z[1] are
trivial, since the only map from (Z/Zs — 0) to (0 — Z) is the 0 map.
Therefore in this case, Theorem 1.1.23 provides no information about the
homotopy category.
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In [Bau89], Baues introduced another method of generating a fibration
structure on a category. By adding an axiom of existence of cofibrant models
to Brown’s categories, he defined fibration categories, which allow to handle
situations in which objects are not necessarily fibrant. The axioms for Baues
fibration categories are very similar to those of Anderson-Brown-Cisinski fi-
bration categories, the latter including conditions relative to limits, such
as closure of fibrations under transfinite compositions. The motivation be-
hind these additional axioms lies in the construction of homotopy colimits
indexed by small diagrams. We refer to [Bau89], [Cis10] and [RBO07] for
details.

Cartan-Eilenberg Categories. We next review the homotopical approach
of Cartan-Eilenberg categories developed in [GNPR10]. The initial data
consists in a category together with two classes of morphisms (strong and
weak equivalences). From these classes one defines cofibrant objects by
means of a lifting property analogous to the classical lifting property of
projective modules. In this framework one can include minimal models as
a particular type of cofibrant models, defined by the condition that weak

equivalences between minimal objects are isomorphisms.

Definition 1.1.25. A category with strong and weak equivalences is a triple
(C,S, W), where C is a category and S and W are two classes of morphisms
of C, called strong and weak equivalences respectively, which contain all
isomorphisms of C, are stable by composition, and such that S C W.

Given a category with strong and weak equivalences, we have canonical
localization functors § : C — C[S~!] and v : C — C[W™!]. Since S C W, the
functor ~ factors through § as

C ! e
s ] :

The approach of Cartan-Eilenberg categories consists in studying the local-

']

ized category C[W~!], by means of the localization C[S™!].
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The following is a notion of cofibrant object which is related (but not equiv-
alent) to the notion of cofibrant object introduced by Quillen.

Definition 1.1.26. Let (C,S, W) be a category with strong and weak equiv-
alences. An object C of C is said to be cofibrant, if for each weak equivalence
w: X — Y, the induced map

w, : C[ST(C, X) — CIST(C,Y) 5 g = wy
is bijective.
Denote by C.or the full subcategory of C of cofibrant objects. These are

characterized as follows.

Proposition 1.1.27 ([GNPR10|, Thm. 2.2.3). Let (C,S, W) be a category
with strong and weak equivalences. An object C' of C is cofibrant if and only
if the map

vy : CIST(C, X) — cV (G, X)
18 bijective, for every object X of C.

In particular, every weak equivalence between cofibrant objects is a strong

equivalence.

Definition 1.1.28. Let (C,S, W) be a category with strong and weak equiv-
alences. Let M be a full subcategory of C and let X be an object of C. A
left model of X in M is an object M of M, together with a morphism
p: M — X in C[S™1], which is an isomorphism in C[W~1].

Definition 1.1.29. A left Cartan-Eilenberg category is a category with
strong and weak equivalences (C,S, W) such that each object of C has a
model in Ceo.

Remark 1.1.30. Left Cartan-Eilenberg categories with cofibrant models
have a dual counterpart, by defining right fibrant models of objects by
means of a property analogous to that of injective modules.

The important result about Cartan-Eilenberg categories is the following;:

Theorem 1.1.31 ([GNPR10], Thm. 2.3.2). Let (C,S, W) be a left Cartan-
FEilenberg category. The inclusion induces an equivalence of categories

Ceof[S71,C] = Ho(C) :=CW 1.
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The category Ceof[S™!,C] in the above equivalence is the relative localiza-
tion of C.oy with respect to S (see Definition 1.1.11).

In particular, if (C,S, W) is a left Cartan-Eilenberg category, the localization
functor 4/ admits a left adjoint

ACW = clsTY.

This allows to extend the classical theory of derived additive functors, to

non-additive settings.

Proposition 1.1.32 ([GNPR10|, Lemma 3.1.3). Let F' : C — D be a
functor from a left Cartan-Eilenberg category (C,S, W) to an arbitrary cat-
egory D. If F' sends morphisms in S to isomorphisms, then the left derived

functor with respect to W exists, and
LwF =FoMlovy:C— D,
where F' : C[S™Y] — D is induced by F.

Given a Quillen model category, the full subcategory of its fibrant objects
has a natural structure of a left Cartan-Eilenberg category: taking S as the
class of left homotopy equivalences and W the class of weak equivalences.
However, the theory of Cartan-Eilenberg categories differs from Quillen’s
theory in the following aspects. First, in Quillen’s context, the class & ap-
pears as a consequence of the axioms, while fibrant/cofibrant objects are
part of them. Second, cofibrant objects in this setting are homotopy invari-
ant, in contrast with cofibrant objects in Quillen model categories. Actu-
ally, in a Quillen model category, an object is Cartan—Eilenberg cofibrant
if and only if it is homotopy equivalent to a Quillen cofibrant one. Lastly,
in Cartan-Eilenberg categories there are no cofibrations, but only cofibrant

objects.

Example 1.1.33 (see Section 1.2). The category Top of topological spaces
has a left Cartan-Eilenberg category structure, where:

(i) strong equivalences are given by homotopy equivalences,
(ii) weak equivalences are given by weak homotopy equivalences.
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Every topological space is weakly equivalent to a CW-complex, and CW-

complexes are cofibrant.

Example 1.1.34 ([GNPR10], Ex. 2.3.5). Let A be an abelian cate-
gory with enough injective objects. The category C*(A) of bounded below
cochain complexes of A is a right Cartan-Eilenberg category, where:

(i) strong equivalences are given by homotopy equivalence,

(ii) weak equivalences are given by quasi-isomorphisms.

The category CT(Inj.A) of complexes over injective objects of A is a full

subcategory of fibrant models.

Recognizing cofibrant objects may prove difficult, as the definition is given
in terms of a lifting property in C[S™!]. In addition, in some situations, there
is a distinguished subcategory of C.,s which serves as a category of cofibrant
models. The next result gives sufficient conditions for the existence of such

a subcategory.

Theorem 1.1.35 ((GNPR10], Thm. 2.3.4). Let (C,S,W) be a category
with strong and weak equivalences, and let M be a full subcategory of C.
Assume that:
(i) For any map w : X — Y in W, and any object M € M the map
wy : C[STY(M, X) — C[STY(M,Y) is injective.
(i) For any map w: X — Y and any map f : M — Y, where m € M,
there exists g € C[S™Y(M,Y) such that wg = f in C[S™!].
(iii) Every object of C has a left model in M.

Then:

(1) Every object in M is cofibrant.
(2) The triple (C,S, W) is a left Cartan-Eilenbery.

(8) The inclusion induces an equivalence of categories
M[S7Hc) = e

A particular type of cofibrant models are the minimal models. Their ab-
stract definition is based on the Sullivan minimal models of rational homo-

topy.
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Definition 1.1.36. Let (C,S, W) be a category with strong and weak equiv-
alences. An object M of C is called minimal if it is cofibrant and

Ende(M)NW = Aute(M).
That is, any weak equivalence w : M — M of C is an isomorphism.
Denote by Cyin the full subcategory of C.,y of minimal objects.

Definition 1.1.37. A left Sullivan category is a category with strong and
weak equivalences (C,S, W) such that every object in C has a left minimal
model.

A Sullivan category is a Cartan-Eilenberg category for which the canonical
functor Cpnin[S™1,C] — C[W™1] is an equivalence of categories.

Example 1.1.38. The category DGA®(k) of cohomologically connected
dga’s over a field k of characteristic zero is a left Sullivan category, where:

(i) strong equivalences are given by homotopy equivalences,
(ii) weak equivalences are given by quasi-isomorphisms.

The full subcategory of minimal models is that of Sullivan minimal dga’s.

1.2. P-CATEGORIES WITH COFIBRANT MODELS

In the present section we introduce P-categories with cofibrant models. These
are categories with a functorial path and two distinguished classes of mor-
phisms, called fibrations and weak equivalences, satisfying a list of axioms
similar to those of Brown categories of fibrant objects. The functorial path
defines a notion of homotopy, and therefore there is an associated class of
homotopy equivalences. We provide a notion of cofibrant object in terms
of a lifting property with respect to trivial fibrations and prove that ev-
ery P-category with cofibrant models is a Cartan-Eilenberg category with
homotopy equivalences as strong equivalences and the same weak equiva-
lences. As a result, the localized category of a P-category with respect to
weak equivalences, is equivalent to the quotient category of cofibrant objects
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modulo homotopy. Examples of P-categories are the category of commu-
tative differential graded algebras over a field of characteristic zero, or the

category of topological spaces.

Categories with a Functorial Path. Path and cylinder objects appear
in almost every axiomatic of homotopy theory, either as a part of the axioms,
or as a direct consequence. We next develop an abstract homotopy theory
for a category with a functorial path. Every definition and result has its
dual counterpart in terms of functorial cylinders. A basic reference for this
section is [KP97], Section I.4.

Definition 1.2.1. A functorial path on a category C is a functor P : C — C
together with natural transformations

L 6%
A—>PA) A
L

such that 62@,4 = 5%@4 = 14, for every object A of C.
The functorial path defines a notion of homotopy between morphisms of C.

Definition 1.2.2. Let (C, P) be a category with a functorial path and let
f,9: A — B betwo morphisms of C. A homotopy from f to g is a morphism
h: A — P(B) of C such that 6%h = f and d5h = g. We use the notation
h: f ~ g and say that f is homotopic to g.

Lemma 1.2.3. The homotopy relation defined by a functorial path is re-

flexive and compatible with the composition.

PrOOF. Let f : A — B be a morphism of C. A homotopy from f to
itself is given by tpf : A — P(B). Let f,g: A — B be two morphisms of C
and let h : f ~ g be a homotopy from f to g. Given morphisms f’: A’ — A
and ¢’ : B — B’, the composition hAf’ is a homotopy from ff’ to gf’. The
naturality of 6% makes P(g’)h into a homotopy from ¢'f to ¢'g. O

Extra structure on the path will be necessary to develop a rich homotopy
theory in the abstract sense. Which kind of structure is useful will depend

on the particular objective one has in mind.
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1.2.4. The notion dual to the functorial path is that of a functorial cylinder.

The basic example of such construction lives in the category of topological

spaces. The cylinder of a topological space X is the product X x I of

X with the unit interval I = [0,1]. Two maps f,g : X — Y between

topological spaces are homotopic if there exists a map ¢ : X x I — Y such

that ¢(x,0) = f(z) and ¢(x,1) = g(x), for all z € X.

(1) The symmetry of I defined by ¢ +— 1 — ¢, makes the homotopy relation
into a symmetric relation.

(2) There is an automorphism of I? = I x I given by the interchange of
coordinates (t,s) — (s,1).

(3) There is a product I? — I, given by (¢, s) + ts.

(4) There is diagonal map A : I — I?, defined by ¢ ~ (¢, ).

We next axiomatize these transformations in their dual abstract version.

Let (C, P) be a category with a functorial path. The natural transformations
t, 6Y and §' make P into a cubical object in the category of functors from

C to C: denote P =1, P! = P, P> = PP, ---. For all 0 < s < n, we have
natural transformations
n,s (50)278 S . __ Ps B
P”(A) i> P”'H(A) — P”(A) : LAk ;L,S (LJZ" Z(A))
6 (%) = P*(0pn-s(a))

Definition 1.2.5. A symmetry of a functorial path P is a natural auto-
morphism 7 : P — P such that 7474 = 1pa), 521714 = 5114, 5,147'A = 5% and
TALA - [/A.

Definition 1.2.6. A coproduct of a functorial path P is a natural transfor-
mation ¢ : P — P2 such that:

(a) The triple (P,d',c°) is a comonad, i.e. for every object A of C one has
two commutative diagrams

ey o; P(5Y)
P(A) — 2~ p2(4) P(A) <" p2a) = p(a)

0
C%i J{CP(A) 1&@4 /P:
P() (4) (4)

P2(A) —= P3(A) ; P(A)
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(b) The following diagrams commute

L 8% P59
A—s p(a) P(A) < p2ray L pay
L Iey) Iy
! o) l B Lk AT A;
P(A) —> P2(A) ) P(A)

The following result is straightforward.
Lemma 1.2.7. The map % is a homotopy from i40% to 14.

Definition 1.2.8. An interchange transformation of a functorial path P
is a natural automorphism y : P2 — P? such that the following diagram
commutes, for k =0, 1.

P2(A) = P2(4) > P2(4)

5k
Pm l P%)

P(A)
Definition 1.2.9. A folding map of a path P is a natural transformation

V : P? — P such that 5,IZVA = 51125?3@)’ for k =0,1, and Vatpa) = 1pa).

The transformations defined so far, give rise to other useful transformations
which will be needed in the sequel.

First, there is a transformation which is symmetric to the coproduct. This
is the dual abstract version of the transformation 2 — I of the unit interval
defined by (t,s) — t + s — st.

Definition 1.2.10. Let (C, P) be a category with a functorial path, together
with a symmetry 7 and a coproduct ¢’. Let ¢! : P — P? be the natural
transformation defined by
ch = Tp(a)P(Ta) 7.

Lemma 1.2.11. The following identities are satisfied:

(4) 593(A)C,14 = P(d3)ch = L

(i1)  Opayca = P(04)ch = tady

(ii1) chra = tp(ayta
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In particular, 034 is a homotopy from 1p(a) to LA5114.
PROOF. We use the naturality of each of the transformations involved:
(593(A)c}4 = (593(A)TP(A)P(TA)C94TA = 5}3(A)P(TA)C?47A = TA(S%)(A)C(‘)ATA
=TATA = lp(a)-
P(é%)c}4 = P(é%)TP(A)P(TA)C%TA = TAP((S%TA)C%TA = TAP((s}L‘)C%TA

=7ATA = lp(a)-
This proves (i). The identities of (ii) follow analogously. We prove (iii).

0}4[,,4 :TP(A)P(TA)C?L‘TALA = TP(A)P(TA)C%LA = TP(A)P(TA)LP(A)LA

=TP(A)LP(A)TALA = Lp(A)LA-
O

Definition 1.2.12. Define a natural transformation ¢? : P? — P3 by letting
Ci = Clp(A)C%
Lemma 1.2.13. The following identities are satisfied:

() Oonych = POMu)A =) [ (i) P2(6%)
(1) Sbacy@ = PObou) = p(ay | (0) P23

2 0
ch = LP(A)LAéA
2 1
Ca=Cy

PRrROOF. Identities (i) and (ii) follow directly from the definitions and

Lemma 1.2.11. For (iii) and (iv) we use the naturality of c!:
PRI = PO )eb b = e POSI = chiad®y = 1pgaysadhy
P23 ) = P25} )by = el P, = el
O

We next deduce some important consequences of the existence of these trans-

formations.

Lemma 1.2.14. The homotopy relation defined by a functorial path with a

symmetry, is a symmetric relation.
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PRrROOF. Let f,g: A — B be two morphisms, and let A be a homotopy
from f to g. Then h'Tgh is a homotopy from g to f. O

Let C be a category with a functorial path, together with a symmetry. The
homotopy relation is reflexive, symmetric and compatible with the compo-
sition, but is not transitive in general. Let ~ denote the congruence of C
transitively generated by the homotopy relation: f ~ g if there is a finite
family of morphisms f;, for 1 < ¢ < r, such that

fefirdfoxr - ~f>~g

Definition 1.2.15. A morphism f: A — B of C is a homotopy equivalence
if there exists a morphism g : B — A satisfying fg ~ 1p and gf ~ 1.

Denote by S the class of homotopy equivalences. This is the class associ-
ated with the congruence ~ (see Definition 1.1.9). This class is closed by

composition and contains all isomorphisms.

Proposition 1.2.16. Let C be a category with a functorial path, together
with a symmetry and a coproduct.

(1) There is an equivalence of categories
C/~) = cs7h.
(2) For any full subcategory D of C, there is an equivalence of categories
(D) ~) = D[S7,C].

PROOF. We first prove (1). In view of Proposition 1.1.10 it suffices to
show that the congruence ~ is compatible with S. Let f,g : A — B be
morphisms of C such that h : f ~ g. There is a commutative diagram

Y
5

N
)
5
Sy

/
AN
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By Lemma 1.2.7 the map ¢p is a homotopy equivalence. Hence the above
diagram is a hammock between the S-zigzags f and ¢g. By Theorem 1.1.8
we have f = g in C[S™1].

Assertion (2) follows from (1) and Corollary 1.1.12. O

Axioms for a P-category. Let C be a category with finite products and
a final object e. Assume that C has a functorial path P, together with a
symmetry 7, an interchange transformation pu, a coproduct ¢ and a folding
map V. Assume as well that C has two distinguished classes of maps F
and W called fibrations and weak equivalences respectively. A map will be
called a trivial fibration if it is both a fibration and a weak equivalence. As
is customary, the symbol — will be used for weak equivalences, while —
will denote a fibration.

We will make use of the following two constructions.

Definition 1.2.17. Let f: A — B be a morphism of C.
(1) Assume that the pull-back diagram

™2

P(f) — P(B)
ml 3 lgoB
A1 .p

exists. Then P(f) is called the mapping path of f.

(2) Assume that the pull-back diagram
P(f. 1) = P(B)
Wll _I i(‘s%ﬁ}g)
Ax A I B x B
exists. Then P(f, f') is called the double mapping path of f and f'.
With these notations we have P(f,15) = P(f).

Definition 1.2.18. The quadruple (C, P, F, W) is called a P-category if the

following axioms are satisfied:
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(P1) The classes F and W contain all isomorphisms and are closed by
composition. The class W satisfies the two out of three property.
The map A — e is a fibration for every object A of C.

(P2) For every object A of C, the map 14 : A — P(A) is a weak equiv-
alence and (09%,8%) : P(A) — A x A is a fibration. The maps 69
and &Y are trivial fibrations.

(P3) Given a diagram A % C « B, where v is a fibration, the fibre
product A xX¢ B exists, and the projection 71 : A X B - Ais a
fibration. In addition, if v is a trivial fibration, then m; is so, and
if u is a weak equivalence, then w9 : A X¢g B — B is also a weak
equivalence.

(P4) The path preserves fibrations and weak equivalences and is com-
patible with the fibre product: P(A x¢ B) = PA xpc PB.

(P5) For every fibration v : A — B, the map ¥ defined by the following
diagram is a fibration:

P(A)

P(v,v) — P(B)
l N lw%,ag)
AxA——=BxDB

VXV

Remark 1.2.19. A category satisfying axioms (P;) to (P3) a Brown cate-
gory of fibrant objects with a functorial path (see Definition 1.1.21).

Axiom (Pj5) is dual to the relative cylinder axiom of Baues, and can be de-
scribed as a certain kind of cubical homotopy lifting property in dimension
2 (see [KP97], pag. 86).

In [Bau89], Baues introduced P-categories in order to provide an abstract
example of a fibration category. A P-category in the sense of Baues is
a category with a functorial path and a class of fibrations, satisfying the
analogue of axioms (P1) to (P5) obtained by forgetting the conditions on
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the class of weak equivalences, together with an extra axiom of lifting of
homotopies with respect to fibrations (see 1.3 of loc.cit).

Remark 1.2.20. Every P-category in the sense of Baues is a fibration cat-
egory in which weak equivalences are defined by the homotopy equivalences
associated with the functorial path, and every object is fibrant and cofibrant
(see Theorem 3a.4 of [Bau89)).

Although our notion of a P-category differs substantially from the notion
introduced by Baues, we borrow the same name, since Baues only uses P-
categories as a particular example of a fibration category.

To describe the localized category of a P-category with respect to weak
equivalences, we will consider an additional property: we will define F-
cofibrant objects as objects having a lifting property with respect to the
trivial fibrations, and we will assume that every object is weakly equivalent
to a cofibrant one. In this case, we will say that the P-category has cofibrant

models.

Before introducing the notion of cofibrant object in this context, we prove

some useful results that are a consequence of the axioms.

The first and most important property of P-categories gives a factorization
of every map, as a homotopy equivalence whose inverse is a trivial fibration,
followed by a fibration.

Lemma 1.2.21 (cf. [Bro73|, Factorization Lemma). Let f : A — B be a
morphism in a P-category category C. Define maps py := w1, q5 := (5}97@,
and vy := (1a,tpf), where m : P(f) = A and my : P(f) — P(B) denote
the natural projections of the mapping path P(f). Then the diagram

A<"Lp-p
Nl A

A

commutes. In addition:
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(1) The map py is a trivial fibration, and qy is a fibration. In particular, vg
is a weak equivalence.

(2) The map vy is a homotopy equivalence with homotopy inverse py.

(3) If f is a weak equivalence, then gy is a trivial fibration.

PROOF. Since 6% is a fibration, by (P3), the mapping path P(f) exists.

From the definitions it is immediate that the above diagram commutes.

Let us prove (1). Since 6% is a trivial fibration, by (P2), the map p; is a
trivial fibration. The map gy can be written as the composition

(7r1,51137r2)

P(f) AxB™ B.

The morphism (71, d5m) is a base extension of (6%,0%) : P(B) — B x B
by f x1g: AXx B — B x B, and the projection 7 : A x B — B is a base
extension of A — e. By (P3), both maps are fibrations, and hence ¢y is a
fibration. By the two out of three property, ¢ is a weak equivalence.

To prove (2), since pyiy = 14, it suffices to define a homotopy from ¢sp; to
the identity morphism 1py).

Let h be the morphism defined by the following pull-back diagram:

P(P(f)) —— P?

(B)
l - lP(é%)
P(A) P(B) ;

P(f)

where ¥ is the coproduct of the path (see Definition 1.2.6), which satisfies
P(6%)c% = 156%. From the naturality of ¢ we obtain:

P(6%) Yo = 1pd%my = tpfmi = P(f)iam.

Therefore the above solid diagram commutes, and the map h is well defined.
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By (P4), the fibre product P(P(f)) is a path object of P(f), with
gy = (64P(m), 8pp) P(m2)) : P(P(f)) = P(f), for k =0,1.
Therefore we have:
Sppyh = (B8P (m1), 83y P(m2)) (tam, cyma) = (w1, 6 5y chma).
Since (5%(3)6% = LB(S% and 511;(3)0% = 1p, it follows that
5%(f)h = (m1,t86%m) = (La, L f)m = tspy,

Hence h is a homotopy from tspy to the identity 1p(s), making ¢y into a
homotopy equivalence.

Assertion (3) follows from (1) and the two out of three property of W. [

Axiom (Pj5) states that for a fibration v : A — B, the induced morphism
v : P(A) — P(v,v) is a fibration. We prove an analogous statement for

weak equivalences.

Lemma 1.2.22. Let w : A = B be weak equivalence in a P-category C.
Then the induced map

w = ((0%,84), P(w)) : P(A) = P(w, w)
1s a weak equivalence.

PRrOOF. We first prove that the map w x w: A x A — B x B is a weak
equivalence. Indeed, w x w can be written as the composition of 14 x w and
w X 1p. Since W is closed by composition, it suffices to prove that these
maps are weak equivalences. We have pull-back diagrams:

1aXw wXlp
AxA——= AXxB AxB——=BxB
| b
A—2—>B v A——>B

Since w is a weak equivalence, by (P3), both maps 14 X w and w x 1p are

weak equivalences. Therefore w X w is a weak equivalence.
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Consider the commutative diagram

ml N iwg,ag)
AXALW>B><B

Since w X w is a weak equivalence, by (P3), the projection my is a weak
equivalence. Since the path preserves weak equivalences, P(w) is a weak

equivalence. By the two out of three property, w is so.
O

The following result is a consequence of the previous lemma, and will be

used to lift homotopies.

Lemma 1.2.23. The map ma defined by the following pull-back diagram is

a trivial fibration:

9
S
=
i
=

_ 59

P(A)

A

L

PROOF. Define a map p4 via the commutative diagram:

P(54:54)
m™ ) P(6}) —= P(4)
l _| ié%
P(A) x P(A) —= P(4) A
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This map is a base extension of the trivial fibration 6} : P(A) — A, by the
map 64ms : P(6) — A. Therefore by (P3) it is a trivial fibration. The map
ma : P2(A) — P(8})) can be written as the composition

51
P2(A) -2 P(Y,0%) 25 P(5h),

where g is a trivial fibration by (P5) and Lemma 1.2.22. Therefore 74 is
a trivial fibration. O

Cofibrant and Minimal Models. We next define F-cofibrant objects by
means of a lifting property with respect to trivial fibrations. The existence
of F-cofibrant models in a P-category C will allow a description of C[W™1]
in terms of the quotient category of F-cofibrant objects modulo homotopy.

Definition 1.2.24. An object C of a P-category C is called F-cofibrant if
for any solid diagram in C

g 7 i

f

C——=B
in which w is a trivial fibration, there exists a dotted arrow g making the

diagram commute.

The following result is a homotopy lifting property for trivial fibrations with
respect to F-cofibrant objects.

Lemma 1.2.25. Let C be an F-cofibrant object of a P-category C, and let

v: A B be a trivial fibration. For every commutative solid diagram of C

C—,

h

N
P(A) Ax A
\ (0%:0%)
\\\ lP(U) \L’UX’U
N\
P(B) BxB )

(0%:0%)

there exists a dotted arrow E, making the diagram commute.
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In other words: zfv is a trivial fibration, every homotopy h : vfi ~ v f, lifts
to a homotopy h = fo ~ f1 such that P(v )h h.

PROOF. The triple H = (fo, f1,h) defines a morphism from C' to the
double mapping path of v. We have a solid diagram

P(A)
E 7 ziv
c— M P,

By (P5) and Lemma 1.2.22 the map v = ((69%, 8Y), P(v )) is a trivial fibration.
Since C is F-cofibrant, there exists a dotted arrow h such that oh = H.
Therefore (8%, 6)h = (fo, f1) and P(v )h = h. O

Proposition 1.2.26. The homotopy relation in a P-category is an equiva-

lence relation for morphisms whose source is F-cofibrant.

ProOF. By Lemma 1.2.3 the homotopy relation is reflexive. By Lemma
1.2.14 it is symmetric. We prove transitivity. Let A be an F-cofibrant ob-
ject, and let f, f', f” : A — B be morphisms of C, together with homotopies
h:f~f and h' : f' ~ f”. We next define a homotopy from f to f”.
Consider the solid diagram

A

(h,h")

By Lemma 1.2.23 the map mp = (5?3(3), P(8L)) is a trivial fibration. Since
A is F-cofibrant, there exists a dotted arrow £ such that 7L = (h,h’).
Therefore 6?3(3)5 = h and P(65)L =1/

Define a morphism h” : A — P(B) by letting h” := VgL, where V is

the folding map (see Definition 1.2.9), which satisfies 6%V 4 = % 5P(A) =

6k P(6%). Then 64h” = f and 65" = f”. Hence b f ~ f”. O
Given an F-cofibrant object C of a P-category C, denote by
[C,A] :=C(C,A)/ ~



1.2. P-categories with Cofibrant Models 31

the class of maps from C to A modulo homotopy. Denote by Ccf f the full

0

subcategory of F-cofibrant objects of C and by 7rCchf the quotient category
defined by the homotopy equivalence relation.

Proposition 1.2.27. Let C be a P-category and let C' be an F-cofibrant
object of C. Every weak equivalence w: A — B of C induces a bijection

wy : [C, Al — [C, B], [f] = [wf].

ProOOF. We first prove surjectivity. Let w : A — B be a weak equiva-
lence and let f : C' — B be a map of C. By Lemma 1.2.21 we have a solid
diagram

C

where ¢y is a trivial fibration, gty = w, and typyw >~ 1p(y). Since C' is F-

B 3

cofibrant, there exists a dotted arrow ¢’ such that ¢,¢' = f. Let g := p,¢g’.
Then wg = qutwpwyg =~ quwg = f. Therefore [wg] = [f], and w, is surjective.

To prove injectivity, let fo, fi : C — B be two morphisms of C such that
h:wfy~wf. Let H= (fo, f1,h) and consider the solid diagram

P(A)
T
c - H P(w,w)

By Lemma 1.2.22 the map w = ((69,6Y), P(w)) is a weak equivalence. Since
W, is surjective, there exists a dotted arrow G such that wG ~ H. It follows
that fo ~ 049G ~ 641G ~ f1, and hence [fo] = [f1]. O

Definition 1.2.28. A P-category C is said to have cofibrant models if for
every object A of C there is an F-cofibrant object C, together with a weak
equivalence w : C = A.
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Lemma 1.2.29. The class S of homotopy equivalences of a P-category C
is contained in the saturation WV.

ProoF. It suffices to prove that given two morphisms f,g: A — B of
C such that h : f ~ g, then f = g in C[W™!]. Consider the commutative
diagram

a2
5

.
3
5
W

Z
<

Since ¢p is a weak equivalence, this is a hammock between the W-zigzags f
and g. Therefore f = g in C[W™1]. O

Theorem 1.2.30. Let (C, P,W,F) be a P-category with cofibrant models.
The triple (C,S, W) is a left Cartan-FEilenberg category with cofibrant models
n Ccof There are equivalences of categories

TCly — CLyIS7H.Cl = Ccw].

PROOF. By Lemma 1.2.29 the triple (C,S, W) is a category with strong
and weak equivalences. By Proposition 1.2.27 every F-cofibrant object is
Cartan-Eilenberg cofibrant in (C,S,W). By definition, every object has
a model in Ccof Therefore (C,S,W) is a Cartan-Eilenberg category. The
equivalences of categories follow from Proposition 1.2.16 and Theorem 1.1.31
respectively. O

Definition 1.2.31. An object M of a P-category C is called F-minimal if it
is F-cofibrant and every weak equivalence w : M — M is an isomorphism.
An F-minimal model of an object A of C is an F-minimal object M, together
with a weak equivalence w : M = A.

Denote by C7 . the full subcategory of F-minimal objects of C.

mwn

Theorem 1.2.32. Let (C, P,W,F) be a P-category and assume that every
object of C has an F-minimal model. Then the triple (C,S, W) is a Sullivan
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F

category with minimal models in C; . . There is an equivalence of categories

Ch. s Ccw.

m

To end this section, we provide some important examples of P-categories.

Transfer of Structures. In a wide class of examples, one can obtain a
P-category structure on a category C with a functorial path, by means of a
functor ¥ : C — D whose target is a P-category.

Let C be a category with finite products and a final object. Assume that C
has a functorial path, together with a symmetry, an interchange transfor-

mation, a coproduct and a folding map.

Lemma 1.2.33. Let (D, P,F,W) be a P-category, and let ¢ : C — D be a
functor. Assume that the following conditions are satisfied:

(i) The functor 1 is compatible with the functorial path: for every object
A of €, p(P(A)) = P((A)), ¥(ta) = ty(a), and $(8%) = &5 4.

(ii) Given morphisms A 2 C < B of C, where ¥ (v) is a fibration, the
fibre product exists, and satisfies

P(A Xc B) = PA XP(C) P(A) and w(A Xc B) = ¢(A) Xw(C') w(B)
Then the quadruple (C, P,p=Y(F),v»~1(W)) is a P-category.

PROOF. Axioms (P;) and (P5) are trivial. Axiom (P2) follows from (i)
and axioms (P3), (P4) and (P5) follow from (ii). O

Another situation is that of a full subcategory of a P-category with enough
F-cofibrant models.

Lemma 1.2.34. Let (C, P, F,W) be a P-category and let D be a full sub-
category of C such that:
(i) Given a weak equivalence A = B in C, then A is an object of D if and
only if B is so.
(ii) For every object D of D there is an object C' € Dg)f =Dn Ccfof,
together with a weak equivalence C = D.
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Then the triple (D,S, W) is a Cartan-FEilenberg category with cofibrant mod-
els in Dgf. There is an equivalence of categories

7Dl > DWW
ProOOF. It suffices to show that the objects of Dg; F are Cartan-Eilenberg

cofibrant in (D,S,W). Let C € Dng and let w : A — B be a weak

equivalence in D. By Proposition 1.2.27 w induces a bijection
cl[s~')(C, A) =[C, Al — C[s'](C,B) = [C, B].
Since A, B, C are in D, this gives a bijection
D[S, CJ(C, A) — D[S, C(C, B).

By (i), the functorial path in C restricts to a functorial path in D. By
Proposition 1.2.16 we have equivalences

D = D[S = DSl

Therefore every object of Déf is Cartan-Eilenberg cofibrant in (D, S, W).
By (ii), every object has a model in DC]';f. Hence the result follows. O

There is an analogous version of Lemma 1.2.34 with cofibrant minimal ob-
jects.

Topological Spaces. Consider the category Top of topological spaces with
continuous maps. Let I = [0,1] C R be the unit interval. Given a topolog-
ical space X, let P(X) := X! be the set of all maps ¢ : I — X with the

compact open topology. There are maps

8%
X —%PX) X,
3

given by tx(z)(t) = x, and 6% (o) = o(k), for k = 0,1. This defines a
functorial path P : Top — Top.

The product topology for X x I and the compact open topology for X!
have the well-known property that a map f: X x I — Y is continuous if
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and only if the adjoint map n(f) : X — Y, defined by n(f)(z)(t) = f(x,t)
is continuous. This results in a bijection of sets

Top(X, Y1) = Top(X x I,Y).
n

In particular, the structural maps for the functorial path P (symmetry,
coproduct, interchange and folding map) are obtained via the corresponding
adjoint maps defined in 1.2.4.

Definition 1.2.35. A map v : X — Y of topological spaces is called Serre
fibration if for any commutative diagram

X
B

where U is the unit disk of R”, a dotted arrow H exists, making the diagram

f
U

J{ a7
70

UxI]——

G

commute, for every n > 0.

Definition 1.2.36. A map w: X — Y of topological spaces is called weak
homotopy equivalence if the induced map w, : mo(X) — mp(Y) is a bijection
and wy : m,(X,z) — 7, (Y, w(z)) is an isomorphism for every z € X and
every n > 1.

Theorem 1.2.37. The category Top of topological spaces with the classes
F = {Serre fibrations} and W = {weak homotopy equivalences}, and the
functorial path defined by P(X) = X!, is a P-category with cofibrant models.

PRrROOF. Axioms (P;) to (P4) are standard. The proof of (P5) can be
found in [Bau77], pag. 133. We next restate it. Assume that v is a Serre
fibration. To prove that T : X! — P(v,v) is a Serre fibration, we need to
find a lifting for every diagram

Ux {0} = x1

-

l (ho,h1,h) J/

U x I ——>"P(w,w) ,
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where h; : U x I — X and h : U x I — YT are such that 6°h = v(h;), for
k = 0,1. By adjunction we obtain the following commutative solid diagram:

(ho’hlre(f))

Ul
JJ L "Vé(h) l

UxIxI Y ’

where U’ = (U x I x {0,1}) U (U x {0} x I). There is a homeomorphism
g:U xI— U xIxI,which factors as

U x1 UxIxI

~

U’ x {0}

This gives a solid diagram

U/ (h07h17€(f))

-

I
- e(h)g
%Y

U'x1I

Since v is a Serre fibration, there exists a dotted arrow G’ making the dia-
gram commute. Let G := G'g~': U x I x I — X. By adjunction we obtain
the required lifting (G) : U x I — X!. Therefore (P5) is satisfied.

Lastly, for every topological space X there exists a CW-complex C', together
with a weak equivalence C = X, and CW-complexes are F-cofibrant (see
for example [Qui67], [DS95] or [Hov99)). O

Differential Graded Algebras. Consider the category DGA (k) of dga’s
over a field k of characteristic 0 (refer to Section 4.1 for the main definitions
and results). The field k is the initial object, and 0 is the final object. Any
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diagram of dga’s A = C' <~ B can be completed to a cartesian square

AXCBHB

ok

A———>(C

where
A xc B ={(a,b) € Ax B;u(a) =v(b)}, d(a,b) = (da, db).
The functorial path is defined by
P(A) = Alt,dt] = A® (t,dt) and P(f) = f®1,

together with structural maps 14 = 14®1, and 6% (a(t)) = a(k), for k = 0, 1.
The symmetry 74 : Alt,dt] — A[t,dt] is defined by ¢ — 1 — t. The iteration
of the path object is defined by

Pn(A) = A[tl,dtl, cee ,tndtn] =AR® (tl,dtl) (IS (tn,dtn), n > 1.

The interchange map p4 : Alt, dt, s,ds| — Alt,dt, s,ds] is defined by t +— s
and s — t. The coproduct ca : Alt, dt] — Alt, dt, s,ds] is defined by ¢ + ts,
and the folding map V 4 : A[t,dt, s,ds] — A[t,dt] by t — t and s — t.

Proposition 1.2.38. Let k be a field of characteristic 0. The category
DGA(k) with the classes F = {surjections} and W = {quasi-isomorphisms},
and the functorial path P(A) = A[t,dt], is a P-category.

PROOF. The only non-trivial axiom for the P-category structure is (P5).
The double mapping path of a surjective map of dga’sv: A — B is
P(v.v) = {(ao,a1,b(t)) € A x A x B[t,dt];b(i) = v(a;)},
and the map v : A[t, dt] — P(v,v) is given by
5(a(t)) = (a(0), a(1), (v ® 1)(a(#)).

Let (ag,a1,b(t)) € P(v,v). Since v ® 1 is surjective, there exists an element

b(t) € Alt,dt] such that (v® 1)b(t) = b(t). Let
a(t) == (ao — b(0))(1 — t) + (a1 — b(1))t + b(t).

Then v(a(t)) = (ap, a1, b(t)). Therefore v is surjective, and (P5) is satisfied.
O
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1.3. DIAGRAMS ASSOCIATED WITH A FUNCTOR

Let I'C be the category of diagrams associated with a functor C : I — Cat
(see Definition 1.3.1 below), and assume that for all 7 € I, the category C(7)
is equipped with a class W; of weak equivalences. Our objective is to study
of the localized category

Ho (I'C) :=TC[W1].

with respect to the class W of level-wise weak equivalences via the construc-

tion of level-wise cofibrant and minimal models.

We will show that if C : I — Cat is a functor whose source [ is a directed
category of a certain type (see 1.3.4), and for all i € I, the category C(i)
is a P-category with cofibrant models, whose structure is preserved by the
functors u, : C(i) — C(j), then the category of diagrams I'C associated with
C inherits a Cartan-Eilenberg structure. In particular, we will show that
those objects that are level-wise F;-cofibrant in C(i), are Cartan-Eilenberg
cofibrant in I'C, and that the category I'C has enough models of such type.

Level-wise P-category Structure. We next define the category of dia-
grams associated with a functor and show that if the vertex categories are
endowed with compatible level-wise P-category structures, then the diagram
category inherits a level-wise P-category structure.

Definition 1.3.1. Let C : I — Cat be a functor from a small category I,
to the category of categories Cat. For all i € I, denote C; := C(i) € Cat,
and u, = C(u) € Fun(C;,C;j), for all w: i — j. The category I'C of diagrams
associated with the functor C is defined as follows:

e An object A of I'C is given by a family of objects {4; € C;}, for all i € I,
together with a family of morphisms ¢, : u.(A;) = Aj;, called comparison
morphisms, for every map u : ¢ — j. Such an object is denoted as

A= (Ai LN Aj) .
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e A morphism f: A — B of I'C is a family of morphisms {f; : A; — B;} of
C;, for all ¢ € I, such that for every map u : i — j of I, the diagram

Pu

U (A;) — 4;

u*(fi)l lfi
w.(B)) ~ B,

commutes in C;. Denote f = (f;) : A — B.

By an abuse of notation, we will omit the notation of the functors wu,
and write A; for u.(A;) and f; for u.(f;), whenever there is no danger of

confusion.

Remark 1.3.2. The category of diagrams I'C associated with C is the cat-
egory of sections of the projection functor 7 : [;C — I, where [;C is the
Grothendieck construction of the functor C (see [Tho79]).

Example 1.3.3. Assume that C : I — Cat is the constant functor i — C,
where C is a category, and that C(u : i — j) is the identity functor of C.
Then I'C = C! is the diagram category of objects of C under 1.

1.3.4. We will restrict our study of diagram categories for which the index
category [ is a finite directed category whose degree function takes values
in {0,1}. That is: I is a finite category satisfying

(Iy) There exists a degree function |-| : Ob(I) — {0,1} such that
li] < |j| for every non-identity morphism u : i — j of I.

A finite category I satisfying (I;) is a particular case of a Reedy category
for which It = 1.

The main examples of such categories are given by finite zig-zags

./.\./.\./.....\./.\.
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but other diagram shapes are admitted. For example:

OIERNVANNGAN

All objects at the bottom of the diagrams have degree 0, while the objects
at the top have degree 1.

For the rest of this section assume that I'C is a diagram category indexed
by I satisfying the following conditions:

(1) For all ¢ € I, the category C; is equipped with a functorial path P,
together with two classes of morphisms F; and W; of fibrations and
weak equivalences, in such a way that the quadruple (C;, P, F;, W;) is a
P-category.

(2) For all w : i — j the functor u, : C; — C; preserves path objects,
fibrations, weak equivalences and fibre products.

Definition 1.3.5. A morphism f: A — B in ['C is called weak equivalence
(resp. fibration) if for all i € I, the maps f; are weak equivalences (resp.
fibrations) of C;. Denote by W (resp. F) the class of weak equivalences
(resp. fibrations) of the diagram category I'C.

Definition 1.3.6. The path object P(A) of a diagram A of I'C is the diagram
defined by
P(LP:)

P(A) = <P(Ai) - P(Aj)).

There are natural morphisms of diagrams

where (6%); = (517311_), and (t4); = (t4,;). This defines a functorial path on I'C.

The functorial path defines a notion of homotopy between morphisms of I'C.
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Definition 1.3.7. Let f,g: A — B be morphisms of 'C. A homotopy from
f to g is a morphism h = (h;) : A — P(B), where h; : A; — P(B;) is a
homotopy from f; to g; in C; such that the diagram

Pu

A; j

T

P(Bz‘) ﬁ P(Bj)

commutes in C;. Denote such a homotopy by h: f ~ g.

Denote by ~ the congruence of I'C transitively generated by the homotopy
relation, and let & denote the class of homotopy equivalences of I'C. If
f={(fi)isin S, then f; € §;. In particular, since S; C W; and W is defined
level-wise, we have S C W. Hence the triple (I'C,S, W) is a category with
strong and weak equivalences.

Let A % C < B be a diagram of I'C, and assume that for all ¢ € I, the
fibre product A; x ¢, B; exists. Then the fibre product A x¢ B is determined
level-wise by

(A XB C)z :Az X B; Cz
For a map u : ¢ — 7, the comparison morphism

Yy : (Axc B); = (A x¢ B);

is given by ¥, = (gpﬁlm, ©Bmy), where @f and o2 denote the comparison
morphisms of A and B respectively. The following result is straightforward.

Proposition 1.3.8. Let I'C be a diagram category, and assume that for all
1 € I, the category C; has a P-category structure preserved by the functors
us : C; — Cj. Then I'C is a P-category with path objects, fibrations, weak

equivalences and fibre products defined level-wise.

PrOOF. The conditions of Lemma 1.2.33 are satisfied by the functor
1 : I'C — IL;1C; induced by the inclusion Igs — 1. O
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Corollary 1.3.9. Fvery morphism f : A — B inI'C fits into a commutative
diagram

defined level-wise as in Lemma 1.2.21. In particular, g5 is a fibration, py is
a trivial fibration and vy is a homotopy equivalence. In addition, if f is a

weak equivalence, then qy is a trivial fibration.

Let A be an object of I'C, and assume that for all i € I, there exists an
Fi-cofibrant model p; : C; = A;. From the lifting property of F;-cofibrant
objects, given the solid diagram

Yo}

o=
A -2 A

i Ay

a dotted arrow ¢!, exits, and makes the diagram commute up to a homotopy
of morphisms in Cj. In order to have a true model, we need to rectify the
above diagram, taking into account that each vertical morphism of the dia-
gram lies in a different category. We will solve this problem by studying the
factorization of homotopy commutative morphisms into the composition of

morphisms in a certain localized category I'C[H1].

The following is a simple example illustrating the procedure that we will
conduct in order to rectify homotopy commutative morphisms of diagrams.

Example 1.3.10 (Model of a morphism of dga’s). A morphism of dga’s
can be thought as an object of the diagram category of dga’s indexed by

= {0 — 1}. Let ¢ : Ay — A; be a morphism of dga’s over a field of
characteristic 0, and for ¢ = 0,1, let f; : M; = A; be a Sullivan minimal
model. By the lifting property of Sullivan dga’s, there exists a morphism of
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dga’s ¢’ : My — M, together with a homotopy F : My — Ai[t, dt].

Ay —2= Ay

Pl

MO*,>M1
%2}

For i = 0,1, consider the mapping path

P(fi) = {(m,a(t)) € M; x A;[t, dt]; fi(m) = a(0)},
and define morphisms p; : P(f;) — M; and ¢; : P(f;) — A; by letting
pi(m,a(t)) = m, and ¢;(m,a(t)) = a(i). The maps ¢; and p; are quasi-
isomorphisms of dga’s, for ¢ = 0, 1. Define a morphism ¥ : P(fy) — P(f1)
by letting ¥(m,a(t)) = (¢'(m), F(m)). The diagram

®

Ao A

o] o

P(fo) — P(f1)

po i lpl
o

My ——— M

commutes. The map ¢’ : My — M is a Sullivan minimal model of f. Let
us remark that the key part in the construction of the above diagram resides
in the definition of the morphism ¥ (which depends on the lift ¢ and the
homotopy F', and only on the first variable), and the morphisms ¢; (whose
definition depends on whether the index i is a source or a target in the index
category I).

Homotopy Commutative Morphisms. We next introduce homotopy
commutative morphisms of diagrams (ho-morphisms for short) and define a
notion of homotopy between them. This new class of maps does not define
a category, since the composition is not well defined, but each ho-morphism

will admit a factorization into morphisms in a certain localized category.

Definition 1.3.11. A ho-morphism f : A ~~ B between two diagrams of
I'C is pair of families f = (f;, Fy,), where:
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(i) fi: A; — B is a morphism in C;, for all ¢ € I, and

(ii) Fy : A; — P(Bj) is a morphism in C; satisfying 5%],Fu = fjpu and
5}3jFu = @ufi, for every map u : i — j of I. Hence F, is a homo-
topy of morphisms of C; making the following diagram commute up to

A
fil
B

Given diagrams A, B of I'C, denote by I'C"(A, B) the set of ho-morphisms
from A to B. Every morphism of diagrams f = (f;) : A — B is trivially
made into a ho-morphism f = (f;, ) : A ~ B by letting I, = 15, (fjpu) =
1B, (¢ufi). This defines an inclusion of sets

I'C(A,B) c TC"(A, B).

homotopy.

Aj

;

J

~

fi

H

| A

The composition of ho-morphisms is not well defined. This is due to the
fact that the homotopy relation between objects of C; is not transitive in

general. However, we can compose ho-morphisms with morphisms.

Lemma 1.3.12. Let f : A~ B be a ho-morphism, and let g : A’ — A and
h: B — B’ be morphisms of I'C. There are ho-morphisms fg: A’ ~ B and
hf: A~ B, given by

fg=(figi, Fugi), and hf = (hifi, P(h;)Fy).
If f is a morphism, then fg and hf coincide with the morphisms defined by

the standard composition of morphisms of I'C.

PRrROOF. The homotopy relation between morphisms in C; is compatible
with the composition. The map F,g; is a homotopy from f;g;¢. to ¢ fig:,
and P(h;)F, is a homotopy from h;fjp, to wuh; fi. O

Definition 1.3.13. A ho-morphism f : A ~» B is called weak equivalence

if the maps f; are weak equivalences for all ¢ € I.

Definition 1.3.14. Let f,g : A ~ B be two ho-morphisms. A homotopy
from f to g is a ho-morphism h : A ~» P(B) such that 64h = f and d5h = g.
We use the notation h : f ~ g.
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Equivalently, such a homotopy is given by a family h = (h;, H,) satisfying:
(i) h; : A; — P(B;) is such that 5%ih,- = f; and 5}91, h; = g;. Therefore h;

is a homotopy from f; to g; in C;.
(ii) Hy : A; — P%*(B;) is a morphism in C; satisfying

P(o%,)Hy = Fu, . 0p ;) Hu = hjeu;
al

P(dp,)Hy = Gu, Op () Hu = tuhi

The notion of homotopy between ho-morphisms allows to define a class of

equivalences of I'C as follows.

Definition 1.3.15. A morphism f : A — B of I'C is said to be a ho-
equivalence if there exists a ho-morphism g : B ~» A together with chains
of homotopies of ho-morphisms gf ~---~14 and fg~---~1p.

Denote by H the closure by composition of the class of ho-equivalences.

Lemma 1.3.16. We have S C H C W. In particular, (TC,H,W) is a
category with strong and weak equivalences.

ProOOF. If f and g are homotopic morphisms of I'C, then they are also
homotopic as ho-morphisms. Therefore § C H. If f is a ho-equivalence,
then f; is a morphism of S;, for all ¢ € I. Since S; C W;, it follows that
HCW. O

Factorization of Ho-morphisms. We next define the mapping path of a
ho-morphism. This will be used in Proposition 1.3.20 to define a factoriza-

tion for ho-morphisms.

Definition 1.3.17. Let f : A ~ B be a ho-morphism of diagrams. The
mapping path of f is the diagram defined as

thu
PM(f) = (P(fa P(fj)) :
where P(f;) is the mapping path of f; given by the fibre product

P(fi) = Ai xp, P(By).



46 CHAPTER 1. HOMOTOPICAL ALGEBRA AND DIAGRAM CATEGORIES

The comparison morphism 1, : P(f;) — P(f;) is defined as follows. Con-
sider the commutative solid diagram

P(f;) = 4 7

Then ¥, = (@y, F)m1.

Remark 1.3.18. Let f : A — B be a morphism of I'C. Since I'C is a P-
category, f has a mapping path P(f) (see Definition 1.2.17). On the other
hand, we can consider f as a ho-morphism, by letting F' = +f;p,, and so

it has an associated mapping path P"(f). The comparison morphisms of

P(f) and P"(f) differ.

We next provide a Brown Factorization Lemma for ho-morphisms, using
the above mapping path.

1.3.19. Define morphisms p; : P*(f) — A and gy : P"(f) — B, together
with a ho-morphism ¢f : A~ P"(f) as follows.

Let i € I, and let (py); = py, = m1 : P(fi) = A; be the first projection map.
For u : 7 — j we have

pfjwu = Wl(‘PuyFu)'/Tl = PuT1 = PuPf;-
Therefore the family py = (py,) : Ph(f) — A is a morphism of diagrams.

Let i € I, and let q7, = 5%'1_7@ : P(fi) — Bi, where [i| € {0,1} is the degree
of i (see condition (I;) of 1.3.4). For u : i — j we have

qf;0u = 0B, m2(Pus Fu)m = 05, Fumi = pufimi = pudp, = udy;.

Therefore the family ¢ = (qy,) : P"(f) — B is a morphism of diagrams.
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The morphism gy is not defined level-wise via the factorization Lemma
1.2.21 in which ¢y = 6}97@, but instead, we alternate between 5%7@ and
5}3772, depending on the degree of the index. This needs to be done in order
to obtain a morphism, instead of a ho-morphism. As a result, ¢; is not

necessarily a level-wise fibration.

Let Ly = (1A¢7LBifi) : Az — ’P(fz) Then
Yurg, = (Pus Fu), and vg,0u = (Qu, L4, fipu)-

We next define a homotopy from ¢y, to tf;¢py. Let Jp, be the morphism
defined by the following pull-back diagram:

c%.j Fy

)
—
o,
S

The coproduct (see Definition 1.2.6) satisfies P(5%j)cOB]_ = LB, (5%j, and hence
P((SOB])COB]FU = LBj(SOBjF’U« = LB]f](p'U« = P(f])LAJ(p'U«

Therefore the solid diagram commutes, and the map Jg, is well defined.

By (P4), the fibre product P(P(f;)) is a path object of P(f;), with
62(1% - (5];1;'13(”1)752(33')]3(7&)), for k =0,1.
Therefore we have

57]3(fj)JFu = (5§xj6Aj80ua5§(Bj)C%jFu) = (Wua(ﬁv(Bj) %jFu)-

Since (593(Bj) %j =B, 5%j and 6113(Bj)c%j = 1p;, it follows that

{ gy TP = (Pus ;0% Fu) = t4,u-
0pf) TP = (Pus Fu) = Y.

Therefore the family ¢y = (¢4, Jp,) : A ~ P(f) is a ho-morphism.
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The main result of this section is the following.

Proposition 1.3.20. Let f : A~ B be a ho-morphism. The diagram

commutes. In addition:

(1) The maps py and vy are weak equivalences.
(2) There is a homotopy of ho-morphisms between typy and 1p ), making
py into a ho-equivalence.

(3) If f is a weak equivalence, then gy is a weak equivalence.

PRrOOF. From the definitions it is straightforward that the above dia-

gram comimutes.

Let us prove (1). From axiom (P3) of P-categories, the map py is a weak
equivalence. By the two out of three property, it follows that ¢ is a weak

equivalence as well.

To prove (2) we define a homotopy between vypy = (1f,py;, Jr,pys;) and Lp(y,)
as follows.

For all i € I, let h; : P(f;) — P(P(fi)) be the morphism of C; defined by
hi = (14,71, c%iwg). This is a homotopy from ¢;p; to the identity morphism
Lp(s,) (see the proof of Lemma 1.2.21).
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Let H, be the morphism defined by the following pull-back diagram:

2
& B; Fy,

where ¢? is the transformation defined in 1.2.12. By Lemma 1.2.13 it satis-
fies P? (5%j)c2Bj = Lp(B,)!B, 5%j. Therefore the solid diagram commutes, and

hence the map H, is well defined.

Let H, := H,m : P(fi) = P2(P(f;)). By (P4), the fibre product P2(P(f;))

is a double path object of P(f;), with structural maps:
Op(p(ryy) = Op(a) PA(m), Opags,) PA(m2)),

P((S;CD(fj)) = (P(élf;j)Pz(Wl)aP(éﬁa(Bj))Pz(WZ))a

From the properties of ¢ (see Lemma 1.2.13) we have:

{ 5%<P(fj>>Hu =hiu, P (5%(fj))H“ = Jr.ps,

5p(73(fj))Hu = P(wu)hw P((Sp(fj))Hu = /'P(fj)(wu)’

Therefore the family h = (h;, Hy) is a homotopy from ¢spy to 1p(p).

for k=0,1.

Let us prove (3). Assume that f is a weak equivalence. By (i), the map
Ly is a weak equivalence. By the two out of three property, q; is a weak
equivalence. O

1.3.21. For every pair of objects A, B of I'C, define a map
®4p:TC"(A,B) — TC[H (A, B)
by letting
ean(f) = {ALL P 5 B} = {am;'}.

By Proposition 1.3.20 the map py is a ho-equivalence, and hence this is a
map with image in the localized category I'C[H!].
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To end this section we collect some useful properties of this map.

Definition 1.3.22. Let f: A~ B and g : C' ~» D be two ho-morphisms.
A morphism from f to g is given by a pair of morphisms a : A — C' and
B : B — D of I'C such that the diagram

c~-1=D

L

commutes. Denote (a, ) : f = g.

Lemma 1.3.23. Let (o, ) : f = g be a morphism between ho-morphisms
f:A~ Bandg:C~ D. There is an induced morphism

(v, B)s = PM(f) — P"(g),
which is compatible with gz, py, and ty.

PROOF. Let (v, 3;)« be the morphism defined by the pull-back diagram:
P(f)

(i B)

BN

Q71

We have
Yu(as, Bi)s = (Pu, Gu)mi(aymy, P(Bi)m2) = (ucv, Guoy)mi,
(), Bj)wthu = (a1, P(B5)m2) (pu, Fu)m1 = (tjipu, P(Bj) Fu)m1.

Since « is a morphism, ¢,0; = ajp,. Since Sf = ga, it follows that
P(Bj)F, = Gua;. Therefore the diagram

Pfi) —2 P(;)
<ai,ﬁi>*l lmj,ﬁm

Plg;) —- Plgy)
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commutes, and the family («, ). := (e, 5i)« is a morphism of diagrams.
From the definitions it follows that the diagram

Ph(f) < A <L PR(f) > B

(a7ﬂ)*l al l(avﬁ)* B

commutes. |
Lemma 1.3.24. Let f : A— B €T'C. Then ®4p(f) = {f} in TC[H1].

PROOF. Since f is a morphism, the map ¢ty : A — Ph(f) is a morphism
too. The diagram

is a hammock between the H-zigzags quJTl and f. O

Lemma 1.3.25. Let f: A~ B be a ho-morphism, and let g : B — C be a
morphism of T'C. Then ®p c(g) o Pap(f) = Pac(ygf).

PROOF. The pair (14,¢) is a morphism of ho-morphisms f = ¢gf. By
Lemma 1.3.23 there is a morphism (14, ). : P"(f) — P"(gf), making the

following diagram commute.

PHf) —— B

;’/ i(lA,g)* igx
Aﬁph(gf)qgf;)cic

This is a hammock between H-zigzags representing ® 4 ¢(gf) and ®p c(g)o
DaB(f) O

Lemma 1.3.26. Let f,g: A~ B be ho-morphisms and assume that there
s a chain of homotopies f ~ ---~ g. Then

®A(f) =PaB(9).
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PRroOF. It is sufficient to prove it for f ~ g. Let h : A — P(B) be a
homotopy of ho-morphisms from f to g. There are two morphisms

(14,0%) : h = f, and (14,65) : h = g.
By Lemma 1.3.23 these define morphisms
P(f) < P (h) = PP (g),

where ¢ := (14,05)« and 7y := (14,0%).. Consider the diagram

To see that ®(f) = ®(g) in TC[H Y], it suffices to check that the four
triangles are commutative in I'C[S~!]. By definition, every triangle is com-
mutative in I'C, except for the lower-right triangle. We shall next build a
homotopy of morphisms from g7y to qymy.

For all i € I, let 6; := 4! : P(hi) — P(B;). Then @u0; = 0ib,, and

P(B;)"2
0 = (0;) : P"(h) — P(B) is a homotopy from g;7s to qy,. O

1.4. COFIBRANT MODELS OF DIAGRAMS

Denote by I'C., s the full subcategory of I'C of those diagrams
C=(Ci--Cj)

such that C; is F;-cofibrant in C;, for all ¢ € I, and u,(C;) is Fj-cofibrant, for
each u : i — j of I. In this section we will show that the objects of I'C..y are
cofibrant diagrams of (I'C,H, W), and that every diagram has a model in
I'Ceo¢. In particular, the triple (I'C,H, W) is a Cartan-Eilenberg category.
In addition, we will show that the relative localization I'C., ¢ [H~1,TC] is
equivalent to the category WhFCCOf whose objects are those of I'C., s, and
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whose morphisms are homotopy classes of ho-morphisms. These results lead
to the equivalence of categories 7"T'C,, 7 = Trcw1.

Homotopy Classes of Ho-morphisms. We next show that the homo-
topy relation between ho-morphisms of diagrams is transitive for those mor-
phisms whose source is level-wise cofibrant, and define a composition of ho-
motopy classes of ho-morphisms.

Given two objects A, B of I'C, we will denote by
(4, B = TCM(4, B)/ ~

the set of ho-morphisms from A to B modulo the equivalence relation tran-
sitively generated by the homotopy relation.

Lemma 1.4.1. Let A be an object of I'C.oy. For every object B of I'C,
the homotopy relation is an equivalence relation on the set of ho-morphisms
from A to B. In particular,

[A,B]" =TC"(A,B)/ ~ .

PRrROOF. Reflexivity and symmetry are trivial. We prove transitivity.
Assume given ho-morphisms f, f/, f” : A ~ B, together with homotopies
h:f~f and h': f' ~ f"”. For all i € I, consider the solid diagram

P?(B;)
ﬁi - -7
o TB;
o (ha
A psty,

By Lemma 1.2.23 the map 7, = (693(]31_), P(é}gi)) is a trivial fibration. Since
A; is Fi-cofibrant, there exists a dotted arrow £; such that mp,£; = (h;, hl).
In particular, 59’(Bi)£i = h; and P(d}gi)ﬁi = h}. We let h! :== Vp,L;, where
V is the folding map (see Definition 1.2.9). By construction, b} is a homo-

topy from f; to f}.
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Consider the commutative solid diagram:

(L Puspuli)

P*(Bj) x P*(By)

P(7TB.) lTFBjXWBj

P(3},) x P(6h,)

Since 7p; is a trivial fibration, by Lemma 1.2.25 there exists a dotted arrow
L., making the diagram commute. Let

H; .= P(Vp,)L,: A; — P*(B;)).
The family h” = (h!, H]!) is a homotopy of ho-morphisms from f to f”.
Indeed, we have:
(5?’(31)’5}’(31))}[3 - ij((S?DQ(Bj)’ 51132(Bj))£u = (hjpu, puhi).
0 1 "o __ 0 1 I __ "
(P(6B,), P(6p,)) Hy = (P(8p, ) Hu, P(0,))H;, = (Fu, F))).
Il

We define a composition of ho-morphisms subject to the condition that the
source is a diagram of F;-cofibrant objects.

Lemma 1.4.2. Let A be an object of I'C.op. For every pair of objects B,C
of I'C, there is a map

[A,B)" x [B,C]" — [A,C]"

denoted by ([f],[9]) — [g] * [f] such that

(1) If either g or f are morphisms of I'C, then [g] * [f] = [gf], where gf is
the composition defined in Lemma 1.3.12.
(2) If h is a morphism and f,g are ho-morphisms, then

[A] * (lg] * [£1) = [hg] * [].
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PRrROOF. Let [f] € [A, B]", and [g] € [B,C]". Choose representatives
(

f=(fi,F,) and g =
homotopies in Cj,

i, Gy) of [f] and [g] respectively. There is a chain of

gifieu = gioufi 2 pugifi.

Consider the solid diagram

P*(Cy)
C 7
u Zim]
Ai s P(SE),

where v, := (P(gj)Fu, Gufi). Since A; is Fj-cofibrant, there exists a dotted
arrow L, making the diagram commute. In particular,

K, = ij[’u : Az — P(C])

is a homotopy from g;fjpu to wugifi. The family g * f := (gifi, Ku) is a
ho-morphism from C to A.

Let f’ be another representative of [f], and let h : f ~ f’ be a homotopy
from f to f’. Assume that g * f' = (g;f], K},), where K, = V¢, L, and L;,
a lifting of v,, := (P(g;)F,,, Guf!). We next show that there is a homotopy
of ho-morphisms g * f ~ g * f’.

Let I'y, be the morphism defined by the following pull-back diagram:

where p is the interchange transformation of the path (see Definition 1.2.8),
and satisfies (552(3]_)”3]. = P(5f§j) and P(5f§j)uB]~ = (552(33_). Consider the
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commutative solid diagram:

P?(Cj) x P*(Cy)
\Lﬂ'cj ><7ch

P(5%,) x P(5%,)

Since m¢; is a trivial fibration, by Lemma 1.2.25 there exists a dotted arrow

I?u, making the diagram commute. Let
H) == uc,P(Ve,) Ky : A — P*(C}).

The family (P(g;)hi, H],) is a homotopy of ho-morphisms from g f to g f'.

Analogously, given a representative ¢’ of [g], one proves that g f ~ ¢’ * f.
By Lemma 1.4.1 the homotopy relation between ho-morphisms for which
the source is in I'Ceyy, is transitive. Therefore the class [¢g * f] does not
depend on the chosen representatives and the chosen liftings, and the map
[g] * [f] := [g * f] is well defined.

Let us prove (1). Let [f] € [A, B]", and let g : B — C be a morphism.
Choose a representative f of [f], and let gf = (gifi, P(g9i)F.). By Lemma
1.3.12 this is a well defined ho-morphism from A to C. We next show that
[9]*[f] = [9f], when g is considered as a ho-morphism with G, = (tc;$ugi)-
Consider the diagram

P2(Cy)
Lu i
C;

where vy, = (P(g;)Fu;tc;gjpufi), and Ly = LP(Cj)P(gj)Fu. By the natu-
rality of 8% and ¢ it follows that

5?3(0])[% = 6?3(Cj)LP(C]-)P(gj)Fu = P(gj)Fu'

P(54,)Lu = 10,08, P(9j) Fu = 1c,9i08, Fu = te;9jpulfi-
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Therefore the above diagram commutes. By definition, the folding map V
(see Definition 1.2.9) satisfies Vg, Lp(c;) = lp(c;)- It follows that

Ku = VP(CJ-)'CU == P(g])Fu
Therefore [g] * [f] = [¢f]. The proof for the other composition follows anal-

ogously.

Let us prove (2). Let f: A~ B and g : B ~» C be ho-morphisms, and let
Yu = (P(g5)Fu; Gufi). We have f* g = (figi, Ku), where Ky, = Vp(c;)Lu,
and L, is an arbitrary morphism satisfying 7¢; Ly = vy lf h: C — D is a
morphism, by (1) we have

[h]  ([g] = [f]) = [(higi fi, P(hj) Ku)]-

On the other hand, let v,, = (P(h;g;j)Fu, P(h;j)Guyfi), and define a morphism
L, := P?*(hj)Ly. Then 7p, L), = . Therefore hgx f = (hjg; f;, K,), where
K, = Vp,L, = P(hj)K,. The identity [hg]*[f] = [h]*([g]*[f]) follows. O

Localization with respect to Ho-equivalences. We next show that the
relative localization I'C., [H~1,TC] is isomorphic to the category WhFCCOf,
whose objects are those of I'C,; and whose morphisms are:

m"TCeof(A, B) = [A, B,

with the composition defined in Lemma 1.4.2.
Let A, B be arbitrary objects of I'C. By Lemma 1.3.26 the map defined in
1.3.21 induces a well defined map

D4 : [A, B" — TC[H (A, B).
We will see that if A an object of I'C,,, the above map is a bijection of sets.
1.4.3. Let A be an object of I'C.,y. We next define a map

Wap:TC[H (A, B) — [A, B]",

for every object B of I'C.
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A morphism {f} of IC[H~!] can be represented by a zigzag f : A -~-» B
D, D, Ds - D,
A=C) Cq Cy e C, =B

where the arrows going to the left are morphisms of H. We will define ¥
by sending each H-zigzag with cofibrant source, to a homotopy class of ho-

morphisms. We will proceed inductively over the length of the zigzag.

Let W(14) = [14] and assume that ¥ is defined for H-zigzags of a given
length. We consider two cases:

(1) Let f = gf’, where f' : A --» C is an H-zigzag and g : C — D is a
morphism. Then

U(f) = [g] = ¥(f).
(2) Let f = g~ 'f’, where f': A -——» C is an H-zigzag and g : D — C'is a
ho-equivalence. Let h : C ~» D be a homotopy inverse of g. Then
W(f) =[] = T(f).
Let A/ be another homotopy inverse of g. Then h' ~ h/gh ~ h, and so

[h] = [W/]. Hence this does not depend on the chosen homotopy inverse.

Lemma 1.4.4. Let A be an object of I'Ccop. The map
U4 p:CH (A B) — [A, B]"
induced by {f} — U(f), is well defined for any object B of T'C.

PROOF. We need to prove that the definition does not depend on the
chosen representative, that is, given a hammock between H-zig-zags f and
f, then W(f) = \I'(f) The proof is based on the fact that, given the
commutative diagram on the left,

h
p<L ¢ D

MC
I3 - 770
D~~~ (C

h
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where g and ¢ is are ho-equivalences, then the diagram on the right com-
mutes up to homotopy, where h and h are homotopy inverses of g and g.

By induction, it suffices to consider the case when f and fare related by a
hammock of height 1. Let

fi= A f1 Dy an oy f2 Dy g2 o, f3 o D, gr B
lal iﬂl l” l’% lar

~ A Lo £ G L fs ar

Fim A== D=0 —= Dy <" Gy —> - D, <X B

be a commutative diagram, where g : Cy — Dy and g : 6k — 15k are
compositions of ho-equivalences. For all 0 < k£ < r, define

k) =g g7 f, and f(k) =g fr--- 01 A

as the H-zigzags of length 2k defined by the first &k roofs of f and frespec—
tively. Let f(0) = f(0) = 14.

Nk

Write g, = g,i <% and g = @% . @ﬁ’“, and let hi and ﬁi be homotopy

inverses of gi and ﬁi respectively. With these notations we have

W(f(k)) =[] (oo ((AR]  ([hg] = ([fe] = U (F (R = 1)),

U(f(k)) = [hph] = (- = ([A2] + ([RE] * ([fu] = T (F(k — 1))
From the definition it follows that:

(Pr) [gk] * W(f(k)) = [fu] * U(f(k - 1)).

We will now proceed by induction. Assume that for all n < k we have

(hn) U(f(n)) = [Ba] * U(f(n)).
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For the following identities we will constantly use properties (1) and (2) of
Lemma 1.4.2. We have:

W(f (k) =[] (o () ([fd = O(F(R-1)))  (by (her) )
=[] (o (R ([feBeea] = U (F (D)) ( fiBror = ok fi)
= [T (oo (] (o fil = W(F(R-1))) (by (o) )
= [A<] 5 (- ([g] # (feukgn] * W (f(K)) (crge = GibBr )
=[] (- ((hE] * ([GrBe] *+ U (f (k) (Ge=3k ")
= [Bi) * U (f(k)).

Since f, = 15 we get U(f) = W(f(r)) = W(f(r)) = ©(f). 0

Proposition 1.4.5. Let A be an object of I'C.oy. The maps
dap:[AB"2TCH (A B): Uap
are inverses to each other, for every object B of I'C.

PRrROOF. For the simplicity of notation, we omit the subscripts of both
U and ®. Let [f] be an element of [A, B]". Then

V(@([f]) = Y{asp; ")) = lag) * leg] = lages) = [f)-
For the other composition, we proceed by induction as follows. Assume that

for every element {f} of TC[H (A, C) we have ®(¥({f})) = {f}. We will
next show that:

(1) if g: C — D is a map, then ®(V({gf})) = {fg}, and

(2) if g: D — C is a ho-equivalence, then ®(¥({g~'f})) = {971 f}.

Let us prove (1). Since g is a map of I'C we have U({gf}) = [g] c ¥ ({f})
In addition, by Lemma 1.3.25 we have ®([gf’]) = ®([g]) o ®([f’]), for every
ho-morphism f’. We have:

O(Y({gf}) = (9] T({f}) = @(lg]) o {f} = {g} o {/} = {9/}

Let us prove (2). Let h : C ~» D be a homotopy inverse of the ho-equivalence
g:D — C. Then ¥{(g71f}) = [A]* ¥ ({f}). By Lemma 1.3.25 we can write
{9} = ©([g]). Therefore

{9} o @(W({g™"' 1)) = ([g]) o ®([h] * W({f})) = C({f})-
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If we compose on the left by {g~!'} we obtain

(U{g ') ={g o {ft={s"f}
0

We next define a category WhFCCOf having as objects the objects of I'C., ¢
and as morphisms, the homotopy classes of ho-morphisms:

™" TCeof (A, B) = [A, B]".

For ©"T'C,, #(A, B) to be a category we need to prove that the operation
defined in Lemma 1.4.2 is associative. We will use the bijection of sets

®ap:[AB" 2 CH (A B): Uap
to transfer the additivity of the composition of C[H 1.

Lemma 1.4.6. Let A, B,C be objects of I'Ceo and let [f] € [A, B]" and
[g] € [B,C)" be homotopy classes of ho-morphisms. Then

[9] % [f] = Yac (@pc(dg]) o ®ap(f])-

PROOF. Since A, B,C are objects of I'C.,;y the maps W, _, Up_ and
Ve _ are well defined. For the rest of the proof we omit the subscripts of ¥
and ®. By definition we have:

U(2([g]) o @([f]) = ¥({agpy '} o {arp; ) = lagl * ([eg] * ([ag] * [14]).

Since ¢ and g, are morphisms of I'C, we have [qq] * [t4] = [gq4tg] = [g], and
la¢] * [tf] = [gres] = [f]. The result follows from (2) of Lemma 1.4.2. O

Theorem 1.4.7. The objects of I'Ccoy with the homotopy classes of ho-
morphisms define a category ﬂhFCcof. There is an equivalence of categories

O : w'TCopy2TCoop [H 1, TC) : W

ProOF. By Lemma 1.4.6 given ho-morphisms f : A~ B, g: B ~ C
and ho ~ D between objects of I'C., s, we have:

[h] = ([g] * [f]) = ¥ (2([A]) o 2(L(D([g]) o 2([])))) -
By Proposition 1.4.5 we have ®¥ = 1, and hence,

(7] * (9] * [£1) = W (@([h]) o 2([g]) o @([11))) = ([A] * [g]) * [f].



62 CHAPTER 1. HOMOTOPICAL ALGEBRA AND DIAGRAM CATEGORIES

Therefore the composition of TthCCOf is associative. The equivalence of
categories follows from Proposition 1.4.5. O

A Cartan-Eilenberg Structure. We next prove that the objects of I'C., s
are cofibrant in (I'C, #, V), and that every object has a left model in I'C., .

Lemma 1.4.8. Let C be an object of I'C.o . For every diagram

7
e
C 'v]\c/\> B )
where w is a trivial fibration of I'C and f is a ho-morphism, there exists a

ho-morphism g : C ~~ A making the diagram commute.

PRrROOF. By the lifting property of F;-cofibrant objects, for each i € I,
there are morphisms g; : C; — A; such that w;g; = f;. We have

Fy
W;GiPu = fiPu = Oufi = QuWigi = WjPug;.

Consider the commutative solid diagram

Ci - (95 Puspugi)
-
RN (8% 6% )
P(A;) LS Ajx A
F, \\
\\ lP(wj) i%‘ Xw
P(BJ) Bj X Bj

(0%, 95,)

Since wj is a trivial filtration, by Lemma 1.2.25 there exists a dotted ar-
row G, making the diagram commute. The family g = (¢g;,Gy) is a ho-
morphism, and wg = f. O

Proposition 1.4.9. Let C be an object of I'C.of and let w : A — B be a
weak equivalence in I'C. The map

w, : [C, A" — [C, B]"
defined by [f] — [wf] is a bijection.
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Proor. We first prove surjectivity. Let f : C' ~» B be a ho-morphism
representing [f] € [C, B]". By Corollary 1.3.9 the map w factors as a homo-
topy equivalence ¢, followed by a trivial fibration ¢y, giving rise to a solid
diagram

where ¢y, is a trivial fibration. By Lemma 1.4.8 there exists a ho-morphism
g : C ~ P(w) such that g,¢' = f. Let g := py,g’. We have

WY = quiwd = GutwPug = qwg = f.
Therefore [wg| = [f], and w, is surjective.
To prove injectivity, let g,¢' : C ~» A be two ho-morphisms, representing

[g] and [¢'] respectively and let h : wg ~ wg’ be a homotopy. Let P(w,w)
denote the double mapping path of w, defined by the fibre product

l 3 i(éo’gi’%’

w; XW;

A; x Aj —— B; x B; !
for each i € I, together with the comparison morphism
Yu = ((pu X pu)m1, Ppu)m2),

for each u : 7 — j.
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The triple (g,¢’, h) defines a ho-morphism v : C' ~ P(w,w). Indeed, for all
1 € I, let ; be the map defined by the pull-back diagram:

C; ) h;

l _ J{(é" 05,

A; x A; —— B; x B; )

Wi XWw;

(9i,9%)

and for all u: i — j let I, be the map defined by the pull-back diagram:

P?(By)
l (P(33,).P(0h,))

P(A;) x P(A;)

P(Bj) x P(Bj)

P(w;xw;)

Then the family v = (4, T',) is a ho-morphism of diagrams. Indeed,

0y 0y L = (00, G, 0% G, 0 gy Hu) = ((95%Pus 950u) s hjou) = VjPus
0p sy Lu = (04, Gus 04 G, Op g Hu) = ((Pugis pugi), Pu)hi)) = dui

Consider the solid diagram

P(A)
7/ 7 zlw
C L P(w,w)

By Lemma 1.2.22 the map w defined level-wise by w; = ((52%_, 5}%), P(w;))
is a weak equivalence. Hence w, is surjective, and there exists a dotted

arrow 7/ such that wy’ ~ v. It follows that g ~ & Y =~ oy 4y =~ ¢, and hence
9] = 1g']- O
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Corollary 1.4.10. The objects of I'C.of are cofibrant in (I'C,H, W), that
is: for every weak equivalence w : A — B, and every object C' € I'C.oy the
induced map

w, : TC[HY(C, A) — T'C[HY|(C, B)

s a bijection.

PrOOF. Let w: A — B be a weak equivalence, and let C be an object
of I'Ccop. By Lemmas 1.3.24 and 1.3.25, and Proposition 1.4.5 the diagram

reH-1(C, A) S remy (e, B)

| |

[w]o—
[C, A [C, B)"

commutes, and the vertical arrows are bijective. By Proposition 1.4.9 the
bottom arrow is a bijection. Therefore the top arrow is a bijection. O

Theorem 1.4.11. Let I'C be a diagram category indexed by a directed cat-
egory I as in 1.3.4. Assume that for each i € I, the categories C; are
P-categories with F;-cofibrant models, and that the functors us : C; — C;
are compatible with the P-category structures sending JF;-cofibrant objects
to Fj-cofibrant objects. Then (I'C,H,W) is a Cartan-FEilenberg category.
There is an equivalence of categories

T Copp — TCIWY].

PROOF. Let p; : C; — A; be F;-cofibrant models in C;. By the lifting
property, for each u : ¢ — j there exists a morphism ¢, : C; — C, together
with a homotopy R, : pup; =~ pjp.. We obtain a diagram of I'C, ¢

C = (C’i BN C’j) .

The family p = (p;, Ry,) is a ho-morphism from C to A, which by construc-
tion is a weak equivalence. Then ®c 4(p) : C — A is a (left) model of A.
By Corollary 1.4.10, C' is Cartan-Eilenberg cofibrant. The equivalences of
categories

T Copp — TCpof[H 1, TC] = TCIW ).

follow from Theorems 1.4.7 and 1.1.35 respectively. g
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Since weak equivalences in I'C are defined level-wise, the following version
with minimal models is straightforward. Denote by I'C,,;, the full subcat-
egory of I'C of those diagrams A such that A; is F;-minimal in C;, for all
i€ l.

Theorem 1.4.12. Let I'C be a diagram category indexed by a directed cat-
egory I as in 1.3.4. Assume that for each i € I, the categories C; are
P-categories with F;-minimal models, and that the functors u. : C; — C;
are compatible with the P-category structures sending J;-minimal objects to
Fj-minimal objects. Then (I'C,H, W) is a Sullivan category. There is an
equivalence of categories

T C i —> TCW Y.

To end this chapter we consider a situation in which the category under
study is a full subcategory of a category of diagrams. This is a generalization
of Lemma 1.2.34 and will be of use for the applications to mixed Hodge
theory.

Lemma 1.4.13. Assume that T'C has a level-wise P-category structure. De-
note by W the class of weak equivalences and let H denote the closure by

composition of ho-equivalences. Let D be a full subcategory of I'C such that:

(i) Given a weak equivalence A <5 B in I'C, then A is an object of D if
and only if B is so.
(it) For every object D of D there is an object C € Deop := D N TCef,

together with a ho-morphism C ~» D, which is a weak equivalence.

Then the triple (D, H, W) is a Cartan-FEilenberg category with cofibrant mod-

els in Deop, and there are equivalences of categories
T Deos — Deop[H ™, D] = DIW1.

PROOF. By (i), the mapping path P"(f) of a ho-morphism between
objects of D is an object of D. Hence by Proposition 1.3.20 the assignation
f= qujjl gives rise to a well defined map

®c,p : DM(C, D) — DH)(C, D),
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which preserves weak equivalences. By Theorem 1.4.7 there is an equiva-
lence of categories

P : " Depp 2 Depp[H ™, D] : V.

By Proposition 1.4.9 every object of D, is Cartan-Eilenberg cofibrant
in (D,H,W). Therefore, to prove that the triple (D, H,W) is a Cartan-
Eilenberg category, it suffices to prove that every object D of D has a model
in Deos. By (ii), for every object D of D, there exists a weak equivalence
p:C ~ D, with C € Dgpy. The morphism ®¢c p(p) : C — D of D[H™!]
is an isomorphism in D[W~1]. Therefore (D, H, W) is a Cartan-Eilenberg
category. O

There is an analogous version of Lemma 1.4.13 with cofibrant minimal mod-
els.






CHAPTER 2

Filtered Derived Categories

The category of filtered objects F.A of an abelian category A is not abelian
in general. Therefore the classical theory of derived categories of Verdier
[Ver96| does not apply in this case. There have been several alternative
approaches to address the study of filtered complexes. First, Illusie defined
the derived category of a filtered abelian category in an ad hoc scheme, fol-
lowing the classical theory of abelian categories (see Chapter V of [I1171]).
The theory of exact categories of Quillen [Qui73] allows another approach,
which is detailed in the work of Laumon [Lau83]. In this chapter we study
the derived category of F.4 within the axiomatic framework of Cartan-
Eilenberg categories. This paves the way in two directions: the study of
mixed Hodge complexes of Chapter 3, and the study of filtered differential
graded algebras of Chapter 4.

In Section 1 we collect some preliminaries on homological algebra: we review
the homotopy theory of an additive category, and the theory of exact cate-
gories. Then, we provide the main definitions and results regarding filtered
objects, following mainly [Del71b]. Following [Kel96], we describe the fil-
tered derived category of an abelian category in terms of exact categories,
and interpret the main results in the context of Cartan-Eilenberg categories.

In Section 2 we study higher filtered derived categories. In order to deal
with the weight filtration, in [Del71b] Deligne introduced the décalage of a
filtered complex, which shifts the associated spectral sequence of the original
filtered complex by one stage. We review the main properties of Deligne’s
décalage functor and use them to study the localized category of filtered

69
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complexes with respect to the class of E,.-quasi-isomorphisms via the con-
struction of higher filtered injective cofibrant models.

In Section 3 we restrict our study to filtered complexes of vector spaces over
a field. In this case, every object is injective and projective, and the clas-
sical calculus of filtered derived categories does not provide any additional
information. However, we can consider filtered minimal models and study
the r-derived category from the viewpoint of Sullivan categories. At the end
of the section, we study d-strict filtered complexes, and some consequences
of the degeneration of the spectral sequences on the minimal model, which
will be of use in the applications to mixed Hodge Theory.

In the last section we generalize the results of the previous sections, to
bifiltered complexes.

2.1. PRELIMINARIES

In this preliminary section we review the basic notions and results of additive
categories, exact categories and filtered abelian categories. Using the theory
of exact categories, we provide a description of the filtered derived category
of an abelian category.

Additive Categories. For the rest of this section let A be an additive cat-
egory, and denote by C%(.A) the category of cochain complexes of objects
of A, where « denotes the boundedness condition (+ and — for bounded
below and above respectively, b for bounded and () for unbounded).

The following constructions will be useful to study the homotopy theory of
complexes over A (see for example [GMO3], Section II1.3.2).

Definition 2.1.1. The translation of a complex K is the complex K[1]
defined by K[1]* = K"! with the differential Ay = —d%. This defines
an autoequivalence

T:CH(A) — CHA).
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Definition 2.1.2. Let f,g: K — L be morphisms of complexes. A homo-
topy from f to g is a map h : K — L[—1] such that dh + hd = g — f. We
denote h : f ~ g, and say that f is homotopic to g.

The additive operation between morphisms of complexes makes the homo-

topy relation into an equivalence relation compatible with the composition.

Definition 2.1.3. Let f : K — L and g : K — M be two morphisms of
complexes. The double mapping cylinder of f and g is the complex Cyl(f, g)
given by the direct sum

Cyl(f,9) = K[l]® L& M,

with the differential
-d 0 0

D=1|-f d 0
g 0 d

The following result is straightforward.

Lemma 2.1.4. Given morphisms f: K — L and g : K — M, then
Hom(Cyl(f,9),X) ={(a,5,h); a: L - X,B: M — X,h: af ~ g}

for any complex X.

Definition 2.1.5. Let f : K — L be a morphism of complexes.
(1) The mapping cylinder of f is the complex defined by

Cyl(f) == Cyl(f, 1x) = K[1]® L & K.

There is a commutative diagram of morphisms of complexes

K —%epnd—1
N lp/
L

defined by if(x) = (0,0,2), jr(xz) = (0,2,0) and ps(x,y, 2) =y + f(2).
(2) The mapping cone of f is the complex defined by

O(f) == Cyl(0, f) = K[1] & L.
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There is a short exact sequence
0—L—C(f) = K[1] — 0.
Note that for every complex X,
Hom(C(f), X) = {(8,h); 8: L — X,h: 0 ~ Bg} .
Definition 2.1.6. The cylinder of a complex K, is the complex defined by
Cyl(K) :=Cyl(1g,1x) = Cyl(1lk).

The cylinder is functorial for morphisms of complexes. Denote by

K*>Cyl )

N

the corresponding morphisms.

The following well known result states that notion of homotopy of Defini-
tion 2.1.2 coincides with the notion of homotopy defined by the functorial
cylinder (see Definition 1.2.2 for a dual definition).

Corollary 2.1.7. Let f,g : K — L be morphisms of complexes. A homo-
topy h : K — L[—1] from f to g is equivalent to a morphism of complezes
h: Cyl(K) — L satisfying hjx = f and hig = g.

PROOF. It is a consequence of Lemma 2.1.4. U

Denote by [K, L] the set of equivalence classes of morphisms of complexes
from K to L modulo homotopy, and let

K(A) := C(A)/ ~

be the corresponding quotient category. Denote by S the class of homotopy
equivalences: these are morphisms f : K — L such that there exists a
morphism of complexes g : L — K, together with homotopies fg ~ 1 and
gf ~ 1. An important property of the cylinder is the following.

Proposition 2.1.8. The morphism pg : Cyl(K) — K is a homotopy equiv-

alence, for every complex K.
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PROOF. A homotopy h : Cyl(K) — Cyl(K)[—1] from jxpx to 1 is given
by (x,y,z) — (2,0,0). By definition, pxjx = 1. 0

Corollary 2.1.9. The inclusion induces an equivalence of categories
KY(A) = C*(A)[S].

PRrROOF. Let f,g: K — L be morphisms of complexes, and let h: f ~ g
be a homotopy from f to g. By Corollary 2.1.7, this defines a morphism
h: Cyl(K) — L such that the diagram

K

Y,

K~<~—Cyl(K)—— L

N

K

commutes. By Proposition 2.1.8 the map px is a homotopy equivalence.
Therefore this is a hammock between S-zig-zags f and g. The result follows
from Proposition 1.1.10. 0

Remark 2.1.10. Both the notion of homotopy, and the double mapping
cylinder, depend on the translation functor, which is an additive automor-
phism of the category of complexes. Different choices of this functor lead
to distinct notions of homotopy. An example is provided by filtered cate-
gories, in which a shift by r on the filtration of the translation leads to the
different notions of r-homotopy, suitable to study of the derived category

with respect to F,-quasi-isomorphisms (see Definition 2.2.16).

Exact Categories. We next introduce the notion of an exact category and
review the main results regarding derived categories of exact categories. We
mainly follow [Biih10] and [Kel96].

Definition 2.1.11. Let A be an additive category. A pair of morphisms
j P
A—=B——=C

in A is ezact if i is a kernel of p and p is a cokernel of i. The map i is said
to be an admissible monomorphism, and p is an admissible epimorphism.
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Definition 2.1.12. An exact category is an additive category A, together
with a class of exact pairs of A, closed under isomorphisms, and satisfying
the following axioms:

Ep) For all objects A of A, the identity morphism 14 is an admissible
J Yy
monomorphism (resp. epimorphism).
(E1) The class of admissible monomorphisms (resp. epimorphisms) is
closed under composition.
(E2) The push-out (resp. pull-back) of an admissible monomorphism
(resp. epimorphism) always exists and is an admissible monomor-

phism (resp. epimorphism).

We shall also assume the following condition:

(Es) Every morphism f: A — B of A has a kernel and a coimage. The
sequence Kerf — A — Coimf is an exact pair of A.

Remark 2.1.13. Condition (E3) is a strong assumption which makes cal-
culation in exact categories significantly easier (see 1.3.0 of [Lau83]). In
particular, it implies that the category is idempotent complete (see Defini-
tion 6.1 of [Biih10]).

Definition 2.1.14. A morphism f : A — B in an exact category A is called
admissible if it factors as f = ip, where ¢ is an admissible monomorphism

and p is an admissible epimorphism.

Example 2.1.15. If A is abelian, the pairs of maps A — B — C that fit
into an exact sequence 0 -+ A — B — C — 0, define an exact structure
on A. The admissible monomorphisms (resp. epimporphisms) are just the
monomorphisms (resp. epimorphisms), and every morphism is admissible,
with A - A/Kerf = Imf -2 B.

Definition 2.1.16 ([Kel96], Sect. 5). An object I of an exact category A
is said to be injective if for any admissible monomorphism ¢ : A — B, the

induced morphism
it A(B,I) — A(A,I)

is surjective. Denote by Inj.A the full subcategory of injective objects of A.
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Definition 2.1.17. An exact category A has enough injective objects if
for any object A of A, there exists an injective object I, together with an
admissible monomorphism A — 1.

In abelian categories, weak equivalences are usually defined to be cochain
maps inducing an isomorphism in cohomology. In a category of complexes
of an arbitrary exact category there is no notion of cohomology. However,
one can define weak equivalences, based on the notion of acyclic complex.

Definition 2.1.18. Let A be an exact category. A complex K of CT(A)
is called acyclic if the differentials d” : K™ — K"*! of K factor as
TGN Z"_+1> Kt
in such a way that the sequence
gn 2 gn Py et

is an exact pair of A. In particular, d” is an admissible morphism of A.

Remark 2.1.19 (See Lemma 1.2.2 of [Lau83|). Condition (E3) implies
that a complex K is acyclic if and only if for all n > 0, the morphism

d": K" — Z""H(K) := Ker d"*!
is an admissible epimorphism.

Definition 2.1.20. A morphism f : K — L of CT(A) is called weak
equivalence if its mapping cone C(f) is an acyclic complex.

Denote by W the class of weak equivalences of C*(A).

Lemma 2.1.21 ([Biith10], Prop. 10.9). If an ezact category A satisfies
(Es3), then every homotopy equivalence is a weak equivalence. In particular
the triple (CT(A),S, W) is a category with strong and weak equivalences.

Propositions 2.1.22 and 2.1.23 below are generalized versions for exact cate-
gories, of the corresponding well-known results for the category of complexes
of an abelian category (see for example Theorems 6.1 and 6.2 of [Ive86]).

Injective complexes satisfy the following fibrant-type property.



76 CHAPTER 2. FILTERED DERIVED CATEGORIES

Proposition 2.1.22. Let I be a complex of Ct(InjA). Every weak equiv-
alence of complexes w: K = L induces a bijection

w* : [L,I] — [K, ]
between homotopy classes of maps.

PRrROOF. Consider the homotopy exact sequence induced by [—, I]

If suffices to see that [C'(w), J] = 0 for any injective complex J. Since C(w)
is acyclic, this follows from Lemma 4.1.a of [Kel90]. O

In particular, every weak equivalence between bounded below complexes of
injective objects, is a homotopy equivalence.

The existence of enough injective objects can be found in [Kel90], Lemma
4.1.b. See also the dual version in [Biih10], Theorem 12.7.

Proposition 2.1.23. Let A be an exact category with enough injectives.
For every complex K in Ct(A), there exists a complexr I € CT(InjA),
together with a weak equivalence K = 1T.

Corollary 2.1.24 (cf. [Pasll], Prop. 4.4.1). Let A be an exact cate-
gory with enough injectives. The triple (CT(A),S, W) is a (right) Cartan-
Filenberg category, and C*(InjA) is a full subcategory of fibrant models.
The inclusion induces an equivalence of categories

K" (InjA) = DT(A) := CT(AW].

Filtered Abelian Categories. We outline some algebraic preliminaries
about filtered objects and filtered complexes of an abelian category A. The
basic reference is [Del71b].

Definition 2.1.25. A decreasing filtration F of an object A of A is a se-
quence of sub-objects of A, indexed by the integers,

0C.-..CFPrlCFPAC...C A
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An increasing filtration W of A is a sequence of sub-objects of A, indexed
by the integers,

0C---CW, tACW,AC---CA.
Given a decreasing filtration F' we can define an increasing filtration by set-

ting F,,A = F~PA. Consequently, properties and results stated for one type
of filtrations have obvious analogues for the other type.

We shall always assume that the filtrations are finite: for any filtered object
(A, F) there exist p,q € Z such that FPA = A and F1A = 0.

Definition 2.1.26. A filtered morphism f : (A, F) — (B, F') is a morphism
f:A— Bin A which is compatible with filtrations:

f(FPA) C FPB, for all p € Z.
The category F.A of finitely filtered objects of an abelian category A is ad-

ditive, and has finite limits and colimits. Therefore kernel, images and their

dual notions exist. However, it is not abelian in general.

A particular class of filtered morphisms plays an important role in filtered
categories.

Definition 2.1.27. A morphism f : (A, F) — (B, F) is said to be strictly
compatible with the filtrations or strict if the canonical morphism

Coimf — Imf
is an isomorphism of filtered objects. (cf. Proposition 2.1.31).

2.1.28. Let j : X — A be a sub-object of A. A filtration F' on A induces
a filtration on X by

FPX = j7Y(FPV) = FPAN X.
This is the only filtration on X such that j is strictly compatible with the
filtrations. Dually, the filtration on the quotient space A/X is given by
FP(A/X)=m(FPA) = (X + FPA)/X 2 FPA/(X NFPA).
This is the only filtration on V/X such that the projection 7 : A — A/X
strictly compatible with the filtrations.
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Lemma 2.1.29 ([Del71b], Lemma 1.1.9).

(1) If X1 C Xo C A, and A has a filtration, then the two induced filtrations
on the quotient Xo/X1 agree.
(2) If¥: A L B%Cisa 0-sequence and B has a filtration, then

H(Y) = Kerg/Imf = Ker(Coker f — Coimg)

has a canonically induced filtration.

Definition 2.1.30. The associated p-graded object Grh. A of a filtered object
(A, F) is the object of A defined by the quotient

Gr?. A= FPA/FPTA.

Every morphism of filtered objects f : (4, F') — (B, F) induces morphisms
Gri.f : Grh. A — Gr%.B between their associated p-graded objects.

Proposition 2.1.31 ([Del71b], Prop. 1.1.11).
(1) A morphism f: (A, F) — (B, F) is strict if and only if the sequence
0 — GriyKerf — Gr. A — Gri.B — Gr¥.Cokerf — 0
is exact for all p € 7.
(2) Let ¥ : (A,F) — (B,F) — (C,F) be a 0-sequence of filtered objects,
in which both morphisms are strict. For all p € Z, there is a canonical

isomorphism

H(GrbY) = GrP H(S).

Definition 2.1.32. A filtered complex is a pair (K, F'), where K is a cochain
complex, and F' is a decreasing filtration of sub-complexes of K.

Since we assume that all filtrations are finite, every filtered complex we shall
consider is biregularly filtered. Denote by C*(F.A) the category of bounded
below (biregularly) filtered complexes of A.

By Lemma 2.1.29 the cohomology H(K) of a filtered complex (K, F') re-

ceives a decreasing filtration induced from F:

FPH(K) = Im {H(FPK) — H(K)}.
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Therefore (H(K), F) is a filtered complex with trivial differential. However,
as we shall next see, this is not the suitable object to detect the interesting

weak equivalences.

Example 2.1.33. The béte filtration o of a complex K is the decreasing
filtration obtained by placing 0 in degrees < p, while keeping K™ in all other
degrees,

0PK ={0—=0---—0— KP — KPT! ...}

The p-graded complex associated with (K,o) is KP in weight p, and 0
elsewhere, so Gri K = KP[—p].
Example 2.1.34. The canonical filtration T of a complex K is the increas-
ing filtration defined by truncation:
TepK ={ - - KPF!' 5 Kerd 00— ---}.
The p-graded complex associated with (K, 7) being
0 — KP7'/Kerd — Kerd — 0.

There is a quasi-isomorphism Grj K = HP(K)[-p)].

Definition 2.1.35. A morphism f : (K, F) — (L, F) of filtered complexes
is called a filtered quasi-isomorphism if, for all p € Z, the induced morphisms
H™(Grl.f) : H"(Gr.K) — H"(Gr¥.L)

are isomorphisms.

Denote by £ the class of filtered quasi-isomorphisms. Since the filtrations
are biregular, every filtered quasi-isomorphism is a quasi-isomorphism. The

converse is not true in general.

Since F A is additive, there is a notion of filtered homotopy, defined by the
filtered translation functor.

Definition 2.1.36. The filtered translation of a complex (K, F') is the fil-
tered complex (K[1], F) defined by FPK[1]® = FPK"!. This defines an
autoequivalence

T:CH(FA) — CH(FA).
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Denote by S the class of filtered homotopy equivalences. We have S C €.
Therefore the (CT(FA),S, &) is a category with strong and weak equiva-

lences.
To end this preliminary section we introduce some notation and results
regarding the filtered mapping cone, which will be of use in the sequel.

2.1.37. Let f : (K, F) — (L, F) be amap of filtered complexes. The filtered
mapping cone of f is given by

FPC(f) = FPK" "' @ FPL".
By construction, the maps in the exact sequence
20— L-50(f) 5 K[1] — 0,
are all strictly compatible with filtrations, and for all p € Z, we have:
FPC(f) = C(F?f), and Gri.C(f) = C(Grl.f).

Therefore the corresponding filtered and graded sequences FP3 and GT%Z
are exact. These exact sequences are, in turn, related via the exact sequences

induced by
0— FPHL L o T g 0,

We have a commutative diagram in which rows and columns are exact:

0 0 0

0 — GrL —— Gri.C(f) ——= Gri.K[1]] ——= 0

0 FPL, FPC(f) FPK[1] ——0

0 —> prtl —> FPHICO(f) —> FPHIK[1] —> 0
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From the above diagram, it is straightforward that a morphism of filtered
complexes f : (K, F) — (L, F) is a filtered quasi-isomorphism if and only if
the complex Grh.C(f) is acyclic for all p € Z.

Lemma 2.1.38. Let f : (K,F) — (L, F) be a morphism of filtered com-
plexes, and let p € Z. The following are equivalent.

(1) The map Fif : F1A — F1B is a quasi-isomorphism for all ¢ > p.

(2) The map Grl.f : Gri.A — GriF B is a quasi-isomorphism for all ¢ > p.
(3) The map 7 : F1C(f) — GrL.C(f) is a quasi-isomorphism, for all ¢ > p.

ProoOF. (1) = (2). If F1f is a quasi-isomorphism, then the complex
C(Fif) = Fi1C(f) is acyclic. From the short exact sequence

Iy :={0— FIC(f) = FIO(f) — GriC(f) — 0}

if follows that the complex C(Grl.f) = Gri.C(f) is acyclic, and hence Grf. f
is a quasi-isomorphism.

(2) = (1). Assume that Grf f is a quasi-isomorphism for all ¢ > p. Since the
filtrations are biregular, there exists an integer r > p such that F" f = Gri. f
is a quasi-isomorphism. The result follows by induction, using the short ex-
act sequence I'.

This proves that (1) is equivalent to (2). That (1) is equivalent to (3) follows
directly from the exact sequence I';.
(|

The Filtered Derived Category. The category of filtered objects of an
abelian category is the primary example of an exact category. The study of
its exact structure appears in [Kel90]. We next give a detailed presentation
of the main results, which will be needed in later sections.

Lemma 2.1.39 ([Kel90]|, 5.1). The category of filtered objects FA of an
abelian category A admits an exact category structure. The exact pairs are

given by the sequences of filtered morphisms

(A,F)— (B,F)— (C,F)
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such that for all p € Z, the sequence
0— FPA— FPB — FPC = 0

15 exact.

Remark 2.1.40. Consider a sequence of filtered morphisms
(A,F)— (B,F)— (C,F).
Since the filtrations are finite, it follows that the sequence
0—FPA— FPB — FPB —0
is exact for all p € Z, if and only if the sequence
0— Gr. A — Gr.B — Gr.B — 0

is exact for all p € Z.

From Proposition 2.1.31 and since filtrations are finite, it follows that the
admissible monomorphisms (resp. epimorphisms) of the exact structure of
F A are the strict monomorphisms (resp. epimorphisms). In particular, the
admissible morphisms are the strict filtered morphisms.

Proposition 2.1.41 (cf. [Kel96], Ex. 5.5). Let A be an abelian category

with enough injectives.

(1) An object (I, F) is injective in FA if and only if Gri.I is an injective
object of A, for all p € Z.

(2) If A has enough injectives, then FA has enough injectives.

PRrOOF. We prove (1). Let f : (A, F) — (I, F') be a morphism of filtered
objects, and let i : (A, F) — (B, F) be a strict monomorphism. Assume
that for ¢ > p we have morphisms g, : F'9B — F91 such that g4|rrp = gr
for all r > q and g,F'9% = F9f. Consider the solid diagram

Gr2. f
FPA —>GrbI
7
Grii l , ~
T 9p

GT‘%B
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Assume that Grf,] is injective for all p € Z. Since GT%i is a monomorphism,
a dotted arrow g, exists, making the diagram commute. Consider the solid
diagram with exact rows

04>Fp+1Bg>FpB4>GT%Bg>O

9p+1 égp lﬁp
Y
00— Fp-l—l[ — FP] —— GT%I — ()

Since the filtrations are finite, the condition that Gri.I is injective for all
p € Z is equivalent to the condition that FPI is injective for all p € Z and
the exact sequence at the bottom splits. In particular, FPT = FP1 IpGrh.I,
and the dotted arrow g, exists.

We prove (2). Let (A, F) be a filtered object, and assume that for all
p € Z there exists an injective object I,, and a monomorphism Gr%A — 1.
Since the filtration is finite, we can define inductively over p € Z, a filtered
injective object

FPI .= FPI a1,

together with a morphism (A, F') — (I, F'), which by construction is a strict
monomorphism. O

The class of filtered quasi-isomorphisms of filtered complexes corresponds
to the class of weak equivalences associated with the exact structure of FA
(see for example [Hub95], Lemma 3.1.6). We obtain:

Corollary 2.1.42. Let A be an abelian category with enough injectives. The
triple (CT(FA), S, €) is a (right) Cartan-FEilenberg category, and C* (FInj.A)
1s a full subcategory of fibrant models. The inclusion induces an equivalence
of categories

K*(FInjAd) — DT (FA) := CH(FA)[E!].

PrOOF. It follows from Proposition 2.1.41 and Corollary 2.1.24. 0
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2.2. DELIGNE’S DECALAGE FUNCTOR

In [Del71b], Deligne introduced the shift and the décalage of a filtered
complex, and proved that the spectral sequences associated with these fil-
trations, are all related by a shift of indexing. Deligne’s décalage functor
is one of the key tools of mixed Hodge theory, being the responsible for
endowing the cohomology of a mixed Hodge complex with a mixed Hodge
structure. In this section we show how Deligne’s décalage is already a key
tool in the study higher filtered derived categories. We collect some main
properties of the décalage which are probably known to experts, but which
do not seem to have appeared in the literature. We introduce the r-derived
category as the localization of the category of (bounded below) filtered com-
plexes with respect to E,.-quasi-isomorphisms and, using Deligne’s décalage
functor, we provide results analogous to the classical setting.

Definitions and Properties. We first recall the definition of the shift,
the décalage and its dual construction, and collect their main properties.

For the rest of this section we let A be an abelian category.

Definition 2.2.1. The shift of a filtered complex (K, F') is the filtered
complex (K, SF) defined by

SFPK™ = FP7"K™.
This defines a functor
S:CHFA) — CH(FA)
which is the identity on morphisms.
The following result is straightforward.
Proposition 2.2.2. There are isomorphisms of bigraded complezes
EVL(SK) = E %P2, for all v > 0.

The shift functor does not admit an inverse, since the differentials of such
would not be compatible with the filtrations. However, it has both a right
and a left adjoint: these are the décalage and its dual construction.
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Definition 2.2.3. The décalage of a filtered complex (K, F') is the filtered
complex (K, DecF') defined by

DecFPK™ = FPYP K™ (g~ (FPAntlgntdy,
The induced filtration on H(K) is the filtration:
DecFP(H"(K)) = FP™(H"(K)).
The dual to the décalage is the filtered complex (K, Dec*F') defined by
Dec* FPK™ = d(FPY" 1K™~ 1) 4 pPAnK™,
These filtrations define functors
Dec, Dec* : CT(FA) — CT(FA)
which are the identity on morphisms.

Example 2.2.4. Let G denote the trivial filtration 0 = G'K ¢ G°K = K
of a complex K. Then DecG = Dec*G = 7 is the canonical filtration, while
SG = o is the béte filtration.

The spectral sequences associated with a filtered complex and its décalage
are related by a shift of indexing.

Proposition 2.2.5 ([Del71b], Prop. 1.3.4). The canonical maps
EP"P(DecK) — EYT™P(K) — EY"P(Dec*K)

are quasi-isomorphisms of bigraded complexes. The canonical maps
EP""P(DecK) — Efj:?’_p(K) — EP""P(Dec*K)

are isomorphisms for all r > 1.
The following result is a matter of verification.

Lemma 2.2.6. The following identities are satisfied:
(1) Deco S =1, and (S o DecF)P = FP Nd~Y(FPHl),
(2) Dec* oS =1, and (S o Dec*F)P = FP + d(FP~1).

In particular, the identity defines natural transformations

SoDec —1 and 1 — S o Dec*.

As a consequence, we can easily prove that:
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Proposition 2.2.7. The functor S is left adjoint to Dec and right adjoint
to Dec*. In particular:

Hom(SK, L) = Hom(K, DecL),
Hom(Dec*K, L) = Hom(K, SL).

PrOOF. The adjunction S 4 Dec is given by the pair of transformations
e:SoDec—1and n:1— DecoS. Analogously, the adjunction Dec* - S
is given by the pair ¢* : Dec* 0 S — 1 and n* : 1 — S o Dec*. g

Equivalence of Derived Categories. Denote by & the class of filtered
quasi-isomorphisms of C*(F.A). Inductively over 7 > 0, define a class &, of
weak equivalences by letting

& :=Dec (& 1) = (Dec*) " H(E—1).

Definition 2.2.8. Morphisms of &, are called FE,-quasi-isomorphisms of
filtered complexes.

In particular, an Fy-quasi-isomorphism is a filtered quasi-isomorphism. Note
that by Proposition 2.2.5 we have Dec™1(&,) = (Dec*)71(&,), for every
r > 0, and hence the above formula makes sense.

Our objective is to study the localized category
D/ (FA) := CH(FA)E ]

of (bounded below) filtered complexes with respect to the class of F,-quasi-
isomorphisms, for > 0 arbitrary.

The shift functor is compatible with the classes of E,.-quasi-isomorphisms:
Proposition 2.2.9. Let r > 0. Then & = S™Y(E41).

ProOF. We prove both inclusions. Let f € &,. By Lemma 2.2.6 we have
f = Dec(Sf) € &.. By definition, this implies that Sf € &.41. Conversely,
assume that Sf € &.11. Then f = Dec(Sf) € &,. O

We next show that, when restricted to certain subcategories, the shift and
the décalage are inverses to each other.
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2.2.10. Let 7 > 0, and denote by C; (F.A) the full subcategory of C*(F.A)
of those complexes (K, F') such that

d(FPK) C FPFTK.

Obviously, there is a chain of full subcategories
Cf(FA) cC! (FA) C - CC{(FA) =CT(FA).
A simple verification shows that:
Lemma 2.2.11. Let (K, F) be an object of C{ (F.A). Then
DecFPK"™ = Dec*FPK™ = FPT"K".
Corollary 2.2.12. Let r > 0. The functors
Dec = Dec* : C/ | (FA) = CH(FA): S
are inverses to each other.
Lemma 2.2.13. Let r > 0, and consider the functor
Jy = (S" oDec") : C"(FA) — C/(FA).

There is a natural transformation J,. — 1 such that for every filtered complex
K, the morphism J.(K) — K is an E,.-quasi-isomorphism. In particular,
there is an equivalence of categories

Jr:DF(FA) = CHFA)E.
PrROOF. By Lemma 2.2.6 we have a natural transformation
J1=So0Dec — 1.
For every r > 0, this gives a natural transformation
Tr=8"toFoDec ' — S loloDec ! = F,_;.

Let K be a filtered complex. For the morphism J,.(K) — K to be an
E,-quasi-isomorphism it suffices to show that Dec”(7,(K) — K) is an Ey-
quasi-isomorphism. Indeed, since Dec” o S” = 1 we have

Dec” o J, K = Dec” 0 8" o Dec" K = Dec" K.
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Remark 2.2.14. The functor 7, is idempotent. There are dual results for
1 — JF:= 50 (Dec")".

We can now prove the main result of this section.
Theorem 2.2.15. Deligne’s décalage induces an equivalence of categories
Dec : D | (FA) = D/ (FA),
for every r > 0.
PrOOF. By Lemma 2.2.13 there is an equivalence of categories
Jr:DF(FA) = CHFA)E.

By Corollary 2.2.12 we have an equivalence Dec : C;f;(FA) — C/(FA).
Since &+1 = Dec™!(&,), this induces an equivalence of localized categories

CL(FAEL] — CHFAE .
Hence we have a commutative diagram of equivalences

D (FA) - -7 > Dy (FA)

I\LJT+1 leﬁ"

_ Dec
CrL(FAEL] —— CHFAEN).

r

g

Higher Injective Models. The notion of filtered homotopy between mor-
phisms of filtered complexes generalizes to a notion of r-homotopy, suitable
to the study of r-injective models with respect to E,-quasi-isomorphisms.

Definition 2.2.16. Let » > 0. The r-translation is the autoequivalence
T, : CT(FA) — CT(FA)

which sends a filtered complex K to the filtered complex K [1](r) defined by
FPE[1)(r)" := FPTT R,

The inverse T, ! of the r-translation is given by K +— K|[—1](—r).
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Definition 2.2.17. Let f,g : K — L be two maps of filtered complexes, and
let » > 0. An r-homotopy from f to g is a morphism of filtered complexes
h : K — L[-1](—r) such that hd — dh = g — f. We use the notation

h:f = g, and say that f is r-homotopic to g.

Note that the condition that h is compatible with the filtrations is equivalent
to the condition that for all n > 0 and all p € Z,

h(FPK™) Cc FP" "L,
This coincides with the notion of r-homotopy introduced by [CE56], pag.

321. See also [I1I71], pag. 277. For r = 0 we recover the usual notion of
filtered homotopy.

To control the effect of shift and décalage on r-homotopy equivalences it
suffices to study its effect on the inverse of the r-translation functor. The
following result is a matter of verification.

Lemma 2.2.18. Let r > 0. The following identities are satisfied:

Deco T} =T o Dec,

r+1 = *r
* -1 _ -1 *
Dec® o Ty =T o Dec”,

So T;l = TT__,_l1 oS.

Denote by S, the class of r-homotopy equivalences. The following result is
straightforward from Lemma 2.2.18.

Corollary 2.2.19. Let r > 0. There are inclusions
Dec(Sy41), Dec*(Sp41) C Sy and S(Sy) C Spy1-

Using the notion of r-cylinder defined via the r-translation, by Corollary
2.1.9 it follows that the quotient category

K7 (FA) = C*(FA)/ =
is canonically isomorphic to the localized category CT(F.A)[S, 1] with re-

spect to r-homotopy equivalences.

Denote by [K, L], the class of morphisms from K to L modulo r-homotopy.
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Proposition 2.2.20 (cf. [CE56], Prop. 3.1). Let r > 0. Then every
r-homotopy equivalence is an E,-quasi-isomorphism.

PRrROOF. By Lemma 2.1.21 we have Sy C &. We proceed by induction:
Sr+1=Dec }(S,) C Dec ™' (&) = Erit.

O

In particular, the triple (C*(F.A), S,, &) is a category with strong and weak

equivalences, for all > 0.

To characterize fibrant objects we will use the following auxiliary Lemma,
which reflects the behaviour of the décalage on the homotopy classes of
certain morphisms. Since we will consider injective objects, we will use the

functor Dec*. Dual results for projective objects are obtained with Dec.

Lemma 2.2.21. Let r > 0, and let I be an object of CjH(FA). For every
filtered complex K, there is a bijection

Dec* : [K, I];,4+1 — [Dec* K, Dec*I],
between homotopy classes of morphisms.
PRrROOF. By Corollary 2.2.12 we have S o Dec*I = I. Therefore
Hom(K,I) = Hom(K, S o Dec*I) = Hom(Dec* K, Dec*I),

by the adjunction Dec* - S. Therefore it suffices to show that every (r+1)-
homotopy with respect to F, is in correspondence with an r-homotopy with
respect to Dec*F'. Indeed, by Lemma 2.2.18 we have

Hom(K, T, (1)) = Hom(K, T}, (SoDec*I)) = Hom(Dec* K, T, ! (Dec*I)).
O
We will next show that the objects of
C(FInjA) := G (FA) N CT(FInjA).
are fibrant objects in the triple (C*(F.A), S, &,), for all r > 0.

Definition 2.2.22. Objects of C;\ (FInj.A) are called r-injective complezes.
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The décalage and its inverse restrict to the full subcategory of r-injective

complexes:

Lemma 2.2.23. Let r > 0. The functors
Dec = Dec* : C;, | (FInjA) = C/ (FInjA) : S
are inverses to each other.

PROOF. In view of Corollary 2.2.12 it suffices to see that both functors
preserve injectives. Let I be an (r+ 1)-injective complex. By Lemma 2.2.11
we have that

+
GripI" = GrY oI = Gri " I"
is injective for all p € Z and all n > 0. Hence Decl = Dec*I is r-injective.

The converse is trivial. O

We next show that r-injective complexes are fibrant.

Proposition 2.2.24. Let r > 0, and let I be an r-injective complex. Every

E,.-quasi-isomorphism w : K — L induces a bijection
w* : [L, I, — [K,I],
between r-homotopy classes of morphisms.

ProoF. By Corollary 2.1.42, the statement is true for r = 0. We pro-
ceed by induction. Assume that [ is (r + 1)-injective. Consider the diagram

(L, []rp1 2> [Dec*L, Dec*I,
| |
K, 1]y 41— [Dec* K, Dec*I],
By Lemma 2.2.23, Dec*I is r-injective. Hence by induction hypothesis, the

vertical arrow on the right is a bijection. By Lemma 2.2.21 the horizontal

arrows are bijections. O

Lastly, we prove the existence of enough r-injective complexes.

Proposition 2.2.25. Let A be an abelian category with enough injectives,
and let r > 0. For every complex K of CT(F.A), there exists an r-injective
complex I, together with an E,-quasi-isomorphism p: K — I.
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ProoF. By Corollary 2.1.42 the statement is true for r = 0. We pro-
ceed by induction. Let » > 0, and let p : Dec*K — I be an E,_j-quasi-
isomorphism, where I is (r — 1)-injective. Then the adjunction Dec* 4 S
gives an F,-quasi-isomorphism p : K — SI. By Lemma 2.2.23 SI is r-
injective. (|

Theorem 2.2.26. Let A be an abelian category with enough injectives,
and let v > 0. The triple (CT(FA),S,, &) is a (right) Cartan-FEilenberg

category. The inclusion induces an equivalence of categories
K (FInjA) — D, (FA)

between the category of r-injective complexes modulo r-homotopy, and the lo-

calized category of filtered complexes with respect to E,.-quasi-isomorphisms.

PRrROOF. By Proposition 2.2.24 every r-injective complex is a fibrant ob-
ject. By Proposition 2.2.25 every filtered complex has an r-injective model.
The equivalence of categories follows from Theorem 1.1.35. g

2.3. FILTERED COMPLEXES OF VECTOR SPACES

Consider the category C* (k) of bounded below complexes of vector spaces
over a field k. In this case, every object is injective, and the classical calculus
of derived categories does not provide any additional information. The
minimal objects of C* (k) are those complexes with trivial differential. In
addition, every complex K is homotopically equivalent to H (X)), regarded as
a complex with trivial differential. This provides C* (k) with the structure
of a Sullivan category. A well known corollary of this fact is the equivalence

G'(k) = DT (k)

between the category of non-negatively graded vector spaces and the bounded
below derived category of vector spaces over a field k. This simple example
exhibits the utility of minimal models and Sullivan categories.

In this section we study minimal models of filtered complexes of vector
spaces. We show that a filtered complex is minimal if and only if the differ-
ential on each associated graded complex is trivial, and that any bounded
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below filtered complex with biregular filtrations has a model of such type.
As a consequence, the category of filtered complexes of vector spaces inher-
its a Sullivan category structure.

We remark that if a filtered complex is minimal in the category of filtered
complexes, it need not be minimal as a complex, when we forget the filtra-
tions. This will only be the case if the differential of the complex is strictly
compatible with the filtration.

The results obtained in this section are easily extended to complexes having
multiple filtrations. However, to keep notations clear, and given our inter-
ests in mixed Hodge theory, we will only state such results for bifiltered

complexes, at the end of this chapter.

Filtered Minimal Models. Denote by C*(Fk) the category of bounded
below filtered complexes of vector spaces over a field k, with biregular fil-
trations. We will first study the ordinary filtered derived category. We let
S and & denote the classes of filtered homotopy equivalences and filtered
quasi-isomorphisms respectively.

Recall that C{ (Fk) is the full subcategory of CT(Fk) of those filtered
complexes (K, F') such that d(FPK) C FPTIK, for all p € Z.

Proposition 2.3.1. Every object of C{ (Fk) is minimal in (CT(Fk), S, £).

PROOF. Since vector spaces are injective, every filtered complex is fi-
brant. It suffices to show that every filtered quasi-isomorphism f: K — K
of Cf(Fk) is an isomorphism. Indeed, since dGri. K = 0 for all p € Z, it
follows that Gri.K = H(Gr.K). Therefore the map Grf.f is an isomor-
phism for all p € Z. Since the filtrations are biregular, the map f is an
isomorphism. O

We next prove the existence of enough minimal models. The construction
is made inductively over the weight of the filtration, by adding at each step
a graded vector space of pure weight. If K is a complex with the trivial
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filtration 0 = F'K C F'K = K, the construction reduces to the classical
case, and the minimal model is just H(K) — K.

Theorem 2.3.2. For every filtered complexr K in CT(Fk) there exists an
object M of C{ (Fk), and a filtered quasi-isomorphism p: M — K.

ProOOF. We construct, by a decreasing induction on p € Z, a family of
filtered complexes M,,, together with morphisms p, : M, — K such that:

(ap) My = Mpy1 @®V,, where V), is a graded vector space of pure weight
p satisfying dV), C FPT1M, 1. The map p, extends p,i1.
(bp) H"(F1C(pp)) =0 for all n > 0 and all ¢ > p.

Since the filtration of K is bounded below, we can take M, = 0 for r >> 0
as a base case of our induction. The above conditions are trivially satisfied.

Assume that for all ¢ > p we constructed M, as required. Let V), be the
graded vector space of weight p given by

V= HYGrCppen).
Define a filtered graded vector space by taking the direct sum
My = Mpy1 @ Vp.
Since H(FP*1C(pp11)) = 0 for all i > 0, we have
HY(FPC(pp11)) = H(GIC (pps1)).

Define a differential d : V, — M1 and a map p, : M;, — K extending p,41
by taking a section of the projection

ZMFPClppi1)) = H'(FPClpyi1) = V.

Since Mpy1 is generated by elements of weight > p, the differential of V,,
satisfies d(V,") C FP*' M 11. Hence condition (ay) is satisfied.

Let us prove (by). If ¢ > p we have FIM, = FIM,;. Therefore
H"(F1C(pp)) = H"(F1C(pp+1)) = 0, for all n > 0.

Consider the exact sequence

Y :={0—= C(pp+1) = Clpp) = Vp[1] — 0}.
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Since the morphisms are strict, the sequence FPY is exact. We obtain an
exact sequence

V=5 HY(FPCppin) — H(FPClpy)) — 0.
Hence H"(FPC(pp+1)) = 0, and (by,) is satisfied.

Let

p = 11_r>npp : (M = 11_I>nMp = @Mp) — K.
Since M, satisfies (ay) for all p € Z, we have d(FPM) C FP*1M. Hence M

is an object of C{ (Fk). By construction, for every p € Z we have
H™(FPC(p)) = H"(F"C(p,)) = 0.
By Lemma 2.1.38, p is a filtered quasi-isomorphism. O

Corollary 2.3.3. The triple (C*(Fk),S,€) is a Sullivan category, and
Cf(Fk) s a full subcategory of minimal models. The inclusion induces an

equivalence of categories
(C{ (Fk)/ ~) — D" (Fk).

We next generalize this result to study higher order filtered derived cate-

gories. For convenience, we introduce the following:

Definition 2.3.4. Let r > 0. A filtered complex K is called E,-minimal if
d(FPK) C FPYHLK for all p € Z.

According to the previous notations, the full subcategory of FE,.-minimal
complexes is C;1,; (Fk).

Proposition 2.3.5. Let r > 0. FEvery E,.-minimal complex is a minimal
object of (CT(Fk),S,,&,).

PrROOF. By proposition 2.3.1 the case r = 0 is true. For r > 0, let
f : K — K be an E,.-quasi-isomorphism between FE,.-minimal objects.
By Corollary 2.2.12 the morphism f : DecK — DecK is an E,_i-quasi-
isomorphism between E,._i-minimal objects. By induction hypothesis Dec f

is an isomorphism. Hence f is an isomorphism. O
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Proposition 2.3.6. For every compler K € Ct(Fk) there exists an E,-
mintmal complex M, together with an E,.-quasi-isomorphism p: M — K.

PRrROOF. The case r = 0 follows from Corollary 2.3.3. Assume that r >
0. Let M — DecK be an E,_i-minimal model. The morphism SM — K
given by the adjunction S - Dec is an F,-quasi-isomorphism, and SM is

FE,-minimal. O

Theorem 2.3.7. Let r > 0. The triple (CT(Fk),S,, &) is a Sullivan cate-
gory, and C;f_H(Fk) 18 a full subcategory of minimal models. The inclusion
induces an equivalence of categories

(Cru(FK)/ = ) = D (FK).

Strict Complexes. To end this section we collect some properties of strict
complexes. These results will be particularly useful in the applications to
mixed Hodge theory of Chapters 3 and 5.

Definition 2.3.8. A filtered complex (K, F) is called d-strict if its differ-
ential is strictly compatible with the filtration, that is,
d(FPK) =d(K)N FPK, for all p € Z.

The following lemmas are straightforward from the definition.

Lemma 2.3.9. A filtered complex (K, F) is d-strict if and only if the mor-
phism H*(FPK) — H*(K) is injective for all p € Z.
Lemma 2.3.10. Let (K, F) be a d-strict filtered complezx.

(1) Every class in FPH"™(K) has a representative in FPK.
(2) If x is a coboundary in FPK, then x = dy, with y € FPK.

The strictness of the differential of a filtered complex is related to the de-
generation of its associated spectral sequence.

Proposition 2.3.11. /[Del71b], Prop. 1.3.2] Let K be a (biregularly) fil-
tered complex. Then F1(K) = Ex(K) if and only if K is d-strict.

We next provide sufficient conditions for a quasi-isomorphism of filtered
complexes to be an FE,.-quasi-isomorphism.
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Lemma 2.3.12. Let f : K — L be a morphism of filtered complexes satis-
fying the following conditions:

(i) f is a quasi-isomorphism.

(i) The map f*: H(K) — H(L) is strictly compatible with filtrations.
(i1i) Eri1(K) = Exo(K) and Ey41(L) = Ex(L).

Then f is an E,.-quasi-isomorphism.
PRrROOF. Since f* is strictly compatible with filtrations
fHFPH(K)) = f*(H(K)) N FPH(L).
Since f* is an isomorphism, we obtain f*(FPH(K)) = FPH(L). Therefore
Erp1(K) = GrpH(K) = GrpH(L) = Eq1(L).
O

Proposition 2.3.13. Let p: M — K be an E,.-minimal model of a filtered
complex K. If E,41(K) = Exo(K). Then dM =0, hence M is minimal.

PROOF. Since pis an E,-quasi-isomorphism we have E, (M) = Ex(M).
Assume that » = 0. By Proposition 2.3.11, M is d-strict. Since M is E,-
minimal, it satisfies d(FPM) C FPTIM. Hence d(FPM) C FPTIM NdM =
d(FPTIM). Since filtrations are biregular, it follows that dM = 0. The
result follows by induction, using décalage. O

2.4. BIFILTERED COMPLEXES

In this last section we extend the definitions and results of the previous sec-
tions, to bifiltered complexes. Given our interests in Hodge theory, and for
the sake of simplicity, we shall only study the derived category defined with
respect to the class of E, g-quasi-isomorphisms, with r € {0,1}. We first
study bifiltered complexes over an abelian category, by means of injective
models. Then, we treat the particular case of bifiltered complexes of vector
spaces over a field, via the existence of minimal models. Lastly, we provide
some definitions and results concerning d-bistrict complexes.
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Bifiltered Abelian Categories. Given an abelian category A, denote by

F2 A the category of bifiltered objects of A: these are triples (A, W, F) such

that both (A, W) and (A, F') are objects of F.A. We will denote
WPFIA:=WPANFIA,

for all p,q € Z. Morphisms of F2A are those morphisms f : A — B of A
such that f(WPF1A) C WPF4B, for all p,q € Z.

The bigraded objects Grlj,Gri. A and Gri.Gr{), A associated with a bifiltered
object (A, W, F') are canonically isomorphic, and equal to
Grh,GrlA = WPFIA/(WPTIFIA + WPFITLA)

| :
GriGri,A =~ FIWPA/(FITIWPA + FIWPTLA)

Lemma 2.1.39 is also valid when A4 is an exact category. As a consequence:

Lemma 2.4.1. The category of bifiltered objects F2A of an abelian category
A admits an exact category structure. The exact pairs are given by the
sequences of bifiltered morphisms

(AW, F) — (B,W,F) — (C,W, F)
such that the sequence
0— WPFIA —- WPFIB — WPFIC =0
1s exact for all p,q € Z.

In particular, the admissible monomorphisms (resp. epimorphisms) are
those morphisms of filtered objects f : A — B such that, for all p,q € Z,

the morphism WPF4f is a monomorphism (resp. epimorphism).

Injective objects are characterized as follows.

Proposition 2.4.2. Let A be an abelian category with enough injectives.

(1) An object (I, W, F) is injective in F2A if and only if Gri,GrLI is an
injective object of A, for all p,q € Z.

(2) If A has enough injectives, then F2A has enough injectives.

PRrROOF. The proof is analogous to that of Proposition 2.1.41. O
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Definition 2.4.3. A morphism f : (K, W, F) — (L, W, F) of bifiltered com-
plexes is called bifiltered quasi-isomorphism or Ey o-quasi-isomorphism if for
all p,q € Z, the morphism G’I"%G?“%V f is a quasi-isomorphism of complexes.
Denote by & ¢ the class of Epo-quasi-isomorphisms of C*(F2A).
Décalage with respect to the weight filtration defines a functor

DecV' : CT(F2A) — CT(F2A).
Define a new class of weak equivalences by

10 := (Dec™) (& p).

Morphisms of &1 o are called E4 o-quasi-isomorphisms.

Definition 2.4.4. A bifiltered complex (I, W, F') is called (r,0)-injective if:

(i) The complex Gr{,Gr{.K is an object of C*(InjA), and
(ii) d(WPFIK) C WP FIK, for all p,q € Z.

Lemma 2.4.5. If K is (1,0)-injective then DecVV K is (0,0)-injective.
PRrROOF. The proof is analogous to that of Lemma 2.2.23. O

A notion of (r,0)-homotopy between morphisms of bifiltered complexes is
defined via the (7, 0)-translation functor, sending each bifiltered complex K,
to the bifiltered complex K[1](r,0) defined by

WPFIK[1](r,0) := WPTT IR
Denote by S, the class of (r,0)-homotopy equivalences.

Corollary 2.4.6. Letr € {0,1}. Let A be an abelian category with enough
injectives. The triple (CT(F2A), S,0,Er0) is a (right) Cartan-Eilenberg cat-
egory. The full subcategory of (r,0)-injective complexes is a full subcategory
of fibrant models. The inclusion induces an equivalence of categories

K.fo(F?Injd) = D/f(F2A) := CT(F2A)[€, ).

PRrROOF. The case r = 0 follows from Proposition 2.4.2 and Corollary
2.1.24. The case r = 1 follows by décalage and Lemma 2.4.5. 0
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Bifiltered Complexes of Vector Spaces. We prove the existence of min-
imal models for bifiltered complexes of vector spaces over a field k.

The following characterization of bifiltered quasi-isomorphisms will be useful

in the construction of minimal models.

2.4.7. Given a bifiltered complex (K, W, F'), we have a diagram of exact

rows and columns

00— WPHGHLK —> WPGri K — Grb, Gri K — (

0 —— WrHpig WPFIK Griy F1IK —— 0

0 — WrHlpatl g —— Wrpatl g —— GT€VF9+1K — =0

0 0 0
Lemma 2.4.8. Let f : K — L be a morphism of bifiltered complexes, and
let r € Z. The following are equivalent:
(1) The map WPFIf is a quasi-isomorphism for all p+q > r.
(2) The map Griy,Gri.f is a quasi-isomorphism for all p+q > r.
(3) The map © : WPFIC(f) — Gri},Grt.C(f) is a quasi-isomorphism, for
allp+q>r.

PrOOF. The proof is analogous to that of Proposition 2.1.38 using the
above diagram of exact sequences. O

Definition 2.4.9. A bifiltered complex (K, W, F) is called E, g-minimal if
d(WPFIK) Cc WPH LI + WPH FITLK | for all p,q € Z.

Proposition 2.4.10. Letr € {0,1}. Every E, o-quasi-isomorphism between
E, o-minimal complezes is an isomorphism.
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ProoOF. For r = 0, the proof is analogous to that of Proposition 2.3.5:
given a bifiltered quasi-isomorphism f : K — K, we show that it is an
isomorphism by noting that

H"(Gr}, GriK) = Gry), GrL. K",

and using the fact that both filtrations are biregular. For r = 1 the proof
follows by décalage. O

Theorem 2.4.11. Let r € {0,1}. For every bifiltered complex K there is

an E, o-minimal complex M, and an E,o-quasi-isomorphism p : M — K.

PROOF. We first prove the case r = 0. We build by decreasing induction
over r € Z, a family of bifiltered complexes M, together with morphisms
pr: M, — K satisfying:

(ar) M, = My41 @ V,, where V, = @pﬂ:r

vector space of pure biweight (p, q) satisfying

Vpg, and V4 is a graded

d(Vpq) C WPHFIM, q + WPFTTI M, .
The map p, extends pr41.
(by) H"(WPF1C(p,)) =0 for all n, and all p+ ¢ > r.

Assume that we constructed M, ;. For all p,q € Z such that p+q =1, let
Vp,q be the graded vector space of pure biweight (p, q) defined by

Voo = H'(Griy, Gri.Clpry1)).
Define a bifiltered complex as

M, = M,1 & ( @ Vp,q> .

pta=r
Since HY(WPT'FIC(py41)) = 0 and HY (WPFIT1C(p,11)) = 0 for all i > 0,
it follows from the exact diagram of 2.4.7 that
HY WPFIC(py41)) = HY Gy GrC(prin)) = Vi

Define a differential d : V,, — M,11 and a map p, : M,, — K extending p,11
by taking sections of the projections

Z"(WPFIC(pri1)) — H"(WPFIC(pry1)) =Vl
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The proof follows analogously to Theorem 2.3.2, using Lemma 2.4.8. Hence
the case r = 0 is completed.

The case r = 1 follows by décalage of the weight filtration: given a bifil-
tered complex K, take an Ejo-minimal model p : M — DecK. Then the
morphism p: SWM — K is an E1 p-minimal model, where SW denotes the
shift with respect to the weight filtration. OJ

Theorem 2.4.12. Let r € {0,1}. The triple (CT(F?k),S,.0,Er0) is a Sul-
livan category. The category of E,o-minimal complexes is a full subcategory

of minimal models.

Bistrict Complexes. To end this section we study the main definitions
and properties regarding complexes with bistrict differentials. The results
of this section will be most important in the setting of mixed Hodge theory.

Definition 2.4.13. A bifiltered complex (K, W, F') is said to be d-bistrict
if for all p,q € Z:

(i) d(WPFIK) = d(K) N WPFIK.

(ii) The filtered complexes (Griy, K, F') and (Gri.K, W) are d-strict
Proposition 2.4.14. A bifiltered complex (K, W, F) is d-bistrict if and only

if the four spectral sequences

El(GT‘./VK, F) — El(K, W)

El(GT}K, W) — El(K, F)

degenerate at F1.

PROOF. Since the filtrations are biregular, a bifiltered complex (K, W, F')
is d-strict if and only if the filtered complexes (K, W), (K, F), (Gr{, K, F)
and (Grf.K, W) are d-strict. By Proposition 2.3.11 this is equivalent to the
degeneration at the first stage. U
In particular, if (K, W, F) is d-bistrict then both (K, F) and (K,W) are
d-strict, but the converse is not true in general (see also A.2 of [Sai00]).
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Proposition 2.4.15 (cf. [Del74b], 7.2.8). Let (K,W,F) be a biregular
d-bistrict bifiltered complex. Then

WPFIH™(K) =Im{H"(WPFIK) — H"(K)}.
PRroOOF. By definition we have
WPFIH(K) = Im{H(WP?K) -, H(K)} NnIm{H(FIK) EAR H(K)}.

Since K is d-strict, both morphisms ¢* and j* are injective. In particular

we have a short exact sequence

0 — WPH™FIK) 22 WPH™(K) —% WPH™(K/FIK) — 0.

It suffices to note the identities
Im{H"(FPWIK) — H"(K)} = Im(j,) and FPWIH"(K) = Ker(m,,).
O
The following is a consequence of Proposition 2.4.15, and generalizes Lemma
2.3.10. This result will be used in the study of mixed Hodge complexes. For

convenience, we next consider F' to be a decreasing filtration, and W to be

increasing.
Lemma 2.4.16. Let (K, W, F) be a d-bistrict bifiltered complex, and define:
RPUH(K) = W,y o FPH"(K),
RPIK = Wy FPK.
Then
(1) Every class in RPYH™(K) has a representative in RPIK.
(2) If x is a coboundary in RPYK, then x = dy, with y € RPIK.

The following is the analogous of Lemma 2.3.12 for bifiltered complexes, and
gives sufficient conditions for a quasi-isomorphism of bifiltered complexes to

be a bifiltered quasi-isomorphism.

Lemma 2.4.17. Let f: (K,W,F) — (L,W, F) be a morphism of bifiltered
complezes such that:

(i) f is a quasi-isomorphism.

(ii) The map f*: H(K) — H(L) is strictly compatible with W and F'.
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(iii) The complexes K and L are d-bistrict.
Then f is a bifiltered quasi-isomorphism.
PROOF. Since f* is strictly compatible with filtrations we have
FHOVPFIH(K)) = £ (H(K)) N WPFIH(L).
Since f* is an isomorphism, f*(WPFYH(K)) = WPFYH(L). Therefore
H(Gr},Gri.K) = Gry,GrtH(K) = Gri),GrL.H(L) = H(Gr{,Gr§.L).
O

Proposition 2.4.18. Let p : M — K be an Eyg-minimal model of a bifil-
tered compler K. If K is d-bistrict then dM = 0.

PROOF. Since p is an Ejo-quasi-isomorphism, if K is d-bistrict then
M is d-bistrict. In particular, the complex (Gry, M, F) is d-strict and Ep-
minimal. By Proposition 2.3.13 we have dGr{,, M = 0 for all p € Z. Hence
(M, W) is Ep-minimal and d-strict. Therefore we have dM = 0. O



CHAPTER 3

Mixed Hodge Complexes

In this chapter we study the homotopy category of mixed Hodge complexes
of vector spaces over the field of rational numbers. The main result is that
the category of mixed Hodge complexes can be endowed with a Sullivan cat-
egory structure, where the weak equivalences are the quasi-isomorphisms.
In particular, we show that there exists a finite string of quasi-isomorphisms
between a mixed Hodge complex and its cohomology, so that mixed Hodge
complexes are formal. We also provide a description of the morphisms of
mixed Hodge complexes in the homotopy category, in terms of morphisms
and extensions of mixed Hodge structures, recovering the results of Carlson
[Car80] and Beilinson [Bei86] on extensions of eixed Hodge structures, and
provide an alternative proof of Beilinson’s Theorem on the derived category
of mixed Hodge structures (see [Bei86], Theorem 3.2).

The category of mixed Hodge complexes is a category of diagrams, whose
vertices are filtered or bifiltered complexes. Hence the construction of mini-
mal models involves a rectification of homotopy commutative morphisms of
diagrams. This fits within the framework of P-categories developed in Chap-
ter 1. However, since here the categories involved are categories of complexes
of additive categories, the homotopy theory carries stronger properties. In
general, the homotopy relation between morphisms in a P-category is not
an equivalence relation. However, it becomes transitive for objects whose
source is cofibrant. In particular, homotopy commutative morphisms of
diagrams can not be composed. Thanks to the additive properties of com-
plexes, this problematic vanishes, resulting in a much simpler homotopy
theory for diagram categories. In Section 2 we develop such theory for dia-
grams of complexes of additive categories.

105
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In Section 3 we recall the definition of mixed and absolute Hodge complexes
respectively. Both definitions are related by Deligne’s décalage functor.
We use the abstract homotopy theory of the previous section to show that
the graded mixed Hodge structure given by the cohomology of an absolute
Hodge complex, defines a minimal model for the complex. This allows to
define minimal models of mixed Hodge complexes, via Deligne’s décalage.
As an application, at the end of the chapter we read off the morphisms of
the homotopy category of absolute or mixed Hodge complexes, in terms of

morphisms and extensions of mixed Hodge structures.

3.1. PRELIMINARIES

We give a brief survey on mixed Hodge theory. Most of the results of this
section can be found in [Del71b].

Pure Hodge Structures. The primary example of a Hodge structure of
weight n is that of the n-th cohomology of a compact Kéhler manifold: this is
a complex hermitian manifold such that the associated metric form is closed.
Examples are given by any projective manifold equipped with its Fubini-
Study metric. The condition on the metric has deep consequences on the
geometry of the manifold. If X is a compact Kéhler manifold and HP7(X)
denotes the space of cohomology classes of differential forms whose harmonic
representative is of type (p, q), then the Hodge decomposition Theorem (see
[Hod41] or e.g. [Wel80]) gives the following direct sum decomposition of
the de Rham cohomology:
Hip(X:C) = P H™(X),
pt+g=n

and HP4(X) = H4P(X). According to the formalism of Deligne, this is a
Hodge structure of weight n of the real de Rham cohomology H},(X;R).

For the rest of this section we let k C R be a field.

Definition 3.1.1. A Hodge structure of weight n on a finite-dimensional
vector space V defined over k is a direct sum decomposition of the complex
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vector space Vo = V ®y C by a finite bigrading,
Vo= @ VP9, with VP9 =7V,
ptg=n
The Hodge numbers of V are defined by h?4(V') := dimVP1.

Definition 3.1.2. A morphism of Hodge structures f : Vi — V5 is a mor-
phism of k-vector spaces whose complexification is a bigraded morphism.

Denote by HS(n) the category of Hodge structures of weight n over k.
Equivalently, a Hodge structure is given by a filtration F' on V¢.

Definition 3.1.3. Two decreasing filtrations W and F' on a vector space
V are said to be n-opposed if

Gri,GriV =0 for all p+ ¢ # n.

Given a Hodge structure of weight n on V', we define the Hodge filtration of
Ve by
FPVe =@V
i2>p

Then F is n-opposed to its complex conjugate F. By definition, any mor-
phism of Hodge structures of weight n is compatible with the associated
Hodge filtrations. Actually, any morphism of Hodge structures f : Vi — V%
is strictly compatible with the filtrations.

Conversely, given a filtration F' on V¢ satisfying the n-opposed condition,
we obtain a Hodge structure of weight n on V' by

VP4 = FPVe N F'Ve.

This gives an equivalence between Hodge structures of weight n and filtra-

tions that are n-opposed to their complex conjugates.

Mixed Hodge Structures.

Definition 3.1.4. A mized Hodge structure on a vector space V defined
over k C R consists in a bounded below increasing filtration W on V, called
weight filtration, and a decreasing filtration F on V¢, called Hodge filtration,
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such that for all n, the filtration induced by F on Gr)Y (V) is finite and
n-opposed to its complex conjugate.

Given a mixed Hodge structure {V, W, F}, then on Gr!Y (V) we have a
Hodge structure of weight n. This gives a decomposition

G (Vic= @ vee
ptq=n
Define hP4(V) = dim ¢(VP?). These are the Hodge numbers of the mixed
Hodge structure. If we have a mixed Hodge structure on V such that
hP4(V) = 0 for all p + g # n, then it is identical to a Hodge structure
of weight n on V.

Definition 3.1.5. A morphism of mixed Hodge structures is a k-linear
map f : Vi — V5 which is compatible with both filtrations W and F' (and
therefore it is automatically compatible with F). It induces morphisms
GrV f of Hodge structures of weight n.

Denote by MHS the category of mixed Hodge structures over k. The key
properties of mixed Hodge structures are summarized in the following the-
orem of Deligne.

Theorem 3.1.6 ([Del71b], Thm 2.3.5).

(1) The category of mized Hodge structures is abelian; the kernels and cok-
ernels of morphisms of mired Hodge structures are endowed with the
induced filtrations.

(2) Every morphism of mized Hodge structures is strictly compatible with
both the weight filtration and the Hodge filtration.

(3) The functor Gr)Y : MHS — HS(n) is evact.

(4) The functor Grf. : CT(FC) — C*(C) is ezact.

Deligne’s proof uses a splitting. This is a global decomposition for any
given mixed Hodge structure, which generalizes the decomposition of pure
Hodge structures. Since we will make extensive use of it, we next recall its
definition.
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Lemma 3.1.7 (See [GS75], Lemma 1.12). Let {V, W, F'} be a mized Hodge
structure. There is a direct sum decomposition Vo = @p,q 179 given by

P9 = (FPWyiq) N (F'Wpiq + ZFqH_inJrqfi)a

i>2

FP =PI, and Wy, = P 177

r2p pt+q<m
This decomposition is functorial for morphisms of mized Hodge structures.

and such that

It follows from the above lemma that we have a congruence 177 = I""? mod
Wpig—2. This congruence explains why every mixed Hodge structure with
a weight filtration of length two splits over R into a sum of pure Hodge

structures.

3.2. D1AGRAMS OF COMPLEXES

In this section we develop a homotopy theory for diagrams whose vertices
are categories of complexes of additive categories, parallel to the homotopy
theory developed in Chapter 1. We will apply this theory to the particular
case in which the vertex categories are categories of filtered and bifiltered

complexes in the next section.

For the rest of this section I is a finite directed category whose degree
function takes values in {0,1} (see 1.3.4).

3.2.1. Let C : I — Cat be a functor from I to the category of categories.
Denote C(i) = C;, for all i € I and C(u) = uy : C; = Cj, for all w : i — j.
Assume that C satisfies the following conditions:

(Dq) For all i € I, C; = C*(A;) is the category of complexes of an
additive category Aj;.

(D2) There is a class of weak equivalences W; of C; making the triple
(Ci, Si, W) into a category with strong and weak equivalences,
where S; denotes the class of homotopy equivalences.

(D3) For all w : i — j, the functor u, is additive and preserves fibrant
objects and strong and weak equivalences.
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Objects of I'C (see Definition 1.3.1) will be called diagrams of complezes:
recall that a diagram of complexes is given by a family of objects {X; € C;},
for all i € I, together with morphisms ¢, : u.(X;) = Xj, for all w: i — j.
We will often omit the notation of the functors u., when there is no danger
of confusion. Such a diagram will be denoted as

X = (x5 X;).

The category of diagrams I'C has a class W of weak equivalences defined
level-wise: a morphism f: X — Y of I'C is in W if and only if f; € W; for
all ¢ € I. In addition, the constructions of complexes of additive categories
of Section 2.1 extend naturally to the category of diagrams. In particular
we have a translation functor, defined level-wise. This gives a notion of
homotopy between morphisms of diagrams of complexes. Denote by S the
class of homotopy equivalences of I'C. Note that if f = (f;) € S, then
fi € §; for all ¢ € I, but the converse is not true in general. Since S; C W;
for all ¢ € I, it follows that S C W. Therefore the triple (I'C,S,W) is a
category with strong and weak equivalences.

Homotopy Commutative Morphisms. We next introduce a new cate-
gory I'C" which has the same objects of those in I'C, but in which morphisms

between diagrams are homotopy commutative.

Definition 3.2.2. Let X and Y be two objects of I'C. A pre-morphism of
degree n from X to Y is pair of families f = (f;, F},), where

(i) fi: Xi — Y;[n] is a map of degree n in C;, for all i € I.

(ii) Fy:X; = Yj[n] is a map of degree n — 1in Cj, foru:i — j € I.

Let Hom"™(X,Y") denote the set of pre-morphisms of degree n from X to Y.
Define the differential of f = (f;, Fi,) € Hom"(X,Y) as

Df = (dfi — (=1)" fid, Fyd + (—1)"dF, + (—1)"(fjou — @ulfi)) -
With this definition, (Hom*(X,Y"), D) is a cochain complex.

Definition 3.2.3. A ho-morphism f: X ~~ Y is a pre-morphism of degree
0 such that Df = 0. Therefore it is given by pairs f = (f;, F,,) such that:

(i) fi: X; — Y] is a morphism of complexes, for all i € I.
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(ii) Fy : X; — Yj[—1] satisfies dF,, + F,d = pufi — fjpu. Hence F, is a
homotopy from f;p, to ¢, f; in Cj, making the diagram

X; ﬂ)Xj

N

Vi Y,
commute up to homotopy in Cj, for all u : i — j.

The composition of two ho-morphisms X Ly 4z is given by
gf = (9ifi,Gufi + gjFu) : X ~ Z.

The identity ho-morphism is 1x = (1x,,0). A ho-morphism f : X ~» Y is
invertible if and only if f; are. In such case,

=T =R,

Denote by I'C" the category whose objects are those of T'C, and whose
morphisms are ho-morphisms. Every morphism f = (f;) can be made into
a ho-morphism by setting F,, = 0. Hence I'C is a subcategory of I'C".

Definition 3.2.4. A ho-morphism f = (f;, Fy,) is said to be a weak equiv-
alence if f; are weak equivalences in C;. Denote by W" the class of weak
equivalences of I'C".

Definition 3.2.5. Let f,g : X ~ Y be two ho-morphisms. A homotopy
from f to g is a pre-morphism h of degree —1 such that Dh = g — f.
Therefore h = (h;, H,) is a pair of families such that:
(i) h; : X; — Y;[—1] satisfies dh; + h;d = g; — f;. Hence h; is a homotopy
of complexes from f; to g;.
(i) H : X; — Y;[—2] satisfies H,d — dH, = Gy — Fy, + hjp, — @uh;.
Denote such a homotopy as h : f ~ g.

Lemma 3.2.6. The homotopy relation between ho-morphisms is an equiv-

alence relation, compatible with the composition.
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PRrROOF. Symmetry and reflexivity are trivial. For transitivity, consider
ho-morphisms f, f', f” : X ~» Y such that h: f ~ f',and b/ : f' ~ f". A
homotopy from f to f” is then given by

W' =h+h = (h; + R, H, + H)).

Let g : Y ~ Z be a ho-morphism, and assume that h : f ~ f’ is a homotopy
from f to f’. A homotopy from gf to gf’ is given by

gh = (gihi, Guh; + gjHy).

Let ¢ : W ~ X be a ho-morphism, and assume that h : f ~ [’ is a
homotopy from f to f’. A homotopy from fg¢’ to f'¢’ is given by

hg = (higi, Hugi + h;Gy).
O

We will denote by [X,Y]" the class of ho-morphisms from X to Y modulo
homotopy. Note that

[X,Y]" = H'(Hom*(X,Y), D).
Denote by m"T'C := I'C"/ ~ the corresponding quotient category.

Definition 3.2.7. Let f : X ~» Y and ¢g : X ~» Z be ho-morphisms. The

double mapping cylinder of f and g is the diagram of complexes given by
hu
culr.o) = (Cuttha 5 cutsy09).

where Cyl(fi, ;) = Xi[1] ®Y; @ Z; is the double mapping cylinder of f; and
gi (see Definition 2.1.3), with differential

-d 0 0
D=|-f d 0
g 0 d

For all u : ¢ — j, the comparison morphism is given by
Yu(@,y,2) = (pu(®), puly) + Ful(z), pu(2) + Gu(x)) -

Remark 3.2.8. If f: X — Y and g: X — Z are morphisms of diagrams,
since F, = 0 and G, = 0, we recover the level-wise definition of the double

mapping cylinder of morphisms in I'C.
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Definition 3.2.9. The mapping cylinder of a ho-morphism f : X ~» Y is
the diagram of complexes given by

Cyl(f) = Cyl(f,1x) = (c.yum 2, Cyl<fj>) ,

where Cyl(f;) = X;[1] ®Y; @ X; is the mapping cylinder of f; : X; — Y;.
The comparison morphism is given by

u(,y, 2) = (u(), pu(y) + F(2), pu(2))-

Definition 3.2.10. Let f : X ~~ Y be a ho-morphism. The mapping cone
of f is the diagram defined by C(f) = Cyl(0, f).

Lemma 3.2.11. Let w : X ~ Y be a ho-morphism, and Z a diagram. A
ho-morphism 7 : C(w) ~ Z is equivalent to a pair (f,h), where f:Y ~ Z
is a ho-morphism and h : X ~» Z[—1] is a homotopy from 0 to fw.

ProoOF. Let 7 = (13, Ty) : C(w) ~ Z be a ho-morphism. Define a
ho-morphism f : Y ~» Z and a homotopy h : X ~» Z[—1] by:

fily) = 7(0,9),  Fuly) = Tu(0,y).
hi(x) = 7(x,0), Hy(z)=T,(z,0),

Conversely, given a ho-morphism f : Y ~» Z, and a homotopy A : 0 ~ fw,
define a ho-morphism 7 : C(w) ~» Z by

7i(2,y) = hi(2) + fi(y), and Tu(z,y) = Hu(z) + Fu(y)-
O

Factorization of Ho-morphisms. The notion of homotopy between ho-

morphisms allows to define a new class of strong equivalences of I'C.

Definition 3.2.12. A morphism f : X — Y of diagrams of complexes
is said to be a ho-equivalence if there exists a ho-morphism g : Y ~» X,
together with homotopies of ho-morphisms gf ~ 1x and fg ~ 1y.

Denote by H the class of ho-equivalences of I'C. This class is closed by com-
position, and satisfies S C ‘H C W, where S denotes the class of homotopy
equivalences of I'C.
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Consider the solid diagram of functors

IC —— g1

7
~

[C[H™Y

Since every morphism of A is an isomorphism in 7"T'C, by the universal
property of the localizing functor ~y, the dotted functor exists. Our next
objective is to prove that ¥ defines an equivalence of categories. We will do
this by defining an inverse functor.

We first show that ho-morphisms satisfy a Brown factorization Lemma via
the mapping cylinder of a ho-morphism.

Let iy : X — Cyl(f) and jf : Y — Cyl(f) be the maps defined level-wise by
ifi(x) = (0,0,SL‘) and ]fz($) = (O,ZL',O).

Define a ho-morphism py = (py,, Pr,) : Cyl(f) ~ Y by means of the level-
wise morphisms
pfi(x7y7 Z) =y+ fi(z)a
together with the homotopies Pr, : Cyl(f;) — X;[—1] given by
P, (z,y,2) = Fyu(2).

Proposition 3.2.13. Let f : X ~» Y be a ho-morphism of U'C. The diagram

X —Leppnd—vy

,
\fi\\\ ép/

Y

commutes. In addition,

(1) The maps jr and ps are weak equivalences.
(2) There is a homotopy of ho-morphisms between jyps and loy(s).-

3) If f is a weak equivalence, then i is a weak equivalence.
q f q



3.2. Diagrams of Complexes 115

PrROOF. It is a matter of verification that the diagram commutes. Since
weak equivalences are defined level-wise, (1) and (3) are straightforward.
We prove (2). Let h; : Cyl(fi) — Cyl(fi)[—1] be defined by

hi(z,y,z) = (z,0,0).
Then h; is a homotopy from 1lcy s,y to jrpy. Indeed,
(dhi + hid)(x,y, 2) = (=2, fi(2), =2) = jpps(2,y,2) = (2,9, 2).
We have
(hjtu — Yuli)(z,y, 2) = (0, —=Fyu(2),0) = —jy, Pr, (2,9, 2).

Therefore the pair of families h = (h;, H,) with H,, = 0, is a homotopy of
ho-morphisms from 1¢,;(f) to ¢ypy. O

3.2.14. Given arbitrary diagrams X, Y of I'C, define a map
dxy :TCMX,Y) — TC[H(X,Y)

as follows. Let f : X ~~ Y be a ho-morphism. By Proposition 3.2.13 we
can write f = pyiy, where iy is a morphism of I'C and p; is ho-morphism
with homotopy inverse j;. In particular, js is a ho-equivalence. We let

Oxy(f) = {j;lif} e TC[HT].
We will need the following technical lemmas.

Lemma 3.2.15. If f : X =Y € IC, then ®xy(f) = {f}.

PRrROOF. If f is a morphism, then p; is also a morphism. The diagram

X —Leupnd—vy

Nk

X

is a hammock between the H-zigzags jj?lif and f. O

Lemma 3.2.16. If h: f ~ g then ®xy(f) = Px v (g).
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PROOF. Define a ho-morphism h = (hs, Hy) : Cyl(f) — Cyl(g) by

hi(z,y, z) = (x,y + hi(x), 2).

Then dh; = hid, and (puhi—hju) (2,9, 2) = (0, (Puhi—hjpu+Gu—F,)z,0).
Define H,, : Cyl(fi) — Cyl(g;) by

Hy(z,y,2) = (0, Hy(x),0).
Then dﬁu + ﬁud = wuﬁi — iju and so h = (?Lz,f‘j) is a ho-morphism.
Consider the diagram of morphisms

Cyl(f)

To see that ®x v (f) = ®x,y(g) it suffices to show that the above diagram is
commutative in IC[S™!]. By definition, the upper-left and the bottom-right

triangles are commutative in I'C. Let k; : Cyl(f) — Cyl(h)[—1] be defined

level—wiie by ky (x) = (2,0,0) with K i, = 0. Then k:;L~is a homotopy from

i7 to jzh. On the other hand, note that hiy =i, and hjy = j,. Therefore
iﬁif ~ j}:hif Zj}:ig, and iﬁjf ~ jﬁhjf :j}:jg.

Hence the upper-right and the bottom-left triangles commute in I'C[S™!].
O

Lemma 3.2.17. Let f : X ~» Y be a ho-morphism, and g : Z — X a
morphism. Then @7y (fg) = ®x,y (f) o Pzx(g)-

PRrROOF. Let h; : Cyl(figi) — Cyl(f;) be defined by
hi(gjv Y, Z) = (gz(x)a Y, gl(z))
These define a morphism h : Cyl(fg) — Cyl(f), since

(¢uhz - hjl/}u)(x7 y) = 1/@(9@(»’6)7 Y, gi(z)) - hj(SOuﬂ% ©ulY + Fugi(x)v SOUZ) =0.
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The diagram

i J
7o x Loy —v

P

ifg

7 =——=7 —=Cyl(fg) =—Y
is a hammock between the H-zigzags jj?lifg and j]?glz'fg. O

Theorem 3.2.18. There is an equivalence of categories

~

U TCH™ = nhre.
Proor. By Lemma 3.2.16 the map
dxy : 7' TC(X,Y) — TC[HY(X,Y)

given by [f] — {jj?lif} is well defined, for any pair of objects X and Y. For
the rest of the proof we omit the subscripts of .

Let f: X ~»Y be a ho-morphism. Then

W(@(f]) = w{j; is} = [pris) = [f].

For the other composition, it suffices to show that if ¢ : X — Y is a ho-
equivalence, then ®(¥(g~!)) = ¢g~!. Let h: Y ~ X be a homotopy inverse
of g. Then

go®(¥(g ")) =[g] 0 ®(h) = ®(gh) = 1.

If we compose on the left by g1 we have: ®(¥(g~1)) = g1 O

Fibrant Models of Diagrams. Denote by I'Cy the full subcategory of I'C
consisting of those diagrams

Q= (@i-%q)

such that for all ¢ € I, Q; is fibrant in (C;, S;, W;), that is: every weak
equivalence f : X — Y in C; induces a bijection w* : [Y,Q;] — [X, Qs].
Condition (D3) of 3.2.1 implies that for all u : i — j, the object u.(Q;) is
fibrant in (C;, Sj, Wj).
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Proposition 3.2.19. Let Q be an object of I'Cy. Then every weak equiva-
lence w : X ~~Y induces a bijection

w* : Y, Q]h — X, Q]h7 [f] = [fw]

PRrOOF. We first prove surjectivity. Let f : X ~» @ be a ho-morphism.
Since Q); is fibrant in C;, there exists a morphism g; : Y; — @;, together with
a homotopy h; : g;w; >~ f;, for all i € I. We have a chain of homotopies

—g;Wu hj‘Pu puh

Fu - 1
gjPuWi = GjWjPy = fjcpu:(;oufi = PuGiWi.

This gives a homotopy
G, = hjpu — uhi + Fy — giWy : giouw;i ~ Qugiw;.

Since w; is a weak equivalence in C; and u.(Q;) is fibrant in C;, there
exists a homotopy Gy : gjou ~ ¢ugi, together with a second homotopy
H, : G, ~ Gyw;. Then the pair of families g = (g;, G,) is a ho-morphism,
and H = (h;, H,) is a homotopy from gw to f.

To prove injectivity, it suffices to show that if f : Y ~» @ is a ho-morphism
such that 0 ~ fw, then 0 ~ f. Let h : 0 ~ fw be a homotopy of ho-
morphisms from 0 to fw. By Lemma 3.2.11 this defines a ho-morphism
7 : C(w) ~ Q. Consider the solid diagram

T

C(w) ~Q
C(ly)

Since the map w is a weak equivalence, the induced map
(w®1)*: [C(ly),Q" — [C(w),Q)"

is surjective. This means that there exists a ho-morphism 7/ : C(1ly) ~ @
such that ' : 77w ~ 7. By Lemma 3.2.11 this defines a ho-morphism
f':Y ~» F such that 0 ~ f. Since 7w ~ 7, it follows that f’ ~ f. Lastly,
since the homotopy of ho-morphisms is transitive we have f ~ (. Therefore

the map w* is injective. O
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Proposition 3.2.20. Let () be an object of I'Cy, then every weak equivalence
w: X — Y induces a bijection

w*: TCIH™Y(Y, Q) — TC[H (X, Q).
PRrROOF. Given a weak equivalence w : X — Y, consider the diagram

re(v.Q) = rep1(x, )

| d
v, Q" X, Q)"
Let f € TC[H'](Y,Q). Then by Lemmas 3.2.17 and 3.2.15, we have
SU(f) o [w]) = B(V(f)) 0 B([u]) = B(T(f) o {w}.

By Theorem 3.2.18 the vertical arrows are bijections, and the diagram com-

mutes. The result follows from Proposition 3.2.19. (|

We next prove the existence of enough fibrant models.

Proposition 3.2.21. Let I'C be a category of diagrams satisfying the hy-
pothesis of 3.2.1, and assume that every object of C; has a fibrant model in
(Ci, Sis Wi). Then for every object X of I'C there is an object Q € I'Cy,

together with a ho-morphism K ~~ @, which is a weak equivalence.

PROOF. Let p; : X; — @; be fibrant models in (C;, S;, W;). Since u.(Q;)
is fibrant in C;, for every solid diagram

X; 2 X

e

o
Q-0

there exists a dotted arrow ¢/, together with a homotopy Ry : pjeu — ¢} pi-
This defines a diagram of I'Cy

@,
Q= <Qi == Qj) :
The pair of families p = (p;, Ry) : X ~» @ is a ho-morphism of W". O

The main result of this section is the following.
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Theorem 3.2.22. Let I'C be a category of diagrams of complexes satisfying
the hypothesis of 3.2.1. Let D be a full subcategory of I'C such that:

(i) Given a weak equivalence X ~> Y in I'C, then X is an object of D if
and only if Y is so.
1) For every object D of D there is an object QQ € Dy := DNICy, together
f f

with a ho-morphism D ~ Q, which is a weak equivalence.

Then the triple (D, H,W) is a right Cartan-Filenberg category with models

in Dy. There are equivalences of categories
™Dy =5 DyH D] = DWW

PRrROOF. Let f: X ~» Y be a ho-morphism between objects of D. Since
the map jr : Y — Cyl(f) is a weak equivalence, by (i), the mapping
cylinder Cyl(f) is an object of D. As a consequence, there is a map

dxy :DNICY(X,Y) — DH(X,Y),

for every pair of objects X,Y of D, defined as in 3.2.14. The proper variant

of Theorem 3.2.18 gives an equivalence of categories
U:DH = "D,

By (ii), for every object D of D there exists a fibrant object @ and a weak
equivalence p : D ~» Q. Then ®p o(p) : D — @ is a fibrant model. O

3.3. HomoToPY THEORY OF HODGE COMPLEXES

Diagrams of Filtered Complexes. For the rest of this chapter we let
k = Q be the field of Rational numbers, and we let I be the category

I={0—>1+2—---« s}

We next define the category of diagrams of filtered complexes. This is a
diagram category of fixed type I, whose vertices are categories of filtered
and bifiltered complexes. Additional assumptions on the behaviour of the
filtrations will lead to the notion of mixed and absolute Hodge complexes.
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Definition 3.3.1. Let C : I — Cat be the functor defined by

0 - 1 s—1<———s

b | I

C+(Fk) —> C*(FC) SR L C*+(FC) <~ C*(F2C)

where u, is defined by extension of scalars
Uy (K, W) = (K, W) ® C,
and v, is defined by forgetting the second filtration
v (Ke, W, F) := (K¢, W).

All intermediate functors are defined to be the identity.

The category of diagrams I'C associated with the functor C is called the

category of diagrams of filtered complexes over k.

Objects and morphisms in I'C are defined as follows:
o A diagram of filtered complexes consists in
(i) a filtered complex (K, W) over k,
(ii) a bifiltered complex (K¢, W, F') over C, together with
(iii) a morphism ¢, : (K;, W) — (K;, W) of filtered complexes over C, for
each u: 7 — j of I, with (Ko, W) = (Kx, W) ® C and K5 = (K¢, W).
Such a diagram is denoted as
K = ((Ki, W) e~ (Ke, W, F)).
e A morphism of diagrams of filtered complexes f : K — L consists in
(i) a morphism of filtered complexes fi : (Kx, W) — (Ly, W),
(ii) a morphism of bifiltered complexes fc : (K¢, W, F') — (Lc, W, F'), and
(iii) a family of morphisms of filtered complexes f; : (K;, W) — (L;, W)
with fo = fkx ® C, and fs = fc, making the following diagrams com-
mute.
(K, W) —2= (K;, W)

]

Pu
(Li, W) —— (L;, W)
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Definition 3.3.2. A morphism f : K — L of diagrams of filtered com-
plexes is said to be a quasi-isomorphism if the maps fi, fc and f; are
quasi-isomorphisms: that is, the induced maps H(fx), H(fc) and H(f;) are

isomorphisms.

Denote by Q the class of quasi-isomorphisms of I'C.

For the rest of this section we fix r € {0,1}. We introduce two subclasses
of weak equivalences of Q, defined level-wise by E,-quasi-isomorphisms and
E, ¢-quasi-isomorphisms (see the corresponding definitions in Chapter 2).

Definition 3.3.3. A morphism f : A — B of diagrams of filtered complexes
is called E, o-quasi-isomorphism if fy and f; are E,-quasi-isomorphisms of
filtered complexes, and fc is an E, g-quasi-isomorphism of bifiltered com-
plexes.

Denote by &, the class of E, og-quasi-isomorphisms of I'C. Since the filtra-
tions are biregular, we have £ o C £19 C Q. Hence we have functors

HOO’O (FC) — HOl,O (FC) — Ho (FC)

relating the localizations with respect to &y, £,1 and Q respectively.

Deligne’s décalage with respect to the weight filtration defines a functor
DecV : I'C — I'C
which sends a diagram of complexes K, to the diagram
Dec" K := ((Kk, DecW) «-~--» (K¢, DecW, F)) .
Analogously to Theorem 2.2.15 for filtered complexes we have:

Theorem 3.3.4. Deligne’s décalage induces an equivalence of categories
DeCW : HOl,O (FC) — H0070 (FC) .

PrOOF. The proof is analogous to that of Theorem 2.2.15. We only
explain the main differences. The shift with respect to the weight filtration
defines a functor S" which is left adjoint to Dec", and there is an equiv-
alence of categories DecV . T'C; = T'C : SW  where I'C; denotes the full
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subcategory of I'C of those diagrams such that dy = 0 on the associated
spectral sequences. Since Dec’V’ (&1,0) C &0, this induces an equivalence be-
tween the corresponding localizations. The adjunction S - Dec"V gives an
equivalence Hoj o (I'Cy) — Hoy o (I'C). See Theorem 2.2.15 for details. O

Hodge Complexes. We next recall the main definitions and properties
regarding mixed and absolute Hodge complexes.

Definition 3.3.5 ([Del74b], 8.1.5). A mized Hodge complez is a diagram
of filtered complexes

K = (K W) s (Ke, WL F)).

satisfying the following conditions:

(MHCp) The comparison map ¢ is a string of E}/V -quasi-isomorphisms.

(MHC,) For all p € Z, the filtered complex (GTZVK@, F) is d-strict.

(MHC3) The filtration F' induced on H ”(GTZV K¢), defines a pure Hodge
structure of weight p +n on HH(GTZVKk), for all n, and all p € Z.

Denote by MHC the category of mixed Hodge complexes.

The following is an important result concerning the degeneration of each of

the spectral sequences associated with a mixed Hodge complex.
Lemma 3.3.6 ([Del74b], Scholie 8.1.9). Given a mized Hodge complex
K = ((Kk, W) e-os (Ko, W, F)) e MHC,

(1) the spectral sequence of (K¢, F') degenerates at E1,
the spectral sequences o ks an roKc, egenerate at Eo.
2) th l f (Ky, W d (G I}K W) d E

For our convenience, we consider a shifted version of mixed Hodge com-
plexes, in which both associated spectral sequences degenerate at the first
stage.

Definition 3.3.7. An absolute Hodge complezx is a diagram of filtered com-
plexes
K = (K W) e (Ko, W, F)),

satisfying the following conditions:
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(AHCy) The comparison map ¢ is a string of E[‘{V -quasi-isomorphisms.

(AHC;) For all p € Z, the bifiltered complex (K¢, W, F) is d-bistrict.

(AHCy) The filtration F induced on H™(Gr)’ Kc), defines a pure Hodge
structure of weight p on H”(GTXVKk), for all n, and all p € Z.

Denote by AHC the category of absolute Hodge complexes. The definition
of absolute Hodge complex given here corresponds to the notion of mixed
Hodge complex given by Beilinson in [Bei86] (see also pag. 273 of Levine’s
book on Mixed Motives [Lev05], or the appendix [Hai87], in which Hain
defines shifted mixed Hodge complexes in a similar way).

By Lemma 3.3.6 Deligne’s décalage with respect to the weight filtration
sends every mixed Hodge complex to an absolute Hodge complex. Note
however that the shift functor with respect to the weight filtration of an
absolute Hodge complex is not in general a mixed Hodge complex. Therefore
in this case, décalage does not have a left adjoint. Moreover, the cohomology
of every absolute Hodge complex is an absolute Hodge complex with trivial
differentials. We have functors

MHC 2% AHC L G*(MHS).

Conversely, since the category of mixed Hodge structures is abelian, every
graded mixed Hodge structure and more generally, every complex of mixed
Hodge structures is an absolute Hodge complex. We have full subcategories

G*(MHS) — C*(MHS) — AHC.
We will prove that Hodge complexes are formal: every Hodge complex is

quasi-isomorphic to the graded mixed Hodge structure given by its coho-

mology.

The following result is essentially due to Deligne’s Theorem 3.1.6, which
states that morphisms of mixed Hodge structures are strictly compatible
with filtrations.

Lemma 3.3.8. Denote by Q and &, the classes of quasi-isomorphisms and
E, o-quasi-isomorphisms of I'C.
(1) The classes of maps Q and &y coincide in AHC.
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(2) The classes of maps Q and &1 coincide in MHC.

Proor. We first prove (1). Let f : K — L be a quasi-isomorphism of
absolute Hodge complexes. Then the induced morphism f* : H(K) — H(L)
is a morphism of graded mixed Hodge structures. By Theorem 3.1.6 the
morphisms fy, f;* and f¢ are strictly compatible with filtrations. Hence by
Lemma 2.3.12, fx and f; are Ey-quasi-isomorphisms. Likewise, by Lemma
2.4.17, fc is an Epg-quasi-isomorphism. The converse is trivial.

Let us prove (2). Let f: K — L be a quasi-isomorphism of mixed Hodge
complexes. Then Dec" f is a quasi-isomorphism of absolute Hodge com-
plexes. The result follows from (1), and the fact that & ¢ = (Dec"”) ™1 (& o).

d

Minimal Models. The following technical lemma will be of use for the

construction of minimal models.

Lemma 3.3.9. Let K be an absolute Hodge complez.

(1) There are sections oy, : H"(Kyx) = Z"(Ky) and o} : H"(K;) — Z"(K3)
of the projection, which are compatible with W .

(2) There exists a section ot : H"(Kc) — Z"(Kc) of the projection, which
is compatible with both filtrations W and F'.

ProOOF. The first assertion follows directly from Lemma 2.3.10. To

prove the second assertion, note that by Lemma 3.1.7 the cohomology of
K¢ admits a splitting H"(K¢) = € IP%, where

- =qt+1—i
1P = (Wp-l—quHn(K(C))O(Wp—quan(K(C)"‘zWp—irq—z‘Fq ZHn(K(C))-

i>2
Therefore it suffices to define sections oP? : P9 — Z"(K¢). Let
RPIH"(Kc) := WyoFPH" (Kc), and RPYKc == Wy FPKc.

We then have I?? C RPYH"(Kc). By Lemma 2.4.16 the morphisms o4
satisfy oP4(IP9) C RPYKc. Define og = @oP?: H"(Kc) — Kc. Using
the fact that

FpHn(K(c) _ @ Ip/,q
p'>p
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we obtain
oR(FPH™(Kc)) = @ o 9(1"9) ¢ > RVKc C Y FP K¢ C FPKc.
p'>p p'>p p'>p

Therefore of is compatible with F'. For the weight filtration we have

WnH"(Kc)= € 1.

p+q<m
Then
GEWu"(Ke) = €D o"9(P9) ¢ 3 RMKe € Wik,
p+gs<m p+q<m
Therefore of is compatible with W. O

We next show that the minimal model of every absolute Hodge diagram is
given by its cohomology. In particular, the objects of AHC are formal (cf.
pag. 47 of [Bei86)).

Theorem 3.3.10. Let K be an absolute Hodge complex, and let

\ *

H(K) = ((H*(Kk),W)

Hz‘ﬁ

(Y (Ke), W, F))

be the absolute Hodge complex defined by the cohomology of K with the
induced filtrations. There is a ho-morphism p : K ~~ H(K), which is a

quasi-isomorphism.

PROOF. By Lemma 3.3.9 we can find sections oy : H*(Kgk) — Ky and
o; : H*(K;) — K; compatible with the filtration W, together with a section
oc : H*(Kc) — Kc compatible with W and F. By definition, all maps
are quasi-isomorphisms. Let ¢, : K; — K; be a component of the quasi-
equivalence ¢ of K. The diagram

H*(K;) N H*(K;)

|

K, —2 S K

is not necessarily commutative, but for any element x € H*(K;), the differ-
ence (05 — ¢yuoj)(x) is a coborder. By Lemma 2.3.10 there exists a linear
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map
Eu : H*(KZ) — Kj[—l]
compatible with the weight filtration W, and such that
0Py — Puoi = Byd.

The above diagram commutes up to a filtered homotopy, and hence the
morphisms oy, o; and oc, together with the homotopies ¥, define a ho-
morphism o : H(K) ~ K, which is a quasi-isomorphism by construction.
Since every object of AHC is fibrant, by Proposition 3.2.19 this lifts to a
quasi-isomorphism p : K ~~ H(K). O

Lemma 3.3.11. Let f : K — L be a morphism of I'C.

(1) If f € &0, then K is an absolute Hodge complex if and only if L is so.
(2) If f € 10, then K is a mized Hodge complex if and only if L is so.

PRrROOF. We first prove (1). Let f : K — L be an Ej ¢-quasi-isomorphism
of diagrams of filtered complexes. Let us check (AHCyp). Consider the dia-
gram

oK

(Ki, W) —— (KJ'> w)

o

(Lis W) = (L, W)
By assumption, the maps f; and f; are Ep-quasi-isomorphisms. By the two
out of three property, it follows that X is an Ey-quasi-isomorphism if and
only if ¢ is so. Condition (AHC) follows from the fact that d-bistrictness is
preserved by Ejyo-quasi-isomorphisms fc : (K¢, W, F) — (Lc, W, F'). Con-
dition (AHCs) is a consequence of the following isomorphisms:

H"(Gr) GriKc) = H"(Gr)) Grt.Lc), and H"(Gr)/ Kx) = H"(Gr)’ Ly).
The proof of (2) follows analogously. O

Denote by "G+ (MHS) the category whose objects are non-negatively graded
mixed Hodge structures and whose morphisms are homotopy classes of ho-
morphisms. Denote by H the class of morphisms of absolute Hodge com-
plexes that are homotopy equivalences as ho-morphisms.
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Theorem 3.3.12. The triple (AHC,H,Q) is a Sullivan category, and
G (MHS) is a full subcategory of minimal models. The inclusion induces
an equivalence of categories

"G (MHS) =5 Ho (AHC).

ProoOF. By Theorem 3.3.10 and Lemma 3.3.11 the conditions of The-
orem 3.2.22 are satisfied. In addition, by Lemma 3.3.8 we have Hoo = H
and & o = Q. Hence the result follows. O

Note that while objects of AHC are formal, its morphisms are not formal,
since the category of minimal models has non-trivial homotopies.

Theorem 3.3.13. The triple ( MHC, H, 0, Q) is a Sullivan category. The
minimal models are those mized Hodge complexes M with trivial differential

such that Dec"V' M is a graded mized Hodge structure.

PrROOF. By Lemma 3.3.11 condition (i) of Theorem 3.2.22 is satisfied
for mixed Hodge complexes. Given a mixed Hodge complex K, by Theorem
3.3.10 there exists a quasi-isomorphism o : M := H(DecW K) ~» K. Recall
that at the level of diagrams of filtered complexes we have an adjunction
SW 4 Dec'. This gives a quasi-isomorphism SWAM ~» K. It remains to
show that SW M is a mixed Hodge complex. The only non-trivial condition
is (MHC3). By Proposition 2.2.2 we have

H"(GryW My) = Gr)Y, M.

By construction, M is a graded mixed Hodge structure. In particular, for
each p € Z, the vector space Grmlef is endowed with a pure Hodge struc-
ture of weight p+n. Therefore M satisfies (MHC3). Hence condition (ii) is
satisfied. Since DecV'SW = 1, by construction Dec"V SW M = H(Dec" K)

is a graded mixed Hodge structure. O
Theorem 3.3.14. Deligne’s décalage induces an equivalence of categories
Dec" : Ho(MHC) = Ho(AHC).

ProOF. If suffices to note that when restricted to Hodge complexes with
trivial differentials, the functor Dec” has an inverse functor S™. O
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Beilinson’s Theorem. We next provide an alternative proof to Beilinson’s
Theorem on absolute Hodge complexes over the field of rational numbers
and study further properties of the morphisms of absolute Hodge complexes
in the homotopy category.

Theorem 3.3.15 (cf. [Bei86], Theorem. 3.2). The inclusion functor in-

duces an equivalence of categories
™G (MHS) =5 D* (MHS) = Ho (AHC).

PROOF. By Theorem 3.3.12 the triple (AHC, H, Q) is a Sullivan cate-
gory, and the minimal models are graded mixed Hodge structures. Further-
more, we have a chain of full subcategories

GT(MHS) c C*(MHS) c AHC.

Since the category of mixed Hodge structures is abelian, the mapping cylin-
der of a ho-morphism of complexes of mixed Hodge structures is a complex
of mixed Hodge structures. We have equivalences of categories

DT (MHS) <~ GT(MHS)[X~', AHC] = Ho (AHC).
O

Every mixed Hodge structure can be identified with a complex of mixed
Hodge structures concentrated in degree 0. With this identification, and
since the category MHS is abelian, given mixed Hodge structures H and H’
over a field k, one can compute their extensions as

Ext™(H,H') = DT (MHS)(H, H'[n]).

Given filtered (resp. bifiltered) vector spaces X and Y over k, denote by

Hom" (X,Y) (resp. Hom% (X,Y) the set of morphisms from X to Y that
are compatible with the filtration W (resp. the filtrations W and F).

We next recover a result of Carlson [Car80] regarding extensions of mixed
Hodge structures, by studying the morphisms in the homotopy category of
absolute Hodge complexes.
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Proposition 3.3.16 (cf. [Mor78|, Prop. 8.1). Let H and H' be mized
Hodge structures. Then

Hom" (He, Hf)
Hom" (Hy, H}) + Hom}Y (Hc, HE)’
and Ext"(H,H') =0 for alln > 1.

Ext'(H,H') =

PrOOF. By Theorem 3.3.15 we have an equivalence of categories
"G (MHS) = DT (MHS).
we have
D*(MHS)(H, H'[n]) = H° (Hom(H, H'[n])) ,

where Hom™ (—, —) is the set of pre-morphisms of degree m in AHC (see
Definition 3.2.2): a pre-morphism f € Hom™(H, H'[n]) is given by a triple
f = (fi fc, F), where

(i) fx : Hx — Hy[n+ m] is compatible with W,

(ii) fc: Hc — Hg[n+ m] is compatible with W and F, and
(iii) F: Hc — Hg[n+m — 1] is compatible with W.
The differential of f is given by Df = (0,0, (—1)"(fc — fix ® C)).

For n > 1 we have Hom®(H, H'[n]) = 0, and hence Ext"(H, H') = 0.

Let f € Hom®(H, H'[1]). Then f =0, and fc = 0. Therefore Df = 0, and
Z%(Hom(H, H'[1])) = Hom" (He, HY).

A morphism f = (0,0, F) € Z°(Hom(H, H'[n])) is a coborder if and only if
there exists a pair h = (hy, h¢) where

(i) hx : Hx — Hj_is compatible with W,

(ii) hc : Hc — H{C is compatible with W and F,
and such that F' = hy ® C — h¢. Therefore

B°(Hom(H, H'[1])) = Hom" (Hy, H,) + HomY (Hc, HE).
(|

Lastly, the morphisms in the homotopy category of absolute Hodge diagrams
are characterized as follows.
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Theorem 3.3.17. Let K and L be absolute Hodge complexes. Then
Ho(AHC)(K, L) = @ (Hommus (H"K, H"L) & Extiyys(H"K, H"'L)) .

n
PRrROOF. By Theorem 3.3.12 there is a bijection
Ho(AHC)(K, L) — H°(Hom(H(K), H(L))).

An element f € Z°(Hom(H (K), H(L))) is given by:

(i) a morphism fy : H*(Kx) — H*(Ly) compatible with W,

(ii) a morphism f& : H*(Kc) — H*(Lc) compatible with W and F, such

that fi ® C = fr, together with

(iii) a morphism F* : H*(K¢) — H*(L¢)[—1] compatible with W.
Such a map is a coboundary if f = Dh, for some h € Hom ™' (H(K), H(L)).
This implies that fx =0 and fc = 0, and that there exist:

(i) a morphism hy, : H*(Kyx) — H*(Lx)[—1] compatible with W,

(i) a morphism Ay : H*(Kc) — H*(Lc)[—1] compatible with W and F,
such that F' = hy ® C — he. The result follows from Proposition 3.3.16. [






CHAPTER 4

Filtrations in Rational Homotopy

From Sullivan’s theory, we know that the de Rham algebra of a manifold
determines all its real homotopy invariants. In addition, the Formality The-
orem of [DGMST75], exhibits the use of rational homotopy in the study of
complex manifolds. For instance, it provides homotopical obstructions for
the existence of Kéhler metrics. Bearing these results in mind, and with the
objective to study complex homotopy invariants, Neisendorfer and Taylor
define in [NT78] the Dolbeault homotopy groups of a complex manifold
by means of a bigraded model of its Dolbeault algebra of forms. Not only
interesting in themselves, these new invariants prove to be useful in the
computation of classical invariants such as the real homotopy or the coho-
mology of the manifold.

The Frolicher spectral sequence associated with complex manifolds provides
a connection between Dolbeault and de Rham models, and indicates an in-
terplay between models and spectral sequences. In [HT90]|, Halperin and
Tanré analyse this issue in the abstract setting, by constructing models
of filtered dga’s and establishing a relationship with the bigraded minimal
models of each stage of their associated spectral sequences. This allows the
study of any spectral sequence coming from a filtration of geometric nature.
The Dolbeault homotopy theory of Neisendorfer and Taylor fits naturally in
this wider context. As an application, Tanré studies in [Tan94|, the Borel
spectral sequence associated with an holomorphic fibration, and constructs
a Dolbeault model of the total space from those of the fibre and the base.

The construction of Halperin and Tanré is a generalization of the construc-

tion of bigraded models developed by Halperin and Stasheff in [HS79].
Their chief technique is to construct a filtered minimal model for a filtered

133
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dga, by perturbing the differential of a bigraded minimal model of the r-
stage of its associated spectral sequence.

The category of filtered dga’s does not admit a Quillen model structure.
However, the existence of filtered minimal models allows to define a homo-
topy theory in a non-axiomatic conceptual framework, as done by Halperin-
Tanré. In this chapter we develop an alternative construction of filtered
minimal models, which is an adaptation to the classical construction of Sul-
livan minimal models of dga’s presented in [GM81]. The main advantage
of this alternative method is that it is easily generalizable to differential
algebras having multiple filtrations. Then, we study the homotopy theory

of filtered dga’s within the axiomatic framework of Sullivan categories.

The first section is devoted to the fundamentals on classical homotopy the-
ory of dga’s and rational homotopy of simply connected manifolds, with a
special attention to the homotopy groups of a dga, and their relation with

the derived functor of the indecomposables.

As in the case of filtered complexes, the study of the homotopy theory of
filtered dga’s is done in two stages. In section 2 we introduce filtered min-
imal dga’s, and prove that every 1-connected filtered dga has an filtered
minimal model, providing the category of 1-connected filtered dga’s with a
Sullivan category structure. This is without doubt, the most important and
laborious result of this chapter.

We study the higher homotopy theories in Section 3. We prove the existence
of cofibrant minimal models by induction, using the results of the previous
section, together with Deligne’s décalage fucntor. As applications, we define
the E,.-homotopy of a filtered dga via the derived functor of the complex of
indecomposables with respect to E,-quasi-isomorphisms, and show that it
has an associated spectral sequence, converging to the classical homotopy
of the underlying dga. We also introduce the notion of E,-formality as a
generalization to the classical formality of dga’s.
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In the last section of this chapter we extend the results of the previous
sections to bifiltered dga’s.

4.1. PRELIMINARIES

This section constitutes a review of the theory of Sullivan relating differential
graded algebras and rational homotopy theory. The theory is valid for
differential algebras over any field k containing the rational numbers Q.
Most of the results of this section can be found in [BG76]. We also refer to
the book [FHTO1] on the subject, or the very comprehensive monograph
[GM81], for further details.

Differential Graded Algebras. We begin with a summary of the main
definitions and results on commutative differential graded algebras.

Definition 4.1.1. A (non-negatively) graded vector space over k is a family
of vector spaces V = {V"},,>¢ over k, indexed by the non-negative integers.
Elements belonging to V' are called homogeneous elements of degree n, and
we denote |x| = n if x € V™. We say that V is of finite type if each V'™ is

finite dimensional.

Definition 4.1.2. A commutative differential graded algebra (A, d) over
k is a graded vector space A = {A'};>¢ over k, together with a linear
differential d : A* — Al an associative product A* x A7 — A7 with a
unit 7 : k — AY satisfying:

(i) Graded commutativity: a-b= (—1)lI'"lp. q.

(ii) Graded Leibnitz: d(a-b) =da-b+ (—=1)l*la - db .

We use the notation dga for commutative differential graded algebras.

Definition 4.1.3. A morphism of dga’s is a k-linear map f : A — B of
degree 0, preserving the differential, the product and the unit.

Denote by DGA(k) the category of dga’s over k. The field k is considered
as a graded algebra of homogeneous degree 0 with trivial differential. The
unit 7 : k = A of a dga A is a morphism of dga’s. The field k is the initial
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object, and 0 is the final object of DGA (k).

Examples of dga’s are the de Rham algebra AY,(X) of differential forms
over R or C of a smooth manifold X, or the de Rham algebra A} (K) of
piecewise linear forms of a simplicial complex K.

The cohomology H*(A) of a dga A is defined in the standard way and
naturally inherits a grading and a product, making it into a dga on its own

with trivial differential.

Definition 4.1.4. A dga (A,d) over k is called 0-connected if the unit
n : k — A induces an isomorphism k = H9(A). It is called 1-connected if,
in addition, H'(A4) = 0.

Denote by DGA®(k) and DGA!(k) the categories of 0-connected and 1-
connected dga’s over k respectively.

Definition 4.1.5. A morphism of dga’s f : A — B is said to be a quasi-
isomorphism if the induced map f*: H*(A) — H*(B) in cohomology is an
isomorphism.

Definition 4.1.6. An augmented dga is a dga (A, d), together with a mor-
phism € : A — k. The morphism ¢ is called an augmentation of A. Denote
by AT the kernel of ¢.

Denote by DGA(k), the category of augmented dga’s over k, whose mor-

phisms are compatible with the augmentations.
For instance, the choice of a point  in a manifold X defines, by evaluation
at x, an augmentation e, : A%p(X) — R.

Remark 4.1.7. If a dga (A, d) satisfies A° = k, then it admits a unique
augmentation, and AT = @, , A"

Definition 4.1.8. The complex of indecomposables of an augmented dga
(A,d,€) is the complex of vector spaces defined by the quotient

Q(A) = AT/(AT - A7),
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together with the induced differential. This defines a functor
Q : DGA(k), — CT (k).

Given a graded vector space V', denote by AV the free graded commutative
algebra generated by V. It can be written as the tensor product of the
symmetric algebra on VeV with the exterior algebra of V°dd,

AV = SV @ B[V°dd),

A linear map of degree 0 from V' to a commutative graded algebra A extends
to a unique morphism of graded algebras AV — A. By the Leibnitz rule, a
linear map V' — A(V') of degree 1 extends to a unique differential in AV.

Definition 4.1.9. A dga (A,d) is said to be free, if A = AV as a graded
algebra, where V is a graded vector space.

Every free dga (AV,d) has a canonical augmentation defined by (V') = 0.
The inclusion V' — AV induces an isomorphism V = Q(AV) of graded vec-
tor spaces.

Denote by A(t,dt) the free dga generated by ¢ and dt of degree 0 and 1
respectively.

Definition 4.1.10. The path of a dga A is the dga given by
P(A) = Alt,dt] == A® A(t,dt).

There is a map of evaluation of forms 6% : P(A) — A, for k € k, defined by
t — k and dt — 0. The inclusion ¢4 : A — P(A) is defined by ¢ — a ® 1.

Definition 4.1.11. Let f,g: A — B be morphisms of dga’s. A homotopy
from f to g is a morphism of dga’s h : A — P(B) such that the diagram

7 J

B~<~—P(B)—B
\hT/
A

commutes. We use the notation h : f ~ g.
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The homotopy relation between morphisms of dga’s is symmetric, reflexive
and compatible with the composition. The path is functorial for morphisms,
and defines a P-category structure on DGA (k) (see Proposition 1.2.38).

A particular kind of algebras will be of special interest to us. These are the

Sullivan (minimal) dga’s, which we introduce next.

The tensor product A ® B of dga’s is a dga. The following is a special type
of a twisted tensor product, of an augmented dga, by a free graded algebra.

Definition 4.1.12. A KS-extension of a dga (A, d) of degree n, is a dga of
the form A ®¢ AV, where V is a finite dimensional vector space of homoge-
neous degree n and £ : V — A is a linear map of degree 1 such that d¢ = 0.
By the Leibnitz rule, the differential on the full algebra is determined by
dla®1land 1®d|y =&

Let f : A — B be a morphism of dga’s. A morphism A ® AV — B
extending f is uniquely determined by a linear map ¢ : V — B of degree 0

satisfying dp = f€.

Definition 4.1.13. A KS-extension A ®¢ AV of an augmented dga A is
said to be decomposable if dV C AT - AT,

Definition 4.1.14. A Sullivan dga over k is the colimit of a sequence of
KS-extensions starting from k. A Sullivan minimal dga is a Sullivan dga A
such that n : k = A°, and all the extensions are decomposable.

In particular, every Sullivan minimal dga (A, d) has a unique augmentation,
and its differential satisfies dA C AT - AT. Hence the differential on Q(A)

is trivial.

The prototypical example of a Sullivan dga which is not minimal is the ex-
terior algebra A(t,dt) generated by t of degree 0 and dt of degree 1.

For the 1-connected case, there is a simple characterization of Sullivan min-
imal dga’s.
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Proposition 4.1.15 ([BG76] Prop. 7.4 and [FHTO1], Prop. 12.8). Let
(A,d) be a 1-connected dga. Then A is Sullivan minimal if and only if A is
free with A' = 0 and satisfies dA C AT - AT,

Unfortunately, this proposition does not hold for 0-connected dga’s. For
instance, if A = A(z,y) is the exterior algebra on 1-dimensional generators
x and y, with de = 2y and dy = 0. Then dA C A" - AT, but A is not

Sullivan minimal.

The important result for O-connected dga’s is the following.

Theorem 4.1.16 ([BG76|, Prop. 7.7). Every 0-connected dga A has a
Sullivan minimal model: this is a Sullivan minimal dga M, together with a
quasi-isomorphism M — A. If A is 1-connected, then M = 0.

The homotopy relation between morphisms of dga’s is an equivalence re-
lation when restricted to maps in which the source is a Sullivan dga (see
[BGT76], Prop 6.3). If M is a Sullivan dga, denote by [M, A] the class of
morphisms from M to A modulo homotopy.

Sullivan dga’s satisfy the characteristic property of cofibrant objects.

Proposition 4.1.17 ([BG76]|, Prop 6.4). Let M be a Sullivan dga, and let

w: A— B be a quasi-isomorphism of dga’s. Then w induces a bijection
wy @ [M, Al — [M, B].

As a consequence, a formal Whitehead Theorem is satisfied: any quasi-
isomorphism between Sullivan dga’s is a homotopy equivalence.

If the dga’s are Sullivan minimal, then the implication is stronger.

Proposition 4.1.18 ([BG76], Prop. 7.6). Every quasi-isomorphism be-
tween Sullivan minimal dga’s is an isomorphism.

As a consequence, the Sullivan minimal model of a dga is uniquely defined
up to an isomorphism, which is well defined up to homotopy.

Theorem 4.1.19. Let o € {0,1}. The category DGA®(k) with the classes
S and W of homotopy equivalences and quasi-isomorphisms, is a Sullivan
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category. The category Smin® (k) of Sullivan minimal dga’s is the full subcat-
egory of minimal models. The inclusion induces an equivalence of categories

7(Smin®(k)) := (Smin(k)/ ~) — Ho (DGA%(k)) := DGA™(k)[W1].

PROOF. By Proposition 4.1.17 Sullivan dga’s are cofibrant, and by Propo-
sition 4.1.18, Sullivan minimal dga’s are minimal. By Theorem 4.1.16 every
a-connected dga has a Sullivan minimal model in DGA% (k). The equivalence

of categories follows follows from Theorem 1.1.35. O

Remark 4.1.20. For the non-connected case, Bousfield-Gugenheim define
a Quillen model structure on DGA (k), for which Sullivan dga’s are cofibrant
(see Theorem 4.3 of [BG76]).

Homotopy and Indecomposables. Following the approach of Cartan-
Eilenberg categories of [GNPR10], we show that the homotopy groups
of an augmented 1-connected dga are given by the derived functor of the
functor of indecomposables. Although most of the results of this section are
well known to the experts on the subject, we provide detailed proofs, since
we will later extend these results to the filtered case.

Definition 4.1.21. Let (A,d) be a 1-connected dga, and let p: My — A
be a Sullivan minimal model of (A4, d). For all n > 0, the n-homotopy group
of (A,d) is given by

m(A) = Q(Ma)".

We next check that this definition is correct, in the sense that it is functorial,

and does not depend on the chosen minimal model.

Remark 4.1.22. Since every 0-connected dga has a Sullivan minimal model,
one could think that the homotopy 7" (A) of a 0-connected dga A can be
defined in the same manner, by choosing a Sullivan minimal model M4 — A
and letting 7" (A) = Q(M4)™. However, in this case the homotopy is not
functorial for morphisms of dga’s. This is due to the fact that homotopic
morphisms of dga’s need not induce the same morphism of indecompos-
ables, unless the homotopy is augmented (see Definition 4.1.23). A main
difference between 0-connected and 1-connected dga’s is that, for the latter
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case, every homotopy of augmented morphisms is augmented (see Propo-
sition 4.1.24), and hence, the homotopy is independent of the augmentation.

The category DGA (k). can be viewed as a category of diagrams over DGA (k).
Hence it inherits a Quillen model structure. In [BG76], homotopy is de-
fined for every augmented dga as 7" (A4) = H™(Q(C4)), where Cy — A is
a Sullivan model of A. For 1-connected augmented dga’s, both definitions
coincide, since every Sullivan minimal dga M satisfies H"(Q(M)) = Q"(M).

The duality between pointed spaces and augmented dga’s leads naturally
to the notion of augmented homotopy: a pointed homotopy between mor-
phisms f,g: (Y,yo) = (X, o) of pointed topological spaces is a homotopy
h:Y xI— X from f to g which is constant at the base point yy. Equiva-
lently, it is given by a commutative diagram

X *

]

Y XTI <=—xx1

where h(y,0) = f(y) and h(y,1) = g(y). Dually, we have:

Definition 4.1.23 (See [GM81], p.147). Let f,g : A — B be morphisms
of augmented dga’s. A homotopy h : A — P(B) from f to g is said to be
augmented if the diagram

cominutes.

Denote by [A, B, the class of morphisms from A to B modulo augmented
homotopy. As we stated earlier, every Sullivan minimal dga admits a unique
augmentation. Likewise, every morphism f : A — B of Sullivan minimal

dga’s is augmented. This gives an equivalence of categories

Smin(k), — Smin(k).
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In contrast, a homotopy h : A — P(B) between morphisms of Sullivan
minimal dga’s is not augmented in general, unless the dga’s are 1-connected.

Proposition 4.1.24 (cf. [GMS81], Lemma 12.5). Let f,g: A — B be two
morphisms of Sullivan dga’s such that k = A%, k =2 B? and A' = 0. Let
h: A — P(B) be a homotopy from f to g. Then

hlao = flao®1=glap ®1,
and h is augmented. In particular, [A, B], = [A, B].

PRrROOF. Since A° = k and BY = k, both A and B admit unique canon-
ical augmentations, and the morphisms f and g are augmented.

For a € A", h(a) can be uniquely written as
h(a) = ait' + Y bit'dt,
i>0 i>0

where a; € B™ and b; € B" 1.

Assume that |a| = 0. Then |b;] = —1 and hence b; = 0 for all ¢ > 0. In

addition, since A' = 0 we have da = 0, and

0= h(da) = dh(a) =Y (da;)t' + Y ia;t" 'dt.

i>0 i>0

Therefore a; = 0 for all i > 0. Since §%h = f and d5h = g, we find that
ap = f(a) = g(a). Therefore

ha) = fl@) @ 1= gla) @1,
This proves that

hlao = flao®1=glapo®1.
Since f is augmented, it satisfies e f = ¢. This implies that for a € A°,

P(e)h(a) = P(e)(f(a)®1) =ef(a) ®1 =¢(a) ® 1 = 1e(a).

Assume that |a| > 1. Then |a;| = |a| > 1 and |b;| > 1. Hence €(a) = 0, and
g(a;) = e(b;) =0 for all i > 0. It follows that

P(e)(h(a)) =0 = te(a).

Hence h is augmented. (|
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Corollary 4.1.25. The forgetful functor induces an equivalence of cate-
gories
m,.Smin! (k), = 7Smin’ (k).

This result already suggests the independence of the base point of the ho-
motopy groups of 1-connected dga’s.

Proposition 4.1.26. Let (A,d,c) be an augmented 1-connected dga, and
let p: M — A be a Sullivan minimal model of A. Then p is augmented.

ProOF. By Proposition 4.1.17 the solid diagram

E/

M >k
P L
.
A—>k

can be completed with a morphism of dga’s ¢’ : M — k, modulo a homotopy
h : M — P(k) = A(t,dt). Since A is l-connected, its minimal model
satisfies M = 0. In addition, A(t,dt)=2 = 0. Therefore h(M=') = 0, and
hence €'|y=1 = ep|y=1 = 0. By Proposition 4.1.24, h is augmented, and
hlpo = €'|p0 ® 1 = ep|p0 ® 1. Therefore h is a constant homotopy, and the

diagram commutes. O

Theorem 4.1.27. The category DGA'(k), with the classes S and W of
augmented homotopy equivalences and augmented quasi-isomorphisms, is a
Sullivan category. The category Smin'(k) of Sullivan minimal dga’s is a
full subcategory of minimal models. The inclusion induces an equivalences
of categories

7(Smin' (k)) —~ Ho (DGA'(k),) .

ProoF. By Corollary 4.1.25 Sullivan minimal dga’s are minimal cofi-
brant objects in DGAl(k)*. By Proposition 4.1.26 every 1-connected aug-
mented dga has a Sullivan minimal model p : M — A which is aug-
mented. O

Corollary 4.1.28. There is an equivalence of categories

Ho (DGA'(k),) — Ho (DGA'(k)) .
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PrOOF. It follows from Theorems 4.1.19 and 4.1.27, and Corollary 4.1.25.
O

To ensure the existence of a right derived functor of @ : DGA' (k), — C*(k),
in view of the derivability criterion of Proposition 1.1.32 together with The-
orem 4.1.27, it suffices to check that ) sends augmented homotopy equiva-

lences to quasi-isomorphisms of complexes.

For a dga A, consider the homogeneous linear map of degree —1

[ iP(A)— A
0
defined by (see [GMS81], X.10.3)
a®t' 0, and a® t'dt — (—1)"1‘#.
1+ 1

Proposition 4.1.29. Every augmented homotopy of morphisms of aug-
mented dga’s h : A — P(B) induces a homotopy of morphisms of complezxes

~ 1
h::/o h:Q(A) = Q(B)[-1].
ProOOF. It follows from the definition of fol that
1 1
dl h dh =g¢g— f.
/0 + /0 g—Ff

Therefore the map flo h: A — B[—1] is a homotopy of complexes.

Since h is augmented, the homotopy of complexes fol h satisfies

(/1h)(A+) c B*, and (/lh)(AJ“ . A*)c Bt . B*.

0 0
Therefore it induces a homotopy of morphisms of complexes
1
[0 @) — QB)[-1).
O
Theorem 4.1.30. The functor Q : DGA*(k), — Ct(k) admits a left de-
rived functor
LQ : Ho (DGA'(k),) — DT (k).

The composition of functors

Ho (DGA (k) <= Ho (DGA!(k).) =% D™ (k) <5 G*(k)
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defines a functor

7 : Ho (DGA'(k)) — G (k)
which associates to every object A, the graded vector space m(A) = Q(My),
where M4 — A s a Sullivan minimal model of A,

PrOOF. By Proposition 4.1.29 the functor @) preserves strong equiva-
lences. Therefore it induces a functor Q' : DGA(k).[S™!] — C*T(k)[W~!].
By Theorem 4.1.27 and Proposition 1.1.32, () admits a left derived functor

LQ : Ho (DGA'(k).) — CT (k)W)
The functor
m: Ho (DGA!(k)) — G (k)
follows from the existence of L) and the equivalence of categories
Ho (DGA'(k).) — Ho (DGA'(k)) .
O

Rational Homotopy of Simply Connected Manifolds. The decom-
position of every Sullivan minimal dga into decomposable KS-extensions
is dual to the rational Postnikov tower of a simply connected simplicial
complex, and gives rise to the following important result, connecting the
homotopy groups of the algebra of forms on a manifold, to the rational
homotopy of the space.

Theorem 4.1.31 ([GMS81], Cor. 11.6). Let X be a I1-connected mani-
fold and let Mx — A*(X) be a minimal model of its algebra of rational
differential forms. There is a natural isomorphism of vector spaces

m(X) ® Q = Homg(Q(Mx), Q) = 7" (A™(X))".

With an appropriate definition of the rational differential forms, the theorem
is applicable to simplicial complexes.

Example 4.1.32 (Rational homotopy of $?*~!). The de Rham cohomology
of the odd sphere S?"~! is an exterior algebra on one generator of degree
2n — 1. Hence a minimal model for $?"~! is M = A(z), with |z| = 2n — 1
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and dz = 0. The map p: M — A5,(S?"71) is given by  — w, where w is
a volume form on $?"~!. Therefore
=2n — 1.
ﬂ_n(Sanl;Q) _ { Q ,n n

0 ,otherwise.

Example 4.1.33 (Rational homotopy of S$?*). The de Rham cohomology
of the even sphere S*" is R[x]/(2?), where |z| = 2n. A minimal model for
S2nis M = A(x,y), with |z| = 2n, |y| = 4n — 1, dz = 0 and dy = z%. We
define a map p : M — A%5(5*") by 2 — w, where w is a volume form on

S?" and y + 0. Therefore
Q ,m=2n,4n—1.
0 ,otherwise.

7Tn(52n; Q) = {

Example 4.1.34 (Rational homotopy of P{). The cohomology of the com-
plex projective space is R[z]/(z"*1). A minimal model for P% is M =
A(x,y), where |z| = 2, |y| = 2n+ 1 and the differential is defined by dx = 0
and dy = 2. Therefore

m( g;@):{ Q ,i=22n+1.

0 ,otherwise.

Differential Bigraded Algebras. To end this preliminary section we re-
call the main definitions and properties of differential bigraded algebras.

Definition 4.1.35. Let » > 0. An r-bigraded dga over k is a dga (A, d)
over k, together with a direct sum decomposition A = € AP¢ such that

d(AP9) C AP and AP . AP APt atd
The bidegree of © € APY is |z| = (p, q), and its total degree is |z| = p + q.
The base field k is considered as an r-bigraded dga of bidegree (0, 0).

Definition 4.1.36. A morphism of r-bigraded dga’s is a morphism of dga’s
f:(A,d) — (B,d) of bidegree (0,0). That is f(AP?) C BP1, for all p,q € Z.

Denote by DG2A,.(k) the category of r-bigraded dga’s over the field k.
The total degree functor t : DG?A,. (k) — DGA(k) sends elements of bide-
gree (p, q) to elements of degree p + q.
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The cohomology H(A) of an r-bigraded dga (A, d) admits a bigrading
H(A) = P HP(A),

where

Ker(d : AP9 — Aptra—r+ly

Im(d : Ap—matr=1 — Ap.aq)
Therefore H(A) is bigraded dga on its own with trivial differential. A
morphism f: (A,d) — (B,d) of bigraded dga’s induces morphisms

HPA(f) : HP9(A) — HP(B),

HPI(A)

Definition 4.1.37. A morphism of r-bigraded dga’s f : (A,d) — (B,d) is
a quasi-isomorphism if HP4(f) is an isomorphism for all p, q € Z.

The cohomology functor factors as

DG2A, (k) —— G2A(k)

Lo

DGA (k) — = GA(K).

The total degree functor sends quasi-isomorphisms of r-bigraded dga’s to
quasi-isomorphisms of dga’s.

Definition 4.1.38. An r-bigraded minimal model of an r-bigraded dga
(A, d) is a quasi-isomorphism of r-bigraded dga’s (M,d) — (A, d) such that
t(M,d) is a Sullivan minimal dga.

Theorem 4.1.39 ([FOTO08|, Thm. 4.53). Let r > 0. Every 0-connected
r-bigraded dga has an r-bigraded minimal model.

We will provide a proof of this result in the general setting of filtered dga’s.
Corollary 4.1.40. The homotopy of an r-bigraded dga (A,d) is bigraded:
(A= P =UA).
ptg=n
An example of a 0-bigraded dga is given by the Dolbeault algebra of forms
of a complex manifold. As a consequence of Theorem 4.1.39 the Dolbeault

homotopy groups of simply connected complex manifolds are bigraded (see
[NT78]).
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4.2. HoMoTOPY THEORY OF FILTERED ALGEBRAS

In this section we study the localized category of filtered dga’s with respect
to filtered quasi-isomorphisms: these are morphisms of filtered dga’s, in-
ducing quasi-isomorphisms at the graded level. We first provide the main
definitions and results regarding the homotopy theory of filtered dga’s, and
prove that the category of filtered dga’s admits a P-category structure in
which the weak equivalences are the filtered quasi-isomorphisms. We in-
troduce filtered cofibrant and filtered minimal extensions, and prove that
iterated extensions starting from the base field, give rise to cofibrant and
minimal filtered dga’s respectively. We then prove the existence of enough
filtered minimal models for 1-connected filtered dga’s. This provides the
category of filtered dga’s with the structure of a Sullivan category.

Filtered Differential Graded Algebras. The notion of filtered dga arises
from the compatible combination of a filtered complex with the multiplica-
tive structure of a dga. As in the case of filtered complexes, we will restrict
to dga’s with biregular filtrations indexed by the integers. All dga’s are
non-negatively graded and defined over a field k of characteristic 0.

Definition 4.2.1. A filtered dga (A,d,F) is a dga (A,d) together with a
decreasing filtration {FP A} indexed by the integers and satisfying:

(i) FPTYA C FPA, d(FPA) C FPA, and FPA-FIA C FPHiA,
(ii) The filtration is biregular: for any n > 0 there exist integers p,q € Z
such that FPA™ =0 and F1A™ = A™.

If a € A, the weight w(a) of a is the largest integer p such that a € FPA.
The following properties are satisfied:
w(da) > w(a), w(a-b) = w(a)+ w(b) and w(a + b) > max{w(a),w(b)}.

Definition 4.2.2. A morphism of filtered dga’s f : (A,d, F) — (B,d, F) is
a morphism of dga’s such that f(FPA) C FPB, for all p € Z.

Denote by FDGA (k) the category of filtered dga’s over k. The base field k
is considered as a filtered dga concentrated in weight 0, and the unit map
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1 : k — A is a morphism of filtered dga’s.

The cohomology algebra H(A) of a filtered dga (A, d, F’) inherits a filtration
compatible with its multiplicative structure:

FPH"(A) =Im{H"(FPA) — H"(A)}.
Therefore (H(A), F) is a filtered dga with trivial differential.

Definition 4.2.3. A filtered dga (A4, d, F') is called 0-connected if n: k — A
induces an isomorphism H%(Gr%A) =k, and H°(Grh,A) = 0 for all p # 0.
It is called I-connected if, in addition, H!(Grf.A) = 0 for all p € Z.

Denote by FDGA®(k) and FDGA!(k) the categories of O-connected and 1-
connected filtered dga’s respectively. Since the filtrations are biregular,
every 0O-connected (resp. l-connected) filtered dga is a 0-connected (resp.
1-connected) dga.

Definition 4.2.4. A morphism of filtered dga’s f : (4,d, F) — (B,d, F) is
called filtered fibration if the induced morphism

Grinf : Gr. A — Grh.B
is surjective for all p € Z.

Since the filtrations are biregular, this is equivalent to the condition that
the morphism FPf : FPA — FPB is surjective for all p € Z. In particular,
every filtered fibration (of biregularly filtered dga’s) is surjective.

Definition 4.2.5. A morphism of filtered dga’s f : (A,d,F) — (B,d, F)
is called filtered quasi-isomorphism if it is a quasi-isomorphism of filtered

complexes, that is, the induced morphism
H"(Grlf) : H"(GrlA) — H"(Gr%.B)
is an isomorphism for all p € Z.

Since the filtrations are biregular, this is equivalent to the condition that
the morphisms H"(FPA) — H"(FPB) are isomorphisms for all p € Z and
all n > 0. In particular, every filtered quasi-isomorphism (of biregularly
filtered dga’s) is a quasi-isomorphism of dga’s.
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Definition 4.2.6. Let (V, F') be a biregularly filtered non-negatively graded
module. The free filtered ga defined by (V, F) is the free ga AV endowed
with the multiplicative filtration induced by the filtration of V. If it has a
differential compatible with its multiplicative filtration, then it is called a
free filtered dga.

Definition 4.2.7. The filtered path of a filtered dga (A, d, F') is the filtered
dga P(A) with the filtration defined by

FPP(A) = FPA® A(t, dt).

This is the multiplicative filtration defined from the filtration I’ of A and
the trivial filtration of A(t, dt).

Definition 4.2.8. We will call filtered homotopy the notion of homotopy
defined by the filtered path object. The associated homotopy equivalences
will be called filtered homotopy equivalences. Denote by S the class of filtered
homotopy equivalences.

Proposition 4.2.9. The category FDGA(k) with the filtered path object,
and the classes F and &€ of filtered fibrations and filtered quasi-isomorphisms

18 a P-category.

PROOF. By Proposition 1.2.38 the category of dga’s over k admits a P-
category structure, with the classes of surjections and quasi-isomorphisms
as fibrations and weak equivalences respectively. We will show that the
graded functor

Gr* = @ GrP : FDGA (k) — DGA (k)
P
satisfies the conditions of Lemma 1.2.33, to conclude that the P-category
structure of DGA(k) is transferred to the category of filtered dga’s.

Let p € Z. Since FPP(A) = FPA ® (t,dt), we have
Gri.P(A) = P(Gr.A) = Gri. A ® A(t, dt).
Therefore

Gry-P(A) = P Gri.P(A @ Grh A ® A(t,dt) = P(GryA).
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Hence the functor Gr* is compatible with the filtered path.

Consider a sequence of filtered morphisms (A4, F) = (C, F) “ (B, F), where
v is a filtered fibration. Then

Ach:Ker(AxBHC).
Since GrPv is surjective for all p € Z, by Proposition 2.1.31, v is a strict
morphism, and hence u — v is so. Therefore

Gr*Ker(u — v) = KerGr®(u — v).
Therefore Gr® is compatible with fibre products. O

Definition 4.2.10. An augmented filtered dga is a filtered dga (A,d, F),
together with a morphism of filtered dga’s € : A — k. Denote by AT = kere
the filtered complex defined by the kernel of the augmentation.

Denote by FDGA(k). the category of augmented filtered dga’s with the

evident morphisms.

Definition 4.2.11. The filtered complex of indecomposables of an aug-
mented filtered dga (A, d, F') is the filtered complex given by

Q(A) = ‘A+/f1+ : A+7
together with the induced filtration, and the induced differential. This de-

fines a functor

Q : FDGA(k), — CT(Fk).

Proposition 4.2.12. An augmented filtered homotopy h : A — P(B) of
augmented filtered dga’s induces a filtered homotopy

[h: Q) - QB)-1]
of filtered complexes.

PROOF. By Proposition 4.1.29 the homotopy h : A — P(B) induces a
homotopy of complexes

['h:Q(a) = QB)-11.

Since FPP(B) = P(FPB), the morphism fol : P(B) — B is compatible with
filtrations. Therefore fol h is filtered. O
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In particular, every augmented filtered homotopy equivalence of augmented
filtered dga’s induces a filtered homotopy equivalence between their filtered

complexes of indecomposables.

Cofibrant and Minimal Extensions. We now define filtered cofibrant
(resp. minimal) extensions of a filtered dga, and prove that iterated filtered
cofibrant (resp. minimal) extensions of the base field k give F-cofibrant
(resp. F-minimal) objects in the category of filtered dga’s.

Definition 4.2.13. Let (A, d, F') be a filtered dga. A filtered KS-extension
of A of degree n and weight p is a filtered dga A ®¢ AV, where V is a
filtered graded module concentrated in pure degree n and pure weight p,
and £ : V — FPA is a linear map of degree 1 such that d¢ = 0. The
filtration on A ®¢ AV is defined by multiplicative extension.

Definition 4.2.14. A filtered cofibrant dga is the colimit of a sequence of
filtered KS-extensions, starting by the base field k.

In particular, every filtered cofibrant dga is a Sullivan dga.

Proposition 4.2.15. Let C' be a filtered cofibrant dga. For every solid

diagram
g 7 i
S w
o

C 4> B )
in which w € FNE, there exists a dotted arrow g, making the diagram

commute. In particular, every filtered cofibrant dga is F-cofibrant.

PRrROOF. The proof is an adaptation of the classical Lifting Lemma for
dga’s (see [FHTO1], Lemma 12.4): Assume that C' = C' ®@¢ AV is a filtered
KS-extension of C’ of degree n and weight p, and that we have constructed
a filtered morphism ¢’ : ¢! — A satisfying wg’ = f’, where ' : C' — B
denotes the restriction of f to C’. Consider the solid diagram

ZM(FrC(1a))

7
) il@w
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Since FPw is a surjective quasi-isomorphism, this is well defined, and 1 ® w
is surjective. Therefore there exists a dotted arrow gy, and satisfies wgly =
flv and dg|y = ¢’¢. This defines a filtered morphism g : C' — A such that

wg = f.
O

By Proposition 1.2.26 the filtered homotopy defines an equivalence relation
for those maps of filtered dga’s whose source is filtered cofibrant.

Corollary 4.2.16. Let (C,d, F) be a filtered cofibrant dga. Any filtered
quasi-isomorphism w : (A,d, F) — (B, d, F) induces a bijection

wy : [C, Al — [C, B]
between the classes of maps defined by filtered homotopy equivalence.
ProoF. If follows from Propositions 1.2.27 and 4.2.15. 0

Definition 4.2.17. Let (A, d, F) be an augmented filtered dga. A filtered
minimal extension of A of degree n and weight p is a filtered KS-extension
A ®¢ AV of degree n and weight p such that

(V) C FP(AT - AY) + FPHLA,

Definition 4.2.18. A filtered minimal dga over k is the colimit (A,d, F')
of a sequence of filtered minimal extensions, starting from the base field k
such that n : k= A°,

In particular, every filtered minimal dga (A, d, F') admits a unique augmen-
tation, with AT = @,., A’, and satisfies

d(FPA) C FP(AT . AT) + FPT1A,
The following result is straightforward.

Proposition 4.2.19. Let (A,d,F) be a filtered minimal dga. Then the
filtered complex (Q(A),d, F) is minimal: dFPQ(A) C FPHLQ(A).

Proposition 4.2.20. Let (A,d,F) be a filtered minimal dga. If it is 1-
connected then A' = 0.
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PrOOF. We adapt the proof of Proposition 12.8.(ii) of [FHTO1]. As-
sume that A = AV, where V = |JV,, satisfies

d(FPV,) € FPAZ2(V,,_1) 4+ FPTV, .

Assume inductively that V,)_; = 0. Then d(Gr%.V,}) = 0. Since d(Gri.V) is
decomposable, no element of GT%VW} is a coboundary. Since H' (Gri.A) =0,
it follows that Grh.V,l = 0, for all p € Z. O

Proposition 4.2.21. Every filtered quasi-isomorphism between 1-connected
filtered minimal dga’s is an isomorphism. In particular, every 1-connected

filtered minimal dga is F-minimal.

PRrROOF. Let f: A — B be a filtered quasi-isomorphism between filtered
minimal dga’s. Since A and B are filtered cofibrant, by Lemma 4.2.16,
f A — B is a filtered homotopy equivalence. By Proposition 4.2.20
we have A' = B! = 0. Hence by Proposition 4.1.24, f is an augmented
homotopy equivalence. Consequently, it induces a homotopy equivalence
Q(f) : Q(A) — Q(B), by Proposition 4.2.12. Since both Q(A) and Q(B)
are filtered minimal complexes, it follows that Q(f) is an isomorphism.
Since A and B are free as dga’s, it follows that f is an isomorphism (see
Lemma 10.10 of [GMS81]). O

Filtered Minimal Models. We next prove the existence of filtered min-
imal models. Our proof is an adaptation of the classical proof for the ex-
istence of Sullivan minimal models of 1-connected dga’s (see of Theorem.
9.5 of [GM81]), to the filtered setting: we will construct a filtered minimal
model step by step, performing filtered minimal extensions, starting from
the base field.

Definition 4.2.22. A filtered cofibrant (resp. filtered minimal) model of a
filtered dga A is a filtered cofibrant (resp. filtered minimal) dga M, and a
filtered quasi-isomorphism p : M — A.

Let (M,d) be a 1-connected Sullivan minimal dga. Since dM C M™* - M™,
the differential of an element of degree n is a linear combination of generators
of degree < n. It is therefore reasonable that the construction of Sullivan
minimal models works inductively, by performing decomposable extensions
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of increasing degree. In contrast, let (M, d, F') be a filtered minimal dga
satisfying M1 = 0. Since d(FPM) C FP(M™-M™T)+FPTL M, the differential
of an element of degree n and weight p, is a linear combination of generators
of degree < n and arbitrary weights p € Z, plus generators of degree n + 1
and weights > p. The construction of filtered minimal models will be done
inductively over the ordinal

< (n,p) < (n,p—1) <---(n,—00) = (n+1,+00) <--- < (n+1,p),

and at each inductive step we will perform a series of filtered minimal ex-
tensions of degree n+ 1 and weights > p, followed by an extension of degree
n and weight p.

Theorem 4.2.23 (cf. [HT90]|, Thm. 4.4). Every I1-connected filtered dga

over k has a filtered minimal model.

PROOF. Given a 1-connected filtered dga (A, d, F') we will define, induc-
tively over n > 1, a sequence of free filtered dga’s M,, together with filtered
morphisms p, : M,, — A, with M; = k, satisfying the following conditions:

(an) The algebra M, is a composition of filtered minimal extensions of

M,,_1 of degrees n and n + 1. The map p,, extends pp—1.

(bn) HY(Gr%.C(py)) =0 for all i < n and all p € Z.

Then the filtered morphism
p:Upn:M:UMn—)A

will be a filtered minimal model of A. Indeed, the condition that (a,) is
satisfied for all n > 0, implies that M is filtered minimal, and that M™ = M}
for all k > n. From (b,41), it follows that

H"(Gri.C(p)) = H"(Gr}.C(pn41)) = 0, for all p € Z.

Therefore p is a filtered quasi-isomorphism.

Let My = M; = k, concentrated in degree 0 and with pure weight 0, and
define p; : M1 — A to be the unit map. Condition (ay) is trivially satisfied.
Since HY(Gr%A) = k, H*(Gr}.A) = 0 for all p # 0, and H*(GrhA) = 0 for
all p € Z, (by) is satisfied.
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Assume that for all 1 < i < n we have defined p; : M; — A as required.
We will define, by a decreasing induction over the weight p € Z, a sequence
of filtered dga’s M, ,, together with filtered morphisms py,, : M,, — A
satisfying the following conditions:

(anp) The algebra M, , is a composition of filtered minimal extensions
of M, p4+1 of degree n and weight p, and degree n 4 1 and weight
> p. The map p,p extends pp pi1-

(bnp) H(GrtC(pnyp)) =0 fori <nand g € Z, or i = n and ¢ > p.

Since the filtrations of A and M,,_; are biregular, we can choose a sufficiently
large integer r such that F"A™ = 0 and FTMgfll = 0. We then take M,,, =
M,y and p,, = pp—1 as base case for our induction. Condition (a,—1)
implies condition (ay,,). Condition (b,_1) implies that H*(Gr%.C(py)) =0
for all © <n and all g € Z. If ¢ > r, then

H"(Gr%A) =0 and H" Y (Grl.M,,_1)) = 0.

It follows that H"(Gr$.C(pn,r)) = 0. Therefore (by, ) is satisfied.

Assume that for each ¢, with r > ¢ > p, we have constructed p, 4 : M, 4 — A
satisfying (an,q) and (b 4). We will define M, , in two steps. In the first
step we will perform a finite number of filtered minimal extensions of M,, ;41
of fixed degree n+ 1, and decreasing weights > p, while the second step will
consist in a single extension of degree n and weight p.

To simplify notation, let M := M,, ;11 and p := pppt+1. By Lemma 4.2.24
below, there exists a filtered morphism p : M — A satisfying the following

conditions:

(1) The algebra M is a composition of filtered minimal extensions of M of
degree n + 1 and weights > p. The map p extends p.

(2) H(GrLC(p)) = H(GrLC(p)) for all i < n and all q € Z.

(3) The map m, : H"(FPC(p)) — H"(GrPC(p)) is surjective.

In particular, by (1) and (2), and since M satisfies (app+1) and (by pt1),
the algebra M satisfies (ap pt+1) and (by pr1)-
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Define a graded algebra M, , = M ® A(Vyp), where
Vop = H'(GriC(p)) = H" (GrpC(pnp+1))

is a graded vector space of degree n and weight p. Since the map
7 H'(FPC(p)) — H"(Gr.C(p)) = Vap

is surjective, to define a differential d on V,,, and a map p,, extending p
we take a splitting of the composition

ZMFPC(F)) = H"(FPC(5)) = Vi
Since dV;,, C F* PN n+1 and by construction the generators of M of degree
n+ 1 are of weight > p, condition (ay p) is satisfied.
We prove (by,,). Let Q = Mn,p/]/\\f . There is a short exact sequence of
complexes
%:={0—C(p) — Clpnyp) — Q1] — 0},
such that F7% and Gr}.X are exact for all ¢ € Z. We have
Q" =Grt.Q" =V p, Q¥ =0 for all k < n and Q"™ = 0.

From the long exact sequence induced by Gr1.2 we have

H (Gr&-Cpny)) = H(Gri-C(p)) =0

for all (i,q) # (n,p), with ¢ < n and ¢ € Z. In addition, the connecting
morphism 0 of the long exact sequence induced by GriX is the identity.
Furthermore, the sequence

Vap — HY(GrC(5)) — H(GrhClpny)) — 0
is exact. Hence H"(Gr.C(pnp)) = 0, and (by,p) is satisfied.
Since the filtrations are biregular, there exists a sufficiently small integer s
such that (b, s) implies (by). We then take
Pn = Pns : My = M, s — A.

Condition (an,s) trivially implies (ay). O
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Lemma 4.2.24. Letn > 1 and p € Z. Let p : M — A be a filtered
morphism of dga’s such that M is freely generated in degrees < n + 1, with
k = M° and M' = 0. Then there exists a filtered morphism p : M — A
such that:

(1) The algebra M is a composition of filtered minimal extensions of M of

degree n + 1 and weights > p. The map p extends p.
(2) H(GrLC(p)) = H(GrL.C(p)) for alli <n and all q € Z.
(3) H™(FPH1C(5)) = 0.

PRrROOF. We first establish some notations. Given a morphism of filtered
dga’s f: (B,F) — (C, F), we have a short exact sequence of complexes

Lo[f] == {0 = FTC(f) = FPTIO(f) — FPHO(f)/FTCO(f) — 0},
for all r > p. This induces a long exact sequence in cohomology. Denote by
0r[f] : HM(FPFIC(f)/FTO(f)) — H'THFTC(f))
the connecting morphism, and by
ir[f]: HHFTO(f)) — H™TH(FPTIO(S))

the morphism induced by the inclusion.

We will define, by a decreasing induction over r > p, a family of morphisms
of filtered dga’s p, : M, — A satisfying the following conditions:

(1,) The algebra M, is a filtered minimal extension of M, of degree
n + 1 and weight . The map p, extends p,41.

(2;) H{(GriC(pr)) = H(Gr&.C(p)) for all i <n and all q € Z.

(3,) The map ir[p,] : H**L(F"C(p,)) — H™ 1 (FP*1C(p,)) is 0.
Since the filtrations are biregular, there exists a sufficiently large integer s
such that H"™Y(F*C(p)) = 0. We then take ps = p: My = M — A as
the base case for the induction. Assuming that p,y1 : M,11 — A satisfies
(141), (2741) and (3,4+1), we will define p, : M, — A, with r > p.

Let U, be the filtered graded vector space of homogeneous degree n+ 1 and
pure weight r given by

Uy := Imi, [Pr—&-l]y
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and define a filtered graded algebra by
M, =M1 ® AU,.

To extend the differential on M,, by the Leibnitz rule we need only to
define a linear map & : U, — M,;1 of degree 1, subject to the condition
that d¢ = 0. To define p, : M, — A extending p,y1, it suffices to define a
filtered map 7 : U, — A subject to the condition dn = p,+1£. Both maps
are defined by splitting the composition

2T Clpp41)) = H™H(EF"Clpr41)) — Uy
This gives a morphism of filtered dga’s p, : M, — A
Since M, is generated in degrees < n + 1, we have Mfflz C M;:l . M;“H.
Since the degree of U, is n + 1, it follows that
d(Uy) € M- M.
Therefore M, is a filtered minimal extension of degree n + 1 and weight r
of M,41, and (1,) is satisfied.
We prove (2,). Let @ := M, /M,;1. There is an exact sequence of filtered
complexes
3 = {0 — Clpy11) — Clpr) — Q[1] — 0}.

Since the morphisms are strict, the sequences F?% and Gr.X are exact for

all ¢ € Z. We have
Q"M =Gr.Q"t = U,, Q¥ =0 for all k < n.

In addition, (1,41) and the condition that M}H =0, we have Q"2 = 0.

From the long exact sequence associated with Gr&.X we have
HY(GriC(p,)) = H(GrClpria))
for all (i,q) # (n,r), with ¢ < n and ¢ € Z, and the sequence

0 — H(GriC(pr41)) — HY(GrinC(p,)) = Uy S H"H(GrinClpra1)).
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is exact. We next show that ¢ is a monomorphism.

From the long exact sequence induced by the sequence I'y[p,41], we have
_HY(F(Cpran))
' Imé, [pr41]

Since ¢ is induced by the morphism

70t B (ETC(pp41)) — H™(GrpClprin),

in order to prove that ¢ is a monomorphism, it suffices to show that
Kerm, C Imd,[pr+1].
Consider the commutative diagram (to ease notation we let p = p,41)
H"(FPTC(p)/F"C(p))

l Or [P}

H™H(F"C(p))

, lir[p]
Zr+1[/’]
H"H(FPHC(p))

Jx Tx

Hn+1(Fr+1Cp) Hnt1 (GT’%C(p))

By induction hypothesis we have i, [p] o j. = i,41[p] = 0. Therefore
Kerm, = Imj, C Keri,[p] = Imd,[p].

Hence ¢ is a monomorphism, and H"(Gr}.C(p,)) = H"(GrpC(pr+1)). This
proves (2,).

Let us prove (3,). Consider the commutative diagram with exact rows (to
ease notation we write p = p,4+1 and p = p,)

U, = H"(FrQ) — HM(FC(p)) —— H™(FC(p)) —=

i lu[pl lu[ﬁ] I

Uy = H (EPHQ) — HYHH(FPHIC(p)) = HM{(FPHC(7) — 0

Since the morphism p is surjective, to see that i,[p] = 0, it suffices to see
that the composition i,[p] o v = i,[p] o p is null. Since the image of i,[p] is
U,, and v(U,) = 0, it follows that i,[p] ov = 0, and hence i, [p] o x = 0. This
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proves (3,).

The morphism p = ppi1 : M = M,+1 — A satisfies the properties of
the Lemma. Indeed, (1) and (2) follow directly from (1,41) and (2,41)
respectively. Since i,41[pp+1] is the identity, (3p41) implies (3). O

Remark 4.2.25. The extension of the previous result to the 0-connected
case, can be performed analogously to Theorem V.4.11 of [GMO03].

Corollary 4.2.26. The triple (FDGA!(k), S, &) is a Sullivan category. The

inclusion induces an equivalence of categories
7 (Fminy ) — Ho (FDGA'(k)) .

between the category of 1-comnected filtered minimal dga’s modulo filtered
homotopy, and the localized category of 1-connected filtered dga’s with respect
to filtered quasi-isomorphisms.

ProOF. By Corollary 4.2.16 every filtered dga is cofibrant. By Propo-
sition 4.2.21, 1-connected filtered minimal dga’s are minimal. By Theorem
4.2.23 every 1-connected dga has a filtered minimal model. The equivalence
of categories follows from Theorem 1.1.35. O

4.3. SPECTRAL SEQUENCES AND MODELS

Décalage of Filtered Algebras. Every filtered dga (A, d, F') has an asso-
ciated spectral sequence, each of whose stages (E, (A, F), d,.) is an r-bigraded
dga. Likewise, every morphism f : A — B of filtered dga’s induces mor-
phisms between their associated spectral sequences E,.(f) : E,.(A) — E.(B).

Definition 4.3.1. Let » > 0. A morphism f : A — B of filtered dga’s
is called E,-fibration if the induced morphism E,(f) : E.(A) — E.(B) of
r-bigraded dga’s is surjective.

Definition 4.3.2. Let » > 0. A morphism f : A — B of filtered dga’s is
called an E,-quasi-isomorphism if the morphism E,(f) : E.(A) — E,.(B) is
a quasi-isomorphism of r-bigraded dga’s (that is, the morphism E,1(f) is
an isomorphism).
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Denote by F, the class of E,-fibrations, and by &, the class of E,.-quasi-
isomorphisms. Note that for r = 0 we recover the classes F and & of
filtered fibrations and filtered quasi-isomorphisms. Since the filtrations are
biregular, every E,-fibration (resp. FE,-quasi-isomorphism) is a fibration
(resp. quasi-isomorphism).

It is easy to check that both the shift and the décalage of a filtered complex
(see Definitions 2.2.1 and 2.2.3 respectively) preserve multiplicative struc-
tures. Therefore we have a pair of endofunctors S and Dec, defined on
the category of filtered dga’s. As in the case of filtered complexes, these
functors play a very important role in the study of the localized category
of filtered dga’s with respect to F,.-quasi-isomorphisms. Let us recall the

corresponding definitions in the context of dga’s.

Definition 4.3.3. The shift of a filtered dga A = (A, d, F) is the filtered
dga SA = (A,d, SF) defined by

(SF)PA™ = FP A",
This defines a functor
S : FDGA(k) — FDGA (k)

which is the identity on morphisms.

The following is a consequence of Proposition 2.2.2.
Proposition 4.3.4. Letr > 0. Then & = S~ (&E41) and Fr = S~ (Fri1).

Definition 4.3.5. The décalage of a filtered dga A = (A, d, F) is the filtered
dga DecA = (A, d,DecF’) defined by

(DecF)PA™ = {x € FPTA"; dx € FPTriAntiy
This defines a functor
Dec : FDGA (k) — FDGA(k)

which is the identity on morphisms. We have an adjunction of functors
S - Dec (see Proposition 2.2.7).
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The following is a consequence of Proposition 2.2.5.

Proposition 4.3.6. Let r > 0. Then
Eri1 = Dec_l(&) and Friq1 = Dec_l(}}).

Analogously to Theorem 2.2.15 for filtered complexes we have:

Theorem 4.3.7. Deligne’s décalage induces an equivalence of categories
Dec : Ho,;1 (FDGA(k)) — Ho, (FDGA(k)) .
for every r > 0.

PRrROOF. The proof is parallel to that of Theorem 2.2.15. We first define
a family of auxiliary categories: for r > 0, let C, denote the full subcategory
of FDGA (k) of those filtered dga’s such that d(FP?A) C FPt"A. We have a
chain of full subcategories

CrCCrg C---CC CCy=FDGA(k).
The key property of these subcategories is that if A € C1, then
DecFPA™ = FPTmA™,

A simple verification shows that the functors Dec : C..1 = C,. : S are
inverses to each other, for any r > 0 (cf. Corollary 2.2.12). By Propositions
4.3.4 and 4.3.6 we have Dec(&,41) C & and S(&,) C E-41. Therefore this
induces an equivalence between the corresponding localized categories

Dec : C,1[€4] = C [ 1 S.
By Lemma 2.2.13 we have a functor
Jr = (8" oDec") : Cg — C,

and the morphism 7,.(A) — A is an E,-quasi-isomorphism, for every filtered
dga A. This gives a commutative diagram of equivalences of categories

ler-ﬂ—l le’r

Crl€h] = Crl&71]
for all » > 0. Since Cyp = FDGA(k) the result follows. O
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We next introduce the r-path associated with a filtered dga. This will pro-
vide the notion of r-homotopy suitable to the study of the localized category
of filtered dga’s with respect to E,-quasi-isomorphisms.

Let A(t,dt) be the free dga with generators ¢ and dt of degree 0 and 1
respectively. For r > 0, define a decreasing filtration o, on A(t,dt) by
letting w(t) = 0 and w(dt) = r, and extending multiplicatively.

Definition 4.3.8. The r-path of a filtered dga (A, d, F) is the filtered dga
P.(A,F) = (P(A),F,) = (A® A(t,dt), F x o,),
where F,. := F x o, is the multiplicative filtration defined by:

FPP(A) = @ FP 1A ® olA(t, dt) = (FPAK[H]) ® (FP ™A@ K[t]dt).

Definition 4.3.9. We will call r-homotopy the notion of homotopy defined
by the r-path object. The associated homotopy equivalences will be called -
homotopy equivalences. Denote by S, the class of r-homotopy equivalences.

Note that the filtration o is the trivial filtration, and hence for r = 0 we
recover the notions of filtered path and filtered homotopy introduced in the

previous section.
Lemma 4.3.10. Let r > 0, and let A be a filtered dga. Then:
Dec(Pr41(A)) = P.(DecA).
PROOF. An easy computation shows that
(A(t,dt), Decori1) = (A(t, dt),or), for r > 0.
To prove the general case, let

a(t) =Y ait' + > bit'dt € Pra(A,F)".
i>0 i>0
Since |t| = 0, and |dt| = 1, it follows that |a;| = n and |b;| = n — 1. The
conditions for a(t) to be an element of DecFY P(A)™ are that

a(t) € FPY"P(A)", and da(t) € FPHip(A)nt,
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From the first condition, since w(t) = 0 and w(dt) = r + 1, it follows that
a; € FPTA" and b; € FPHr=1An1 vi > 0.
From the second condition, and since
da(t) = dait’ + (a1 (i + 1) + dbs) t'dt,
i>0 i>0

we find:
da; € FPTH AL and (a41(i 4 1) + db;) € FPTTA™ Vi > 0.
Since a; € FPTA™ C FPT7=" A it follows that db; € FPT"~" A", Therefore
a; € DecFPA™, and b; € DecFP~" A",
Therefore a(t) € P.(DecA). The converse follows analogously. O

Corollary 4.3.11. Letr > 0, and let f,g: A — B be morphisms of filtered
dga’s. If f =, g then Decf = Decg. In particular Dec(S,+1) C Sy

PROOF. Let h : A — P,11(B) be an (r + 1)-homotopy. By Lemma
4.3.10 we have Dech : DecA — DecP, 1B = P,(DecB). Hence Dech is an
r-homotopy. (|

Proposition 4.3.12. Letr > 0. The category FDGA (k) with the r-path ob-
ject, and the classes F,. and &, of E,.-fibrations and E,-quasi-isomorphisms

1s a P-category.

PRrROOF. The case r = 0 follows from Proposition 4.2.9. Assume induc-
tively that the Proposition is true for 0 < 7/ < r. To prove it for r, it suffices
to show that the décalage functor Dec : FDGA (k) — FDGA (k) satisfies the
properties of Lemma 1.2.33. Indeed, since Dec has a left adjoint, it is com-
patible with fibre products. By Lemma 4.3.10 the functor Dec is compatible
with the functorial paths. By Proposition 4.3.6 we have &£,41 = Dec_l(&)
and F,,1 = Dec™}(F;). The result follows from Lemma 1.2.33. O

Higher Cofibrant and Minimal Models.

Definition 4.3.13. A filtered KS-extension A®¢ AV of degree n and weight
p is called E,.-cofibrant if £(V)) C FPTTA.
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Definition 4.3.14. An E,-cofibrant dga is the colimit of a sequence of
E,-cofibrant extensions, starting from the base field k.

The following properties are straightforward from the definition.

Lemma 4.3.15. Let r > 0, and let (A,d, F) be an E,-cofibrant dga. Then:
(1) d(FPA) C FP™" A for all p € Z.
(2) (GTFA, 0) = (E[)(A, F), do) == (Er_l(A, F), dr—l)-

Denote by E,-cofy the full subcategory of FDGA (k) of E,-cofibrant dga’s.
Note that for 7 > 0 we have E,;1-min(k) C E,-min(k).

Lemma 4.3.16. Let r > 0. The functors
Dec : E;11-cofy & E,-cofy : S
are inverses to each other.

ProoF. We work inductively as follows. Let A be an FE,i-cofibrant
dga. Since d(FPA) C FPTLA, it follows that DecFP A" = FPt" A" Therefore
(S oDec)A = A. Assume inductively that DecA is E,-cofibrant. A careful
study of the multiplicative filtrations implies that if B = A ®¢ A(V) is an
E,1-cofibrant extension of degree n and weight p of A, then

DecB = Dec(A ®¢ A(V)) = DecA ®@¢ A(DecV)

is an E,.-cofibrant extension of DecA degree n and weight p—n. The converse
follows analogously. g

Proposition 4.3.17. Let r > 0, and let C be an FE,.-cofibrant dga. For
every solid diagram
A
g 7 i
Soyw
f
B

C —— )

in which w € F. N &, there exists a dotted arrow g, making the diagram

commute. In particular, E,-cofibrant dga’s are F,-cofibrant.



4.83. Spectral Sequences and Models 167

PROOF. The case r = 0 follows from Proposition 4.2.15. Assume the
statement is true for 0 < r — 1. For each solid diagram as above, we have a
solid diagram

DecA

-
ziw
o

DecC' — DecB

By Lemma 4.3.16, DecC' is E,._1-cofibrant, and by Proposition 4.3.6 we have
w € Fr_1 NE&E-_1. By induction hypothesis, there exists g : DecC — DecA
such that wg = f. Since C is E,-cofibrant, by Lemma 4.3.16 we have
S o DecC = C. The adjunction S - Dec gives a morphism g: C — A. O

By Proposition 1.2.26 the r-homotopy relation is transitive for those mor-
phisms with F,-cofibrant source. We obtain the following important result.

Proposition 4.3.18. Let r > 0, and let C be an E,-cofibrant dga. Any
E-quasi-isomorphism w : A — B induces a bijection

wy : [C, A]l, — [C, B,
between the classes of maps defined by r-homotopy equivalence.

Definition 4.3.19. Let » > 0. A filtered KS-extension A ®¢ AV of degree
n and weight p is called E,-minimal if

(V) C FPTT(AT - AT) 4 Frirtlg,

Definition 4.3.20. An E,.-minimal dga is the colimit (A,d, F') of a se-
quence of F,.-minimal extensions, starting from the base field such that
n:k = Gr%A% and Grf, A% = 0 for p # 0.

Note that every E,.-minimal dga is, in particular, an E,-cofibrant dga. The
following result is straightforward from the definition.

Lemma 4.3.21. Let r > 0, and let (M,d, F) be an E.-minimal dga. The
differentials of its associated spectral sequence satisfy dy = --- = dr—1 = 0,
and dy is decomposable. In particular, Griy M = Ef(M) = --- = EZ(M),
and (Er(M),d,) is a minimal r-bigraded dga.

Denote by E,-min(k) the full subcategory of FDGA (k) of E,-minimal dga’s.
The proof of the following result is analogous to the proof of Lemma 4.3.16.



168 CHAPTER 4. FILTRATIONS IN RATIONAL HOMOTOPY

Lemma 4.3.22. Let r > 0. The functors
Dec : Er11-min(k) &= E;-min(k) : S
are inverses to each other.

Definition 4.3.23. Let r > 0. A filtered dga (A, d, F) is E,-0-connected if
E,(A) is a 0-connected bigraded algebra, that is, EX"(A) = 0 for all p # 0,
and ngl(A) = k. It is E,-1-connected if, in addition, the bigraded algebra

E.(A) is 1-connected, that is, Ef_tll’_p(A) =0 for all p € Z.

Note that an E,-0-connected (resp. E,-1-connected) filtered dga is 0-connected
(resp. l-connected), for any r > 0. For F,-minimal dga’s we have:

Proposition 4.3.24. If an E.-minimal dga A is E,-1-connected, then Al =
0.

PrOOF. It follows from Proposition 4.2.20 and an induction using the
décalage functor. O

Proposition 4.3.25. Let r > 0. Every E,-quasi-isomorphism between E, -

1-connected E,.-minimal dga’s is an isomorphism.

PRrROOF. The case r = 0 follows from Proposition 4.2.21. Assume that
the theorem is true for 0 < r — 1. We next prove it for r. Let f be an
F-quasi-isomorphism between E,.-minimal dga’s. By Proposition 4.3.6 and
Lemma 4.3.22, the morphism Decf is an FE,_j-quasi-isomorphism between
FE,_j-minimal dga’s. By induction hypothesis, Decf is an isomorphism.
Hence f is an isomorphism. O

Definition 4.3.26. An E,.-cofibrant (resp. E,-minimal) model of a filtered

dga A is an E,-cofibrant (resp. E,-minimal) dga M, together with an F,-
quasi-isomorphism p : M — A.

Theorem 4.3.27. Let r > 0. Every E,.-1-connected filtered dga has an

E.-minimal model.

Proor. We use induction over r > (0. By Theorem 4.2.23 every FEjy-1-
connected dga has an Ey-minimal model. Let r > 0. Given a filtered dga A,
take an E,_1-minimal model p : M — DecA of its décalage. The adjunction

Hom(SM, A) = Hom(M, DecA)
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gives a morphism p: SM — A. By Lemma 4.3.22, SM is E,-minimal, and
p is an FE,.-quasi-isomorphism. O

Theorem 4.3.28. Let v > 0. The triple (FDGA'(k),S,,&,) is a Sullivan
category. The inclusion induces an equivalence of categories

7 (Er-min' (k)) — Ho, (FDGA'(k)) .

between the quotient category of 1-connected E.-minimal dga’s modulo r-
homotopy equivalence, and the localized category of E,.-1-connected filtered
dga’s with respect to the class of E,-quasi-isomorphisms.

Remark 4.3.29. The E,-minimal model of a (1-connected) filtered dga A
is defined in two steps. First, take an Fy-minimal model M — Dec” A of the

r-th composition of its décalage. Second, the r-th shift gives an F,-minimal
model S"M — A of A.

Filtered Formality. We begin by studying under which conditions an F.-
minimal model of a filtered dga is a Sullivan minimal model.

Proposition 4.3.30 (cf. [HT90|, Thm. 4.4). Let p: (M,d,F) — (A,d, F)
be an E.-minimal model of a filtered dga (A,d, F). Then the induced mor-
phism

Er(p) - (Er(M),dr) — (Er(A),dr)
is an r-bigraded minimal model of (E.(A),d,), and p: (M,d) — (A,d) is a
Sullivan model of (A,d).

Proor. If follows from the definitions and Lemma 4.3.21. |

The following example shows that, contrary to the case of filtered complexes
of vector spaces, the degeneration of the spectral sequence of a filtered dga
at a certain stage r is not a sufficient condition for the F,.-minimal dga, to
be a Sullivan minimal dga.

Example 4.3.31. Let A = A(z,y, 2), with dz = y + 22, and dy = dz = 0.
Define a filtration F' on (A, d) by setting the weights on the generators to
be w(z) = w(z) = 0, and w(y) = 1. Then E1(A) = Ex(A) = H(A). The
filtered dga (A, d, F) is Ep-minimal while (A, d) is not Sullivan minimal.
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Definition 4.3.32. An r-splitting for a filtered dga (A, d, F') is the structure
of an r-bigraded dga A = P AP such that FPA = P, AP". In particular,
EPI(A) = AP (A,d) = (E.(A),d,) and E,;1(A) = Ex(A).

The spectral sequence associated with a filtered dga (A, d, F') has a natural
filtration

FPE.(A) = D EL(A).

q=>p
Therefore (E,(A),d, F) is a filtered dga on its own, for all » > 0. Its
associated spectral sequence satisfies (F;(E,(A)),d;) = (E(A),0), for all
i <r,and (E.(E.(A)),d,) = (E.(A),d,).
Proposition 4.3.33. Let (M,d,F) — (A,d,F) be an E,.-minimal model.
If (A,d, F) admits an r-splitting, then (M,d, F) admits an r-splitting, and
(M,d) — (A,d) is a Sullivan minimal model of (A,d).

PROOF. Since (A, d, F') admits an r-splitting, there is an isomorphism of
filtered dga’s (A,d, F) = (E.(A),d,, F'). By Proposition 4.3.30 the induced
morphism (E,(M),d,F) — (E.(A),d,, F) is an E,-minimal model. We
have a chain of F,.-quasi-isomorphisms

(E.(M),d,,F) = (Er(A),d,, F)=(A,d, F) — (M,d, F).
Since both (E,(M),d,,F) and (M,d, F) are E,-minimal dga’s, there is an
isomorphism
(E,(M),dy) = (M, d).
Therefore (M, d, F) admits an r-splitting M = @ EX?(M), and since d = d,
is decomposable, (M, d) is a Sullivan minimal dga. O
We introduce the following notion of formality.
Definition 4.3.34. A filtered dga (A, d, F') is E,.-formal if there is a chain
of E,-quasi-isomorphisms
(A,d,F) +— (Er41(A),dr41, F).
If (A,d, F) is E,-formal, then E,12(A) = Ex(A).

Definition 4.3.35. A filtered dga (A,d, F) is strictly E.-formal if it is
E,-formal and E,1(A) = Ex(A).
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Proposition 4.3.36. Let (A,d, F') be a strictly E.-formal filtered dga, and
let (M,d,F) — (A,d, F) be an E.-minimal model. Then (M,d) is a Sullivan
minimal dga, and there is a diagram of quasi-isomorphisms

~ ~

(H(A),0)

(M, d)

lw

(Er(A), dr)

(4,d)

In particular (A,d) and (E,(A),d,) are formal dga’s.
PROOF. Since (A,d, F) is E,-formal we have E,-quasi-isomorphisms
(Eri1(A), dr, F) (M, d) — (A,d, F).
By Proposition 4.3.30 we also have F,-quasi-isomorphisms
(Bri1(A),0, F) = (E(Eyi1(A),dy, F) < (Ep(M), dr, F) = (Er(A),dy, F).

Since (Er41(A),dr+1,F) = (H(A),0,F) it follows that (M,d,F) is E,-
quasi-isomorphic to (E.(M),d,, F). Since both dga’s are E,-minimal, it
follows that

(M,d, F) = (E.(M),d,, F).

In particular (M,d, F') admits an r-splitting, and by Lemma 4.3.33, it is a

Sullivan minimal dga. O

Example 4.3.37 (See [NT78]). The de Rham algebra of a compact Kahler
manifold is strictly Fy-formal with respect to the Hodge filtration.

Example 4.3.38. Let X = S3 x S2, and let (A4r(X),d, F) denote its de
Rham algebra with the Hodge filtration. Then F3(Ayr(X)) = Ex(Agr(X)).
The algebras (Agqr(X)),d) and (Eo(Agr(X)),do) are both formal as dga’s,
and (Agr(X),d, F) is Ey-formal but not strictly Fy-formal.

Example 4.3.39. Let (A4r(X),0, F) be the Dolbeault algebra of a com-
plex manifold X, together with the Hodge filtration. Then its associated
spectral sequence degenerates at Ep, and (Agr(X),d,F) is strictly Eo-
formal if and only if X is Dolbeault formal in the sense of [NT78].
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Example 4.3.40. Let (A,d) be a dga, and let F' be the trivial filtration
F1A =0 and F'A = A. Then (Ey(A),dy) = (A,d), and E1(A) = H(A).
The filtered dga (A, d, F) is FEy-formal if and only if (A, d) is formal.

Example 4.3.41. Let (A, d, F) be the filtered dga of example 4.3.31. Then
E1(A) = Ex(A). The dga’s (A, d) and (Ey(A),dy) are formal, but (A, d, F')
is not Ey-formal.

Homotopy Spectral Sequence.

Definition 4.3.42. Given an E,-1-connected filtered dga A, let p: M — A
be an E,-minimal model. The E,.-homotopy of A is the F,-minimal filtered

complex

We next check that this definition is correct, in the sense that it is functo-
rial, and does not depend on the chosen minimal model. We will follow a
process parallel to that of Theorem 4.1.30 for dga’s.

We first show that the category FDGA!(k), of 1-connected augmented fil-
tered dga’s admits a Sullivan category structure.

Proposition 4.3.43. There is an equivalence of categories
T (Er—minl(k)*) = (E,—minl(k)) .

ProoOF. Every E,.-minimal dga admits a unique augmentation. Like-
wise, morphisms of augmented E,.-minimal dga’s are augmented. This gives
an equivalence of categories between E,-minimal dga’s and augmented F-
minimal dga’s. By Proposition 4.1.24 every r-homotopy between augmented
morphisms of E,.-minimal dga’s is augmented. Hence the corresponding
quotient categories are equivalent. O

Proposition 4.3.44. Let A be an augmented E,-1-connected filtered dga,
and let p: M — A be an E,.-minimal model. Then p is augmented.

PRrROOF. The proof is analogous to that of Proposition 4.1.26. 0
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Theorem 4.3.45. The category FDGA'(k), with the classes S} of aug-
mented r-homotopy equivalences and & of Ey-quasi-isomorphisms is a Sul-
liwan category, and Er-minl(k) is the full subcategory of minimal models.

There is an equivalence of categories

7 (Er-min'(k)) — FDGA'(k).[&, 1.

r

PRrROOF. By Proposition 4.3.43 E,-minimal dga’s are minimal cofibrant
objects in FDGAl(k)*. By Theorem 4.3.27 every l-connected augmented
dga has an E,-minimal model, which by Proposition 4.3.44 is augmented.

OJ

Corollary 4.3.46. There is an equivalence of categories
Ho, (FDGA'(k).) — Ho, (FDGA'(k)) .
Proor. It follows from Theorem 4.3.28, Theorem 4.3.45 and Proposi-
tion 4.3.43. O

Theorem 4.3.47. Let r > 0. The functor Q : FDGA'(k), — C*(Fk)
admits a left derived functor
L,Q : Ho, (FDGA'(k),) — D;" (Fk).

The composition of functors

Lr
LQ,

Ho, (FDGA! (k)) <*- Ho, (FDGA!(k).) D (Fk) 25 CF, (Fk)

defines a functor
m : Ho, (FDGA!(k)) — C/f,,(Fk)

which associates to every object A, the E.-minimal complex m,(A) = Q(My),
where M4 — A is an E.-minimal model of A,

PRrROOF. By Proposition 4.2.12 the functor @ preserves strong equiva-
lences. By Theorem 4.3.45 and Proposition 1.1.32, () admits a left derived
functor

L,Q : Ho, (FDGA'(k),) — D;" (Fk).

The functor 7, follows from ILQ) and the equivalence of categories

Ho, (FDGA'(k).) — Ho, (FDGA'(k)) .
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Proposition 4.3.48. Let r > 0. Let A be a E.-1-connected filtered dga.
The spectral sequence associated with the filtered complex m,(A) satisfies

i (mo(A)) = 7% (B A) = 7 (A).

PROOF. Let M — A be an E,-minimal model. Then 7,(A4) = Q(M),
and 7 (E,(A)) = Q(E,(M)). Since M is a Sullivan dga, we have m(A) =
H(Q(M)). Since Q(M) is an E,-minimal complex, its associated spectral
sequence satisfies dg = --- = d, = 0. Therefore

GrrQ(M) = Eo(mr(A)) = - -+ Erya(mr(A4)).
Since Q o Grp = Grp o Q, it follows that
Er1(m(A)) = GrpQ(M) = QGrpM = Q(Eo(M)).
In addition, since M is E,-minimal, Eo(M) = E, (M), and hence

Erir(m(A)) = Q(E, (M) = n(E,(A)).

4.4. BIFILTERED DIFFERENTIAL GRADED ALGEBRAS

We extend the results of the previous sections, to bifiltered dga’s.

Denote by F?DGA(k) the category of bifiltered dga’s over k. It’s objects
are given by (A,d, W, F) such that both (A,d,W) and (A,d, F) are ob-
jects of FDGA (k). Its morphisms are assumed to be compatible with both
filtrations. Given a bifiltered dga (A, d, W, F') we will denote

WPFIA .= WPAN FIA.

We next provide the corresponding definitions of bifiltered quasi-isomorphism
and bifiltered fibrations, and define a P-category structure on F2DGA (k).
As in the case of filtered complexes, and given out interests in Hodge the-
ory, we shall only develop the theory of minimal models for the homotopy
categories Hog o and Ho ¢ defined as follows.
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Definition 4.4.1. A morphism f : A — B of bifiltered dga’s is called
Ep o-quasi-isomorphism if the induced morphism

Ey(Eo(f, F), W) = H"(GryyGripf) = H"(Gri:Gryy f) = Ev(Eo(f, W), F)

is an isomorphism for all n > 0 and all p,q € Z. Denote by & the class of
Ep o-quasi-isomorphisms. Define a new class of morphisms

51,0 = (DeCW)_l(gop).
Morphisms in &1 ¢ are called E o-quasi-isomorphisms.

Definition 4.4.2. A morphism f : (A,d, W, F) — (B,d, W, F') of bifiltered
dga’s is called Ej o-fibration if the induced morphism

GriyGri.f = Gri.Gri, f

is surjective for all p,q € Z. Define E o-fibrations as in the previous defini-
tion, by décalage. Denote by F, o the class of E, o-fibrations.

Definition 4.4.3. Let r € {0,1}. The (r,0)-path object of a bifiltered dga
A is the bifiltered dga defined by

P,o(A) = (Alt,dt],W x o,, F % 09).
Lemma 4.4.4. Let (A, W, F) be a filtered dga. Then
Dec" (P o(A)) = Pyo(Dec” A).
PRrROOF. The proof is analogous to that of Lemma 4.3.10. 0

Proposition 4.4.5. Let r € {0,1}. The category of bifiltered dga’s with the
(r,0)-path object and the classes Fro and &, is a P-category.

PRrROOF. For r = 0 it suffices to check that the functor
U = GryyGry : F°DGA(k) — DGA (k)

satisfies the conditions of Lemma 1.2.33. The proof is analogous to that of
Proposition 4.2.9. For r = 1, it suffices to check that the functor

Dec" : F?DGA (k) — F?DGA (k)

satisfies the conditions of Lemma 1.2.33. The proof is analogous to that of
Proposition 4.3.12, using Lemma 4.4.4. O
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Definition 4.4.6. Let (A,d, W, F) be a bifiltered dga. A bifiltered KS-
extension of A of degree n and biweight (p,q) is a bifiltered dga A ®¢ AV,
where V is a bifiltered graded module concentrated in pure degree n and
pure biweight (p,q), and £ : V. — WPF9A is a linear map of degree 1
such that d§ = 0. The filtrations on A ®¢ AV are defined by multiplicative

extension.

Definition 4.4.7. Let r € {0,1}. An E, g-minimal extension of an aug-
mented bifiltered dga A is a bifiltered KS-extension A ®¢ AV of degree n
and biweight (p, q) such that

EWPFIV) C WPFUAY - AT) + WPTTH A 4 WPH et 4,

A bifiltered dga is called E,o-minimal if it is the colimit of E,o-minimal
extensions, starting from the base field.

Denote by E;o-min(k) the full subcategory of E, o-minimal dga’s.
Lemma 4.4.8. The functors
Dec" : E; o-min(k) = Egg-min(k) : SV
are inverses to each other.
PROOF. The proof is analogous to that of Lemma 4.3.22. U

Theorem 4.4.9. Let r € {0,1}. For every I1-connected bifiltered dga A
there is an E,o-minimal dga M, together with an E,-quasi-isomorphism

p:M— A.

ProoF. For r = 0 the proof is analogous to that of Theorem 4.2.23, so
we only indicate the main changes. Given a 1-connected bifiltered dga A
we will define, inductively over n > 1, a sequence of free bifiltered dga’s M,
together with bifiltered morphisms p,, : M,, — A, with M7 = k, satisfying
the following conditions:

(an) The algebra M, is a composition of Ejo-minimal extensions of

My,—1 of degrees n and n + 1. The map p,, extends pnp_1.
(bn) H(Grl,Gri.C(pn)) =0 for all i < n and all p,q € Z.
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Define My = M; = k concentrated in degree 0 and with pure biweight (0, 0),
and let p; : M1 — A be the unit map. This is the base case for our induction.
Assume inductively that we have defined p,,—1 : M,,—1 — A satisfying (a,,—1)
and (b,—1). We will construct p, : M, — A inductively over decreasing
r € Z as follows. We will define a family of bifiltered morphisms of dga’s
p: M, , — A satisfying the following conditions:

(an,) The algebra M, , is a composition of Ejo-minimal extensions of
M, »+1 of degree n and total weight p 4+ ¢ = r, and of degree n +1
and total weight p + ¢ > r. The map p,, extends py r41.

(bnyr) H(Grh,GrhC(pn,y)) = 0 whenever ¢ < n and p,q € Z, or i = n
and p, q are such that p+¢q > r.

Assume that we have constructed py 41 : My 41 — A. To simplify nota-
tion, let M := M, 1 and p := py r41.

By Lemma 4.2.24 applied to the dga’s WPM and FYM, for all p,q such
that p 4+ g = r, there exists a bifiltered morphism p: M — A satisfying the
following conditions:

(1) The algebra M is a composition of FEyo-minimal extensions of M of
degree n + 1 and total weight p + ¢ > r. The map p extends p.

(2) Hi(Gral,Gr%:C([))) = Hi(Gral/Gr}{:C(p)) for all i <n and all p’, ¢ € Z.

(3) The map m, : H*(WPFIC(p)) — H"(Gry,Gri.C(p)) is surjective when-
ever p+q =r.

Consider the graded vector space of degree n and biweight (p, q) defined by
Vapg = HY(Gri,Gri.C(p)).

Define a graded algebra M,, , = M® A(V,, ), where

Vor = B Vapa

p+q=r

The proof now follows analogously to that of Theorem 4.2.23. The case
r = 1 follows by décalage of the weight filtration and Lemma 4.4.8. 0
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Corollary 4.4.10. Let r € {0,1}. The triple (F?DGA(k),S,.0,&r0) is a
Sullivan category. The subcategory of E,o-minimal dga’s is a full subcate-

gory of minimal models. The inclusion induces an equivalence of categories

70 (Ero-min' (k)) — Ho,o (F?DGA'(k)) .



CHAPTER 5

Mixed Hodge Theory and Rational Homotopy of

Algebraic Varieties

In this last chapter we bring together the results of the previous chapters to
study the homotopy theory of mixed Hodge diagrams, and their cohomolog-
ical descent structure. We then provide applications to algebraic geometry.

The main result of Section 1 is the existence of minimal models of mixed
Hodge diagrams, endowing MHD! with a Sullivan category structure. More
specifically, we prove, using the results of Chapters 1 and 4, that every mixed
Hodge diagram is quasi-isomorphic to a mixed Hodge dga which is Sulli-
van minimal. This result allows to define the homotopy of a mixed Hodge
diagram as in the classical case of dga’s, via the derived functor of indecom-
posables. The homotopy associates to every mixed Hodge diagram, a graded
mixed Hodge structure, whose rational part coincides with the classical ho-
motopy of the rational part of the original diagram. Hence the homotopy
of every mixed Hodge diagram is endowed with a functorial mixed Hodge
structure. We also show that the minimal model of the rational part of a
mixed Hodge diagram can be computed from the first stage of the spectral
sequence associated with the weight filtration.

Section 2 is devoted to the theory of cohomological descent. We recall the
Thom-Whitney simple of [Nav87] defined over strict cosimplicial dga’s and
extend its definition to filtered and bifiltered dga’s. This allows to define a
simple functor for cubical mixed Hodge diagrams, providing MHD with a
cohomological descent structure. This descent structure endows the cate-
gory MHD with realizable homotopy colimits of diagrams indexed by finite

179
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categories (see [Rod12a)).

In Section 3 we recall the Hodge-Deligne [Del71b] theory for open smooth
varieties, as well as the multiplicative version of [Nav87|. Using the co-
homological descent structure, and the extension criterion of [GIN02], we
provide an extension of these constructions to singular varieties. As an
application, we obtain a proof of that the rational homotopy type of ev-
ery simply connected algebraic variety over C is equipped with a functorial
mixed Hodge structure (see [Nav87] and [Hai87] where the same result is
proved, using the initial constructions of Morgan [Mor78]). We also show
that the rational homotopy type of every simply connected complex alge-
braic variety is a formal consequence of the first term its associated weight

filtration. This result is also true for morphisms of varieties.

5.1. HomoToPY THEORY OF MIXED HODGE DIAGRAMS

Diagrams of Filtered Algebras. As a preliminary step to the study of
mixed Hodge diagrams we consider a more general situation of diagrams
of filtered dga’s, which occur for compactificable analytic spaces. Indeed,
Guillén-Navarro defined a Hodge filtration (see [GINO2], Section 4) for ev-
ery compactificable analytic space. Likewise, it is also possible to define
a weight filtration (analogously to the theory of motives of ibid. Section
5). These filtrations define a diagram of filtered dga’s, which for algebraic
spaces, becomes a mixed Hodge diagram. The Hodge and the weight fil-
trations are well defined up to Eyp- and F1-quasi-isomorphisms respectively,
but contrary to the case of algebraic varieties, for general compactificable
analytic spaces the associated spectral sequences need not degenerate at any
specific stage, and hence the two filtrations W and F' do not define a mixed
Hodge structure. Thanks to the theory developed in Chapters 1 and 4, we
are able to provide the basic definitions to treat this general case, although
we will not delve into all the consequences. For the rest of this chapter we
let k = Q be the field of rational numbers.
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We next define the category of diagrams of filtered dga’s. This is a diagram
category (see Definition 1.3.1) of fixed type

I={0—>1+2— -« s},

whose vertices are categories of filtered and bifiltered dga’s. Additional
assumptions on the behaviour of the filtrations will lead to the notion of
mixed and absolute Hodge diagrams of dga’s.

Definition 5.1.1. Let A : I — Cat be the functor defined by

0 . 1 s—1<—"s

I I I I

FDGA (k) —> FDGA(C) <~ ... —%. FDGA(C) <~ F2DGA(C)

where u, is defined by extension of scalars
uy(Ak, W) := (A, W) ® C,
and v, is defined by forgetting the second filtration
v(Ac, W, F) == (Ac, W).

All intermediate functors are defined to be the identity.

The category of diagrams ["A associated with the functor A is called the
category of diagrams of filtered dga’s over k. Objects and morphisms in I'A
are defined as follows:
e A diagram of filtered dga’s consists in

(i) a filtered dga (Ax, W) over k,

(ii) a bifiltered dga (Ac, W, F') over C, together with

(iii) a morphism ¢, : (4;, W) — (A;, W) of filtered dga’s over C, for each

w:i— jof I, with Ag = Ax ® C and A; = Ac.

Such a diagram is denoted as
A= <(Ak7W) (__:P___) (A(Cva)) .

e A morphism of diagrams of filtered dga’s f : A — B consists in
(i) a morphism of filtered dga’s fx : (Ax, W) — (Bx, W),
(ii) a morphism of bifiltered dga’s fc : (Ac, W, F) = (B¢, W, F'), and
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(iii) a family of morphisms of filtered dga’s f; : (4;, W) — (B;, W) with
fo=fk®C, and fs; = fc, making the following diagrams commute.

(A3, W) —> (A, W)
fil ifj
(Bi, W) —> (B;, W)

Definition 5.1.2. A morphism f : A — B of diagrams of filtered dga’s
is said to be a quasi-isomorphism if the maps fi, fc and f; are quasi-
isomorphisms: the maps H(fx), H(fc) and H(f;) are isomorphisms.

Denote by Q the class of quasi-isomorphisms of I'A..
The P-category structures on FDGA (k), FDGA(C) and F2DGA(C) define a

P-category structure on I'A as follows. Given our interests in Hodge theory,
we shall only study E,o-homotopy structures, with r € {0, 1}.

Definition 5.1.3. A morphism f : A — B of diagrams of filtered dga’s is
called E, o-fibration if the morphisms fx and f; are E,-fibrations of filtered
dga’s, and the morphism fc is an E, o-fibration of bifiltered dga’s.

Denote by F, o the class of E, o-fibrations of I'A.

Definition 5.1.4. A morphism f : A — B of diagrams of filtered dga’s
is called E, o-quasi-isomorphism if fyx and f; are E,-quasi-isomorphisms of
filtered dga’s, and fc is an E, p-quasi-isomorphism of bifiltered dga’s.

Denote by &, o the class of E, g-quasi-isomorphisms of I'A. Since the filtra-
tions are biregular, we have £ o C &1 9 C Q. Hence we have functors

Hop,o (I'A) — Hoy o (I'A) — Ho (T'A)
relating the localizations with respect to &0, £,1 and Q respectively.

Definition 5.1.5. The (r,0)-path object of a diagram of filtered dga’s A is
the diagram defined by:

&w®:<ambwwiﬂ+mm@mFﬁ,
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where P,.(Ax, W) and P, o(Ac, W, F) are the r-path and the (r,0)-path of
the dga’s (Ag, W) and (Ac, W, F') respectively (see Definitions 4.3.8 and
4.4.3), and P(y,,) is induced by ¢,.

Proposition 5.1.6. The (r,0)-path object with the classes Fro and &,
define a level-wise P-category structure on T'A.

PROOF. By Proposition 4.2.9 the category of filtered dga’s (over k or
C), with the r-path object and the classes F, and &, is a P-category. Like-
wise, by Proposition 4.4.5 the category of bifiltered dga’s over C, with
the (r,0)-path object and the classes &, ¢ and F;.( is a P-category. Both
the functor — @ C : FDGA(k) — FDGA(C), and the forgetful functor
F2DGA(C) — FDGA(C) defined by forgetting F are compatible with such
P-category structures. The result follows from Proposition 1.3.8. O

Deligne’s décalage with respect to the weight filtration defines a functor
Dec” :TA —TA

which is the identity on morphisms, and satisfies £ = (Dec)™*(&yp).
Likewise, the shift with respect to the weight filtration defines a functor

SW.TA —TA

which is left adjoint to Dec". Analogously to the case of diagrams of filtered
complexes we have:

Theorem 5.1.7. Deligne’s décalage induces an equivalence of categories
Dec" : Hoy o (TA) — Hogg (TA).
PROOF. The proof is analogous to that of Theorem 4.3.7. O
Let us now turn to the construction of level-wise minimal models.
By an abuse of notation, we will denote by TA! the full subcategory of

diagrams of filtered dga’s A such that: Ax and A; are E,-1-connected and
Ac is Eyp-1-connected. Consider a diagram of TA!

A= ((Ak, W) -2 s (Ag, W, F)) .
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By Theorem 4.3.27 there exist E,-minimal models px : (Mg, W) — (Ag, W),
and p; : (M;, W) — (A4;, W), for all 0 < i < r. Likewise, by Theorem 4.4.9
there exists an E,g-minimal model pc : (Mc, W, F) — (Ac,W,F). Let
(Mo, W) = (Mg, W) ®C, and (M,, W) = (Mc,W). Note that (Mc, W) is
not E,.-minimal as a filtered dga over C, but instead, it is E,-cofibrant. For
every u : ¢ — j we have a solid diagram

©h
(M, W) - (0, W)

f sk

(A, W) —> (47, W).

in which the elements of the top row are E,-cofibrant dga’s, and the vertical
arrows are F,-quasi-isomorphisms. Therefore the diagram can be completed
with a dotted arrow ¢/,, and commutes up to an r-homotopy of filtered dga’s.
This leads to the notion of ho-morphism (see Definition 1.3.11). We next
recall its definition in the context of diagrams of filtered dga’s.

Definition 5.1.8. An (r,0)-ho-morphism f : A ~~ B between two diagrams
of filtered dga’s of type I is given by:
(i) a morphism of filtered dga’s fx : (Ax, W) — (Bx, W),
(ii) a morphism of bifiltered dga’s fc : (Ac, W, F) — (B¢, W, F),
(iii) a morphism of filtered dga’s f; : (A;, W) — (B;, W), for each i € I,
such that fy = fix ® C, and f, = fc, together with
(iv) an r-homotopy of filtered dga’s Fy, : (4;, W) — P,.(A;, W) making the
diagram

(A, W) —22= (A, W)

N

(B, W) —“~ (B;, W)

commute, for each u:¢7 — j € I.

The notion of (r,0)-homotopy between (r,0)-ho-morphisms (see Definition
1.3.15) allows to define a class of equivalences of I'A as follows:

Definition 5.1.9. A morphism of filtered dga’s f : A — B is said to be
an (r,0)-ho-equivalence if there exists an (r,0)-ho-morphism ¢ : B ~» A,



5.1. Homotopy Theory of Mized Hodge Diagrams 185

together with (7, 0)-homotopies
gf ~---~1gand fg~- - ~1p.

Denote by H, o the closure by composition of the class of ho-equivalences.
We have S, 9 C Hro C &ro. In particular the triple (T'A, H,0,&r0) is a
category with strong and weak equivalences.

Denote by FEr,o—min1 the full subcategory of A of diagrams
M = (M, W) e=os (Mc, W, F))

such that My and M; are E,-minimal, and Mc is E,g-minimal.

Let 7" (FEr,o—minl) denote the category with the same objects, and whose
morphisms are (7, 0)-ho-morphisms modulo (r,0)-homotopy. We can now
state the main result of this section.

Theorem 5.1.10. The triple (TAY, H,.0,E0) is a Sullivan category, and
I‘Er,()—min1 18 a full subcategory of minimal models. There is an equivalence

of categories
/'y (TEro-min') — Ho, o (TA').
PrOOF. By Proposition 5.1.6 the category I'A inherits a level-wise P-
category structure. Furthermore, the condition of being 1-connected is pre-
served by E, o-quasi-isomorphisms. The result follows from Lemma 1.4.13,

together with the existence of minimal models of (bi)filtered dga’s of The-
orems 4.3.27 and 4.4.9 respectively. O

Hodge Diagrams of Algebras.
Definition 5.1.11. A mized Hodge diagram is a diagram of filtered dga’s

A= (A1 W) e Fos (A, W, F)),

satisfying the following conditions:

(MHDg) The comparison map ¢ is a string of Ej-quasi-isomorphisms.
(MHD;) For all p € Z, the filtered complex (GT}‘;V Ac, F) is d-strict.
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(MHD3) The filtration F' induced on H ”(GTZV Ac), defines a pure Hodge
structure of weight p +n on H”(GTZVAk), for all n, and all p € Z.

Denote by MHD the category of mixed Hodge diagrams of a fixed type.

The spectral sequence associated with the Hodge filtration F' of a mixed
Hodge diagram degenerates at the first stage, while the spectral sequence
associated with the weight filtration W, degenerates at the second stage.
As in the case of mixed Hodge complexes, it is more convenient to work
with a shifted version of mixed Hodge diagrams, in which both associated
spectral sequences degenerate at the first stage.

Definition 5.1.12. An absolute Hodge diagram is a diagram of filtered
dga’s
A= ((Ak7W) ‘___f___) (A(Cva)) )

satisfying the following conditions:

(AHDg) The comparison map ¢ is a string of Ey-quasi-isomorphisms.

(AHD,) For all p € Z, the bifiltered complex (Ac, W, F') is d-bistrict.

(AHD2) The filtration F' induced on H ”(GTII)/V Ac), defines a pure Hodge
structure of weight p on H”(GTXVAk), for all n, and all p € Z.

Denote by AHD the category of absolute Hodge diagrams of a fixed type.
The décalage with respect to the weight filtration induces a functor

Dec” : MHD — AHD.
The following is a direct consequence of Lemma 3.3.8.

Lemma 5.1.13. Denote by Q and &, the classes of quasi-isomorphisms

and E, o-quasi-isomorphisms of ' A respectively.

(1) The classes of maps Q and &1 o coincide in MHD.
(2) The classes of maps Q and &y coincide in AHD.

Minimal Models. For the construction of minimal models we will restrict
to the subcategory MHD' of 1-connected mixed Hodge diagrams:
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Definition 5.1.14. A mixed (resp. absolute) Hodge diagram A is called 0-
connected if the unit map 7 : k — Ay induces an isomorphism k = H?(Ay).
It is called I-connected if, in addition, H'(Ay) = 0.

Definition 5.1.15. A mized Hodge dga over k is a dga (A, d) over k such
that each A™ is endowed with a mixed Hodge structure, and the differential
d: A" — A"t is a morphism of mixed Hodge structures.

Denote by MHDGA the category of mixed Hodge dga’s over k.

The cohomology of every absolute Hodge diagram is a mixed Hodge dga
with trivial differential. We have functors

w
MHD 2>~ AHD s MHDGA.
Conversely, since the category of mixed Hodge structures is abelian, every
mixed Hodge dga is an absolute Hodge diagram in which the comparison

morphisms are identities. There is an inclusion functor
i : MHDGA — AHD.

We will prove that every 1-connected absolute Hodge diagram is quasi-
isomorphic to a 1-connected mixed Hodge dga which is Sullivan minimal.

Definition 5.1.16. A mized Hodge Sullivan minimal dga is a Sullivan min-
imal dga M = AV over k such that each V" is endowed with a mixed Hodge
structure {(V"™, W), (V" @ C,W, F)}, and the differentials are compatible
with the filtrations.

In particular, the mixed Hodge structures on V", define a mixed Hodge
structure on A™. Therefore every mixed Hodge Sullivan minimal dga is a
mixed Hodge dga. Denote by MHDGA,,;, the category of mixed Hodge

Sullivan minimal dga’s.

To construct minimal models for 1-connected absolute Hodge diagrams, we
adapt the classical construction of minimal models for 1-connected dga’s of
[GMS81], to absolute Hodge diagrams.
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Theorem 5.1.17. For every 1-connected absolute Hodge diagram A, there
erists a 1-connected mixed Hodge Sullivan minimal dga M, together with a

ho-morphism p : M ~ A, which is a quasi-isomorphism.

ProOOF. Inductively over n > 0, assume that we have constructed a

1-connected mixed Hodge Sullivan minimal dga

M = {(Mk7 W)7 (Mlv W)7 (M(C7 VVv F)}v
with (M, W) ® C = (M;, W) = (Mc,W), together with a ho-morphism
p: M ~~ A such that:

(an) My is freely generated in degrees < n, and dMy C Mlj M

(by) For i < n, the maps H'(px), H'(p;) and H*(pc) are isomorphisms.

(¢n) The maps H" ! (py), H""1(p;) and H""!(pc) are monomorphisms.
Define x = H"(C(px)), Vi = H"(C(p:)), and Vo = H"(C(pc)). The
vector spaces Vi and V; are equipped with weight filtrations W, while V¢ is
bifiltered by W and F'. There is a chain of filtered isomorphisms

Ve, W) @C — -« (Vi, W) — -+ = (Ve, W),

which endows Vi with a mixed Hodge structure. Such isomorphisms are
defined in the following way: let ¢, : A; = A; be a component of the quasi-
equivalence ¢ of A. Since the map p : M ~» A is a ho-morphism of diagrams,
there is a filtered homotopy R, : ¢upi >~ pj. The pair of maps (¢, R,) de-
fines a filtered quasi-isomorphism f,, = (¢u, Ry) : (C(pi), W) = (C(p;), W),
inducing the isomorphisms (V;, W) = (V;, W).

By Lemma 3.3.11 the mapping cone C(p) is an absolute Hodge complex.
Therefore by Proposition 3.3.9 there are sections
ok : Vk = Z"(C(px)) and o; : V; = Z"(C(p;))
compatible with W, and a section
oc: Ve = Z"(C(pc)),
compatible with both filtrations F' and W. Define filtered dga’s

Mk = Mk X A(Vk) and J/-\Z/Z = Mz & A(‘/:L)J
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together with a bifiltered dga
]\7((: = Mc ® A(V(c)

The corresponding filtrations are defined by multiplicative extension. The
sections oy, o; and oc allow to define differentials and maps py : Vix — Ak,
pi » Vi &> A; and pe : Vo — Ac, compatible with the corresponding filtra-
tions. By construction, condition (a,+1) is satisfied.

Since (]\Z, W) is F;-cofibrant in FDGA(C), given the solid diagram

Pu  ~
e M

1k

¥
i — Aj

there exists a dotted arrow @,, making the diagram commute up to a filtered
homotopy R.. By the two out of three property, the map @, is a quasi-
isomorphism. Since M; are Sullivan minimal dga’s, it follows that ¢, is an
isomorphism, which is strictly compatible with filtrations.
The chain of isomorphisms
(Mi, W) @ C = - ¢ (M, W) — - - (Mg, W),

defines a mixed Hodge Sullivan minimal dga

M = {(My, W), (M;, W), (Mg, W, F)}.

The ho-morphism 5 = (P, i, pe, Ru) : M ~ A satisfies (bp+1) and (cp41)-
O

The following result is straightforward from Lemma 3.3.11.

Lemma 5.1.18. Let f: K — L be a morphism of TA.

(1) If f € &0, then K is an absolute Hodge diagram if and only if L is so.
(2) If f € &0, then K is a mized Hodge diagram if and only if L is so.

We can now prove the main result of this section.
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Theorem 5.1.19. The triple (AHDl,’H, Q) is a Sullivan category. The
category of mired Hodge Sullivan minimal dga’s is a full subcategory of
minimal models. The inclusion induces an equivalence of categories

m"MHDGA,.;, — Ho (AHD') := AHD'[Q ]

min

between the category whose objects are 1-conmected mixed Hodge Sullivan
minimal dga’s over Q and whose morphisms are classes of ho-morphisms
modulo homotopy equivalence, and the localized category of 1-connected ab-
solute Hodge diagrams with respect to quasi-isomorphisms.

PrOOF. It follows from the analogue of Lemma 1.4.13 with minimal
models, together with Lemma 5.1.18 and Theorem 5.1.17. 0

Theorem 5.1.20. The triple (MHD?, H, o, Q) is a Sullivan category. The
minimal models are those mixed Hodge diagrams M such that DecM 1is
a 1-connected mized Hodge Sullivan minimal dga. In particular, My is a
Sullivan minimal dga and { My, Wn], F'} is a mized Hodge structure for all
n > 0.

PRrROOF. By Lemmas 5.1.13 and 5.1.18, condition (i) of Lemma 1.4.13 is
satisfied for mixed Hodge diagrams, with respect to the P-category struc-
ture of I'A associated with the class of Ej 1-quasi-isomorphisms. Therefore
it suffices to show that for every mixed Hodge diagram A, there exists a
mixed Hodge diagram M such that DecM is a mixed Hodge Sullivan mini-
mal dga, together with a quasi-isomorphism p' : M ~ A.

Let A be a 1-connected mixed Hodge diagram. By Theorem 5.1.17 there
exists a quasi-isomorphism p : M ~» Dec'V' A, where M is a mixed Hodge
Sullivan minimal dga. Note that at the level of diagrams of filtered dga’s
we have the adjunction SW - Dec". This defines a quasi-isomorphism
p: SWM ~» K. It remains to show that SV M is a mixed Hodge diagram.
The proof is analogous to that of Theorem 3.3.13. O

Theorem 5.1.21. Deligne’s décalage induces an equivalence of categories

Dec" : Ho (MHD') — Ho (AHD').
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ProOF. By Theorems 5.1.19 and 5.1.20 it suffices to show the equiva-
lence between the corresponding subcategories of minimal models. For that
it suffices to note that when restricted to mixed Hodge Sullivan dga’s, the
functor Dec" has an inverse SV defined by shifting the weight filtration. [

Homotopy of Mixed Hodge Diagrams. The functor of indecompos-
ables for filtered and bifiltered dga’s defines a functor

Q : MHD! — MHC

sending every l-connected mixed Hodge diagram A to the mixed Hodge
complex defined by

Qy)
Q) = (@) ¥ (@ac) W F) )
Note that if A is a mixed Hodge Sullivan minimal dga, then Q(A) is a graded
mixed Hodge structure.
We will need the following result.

Proposition 5.1.22. Every augmented homotopy h : A ~~ P(B) between

ho-morphisms of mized Hodge diagrams induces a homotopy
1
[ Q) ~ Q(B)[-1].
between ho-morphisms of mized Hodge complezes.

PRrROOF. The proof is analogous to that of Proposition 4.1.29, so we only
indicate the main differences. A homotopy h : A ~» P(B) from f = (fi, F,)
to g = (gi, Gy) is given by a family of homotopies h; : A; — P(B;) from
fi to gi, together with second homotopies H,, : A; — P?(B;) satisfying the
conditions of Definition 1.3.14. It follows from the definition of fol that

df hi+ [ dhi = g~ fi

Therefore the map flo hi : A;i — B;[—1] is a homotopy of complexes. Like-
wise, we find that

k/Q{/(:qud _ d/ﬂlﬁlHu _ /OlGu _ /OlFu + /Olh](pu _ gpu/[)lhl
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Hence (by Definition 3.2.5) the family of pairs

/Olh::(/olhi,/ol/olHu)

is a homotopy of ho-morphisms of mixed Hodge complexes from f to g.
Since h is augmented, it induces a homotopy

['h: Q) ~ Q(B)[-1.

Theorem 5.1.23. The functor QQ admits a left derived functor
LQ : Ho (MHD,) — Ho (MHC).
The composition of functors
Ho (MHD') <"~ Ho (MHD!) =% Ho (MHC) HeDee G (MHS)

defines a functor
7 : Ho (MHD') — G (MHS)
which associates to every I1-connected mized Hodge diagram A, the graded

mized Hodge structure m(A) = Q(M4a), where My ~ A is a minimal model
of A.

PROOF. By proposition 1.1.32, we need to check that () sends strong
equivalences in MHD)! to weak equivalences in MHC. Indeed, the class
H of strong equivalences is defined as the class of morphisms of mixed
Hodge diagrams which are homotopy equivalences as ho-morphisms. The
result follows from Proposition 5.1.22. The remaining of the proof follows
analogously to that of Theorem 4.3.45. O

Corollary 5.1.24 (cf. [Mor78], Thm. 8.6). Let A be a 1-connected mized

Hodge diagram of dga’s.

(1) The Sullivan minimal model My — Ay of its rational part is equipped
with functorial mixed Hodge structures, which are unique up to isomor-
phisms homotopic to the identity, and are functorial for morphisms of
diagrams.

(2) The homotopy groups of A are endowed with functorial mized Hodge
structures.
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PROOF. Assertion (1) follows directly from Theorem 5.1.20, since given
a minimal model M ~» A of a mixed Hodge diagram A, then My, — Ay is a
Sullivan minimal model of Ay, and M} has a mixed Hodge structure for all
n > 0. Assertion (2) follows from Theorem 5.1.23, since 7" (Ax) = Q(Mxg)",
and the homotopy 7(A) is a graded mixed Hodge structure. O

We next study the formality of mixed Hodge diagrams and morphisms of
mixed Hodge diagrams. Following [DGMS75] we pose the following defi-

nitions:

Definition 5.1.25. Let (A,d, W) be a filtered dga. The homotopy type
of (A,d) is a formal consequence of Ei(A) if there is a chain of quasi-
isomorphisms (A, d) <+— (M,d) — (E1(A),d;), where (M, d) is a Sullivan

minimal dga.

Note that this is a notion of formality weaker that the notion of Ey-formality
for filtered dga’s (see Definition 4.3.34).

Definition 5.1.26. Let f : (A,d, W) — (B,d, W) be a morphism of filtered
dga’s, and assume that the homotopy type of A (resp. B) is a formal
consequence of E1(A) (resp. E1(B)). We say that the homotopy type of f
is a formal consequence of E1(f) if there exists a diagram

(A, d) <— (Ma,d) — (E1(4),d1)

I

(B,d) <— (Mp,d) — (E1(B),d)
which commutes up to a homotopy of dga’s.

The first term of the spectral sequence associated with the trivial filtration
is the cohomology algebra. Hence in this case we recover the classical no-
tion of formality of [DGMS75]. We remark that in general, the formality
of objects does not imply formality of morphisms (see [F'T88]).

We will prove that the homotopy type of the rational part of both mixed
Hodge diagrams and morphisms of mixed Hodge diagrams is a formal con-
sequence of F. This result is done in two steps: first, we prove formality
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over C. Second, we use the descent of formality from C to Q.

The descent of formality of dga’s from C to Q is proved in Theorem 12.1 of
[Sul77]. Based on the Sullivan formality criterion of Theorem 1 of [FT88],
a descent of formality for morphisms of dga’s is proved in Theorem 3.2
of [Roi94]. The proof does not depend on the particular construction of
minimal models, but rather on abstract properties of formalizability and
minimality. An adaptation of this result gives:

Lemma 5.1.27. Let k C K be a field extension, and let f : A — B be
a morphism of filtered dga’s over k. The homotopy type of f is a formal
consequence of E1(f) if and only if the homotopy type of fx = f @x K is
a formal consequence of E1(fx).

PROOF. The descent of formality with respect to F1 from C to Q reduces
to lifting a grading (see Theorem 12.7 of [Sul77]). Hence the Lemma follows
from the proofs of Theorem 12.1 of loc.cit for objects and Theorem 3.2 of
[R0i94] for morphisms respectively. O

Proposition 5.1.28 (cf. [Mor78|, Thm. 10.1). Let f : A — A’ be a
morphism of 1-connected mixed Hodge diagrams. The homotopy type of
fo:Ag — A('@ is a formal consequence of E1(fq).

PROOF. Let A be a 1-connected mixed Hodge diagram of dga’s. Since
Dec' A is a 1-connected absolute Hodge diagram, by Theorem 5.1.17 there
exists a quasi-isomorphism M ~» DecV' A, where (M ,W,F ) is a mixed
Hodge Sullivan minimal dga. Hence we have a filtered quasi-isomorphism
(Mc, W) — (Ag, DecW). By Lemma 3.1.7 the algebra M¢ admits a split-
ting:

Mg =P, with WM = 127
P p+gs<m
Since the differential is a morphism of mixed Hodge structures, it satisfies

d(IR?) c 1Y, for all n > 0. Let
v = @t

We next check that this defines a 0-splitting for the filtered dga (Mc, d, W)
(see Definition 4.3.32). We have:
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—r,r r,r ,q+1
(1) dMP? =, d, ;™" C @, dL DT = METT.
( ) WPM(C _Gai'i‘jSpI’J ®q> pI - 7”T_eaq> qun q

Therefore is follows that
(Eo(Mc, W), do) = (M, d).
A minimal model for the mixed Hodge diagram A is defined by shifting the
weight filtration W of M. Hence we have
(Er(Mc, SW), d1) = (Mc, d).
Since (E1 (Mg, SW),dy) is a bigraded minimal model of (Ey(Ac, W),d1),
we have FE1-quasi-isomorphisms
(Ac,d, W) = (Mc, d, SW) =+ (Ei(Ac, W), dy, W).

In particular, the homotopy type of Ac is a formal consequence of F1(Ac, W).

Let f : A — A’ be a morphism of 1-connected mixed Hodge diagrams.
Consider the solid diagram of filtered dga’s

(Ac,d, W) =—— (Mc,d SW)

fci 7
Y

/

(A, d, W) <" (ML, d, SW).

Since (M, d, SW) is Ej-cofibrant and p’ is an Ej-quasi-isomorphism, the
dotted arrow f@ exists, and makes the diagram commute up to a 1-homotopy
of filtered dga’s. As a consequence, the induced diagram at the Fj-stage
of the associated spectral sequences commutes up to a homotopy of dga’s.
Since the splitting of Lemma 3.1.7 is functorial for morphisms of mixed

Hodge structures, the diagram

o ( )
(A, d) <2— (Mg, d) ~— (Ey (Mg, SW),dy) — (Ei(Ac, W), d1)
fc fe E1(fo) lEl(fC)
v \
! o —~ ( )
(A, d) <2 (ML d) <= (By (ML, ST, dy) 2 (B (AL, W), dy)

commutes up to a homotopy. Hence the homotopy type of fc is a formal
consequence of E1(fc,W). The result follows from Lemma 5.1.27. O
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The following is a formality result for the forgetful functor

Ug : Ho (MHD') — Ho; (FDGA'(Q)) .

Corollary 5.1.29. There is an isomorphism of functors Ey o Ug = Ug.

5.2. COHOMOLOGICAL DESCENT

The theory of cubic hyperresolutions [GINPP88| allows to replace a sin-
gular variety by a cubic diagram of smooth varieties. This replacement is
constructive, and relies on Hironaka’s Theorem of resolutions of singularities
for algebraic varieties over a field of characteristic 0. In [GNO02], Guillén
and Navarro developed a general descent theory which, aided by the theory
of cubic hyperresolutions, allows to extend some particular contravariant
functors defined on the category of smooth schemes, to the category of all
schemes. The extension criterion of Guillén-Navarro is based on the as-
sumption that the target category is a cohomological descent category. This
is essentially a category D, together with a saturated class of morphisms,
and a functor s, sending every cubical codiagram of D to an object of D,
and satisfying certain axioms. From [Rod12a] it follows that the simple
functor of a cubical descent category is essentially the homotopy limit, and
allows to define realizable homotopy limits for diagrams indexed by finite
categories.

In this section we show that the categories MHC and MHD of mixed
Hodge complexes and mixed Hodge diagrams of dga’s are equipped with
cohomological descent structures. For the additive case of mixed Hodge
complexes, an analogous result in the context of simplicial descent categories
appears in [Rod12b]. Using the above results, and the extension criterion
of [GIN02], we provide a proof of that the functor Hdg : V(C) — MHD
of Theorem 5.3.6 extends to a functor defined on the category of all schemes
over C, whose target is the homotopy category of mixed Hodge diagrams.



5.2. Cohomological Descent 197

Preliminaries. We next recall the main features of descent categories and
descent functors. We refer to [GIN02] for the precise definitions and proofs.

Given a set {0,---,n}, with n > 0, the set of its non-empty parts, or-
dered by the inclusion, defines the category [,,. Likewise, any non-empty
finite set S defines the category [g. Denote by Dg the category defined
by including the empty set. Every injective map u : S — T between non-
empty finite sets induces a functor O, : Og — Op defined by O, () = u(«).

Denote by II the category whose objects are finite products of categories
s and whose morphisms are the functors associated to injective maps in

each component.

Definition 5.2.1. Let § : 0 — [0’ be a morphism of II. The inverse image
of 0 is the functor 6* : Fun(l', D) — Fun(0, D) defined by §*(F) := Fod.

Definition 5.2.2. Let D be an arbitrary category. A cubical codiagram of
D is a pair (X, ), where [J is an object of IT and X is a functor X : 0 — D.
A morphism (X,0) — (Y,0') between cubical codiagrams is given by a pair
(a,d) where § : ' — [ is a morphism of II and a : §*X — Y is a natural

transformation.
Denote by CoDiagnD the category of cubical codiagrams of D.

Definition 5.2.3. Let ¢ : 0 — [0’ be a morphism of II. The direct image of
9 is the functor 0, : Fun(Fun(O,D),D) — Fun(Fun(',D),D) defined
by F' — 6.(F) := F o §*.

Definition 5.2.4 ([GNO02], Def. 1.5.3). A cohomological descent category
is given by the data (D, &,s), where:
(CD;1) D is a cartesian category with initial object 0.
(CD3) €& is a saturated class of morphisms of D, called weak equivalences,
which is stable by products.
(CD3) s : CoDiagnD — D is a contravariant functor such that for any
morphism § : 0 — 0 of II and any codiagram (X,) of D, the
morphism sy (0, X) — sg(X) induced by §,X — X is in &.

The following list of axioms must be satisfied:
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(CDy) Additivity: for every object O of II, the unity map sg(C) x 1) — 1,
and the Kiinneth map sg(X x YY) — sg(X) x sg(Y) are in £.

(CDj5) Ezactness: let f : X — Y be a morphism of codiagrams of D. If
fa isin & for every o € OJ, then sg(f) : so(X) = so(Y) isin &.

(CDg) Factorization: Let 0,0 be objects of II. For any cubical co-
diagram X = (X,g) : O x O — D there is an isomorphism
M SaﬁXa,B — Sa85Xa5.

(CD7) Acyclicity: let X+ be a [F-diagram, and denote by X the cubi-
cal codiagram obtained by restriction to [,. The augmentation
morphism A; : Xg — sgX is a weak equivalence if and only if the
canonical morphism 0 — s+ X T is a weak equivalence.

Remark 5.2.5. The transformations p and A of axioms (CDg) and (CD7)
are part of the data of a descent structure.

Given a field k of characteristic 0, denote by Sch(k) the category of reduced
schemes, that are separated and of finite type over k. Denote by Sm(k) the
full subcategory of smooth schemes.

Definition 5.2.6. A cartesian diagram of Sch(k)

~ -
Y —X
LD
Y —= X
is said to be an acyclic square if 7 is a closed immersion, f is proper, and the
induced morphism X \' Y — X \ Y is an isomorphism. It is an elementary
acyclic square if, in addition, all the objects in the diagram are irreducible

smooth schemes of Sm(k), and f is the blow-up of X along Y. In the latter

case, the map f is said to be an elementary proper modification.

Theorem 5.2.7 ([GNO2], Thm. 2.1.5). Let D be a cohomological descent
category and let G : Sm(k) — HoD be a contravariant ®-rectified functor
satisfying:
(F1) G0) =0, and G(XUY) = G(X) x G(Y) is an isomorphism.
(F2) If X* is an elementary acyclic square, then sG(X*®) is acyclic.
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Then there is a ®-rectified functor G' : Sch(k) — HoD satisfying the
descent condition:

(D) If X* is an elementary acyclic square, then sG'(X*®) is acyclic.
In addition, this extension is essentially unique: If G" is another extension

of G, satisfying (D), then there exists a unique isomorphism of ®-rectified
functors G' = G"'.

2

We next state a relative version of Theorem 5.2.7. Denote by Sch(k)&omp

the category of pairs (X, U), where X is a proper scheme over k and U is an
open subscheme of X. Denote by V2 (k) the full subcategory of Sch(k)%omp
of those pairs (X,U), where X is smooth projective and D = X — U is a

divisor with normal crossings.

Definition 5.2.8. A commutative diagram of Sch(k)%omp

V,UNY) — (X,0)

5| K

(Y,UNY) -~ (X,U)

is said to be an acyclic square if f : X — X is proper, i : Y — X is a closed
immersion, the diagram of the first components is cartesian, f~'(U) = U

and the diagram of the second components is an acyclic square of Sch (k).

Definition 5.2.9. A morphism f : (X,U) — (X,U) in V2(k) is called
proper elementary modification if f : X — X is the blow-up of X along a

smooth centre Y which has normal crossings with the complementary D of
Uin X, and if U = f~Y(U).

Definition 5.2.10. An acyclic square of objects of V2(k) is said to be
an elementary acyclic square if the map f : ()N(,ﬁ) — (X,U) is a proper
elementary modification, and the diagram of the second components is an
elementary acyclic square of Sm(k).

Theorem 5.2.11 ([GNO2], Thm. 2.3.6). Let D be a cohomological de-
scent category, and G : V2(k) — HoD a contravariant ®-rectified functor
satisfying conditions F'1 and F2 of Theorem 5.2.7. Then there exists a con-
travariant ®-rectified functor G' : Sch(k) — HoD satisfying the descent
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condition (D) of Theorem 5.2.7, and such that G'(U) = G(X,U), for every
pair (X,U) € V3(k).

Simple Functor for Complexes. The primary example of a cohomolog-
ical descent structure is given by the category of complexes CT(A) of an
abelian category A with the class of quasi-isomorphisms and the simple
functor s given by the total complex. We next recall its definition, and pro-
vide a simple for filtered and bifiltered complexes. This will enable us define
a simple functor for cubical mixed Hodge complexes, endowing the category

MHC with a cohomological descent structure.

Define the simple s for a cubic codiagram of complexes K = (K®) of type

0, by
—/Ca®Ka,

where C, is the cochain complex associated with A|a|. For example, if
O = 0O,, then s, (K) is the complex given by

sn(K) :==s,K* = P K*[~|a]],
OAGDn

together with the differential defined by an alternating sum of the differen-

tials of the complexes K® and the transition morphisms K® — K%+,

For every pair of objects 00,0 of II, let pory : soxor — so o spy denote
the isomorphism corresponding to the iterated end, defined from the iso-
morphisms C,, ® Cg = C(q g, for each (o, 3) € O x [0'. Likewise, for every
object O of II, and every complex K, let

M(K): K —sg(0Px K)2C*"(0O)e K
be the map induced by the coaugmentation Z — C*(O).

Proposition 5.2.12 ([GNO02], 1.7.2). Let A be an abelian category. The
category Ct(A) with the class of quasi-isomorphisms and the simple functor

s together with data (p, \) is a cohomological descent category.



5.2. Cohomological Descent 201

Note that the definition of the simple functor depends on the translation
functor. To generalize this construction to the filtered setting it suffices to
consider the r-translation functor (see Definition 2.2.16).

Definition 5.2.13. Let r € {0,1} and let (K, F') be a codiagram of filtered
complexes. The r-simple of (K, F') is the filtered complex

s"(K,F) := (s(K), F,)
defined by
(F)Ps(K) = / C, @ FPrlel g,

Note that s” and s! correspond to the filtered total complexes defined via
the convolution with the trivial and the béte filtrations respectively, intro-
duced by Deligne in [Del74b].

The morphisms pp v and Ag defined for the non-filtered case are compatible
with filtrations, so we have the data (i, \) associated with s”. In addition:

Proposition 5.2.14. Let (K, F) be a codiagram of filtered complezes. Then
Dec (s'(K, F)) = s"(K, DecF).

PROOF. The category CT(F.A) complete. Furthermore, since the décalage
has a left adjoint (see Proposition 2.2.7), it commutes with pull-backs.
Hence we have

Dec/C’a®K°‘:/Dec(Ca®Ko‘).

By Lemma 2.2.18, the décalage commutes with the r-translation functor.
Hence for all p € Z we have

/ Dec(C, @ FP7l0l o) = / Co ® DecFPK®.
«a (0%
O

Proposition 5.2.15. Let r € {0,1}. The category C*T(F.A) with the class
Er of E.-quasi-isomorphisms and the r-simple functor s together with data
(11, A) is a cohomological descent category.
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PRrROOF. For r = 0, the proof follows from Prop. 1.7.5 of [GN02], via
the functor Gr® : Ct(FA) — C*(A) defined by sending every filtered
complex to its associated graded object. Let r = 1. By Proposition 5.2.14
the décalage Dec : CT(FA) — C*(F.A) commutes with the r-simple. The
result follows from Prop. 1.5.12 of [GIN02]. O

The previous results extend to bifiltered complexes as follows.

Definition 5.2.16. Let r € {0,1}, and let (K, W, F) be a codiagram of
bifiltered complexes. The (r,0)-simple of (K, W, F') is the bifiltered complex
defined by

s"U(K, W, F) := (s(A), W,, Fp) .

Proposition 5.2.17. Let r € {0,1}. The category CT(F2.A) with the class
Ero of Eyo-quasi-isomorphisms and the simple functor s™0 together with
data (p, A), is a cohomological descent category.

PRrROOF. The proof is analogous to that of Proposition 5.2.15. O
We next define a simple functor for mixed Hodge complexes.

Definition 5.2.18. Let K be a cubical codiagram of mixed Hodge com-
plexes. The simple of K is the diagram of complexes

sp(K) = <s})(Kk, W) So), sh0(Ke, W, F)) .

Proposition 5.2.19. The simple of a cubical codiagram of mized Hodge
complezes, is a mized Hodge complez.

PRrROOF. It suffices to prove that the associated functor of cosimplicial
objects is a mixed Hodge complex. This follows from Theorem 8.1.15 of
[Del74Db]. O

Theorem 5.2.20. The category of mized Hodge complexres MHC with the
class Q of quasi-isomorphisms and the simple functor sp is a cohomological
descent category.

ProOF. Consider the forgetful functor

Y : MHC — C*(Fk) x CT(F?C),
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defined by sending every mixed Hodge complex K to the pair of complexes
(Kx, W) and (K¢, W, F). By Proposition 5.2.17 we have cohomological de-
scent structures (C*(Fk), &,s!) and (CT(F2C), &1,s°). By Proposition
3.3.8 we have Q = 1/1_1(51,5170). Since the simple sp is defined level-wise,
it commutes with the functor . The result follows from Prop. 1.5.12 of
[GNO02]. O

Thom-Whitney Simple. The Thom-Whitney simple functor defined by
Navarro in [Nav87| for strict cosimplicial dga’s is easily adapted to the
cubical setting. We next recall its definition, and provide a Thom-Whitney
simple for filtered and bifiltered dga’s. This will enable us define a simple
functor for cubical mixed Hodge diagrams, endowing the category MHD
with a cubical cohomological descent structure.

Given a non-empty finite set S, denote by Lg the dga over k of smooth
differential forms over the hyperplane of the affine space Aﬁ , defined by the
equation )  gts = 1.

Given an object O = II;c;0g, of I, we let Ly = ®;L,,, for every a = (o) €
O. This defines a functor L : 0% — DGA(k). For a codiagram of dga’s
A = (AP) of type O, we let

so(A) = / Lo ® A®

denote the end of the functor (0°° x 0 — DGA(k) given by (a, 8) — Lo®AP.
Since s is functorial with respect to [, this defines a functor

stw : CoDiagn(DGA(k)) — DGA(Kk).

For every pair of objects 0,00 of II, let umry : soxoy — sp o spy denote
the isomorphism corresponding to the iterated end, defined from the iso-
morphisms Lo ® Lg = L, g), for each (o, 8) € O x [I'. Likewise, for every
object Og of II, and every dga (A, d), let

)\DS(A) A — S[]S(Dgp X A) XLs®A

be the map induced by the structural map k — Lg.
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Proposition 5.2.21 ([GNO02], Prop 1.7.4). The category DGA (k) with the
class of quasi-isomorphisms, and the simple functor sty together with data
(11, A) defined above, is a cohomological descent category.

Define a family of filtrations of Lg, for every non-empty finite set S as
follows. For r > 0, let o, be the decreasing filtration of Lg defined by
w(ts) = 0, and w(dts) = r, for every generator ts of degree 0 of Lg, and
extending multiplicatively. Note that og is the trivial filtration, while o is
the béte filtration of Lg.

Given a filtered dga (A, d, F'), we have a family of filtered dga’s
L4(A)=(Ls® A F,) = (Ls ® A,0, x F),
where F, = o, x F' is the multiplicative filtration defined by

FP(Ls® A) = P olLs ® FPIA.
q

Lemma 5.2.22. With the previous notations, Dec(L§(A)) = L% (DecA).

PRrROOF. The proof follows from Lemma 4.3.10, and an induction over
the cardinal of S. 0

Definition 5.2.23. Let r € {0, 1}, and let (A4, F') be a codiagram of filtered
dga’s. The r-Thom-Whitney simple of (A, F) is the filtered dga

stw (A, F) := (stw(A4), Fr)
defined by the end

FPsrw(A) = / FP(Lo ® A?)
of the functor )

(, 8) = FP(La ® A%) = D (U;!La ® FP—QAB) .
q

The morphisms pyn and A\g defined for the non-filtered case, are compat-
ible with filtrations, so we have the data (u, \) associated with s .

Proposition 5.2.24. Let (A, F) be a codiagram of filtered dga’s. Then
Dec (57 (A, F)) = 87y (A, DecF).
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ProoF. Since FDGA (k) is a complete category, and the décalage com-
mutes with pull-backs, we have

Dec/ Lo,® AY = / Dec(Ly @ A®).
The result follows from Lemma 5.2.22. O

Proposition 5.2.25. Let r € {0,1}. The category FDGA (k) with the class
& of Er-quasi-isomorphisms and the simple functor siy,, together with data

(11, A) is a cohomological descent category.

PRrOOF. Consider the functor Gr® : FDGA(k) — DGA(k) defined by
sending every filtered dga to its associated graded object. It is clear that
this functor commutes with the simple functor. The result follows from
Prop. 1.5.12 of loc. cit. Let » = 1. By Proposition 5.2.24 the décalage

Dec : FDGA (k) — FDGA (k) is compatible with the Thom-Whitney simple.
Again, the result follows from Prop. 1.5.12 of loc. cit. O

The previous results extend to bifiltered dga’s as follows.

Definition 5.2.26. Let r € {0,1}, and let (4, W, F') be a codiagram of bi-
filtered dga’s. The (r,0)-Thom- Whitney simple of (A, W, F) is the bifiltered
dga defined by

St (A, W.F) = (st (A), Wy, o).

Proposition 5.2.27. Letr € {0,1}. The category F2DGA (k) with the class
Ero of Ero-quasi-isomorphisms and the simple functor S%?/V together with
data (p, A), is a cohomological descent category.

PROOF. The proof is analogous to that of Proposition 5.2.25. O
We next define the Thom-Whitney simple for mixed Hodge diagrams.

Definition 5.2.28. Let A be a cubical codiagram of mixed Hodge diagrams.
The Thom-Whitney simple of A is the diagram of dga’s

s()
st (4) = <s1TW<Ak, W) 2L sk (A, W,F>) .

Proposition 5.2.29. The Thom-Whitney simple of a cubical codiagram of

mized Hodge diagrams, is a mized Hodge diagram.
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PROOF. It suffices to prove that the associated functor of strict cosim-
plicial objects is a mixed Hodge diagram. This follows from 7.11 of [Nav87].
d

Theorem 5.2.30. The category of mixed Hodge diagrams MHD with the
class Q of quasi-isomorphisms and the Thom-Whitney simple functor spw

1s a cohomological descent category.

PRrROOF. The proof is analogous to that of Theorem 5.2.20, using the cor-
responding cohomological descent structures of FDGA (k) and F2DGA(C).
Alternatively, one can use the forgetful functor MHD — MHC, together
with the quasi-isomorphism of simples sy — sp. O

5.3. APPLICATION TO COMPLEX ALGEBRAIC VARIETIES

Hodge-Deligne Theory. The first fundamental result by Deligne after
defining mixed Hodge structures was to construct a mixed Hodge structure
on cohomology of an arbitrary algebraic variety over C. We next recall
Deligne’s Theorem for open non-singular varieties. All proofs are to be
found in Section 3 of [Del71b]. Another basic reference is [PS08|.

Let U be a smooth complex algebraic variety. From Hironaka’s Theorem
on resolution of singularities one may find a compactification j : U — X
with X smooth and compact, and such that the complement D = X — U is
a normal crossings divisor. This means that the irreducible components of
D are smooth, and that every point of D has a neighbourhood which looks
like a collection of hyperplanes meeting at the origin.

Denote by €% (logD) the holomorphic logarithmic complex. This is the sub-
complex of €% of holomorphic differential forms w that have logarithmic

poles along D.

For any continuous map f : X — Y, denote Rf, = f.C¢,,,, where C2,, . is

the Godement resolution.
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Proposition 5.3.1. The natural morphisms
QX (logD) — 7. — R < Rj.Cy
are quasi-isomorphisms of sheaves, inducing a canonical isomorphism
HY(U;C) = H'(X, Q% (logD)).

Define two filtrations of 2% (logD) as follows:

e The weight filtration W of Q% (logD) is the non-negative increasing filtra-
tion defined by restricting the order of the poles:

WpQ% (logD) = Q' P A Q% (logD), 0 < p < n.

e The Hodge filtration F' of Q% (logD) is the decreasing filtration defined by
the béte filtration:

FPQ% (logD) : 0 — Q& (logD) % 02+ (logD) % - % Q% (logD) — - - - |

The weight filtration of the holomorphic logarithmic complex is related to
the canonical filtration 7 (see Example 2.1.34), and allows to define a filtra-
tion over (. We have:

Proposition 5.3.2 ([Del71b], see also [PS08|, Prop. 4.11). There is a

chain of filtered quasi-isomorphisms of sheaves
(Rj 82, 7) (2% (logD), W)
(Rj*@U, T)®C (Q% (logD), )
Denote by Hdg(X,U) the pair of filtered complexes of sheaves (Rj*QU, T)
and (% (logD), W, F'), together with the above diagram of filtered quasi-
isomorphisms. By the adjoint formula (see Proposition 5.2.1 of [Hub95])

the above constructions are functorial. As a consequence, Deligne’s result
can be restated as follows.

Theorem 5.3.3 ([Del71b]). Let U be a smooth complex algebraic variety.
Let j : U — X be a smooth compactification, where D = X — U is a normal

crossings divisor. The assignation

(X,U) — RO(X, Hdg(X, U))
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defines a functor
Hdg : V*(C) — MHC.
In particular, the cohomology of U has a functorial mized Hodge structure
{(H(U;Q), DecW), (H(U; C), DecW, F)},
obtained by décalage of the induced weight filtration.

In [Del74b] Deligne extended this result to possibly singular complex alge-
braic varieties, using simplicial hypercoverings of varieties. An alternative
approach based on cubical hyperresolutions is presented in [GINPP88|. See
also Section 5.3 of [PS08]. We provide a proof within the framework of co-

homological descent categories, via the extension criterion of [GIN02].

Theorem 5.3.4. There exists an essentially unique ®-rectified functor
Hdg' : Sch(C) — Ho (MHC)

extending the functor Hdg : V(% — MHC of Theorem 5.3.3 such that:

(1) Hdg' satisfies the descent property (D) of Theorem 5.2.7.
(2) The cohomology H(Hdg' (X)) is the mixed Hodge structure of the coho-
mology of X.

PrOOF. By Theorem 5.2.20 the category MHC is a cohomological de-
scent category. It suffices to prove that the functor
v2 ™ MHC 2 Ho (MHC)

satisfies the hypothesis of Theorem 5.2.11.

Condition F1 is trivial. To prove F2, it suffices to show that for every

elementary acyclic diagram

F.0n7) L~ (X.0)
' |
(Y,UNY) -~ (X,U)

of V2(C), the mixed Hodge complex Hdg(X,U) is quasi-isomorphic to the
simple of the mixed Hodge diagrams associated with the remaining vertices.
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This follows from the fact that H(Qx (logD)) = H(U). Hence (1) and (3)
are proven. Assertion (2) is a consequence of Theorem 3.2 of [GNO02]. O

Mixed Hodge Structures and Rational Homotopy. To study the mul-
tiplicative aspects of mixed Hodge theory, and using the Thom-Whitney
simple functor of dga’s, Navarro defined a functor

Rrw f« + A(X,Q) — A(Y,Q)

between the categories of sheaves of Q-algebras over X and Y respectively,
for every map f : X — Y of topological spaces. This is essentially equiva-
lent, when forgetting the multiplicative structure, to the common additive
derived functor Rf,. In analogy to Proposition 5.3.2, we have:

Proposition 5.3.5 ([Nav87], Prop. 8.4). There is a chain of filtered quasi-
isomorphisms of sheaves of filtered dga’s over X
(Rew je A7y, 7) (Ax (logD), W)
(RTWj*QU) T) ®C (AX(ZOQD), T) ’
Denote by Hdg(X,U) the pair (Rrwj.Q,;,7) and (A (logD), W, F), to-
gether with the above diagram of filtered quasi-isomorphisms. This allows

to define a functor with values in the category of mixed Hodge diagrams.

Applying the functor Ry I" we obtain:

Theorem 5.3.6 ([Nav87], Thm. 8.15). Let U be a smooth complez alge-
braic variety. Letj : U — X be a smooth compactification, where D = X —-U
18 a normal crossings divisor. The assignation

defines a functor Hdg : V*(C) — MHD.

Using the cohomological descents structure of MHD we provide a proof of
that Navarro’s functor extends to all complex algebraic varieties.

Theorem 5.3.7. There exists an essentially unique ®-rectified functor
Hdg' : Sch(C) — Ho (MHD)
extending the functor Hdg : V% — MHD of Theorem 5.3.6 such that:
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(1) Hdyg' satisfies the descent property (D) of Theorem 5.2.7.

(2) The rational part of Hdg'(X) is Ax(Q) = Agy(X*; Q).

(3) The cohomology H(Hdg' (X)) is the mized Hodge structure of the coho-
mology of X.

ProOOF. By Theorem 5.2.30 the category MHD is a cohomological de-
scent category. It suffices to prove that the functor

v2 2 MHs 2 Ho (MHD)

satisfies the hypothesis of Theorem 5.2.11. The proof follows analogously
to that of Theorem 5.3.4, using the quasi-isomorphism of simples sy —
Sp. O

Corollary 5.3.8. The rational homotopy functor  : Sch(C) — GT(Q)
defined by sending every simply connected complex algebraic variety X to
the complex of indecomposables of a Sullivan minimal model of its algebra

of rational forms, lifts to a functor
7 : Sch!(C) — GT(MHS).

In particular, the rational homotopy groups of every simply connected alge-

braic variety over C are endowed with functorial mized Hodge structures.

PrOOF. By Theorems 5.1.23 and 5.3.7 we have functors

Sch!(C) 2, Ho(MHD) %5 G*(MHS)

whose composite with the forgethful functor GT(MHS) — GT(Q) gives the
classical rational homotopy functor. (|

Theorem 5.3.9. The rational homotopy type of every morphism of simply
connected complex algebraic varieties is a formal consequence of the first
term of the spectral sequence associated with the weight filtration, that is:

(1) If X is a simply connected complex algebraic variety, there is a chain

of quasi-isomorphisms
(Ax(Q),d) «— (Mx,d) — (E1(Ax(Q), W), dv),

where (Mx,d) is a Sullivan minimal dga over Q and Ax(Q) is the de
Rham algebra of X over Q.
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(2) If f : X — Y is a morphism of simply connected complex algebraic
varieties, there exists a diagram

(Ax(Q), d) <" (Mx,d) == (Ex(Ax(Q), W) di)

if@ v l&(f@)
(Ay(Q),d) <— (My,d) —— (E1(Ay(Q), W), d1)

which commutes up to homotopy.

PROOF. The composition of the functor Hdg' : Sch(C) — Ho(MHD)
of Theorem 5.3.7 with the forgetful functor MHD — DGA(Q) gives the
rational Sullivan de Rham functor X — Ax(Q). By Proposition 5.1.28, if X
is 1-connected, then the homotopy type of Ax(Q) is a formal consequence
of B1(Ax(Q),W), and if f: X — Y is a morphism of 1-connected complex
algebraic varieties, then the homotopy type of A(Q) is a formal consequence
of E1(Af(Q), W). O

The previous result can be restated as a generalization of the formality
Theorem 3.2.3 of [GNPRO5].

Corollary 5.3.10. There is an isomorphism of functors
Up o Hdg = F o (Ug o Hdg) : Sch!(C) — Ho (FDGAL(Q)),

where Ug denotes the forgetful functor sending every mized Hodge diagram
A to its rational part (Ag, W).






Resum en Catala

El Teorema de Descomposicié de Hodge estableix que I'n-eéssim espai vec-
torial de cohomologia de Betti amb coeficients complexos de tota varietat
Kahler compacta admet una descomposicié en suma directa induida pel
tipus de les formes diferencials complexes. Aquest resultat és un exemple
primari d’estructura de Hodge pura de pes n, i imposa certes restriccions per
tal que una varietat complexa sigui Kéhleriana. Per exemple, els nombres
de Betti d’ordre senar han de ser parells, i els nombres de Betti d’ordre

parell, des del zero fins a dues vegades la dimensié han de ser no nuls.

Influenciat per la filosofia dels motius mixtos de Grothendieck, i motivat
per les Conjectures de Weil, Deligne busca una generalitzacié de la teoria
de Hodge per a varietats algebraiques complexes arbitraries. La seva idea
principal és preveure 'existencia d’una filtracié natural per al pes en la
cohomologia de Betti de les varietats algebraiques, de manera que els quo-
cients successius esdevinguin estructures de Hodge pures de pesos diferents.
Aquesta idea ddna lloc a la nocié d’estructura de Hodge mizta, introduida
a [Del71a]. Basant-se en la teoria de resoluci6 de singularitats d’Hironaka
i en el complex de de Rham logaritmic, Deligne [Del71b] demostra que
I'n-essim grup de cohomologia de tota varietat algebraica llisa definida so-
bre els complexos, esta dotada d’una estructura de Hodge mixta functorial,
que en el cas Kahler compacte, coincideix amb 'estructura de Hodge pura
original. Aquest resultat té conseqiieéncies topologiques importants, com per
exemple el teorema de la part fixa (veure Teorema 4.1.1 de loc. cit). Per tal
de tractar el cas general, a [Del74b], Deligne introdueix els complexos de
Hodge mixtos i estén els seus propis resultats al cas singular, mitjancant res-
olucions simplicials de varietats. Com una via alternativa a les resolucions

simplicials, Guillén-Navarro introdueixen les hiperresolucions cibiques. La
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seva aplicacié a la teoria de Hodge-Deligne apareix a [GNPP8&8|.

Consideracions relacionades amb la Conjectura de Weil sobre 'acci6 de 'au-
tomorfisme de Frobenius per a la cohomologia [-adica en caracteristica pos-
itiva [Del74a] porten a pensar que, com a conseqiiéncia de la teoria de
Hodge, els productes triples de Massey de les varietats Kéahler compactes
son nuls. En resposta a aquest problema, Deligne-Griffiths-Morgan-Sullivan
[DGMST75] proven el Teorema de Formalitat de les varietats Kéhler com-
pactes, afirmant que la homotopia real de tota varietat Kahler compacta
esta determinada per ’anell de cohomologia de la varietat. En particular,
els productes de Massey d’ordre superior sén trivials.

La teoria d’homotopia racional s’origina amb els treballs de Quillen [Qui69]
i Sullivan [Sul77]. En primer lloc, Quillen estableix una equivaléncia entre
la categoria homotopica dels espais racionals simplement connexos i la cat-
egoria homotopica de les algebres de Lie diferencials graduades connexes.
Aquesta equivaléncia és la composicié d’'una llarga cadena d’equivalencies
intermedies, que compliquen forca la construccié. Per tal d’entendre mil-
lor aquest mecanisme, Sullivan introdueix les formes polinomiques de de
Rham, demostrant que el tipus d’homotopia de tot espai racional queda
determinat per al model minimal de la seva algebra diferencial graduada de
formes polinomiques definida sobre els racionals. D’enca la seva aparicid,
els models minimals han trobat aplicacions molt significatives tant d’origen
topologic com geometric. Una de les aplicacions inicials més sorprenents és
el Teorema de Formalitat de les varietats Kdahler compactes.

Per a tractar els aspectes homotopics i les propietats multiplicatives de la
teoria de Hodge mixta, Morgan [Mor78] introdueix els diagrames de Hodge
mixtos d’algebres diferencials graduades, i prova l'existencia d’estructures
de Hodge mixtes functorials en el tipus d’homotopia de les varietats llis-
es complexes. Com a aplicacid, obté un resultat de formalitat respecte el
primer temre de la successié espectral associada a la filtracio pel pes. En la
mateixa linia, Deligne [Del80] defineix el Q;-tipus d’homotopia d’una vari-
etat algebraica. Usant els pesos de ’accié de Frobenius en la cohomologia
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[-adica i la seva solucié a la hipotesi de Riemann, obté un resultat de formali-
tat del Q;-tipus d’homotopia per a varietats llises projectives definides sobre
cossos finits. Continuant ’estudi de la teoria de Hodge mixta en homotopia
racional, Navarro [Nav87] introdueix, en el context de la cohomologia de
feixos, el simple de Thom-Whitney, per tal d’establir la functorialitat dels
diagrames de Hodge mixtos d’algebres associats a les algebraiques varietats
llises, donant una versié multiplicativa de la teoria de Deligne. Gracies a
aquesta functorialitat estén els resultats de Morgan a les varietats singu-
lars, usant hiperresolucions singulars. De forma independent, Hain [Hai87]
déna una extensié alternativa basada en la construccié barra i les integrals
iterades de Chen. Ambdues extensions al cas singular es basen en les con-

struccions inicials de Morgan.

Hom pot interpretar la teoria dels diagrames de Hodge mixtos de Morgan,
i els seus resultats sobre l'existencia d’estructures de Hodge mixtes en el
tipus d’homotopia, com una versié multiplicativa de la teoria d’homotopia
de Beilinson per als complexos de Hodge mixtos. Impulsat per la coho-
mologia motivica de Deligne, Beilinson [Bei86] introdueix els complexos de
Hodge absoluts, relacionats amb els complexos de Hodge mixtos originals
de Deligne mitjangant un desplacament de la filtracié per al pes, i n’estu-
dia la teoria d’homotopia. Demostra una formalitat per a objectes, provant
que tot complex de Hodge absolut es pot representar mitjancant el complex
definit per la seva cohomologia, i estableix una equivalencia amb la categoria
derivada de les estructures de Hodge mixtes. Aquesta equivaléncia permet
interpretar la cohomologia de Deligne en termes d’extensions d’estructures
de Hodge mixtes en la categoria derivada. Tot i que suficient per als seus
proposits inicials, en aquest sentit la teoria d’homotopia de Morgan resulta
incompleta, doncs dona una existéncia de certs models minimals, pero no es
demostra que aquests siguin cofibrants o minimals en cap marc categoric ab-
stracte. D’altra banda, Morgan permet que els morfismes entre diagrames
siguin homotopicament commutatius, i no imposa cap llei de composicié.
Aquest fet fa que la seva teoria s’escapi de I’ambit de la teoria de categories.
Aquest és un aspecte que pretenem solucionar en aquesta tesi.
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L’estudi dels functors derivats en la teoria de dualitat porta a Grothendieck
a estudiar la localitzacié de la categoria de complexos respecte la classe
dels quasi-isomorfismes. Les construccions essencials sén dutes a terme per
Verdier [Ver96|, donant lloc a la teoria de les categories derivades d’u-
na categoria abeliana. Simultaniament, i imitant la idea dels motius de
Grothendieck, I'estudi dels espectres en topologia algebraica porta a Quillen
[Qui67] a la introduccié de les categories de models. En [BG76], Bousfield-
Gugenheim reformulen la teoria d’homotopia racional de Sullivan en el marc
de les categories de models de Quillen. En aquesta linia, seria desitjable
obtenir una formulacié equivalent per als diagrames de Hodge. Malaurada-
ment, cap dels dos contextos proporcionats per les categories derivades de
Verdier i les categories de models de Quillen, considerats avui dia com els
pilars de ’algebra homologica i homotopica respectivament, satisfan les ne-
cessitats per a expressar les propietats de les categories de diagrames amb
filtracions.

Inspirats en els treballs originals de Cartan-Eilenberg [CE56| sobre derivacié
de functors additius entre categories de moduls, Guillén-Navarro-Pascual-
Roig [GNPR10] introdueixen les categories de Cartan-Eilenberg, com un
enfocament a la teoria d’homotopia més debil que el proporcionat per les
categories de models de Quillen, pero suficient per a estudiar les categories
homotopiques, i per a estendre la teoria classica dels functors derivats, al
cas no additiu. En aquest context, introdueixen una nocié de model cofi-
brant minimal, com una caracteritzacié abstracta dels models minimals de
Sullivan. D’altra banda, seguint Guillén-Navarro [GIN02], observem que
és recomanable demanar que les categories receptores de functors definits
sobre les varietats algebraiques estiguin dotades, a més d’una estructura
de models que permeti derivar functors, d’una estructura de descens coho-
mologic, que permet estendre certs functors definits sobre les varietats llises,
a varietats singulars.

En aquest treball, analitzem les categories de complexos de Hodge mixtos i
de diagrames de Hodge d’algebres diferencials graduades en aquestes dues
direccions: provem l’existéencia d’una estructura de Cartan-Eilenberg, via
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la construccié de models cofibrants minimals, i d’una estructura de descens
cohomologic. Aquest estudi permet interpretar els resultats de Deligne,

Beilinson, Morgan i Navarro en un marc homotopic comi.

En el context additiu dels complexos de Hodge mixtos recuperem els resul-
tats de Beilinson. En el nostre estudi anem una mica més enlla, i provem
que tant la categoria homotopica dels complexos de Hodge mixtes, com
la categoria derivada d’estructures de Hodge mixtes sén equivalents a una
tercera categoria en que els objectes sén estructures de Hodge mixtes grad-
uades 1 els morfismes sén certes classes d’homotopia, més facils de manip-
ular. FEn particular, obtenim una descripcié dels morfismes de complexos
de Hodge mixtos en la categoria homotopica en termes de morfismes i ex-
tensions d’estructures de Hodge mixtes, recuperant resultats de Carlson
[Car80] en aquest ambit. En quant a l’analeg multiplicatiu, provem que
tot diagrama de Hodge mixt d’algebres es pot representar mitjancant una
algebra dg de Hodge mixta que és minimal de Sullivan, establint una versié
multiplicativa del Teorema de Beilinson. Aquest resultat ofereix una via
alternativa a les construccions de Morgan. La principal diferéncia entre les
dues vies és que Morgan utilitza construccions de models minimals ad hoc
a la Sullivan, especialment definits en el marc de la teoria de Hodge, mentre
que nosaltres seguim les linies generals de les categories de models de Quillen
o de Cartan-Eilenberg, en tant que els resultats principals es donen en ter-
mes d’equivalencies de categories i d’existéncia de certs functors derivats.
En particular, obtenim, no tan sols una descripcié dels objectes en termes
d’algebres de Sullivan minimals, sindé que també tenim una descripcié dels
morfismes en la categoria homotopica, en termes de certes classes d’homo-
topia, analogament al cas additiu. A més, el nostre enfocament generalitza
a contextos més amplis, com per exemple ’estudi dels espais analitics com-
pactificables, en que les filtracions de Hodge i per al pes es poden definir,

pero aquestes no satisfan les propietats de la teoria de Hodge mixta.

Combinant aquests resultats amb la construccié functorial de Navarro de
diagrames de Hodge mixtos, i usant ’estructura de descens cohomologic
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definida a partir del simple de Thom-Whitney, obtenim una prova més pre-
cisa i alternativa al fet que el tipus d’homotopia, i els grups d’homotopia de
tota varietat algebraica complexa simplement connexa estan dotats d’estruc-
tures de Hodge mixtes functorials. Com a aplicacio, i estenent el Teorema
de Formalitat de Deligne-Griffiths-Morgan-Sullivan per a varietats Kahler
compactes, i els resultats de Morgan per a varietats llises, provem que to-
ta varietat algebraica complexa simplement connexa, i tot morfisme entre
aquestes varietats, és formal filtrada: el seu tipus d’homotopia racional esta
determinat pel primer terme de la successié espectral associada a la filtracié
per al pes.

% 3k 3k

Les categories de complexos de Hodge mixtos i de diagrames de Hodge
mixtos d’algebres dg sén exemples de subcategories d’una categoria de dia-
grames amb vertexs variables, definida mitjangant la categoria de seccions
de la projecci6 de la construccié de Grothendieck. Per tal d’estudiar la teo-
ria d’homotopia d’aquestes categories de diagrames, i en particular, per a
construir models cofibrants minimals, cal en primer lloc provar ’existéncia
de models per a les categories dels veértexs, i en segon lloc, rectificar dia-
grames homotopicament commutatius, tenint en compte que cada morfisme
prové d’una categoria deferent. Per tant, un pas preliminar essencial és el
d’entendre la teoria d’homotopia de les categories dels vertexs, que en el
nostre cas sén categories de complexos d’espais vectorials i algebres dg amb
(bi)filtracions, sobre Q i C.

La teoria d’homotopia dels complexos filtrats va ser iniciada per Illusie
[I1171], el qual va definir la categoria derivada d’una categoria abeliana
filtrada seguint un esquema ad hoc, estudiant les localitzacions respecte la
classe d’equivaleéncies debils definida per aquells morfismes que indueixen
un quasi-isomorfisme a nivell graduat. Una via alternativa usant categories
exactes es detalla en el treball de Laumon [Lau83]. En certes situacions,
les filtracions sota estudi no estan ben definides, i esdevenen un invariant
adequat en termes superiors de la successié espectral associada. Aquest és
el cas de la teoria de Hodge mixta de Deligne, en que la filtracié per al pes
d’una varietat depen de l’eleccié d’una hiperresolucid, i esta ben definida
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en el segon terme. Aquesta circumstancia esta en certa manera amagada
per la degeneracié de les successions espectrals, pero ja posa de manifest
I'interés d’estudiar estructures superiors. En el context de la homotopia
racional, Halperin-Tanré [HT90] estudien la classe d’equivaléncies débils
definida per aquells morfismes que indueixen un isomorfisme en un cert es-
tadi de la successié espectral, provant I'existéencia de models minimals de les
algebres dg filtrades respecte aquesta classe d’equivalencies. Aixi mateix,
Paranjape [Par96| estudia l’existéncia de resolucions injectives superiors

per als complexos filtrats de categories abelianes.

En aquest treball mostrem que tots aquests enfocaments homotopics en-
caixen en el marc de les categories de Cartan-Eilenberg, i donem resultats
analegs per a categories bifiltrades. En particular, provem l'existencia de
models minimals cofibrants en cadascun dels contextos mencionats anteri-
orment. Per tal de transferir 'estructura homotopica a nivell de diagrames,
desenvolupem una axiomatica abstracta que permet rectificar diagrames ho-
motopicament commutatius. Aixo condueix a 'existéncia d’una estructura
de Cartan-Eilenberg en la categoria de diagrames, amb equivaléncies débils

i models minimals cofibrants definits nivell a nivell.

Hem estructurat el nostre treball en cinc capitols relacionats entre si. A
continuacié detallem les contribucions de cada capitol.

Capitol 1. Algebra Homotopica i Categories de Diagrames. De-
senvolupem una axiomatica abstracta que permet definir models minimals

cofibrants nivell a nivell per a cert tipus de categories de diagrames.

Denotem per I'C la categoria de diagrames associada al functor C : I — Cat
(Definicié 1.3.1). Una qiiestié natural en algebra homotopica és si don-
ades estructures homotopiques compatibles en les categories C; dels vertexs,
existeix una estructura homotopica induida en la categoria I'C, amb equiv-
alencies debils definides nivell a nivell. Per a categories de diagrames C!
associades al functor constant hi ha respostes parcials en termes de les cat-
egories de models de Quillen: si C és cofibrantment generada, o bé I té una
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estructura de Reedy, aleshores C! hereta una estructura de models definida,
a nivells (veure per exemple [Hov99], Teorema 5.2.5). Es també ben sabut,
que si C és una categoria d’objectes (co)fibrants de Brown [Bro73] aleshores
C! hereta una estructura de Brown, definida a nivells. En aquesta tesi es-
tudiem la transferencia de models cofibrants minimals en el context de les
categories de Cartan-Eilenberg, i proporcionem una resposta positiva per
a certs tipus de categories de diagrames, en que les categories dels vertexs

estan dotades d’un objecte cami functorial.

Una P-categoria és una categoria C amb un cami functorial P : C — C i dues
classes de morfismes F i W de fibracions i equivaléncies débils que satisfan
certs axiomes similars als de les categories de Brown, juntament amb una
propietat d’aixecament d’homotopies respecte les fibracions trivials. Exem-
ples de P-categories son la categoria d’algebres dg, o la categoria dels espais

topologics.

Definim una nocié d’objecte cofibrant en termes d’una propietat d’aixeca-
ment respecte fibracions trivials: diem que un objecte C' d’una P-categoria
C és F-cofibrant si tot morfisme w : A — B de F NV indueix un morfisme
exhaustiu wy : C(C, A) — C(C, B). El cami functorial defineix una relacié
d’homotopia entre els morfismes de C, que esdevé d’equivalencia per a mor-
fismes amb origen F-cofibrant. Provem que si C és F-cofibrant, aleshores
tota equivalencia debil w : A — B indueix una bijeccié wy : [C, A] — [C, B]
entre classes d’homotopia de morfismes. En particular, els objectes JF-
cofibrants sén cofibrants en el sentit de les categories de Cartan-Eielnberg,
respecte les classes d’equivaléncies homotopiques S i equivaléncies debils W.

Diem que una P-categoria té€ models cofibrants si per tot objecte A de C hi
ha un objecte F-cofibrant C', juntament amb una equivaléncia debil C — A.
Denotem per Cc]';f la subcategoria plena d’objectes F-cofibrants de C, i per
7rC£f la categoria quocient definida modul homotopia. Demostrem:
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Teorema 1.2.30. Sigui (C, P,WW, F) una P-categoria amb models cofibrants.
La terna (C,S,W) és una categoria de Cartan-FEilenberg amb models cofi-
brants en Cgf. La inclusid indueir una equivaléncia de categories

mCly — CIW .

Es forga immediat que si les categories dels vertexs d’una categoria de dia-
grames ['C estan dotades d’estructures de P-categoria compatibles, aleshores
la categoria de diagrames hereta una estructura de P-categoria. Per con-
tra, la transferéncia de models cofibrants i minimals de diagrames no és
immediata, i requereix una teoria de rectificacié de morfismes de diagrames
homotopicament commutatius. Ens reduim al cas en que els diagrames es-

tan indexats per una categoria finita dirigida de grau binari (veure 1.3.4).

Anomenem ho-morfismes aquells morfismes entre diagrames que commuten
modul homotopia. En general, els ho-morfismes no sén componibles. No
obstant aixo, el cami functorial de I'C defineix una nocié d’homotopia en-
tre ho-morfismes. Denotem per I'C.,; la subcategoria plena de I'C definida
per aquells objectes que sén JFj-cofibrants nivell a nivell. Els seus objectes,
juntament amb les classes d’homotopia d’ho-morfismes, defineixen una cat-
egoria 7hTC,, -

Definim una nova classe d’equivalencies de I'C de la manera segiient. Un
morfisme de I'C s’anomena ho-equivaléncia si té una inversa homotopica que
és un ho-morfisme. La classe H definida per la clausura per composicio6 de les
ho-equivalencies satisfa S C H C W, on S denota la classe d’equivalencies
homotopiques definides pel cami functorial de I'C, i W denota la classe
d’equivalencies debils definides nivell a nivell. Demostrem:

Teorema 1.4.11. Sigui I'C una categoria de diagrames indexada per una
categoria dirigida I com a 1.3.4. Assumim que per tot i € I, les categories
Ci son P-categories amb models Fi-cofibrants, i els functors u, : C; — C;j
son compatibles amb les estructures de P-categoria, preservant objectes Fi-
cofibrants. Aleshores (I'C,H, W) és una categoria de Cartan-Filenberg amb
models en I'Ceor. La inclusié indueiz una equivaléncia de categories

T"TCepp — TCIW ).
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En particular, els vertexs d’un model cofibrant d’'un diagrama donat sén
models cofibrants dels seus vertexs. Provem un resultat analeg amb models
minimals (Teorema 1.4.12), i una versié relativa en que es tracta una sub-
categoria tancada per equivaleéncies debils (Lema 1.4.13), 1til en I'estudi de
la teoria de Hodge.

Capitol 2. Categories Derivades Filtrades Estudiem els complexos
filtrats en el marc de les categories de Cartan-Eilenberg. Tot i que molts
dels resultats d’aquest capitol sén possiblement coneguts, sembla que hi ha
una manca generalitzada de bibliografia sobre el tema. Aixi, el proposit
d’aquest capitol és el de proporcionar una exposicié auto-continguda sobre

els principals resultats dels complexos (bi)filtrats.

La categoria F.A d’objectes filtrats (amb filtracions finites) d’una categoria
abeliana A és additiva, perd en general no és abeliana. Considerem la
categoria C*(F.A) de complexos acotats inferiorment sobre FA. Per ar > 0,
denotem per &, la classe d’E,-quasi-isomorfismes: sén aquells morfismes
que indueixen un quasi-isomorfisme al terme FE, de la successié espectral
associada. Ens interessa estudiar la categoria r-derivada definida per

D (FA) := CT(FA)E7Y.

El cas r = 0 correspon a la categoria derivada filtrada original, estudiada
per Illusie [I1171]. Tenim una cadena de functors

Dj(FA) — D (FA) — --- — D/ (FA) — --- — D1 (FA),

on la categoria de més a la dreta denota la localitzacié respecte quasi-
isomorfismes. Cadascuna d’aquestes categories manté menys informacié

que l'anterior sobre el tipus d’homotopia filtrat original.

Per a tractar amb la filtracié per al pes, Deligne [Del71b] introdueix el
décalage d’'un complex filtrat, que trasllada en un terme la successié espec-
tral associada. El décalage defineix un functor

Dec: CT(FA) — CT(FA)
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que és la identitat en morfismes, i envia morfismes de &, a morfismes de
Er. El décalage no té un functor invers, pero admet un adjunt per I'esquerra,
definit per una translacié en la filtracié. Usant aquest fet, juntament amb

la relaci6 entre les successions espectrals associades obtenim:

Teorema 2.2.15. El functor de décalage de Deligne indueir una equiv-
aléncia de categories

Dec : D (FA) — D/ (FA),

per a tot v > 0.

La nocié d’homotopia entre morfismes de complexos d’una categoria ad-
ditiva es defineix mitjangant un functor de translacid, i dota la categoria
homotopica d’una estructura triangulada. En el cas filtrat, observem que
diferents eleccions en la filtracié del functor de translacid, donen lloc a les
diferents nocions d’r-homotopia, adequades per a ’estudi de la categoria
r-derivada. La categoria r-homotopica és triangulada, i per a tot » > 0
obtenim una classe S, definida per les r-equivalencies homotopiques que
satisfa S, C &,.

Com en el cas classic, estudiem la categoria r-derivada de F.A assumint
'existéncia de suficients injectius en A. Denotem per C;(FInjA) la sub-
categoria plena d’aquells complexos filtrats sobre objectes injectius de A
tals que la seva diferencial satisfa dF? C FPT", per a tot p € Z. Els seus
objectes s’anomenen complexos r-injectius, i satisfan la propietat classica
dels objectes fibrants: si I és un complex r-injectiu aleshores tot E,.-quasi-
isomorfisme w : K — L indueix una bijeccié6 w* : [L,I]|, — [K,I], entre
classes d’r-homotopia.

Provem que si A és una categoria abeliana amb suficients injectius, aleshores
tot complex filtrat K té un model r-injectiu: és a dir, hi ha un complex
r-injectiu I, juntament amb un E,-quasi-isomorfisme K—I (un resultat

similar ha estat provat per Paranjape [Par96]). Com a conseqiiéncia, tenim:
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Teorema 2.2.26. Sigui A una categoria abeliana amb suficients injectius,
i sigui v > 0. La terna (CT(FA),S,, &) és una categoria de Cartan-
FEilenberg. La inclusié indueix una equivaléncia de categories

K (FInjA) = D} (FA)

entre la categoria de complezxos r-injectius modul r-homotopia i la categoria

r-derivada d’objectes filtrats.

Per a r = 0 recuperem un resultat d’Illusie (veure [III71], Cor. V.1.4.7).

Considerem el cas particular en que A = Vecty és la categoria d’espais vec-
torials sobre un cos k. En aquest cas, tot object és injectiu, i el calcul classic
de categories derivades no proporciona informacié addicional. No obstant,
podem considerar models minimals: tot complex K és quasi-isomorf al com-

plex definit per la seva cohomologia K— H (K). Obtenim una equivaléncia
Gt (k) = D" (k)

entre la categoria d’espais vectorials graduats sobre k i la categoria deriva-

da. En el cas filtrat, obtenim resultats analegs com segueix.

Diem que un complex filtrat de CT(Fk) és E,.-minimal si pertany a la
categoria C;f(Fk). Es a dir, la seva diferencial satisfa dFP ¢ FPtrtl)
per a tot p € Z. Provem que tot E,.-quasi-isomorfisme entre complexos
FE,-minimals és un isomorfisme, i que tot complex filtrat té un model E,-

minimal. Obtenim:

Teorema 2.3.7. Sigui r > 0. La terna (C*(Fk),S,, &) és una categoria
de Sullivan, 1 C;LH(Fk) és la subcategoria plena d’objectes minimals.

Observem que per a r = 0, els models minimals sén aquells complexos tals
que la seva diferencial és nul-la a nivell d’objectes graduats. Aquest fet
segueix el patro del cas sense filtrar, en que els models minimals sén aquells
complexos amb diferencial trivial. El resultat anterior es pot adaptar a com-
plexos amb multiples filtracions. Per simplicitat, i donat el nostre interes
per a la teoria de Hodge, en aquesta tesi només detallem el cas bifiltrat,
respecte la classe &, amb r € {0,1} (veure Teorema 2.4.12).
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Capitol 3. Complexos de Hodge Mixtos. Estudiem la teoria d’ho-
motopia dels complexos de Hodge mixtos en el marc de les categories de
Cartan-Eilenberg, via la construccié de models cofibrants minimals.

Un complex de Hodge mizt sobre Q consisteix en un complex filtrat (Kgq, W)
sobre Q, un complex bifiltrat (K¢, W, F') sobre C, juntament amb una cade-
na finita de complexos filtrats ¢ : (Kg, W) ® C <— (K¢, W). Els segiients

axiomes es compleixen:

(MHCy) El morfisme ¢ és una cadena d’E}Y-quasi-isomorfismes.

(MHC)) Per a tot p € Z, el complex filtrat (Gr)Y K¢, F) és d-estricte.

(MHC3) La filtracié F' induida en H"(Gr}Y K¢ ), defineix una estructura de
Hodge pura de pes p+n en H”(GTZVK@), per tot n, i tot p € Z.

La filtracié W és la filtracid per al pes, metre que F s’anomena filtracio de
Hodge. 1’n-éssim grup de cohomologia de tot complex de Hodge mixt here-
ta una estructura de Hodge mixta, mitjancant una translacié de la filtracio

per al pes.

Per tal d’estudiar la teoria d’homotopia dels complexos de Hodge mixtos
resulta convenient treballar amb la categoria AHC de complexos de Hodge
absoluts, tal i com els defineix Beilinson. L’avantatge principal és que en
aquest cas, les successions espectrals associades a les filtracions W i F' de-
generen al primer terme. A més, la cohomologia és una estructura de Hodge

mixta graduada. Tenim functors

w
MHC 2% AHC -5 GT(MHS),

on Dec"' denota el functor induit per décalage de la filtracié per al pes.

Donat que la categoria d’estructures de Hodge mixtes és abeliana, tota es-
tructura de Hodge mixta graduada, i més generalment, tot complex d’estruc-
tures de Hodge mixtos és un complex de Hodge absolut. Hi ha una cadena

de subcategories plenes

G*(MHS) — CT(MHS) — AHC.
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Tot complex de Hodge absolut esta relacionat amb la seva cohomologia mit-
jancant una cadena de quasi-isomorfismes.

Denotem per 7"GT(MHS) la categoria que té per objectes les estructures
de Hodge mixtes graduades, i per morfismes les classes d’homotopia d’ho-
morfismes. Denotem per H la classe dels morfismes que sén equivaléncies

homotopiques com a ho-morfismes. Provem:

Teorema 3.3.12. La terna (AHC,H, Q) és una categoria de Sullivan, i
G1(MHS) és una subcategoria plena de models minimals. La inclusid in-

dueix una equivaléncia de categories
"G (MHS) = Ho (AHC) := AHC[Q!].

Observem que tot i que els objectes de la categoria sén formals, la subcat-
egoria plena de models minimals té homotopies no trivials. Aixo reflecteix

el fet que les estructures de Hodge mixtes tenen extensions no trivials.

El resultat anterior permet dotar la categoria MHC d’una estructura de
categoria de Sullivan, via el functor de décalage de Deligne (Teorema 3.3.13).
Provem:

Teorema 3.3.14. El functor décalage de Deligne indueir una equivaléncia
de categories

Dec" : Ho(MHC) = Ho(AHC).

Usant ’equivaléncia de categories del Teorema 3.3.12 recuperem el resultat

de Beilinson, que déna una equivalencia
D" (MHS) = Ho (AHC)

entre la categoria derivada de les estructures de Hodge mixtes i la categoria
homotopica dels complexos de Hodge absoluts. Com a aplicacio els resultats
anteriors, estudiem els morfismes de la categoria homotopica, en termes de

morfismes i extensions d’estructures de Hodge mixtes.

Teorema 3.3.17. siguin K i L complexos de Hodge absoluts. Aleshores
Ho(AHC)(K, L) = @P (Homwus(H"K, H"L) ® Extyys(H"K, H"'L)).

n
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En particular, recuperem resultats de Carlson [Car80] i Beilinson [Bei86]

sobre les extensions de les estructures de Hodge mixtes.

Capitol 4. Filtracions en Homotopia Racional. La categoria d’algebres
dg filtrades sobre un cos k de caracteristica 0 no admet una estructura de
models de Quillen. No obstant, ’existéencia de models minimals permet
definir una teoria d’homotopia en un marc conceptual sense axiomatitzar,
tal i com es fa en [HT90]. Aqui desenvolupem una construccié alternativa
de models minimals filtrats, que és una adaptacié del cas classic de la con-
strucci6é de models minimals de Sullivan presentada a [GM&81]. El principal
avantatge és que aquesta construccid és facilment generalitzable a algebres
dg amb multiples filtracions. Després, estudiem la teoria d’homotopia de

les algebres dg filtrades en el marc de les categories de Cartan-Eielnberg.

Com en el cas dels complexos, denotem per &, la classe definida per als

FE,.-quasi-isomorfismes d’algebres dg filtrades, i denotem
Ho, (FDGA(k)) := FDGA(k)[£,7!]

la categoria localitzada corresponent. La localitzacié respecte & és la cat-
egoria ordinaria filtrada. Hi ha una cadena de functors

Hop (FDGA (k)) — Ho, (FDGA (k) — - - - — Ho (FDGA (k))

on la categoria de més a la dreta és la localitzacié respecte quasi-isomorfismes.
L’invariant principal en Ho és la cohomologia H(A). En Ho, tenim families
d’invariants Fg(A), amd s > r. L’invariant principal és E,41(A). Analogament
a la teoria dels complexos filtrats tenim:

Teorema 4.3.7. El functor décalage de Deligne indueir una equivaléncia

de categories
Dec : Ho,41 (FDGA(k)) — Ho, (FDGA(k)) .
per a tot r > 0.

Introduim una nocié d’r-homotopia mitjancant un objecte cami amb pe-
sos. Denotem per S, la classe d’r-equivalencies d’homotopiques, que satisfa
S, C &.. Lobjecte cami, juntament amb les equivaléncies debils &, defineix
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una estructura de P-categoria.

Definim una nocié generalitzada d’algebra de Sullivan com se segueix. Una
KS-extensio filtrada de grau n i pes p d’'una algebra dg augmentada filtrada
(A,d, F) és una algebra dg filtrada A®¢ A(V'), on V' és un espai vectorial de
grau n i pes pur p, i £ : V. — FF A és una aplicacié lineal de grau 1 tal que
d¢ = 0. La filtracié en A ®¢ A(V') es defineix per extensié multiplicativa.

Diem que 'extensio és E,.-minimal si
f(V) C Fp+r(A+ . A+) + Fp+r+1A’
on AT denota el nucli de ’augmentacié. Definim una algebra dg E,-minimal

com el colimit d’una successié d’extensions E,-minimals, comencant per al

cos base. En particular, tota algebra E,.-minimal és lliure i satisfa
d(FPA) C FPTT(AT . AT) 4 FPirtlig,

Observem que per la filtracié trivial, la nocié d’Ey-minimal coincideix amb

la nocié d’algebra minimal de Sullivan.

Tota algebra E,-minimal és E,.-cofibrant: I'aplicacié w, : [4, M|, — [B, M],
induida per a un E.r-quasi-isomorfisme w : A — B és bijectiva. A més, tot

FE,-quasi-isomorfisme entre algebres F,.-minimals és un isomorfisme.

Un model E,.-minimal d’'una algebra dg filtrada A és una algebra dg F,-
minimal, juntament amb un F,-quasi-isomorfisme M — A. Provem l’ex-
istencia de models per a algebres dg filtrades 1-connexes.

Teorema 4.3.27 (cf. [HT90]). Sigui r > 0. Tota algebra dg filtrada 1-

connexa té un model E,.-minimal.

Provem un resultat analeg per a algebres bifiltrades (Teorema 4.4.9). La
teoria d’homotopia de les algebres dg filtrades es resumeix en el segiient

teorema.

Teorema 4.3.28. Siguir > 0. La terna (FDGAY(k), S, &) és una catego-

ria de Sullivan. La inclusio indueiz una equivaléncia de categories

7 (Er-min'(k)) — Ho, (FDGA'!(k)).
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L’estructura de categoria de Sullivan permet definir la E,.-homotopia de les
algebres filtrades mitjangant el functor derivat dels indescomponibles.

Teorema 4.3.47. Sigui v > 0. El functor Q : FDGA!(k), — C*(Fk)
admet un functor derivat per l’esquerra

L,Q : Ho, (FDGA'(k),) — D;" (Fk).
La composicié de functors
Ho, (FDGA'(k)) +— Ho, (FDGA'(k).) L9 prrk) 2 C/,,(Fk)
defineix un functor

g, : Ho, (FDGA'(k)) — C/, | (Fk)

que associa a cada objecte A, el complex E.-minimal g, (A) = Q(Ma), on
My — A és un model E,.-minimal de A.

El model E,-minimal es relaciona amb el model bigraduat del terme FE,. de la
successié espectral associada. Aixo déna una relacié entre la E,.-homotopia
d’una algebra dg filtrada i la seva homotopia classica. Aix{ mateix, tenim
una nocié de formalitat filtrada, que generalitza la nocié classica. Sigui
r > 0. Una algebra dg filtrada (A,d, F') és E,-formal si hi ha una cadena
d’ E,-quasi-isomorfismes

(A,d,F) <~ (Ery1(A),dry1, F).

En particular, la Ep-formalitat de ’algebra de Dolbeault d’una varietat
llisa complexa coincideix amb la formalitat de Dolbeault introduida per
Neisendorfer-Taylor en [NT78].

Capitol 5. Teoria de Hodge Mixta en Homotopia Racional. En
aquest darrer capitol usem els resultats dels capitols anteriors per a estudi-
ar la teoria d’homotopia dels diagrames de Hodge mixtos d’algebres dg, i
la seva estructura de descens cohomologic. Després, donem aplicacions a la
geometria algebraica.

La categoria MHD dels diagrames de Hodge mixtos d’algebres dg es de-
fineix analogament a la categoria MHC, substituint els complexos dels
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vertexs per a algebres dg. Com en els cas dels complexos de Hodge mixtos,
per a estudiar-ne teoria d’homotopia és convenient treballar amb la versio
traslladada de diagrames de Hodge absoluts. El functor de décalage de
Deligne respecte la filtracié per al pes defineix un functor

Dec” : MHD —s AHD.

L’analeg multiplicatiu d’'un complex d’estructures de Hodge mixtes és el
d’algebra de Hodge mizta: consisteix en una algebra dg (A, d), tal que ca-
da A" esta dotat d’una estructura de Hodge mixta, i les diferencials sén
morfismes compatibles. Denotem per MHDGA la categoria d’algebres de
Hodge mixtes sobre Q. La cohomologia de tot diagrama de Hodge absolut
és una algebra de Hodge mixta amb diferencial trivial. Tenim un functor

AHD -2 MHDGA.

Reciprocament, donat que la categoria d’estructures de Hodge mixtes és
abeliana, tota algebra de Hodge mixta és un diagrama de Hodge absolut.
Disposem d’un functor d’inclusié

1 : MHDGA — AHD.

Provem que tot diagrama de Hodge d’algebres 1-connex és quasi-isomorf a
una algebra de Hodge mixta, que és minimal de Sullivan. Més precisament,
definim una dalgebra de Hodge mizta minimal de Sullivan com una algebra
M = (AV,d) sobre Q tal que cada V"™ esta dotat d’una estructura de Hodge
mixta, i les diferencials sén compatibles amb les filtracions. Demostrem:

Teorema 5.1.17. Per a tot diagrama de Hodge absolut 1-connex A existeiz
una dalgebra de Hodge mixta minimal de Sullivan M, juntament amb un

ho-morfisme M ~~ A que és un quasi-isomorfisme.

Combinant aquest resultat amb la teoria d’homotopia de diagrames desen-
volupada al capitol 1 obtenim un resultat analeg al Teorema 3.3.12, que es

pot entendre com una versié multiplicativa del Teorema de Beilinson.

Teorema 5.1.19. La terna (AHD',H, Q) és una categoria de Sullivan.
La categoria de les algebres de Hodge mixtes minimals de Sullivan és una
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subcategoria plena de models minimals. La inclusio indueix una equivaléncia
de categories

m"MHDGA!,,, — AHD![Q™]
entre la categoria que té per objectes les algebres de Hodge mixtes mini-
mals de Sullivan 1-connezes, i per morfismes les classes d’homotopia d’ho-
morfismes, i la categoria localitzada de diagrames de Hodge absoluts 1-

connezxos respecte dels quasi-isomorfismes.
Usant el décalage de Deligne obtenim:

Teorema 5.1.21. El functor décalage de Deligne indueir una equivaléncia
de categories

Dec" : Ho (MHD') - Ho (AHD').
Com a aplicacié definim la homotopia d’un diagrama de Hodge mixt via el

functor derivat dels indescomponibles.

Teorema 5.1.23. El functor Q admet un derivat per l’esquerra
LQ : Ho (MHD;) — Ho (MHC).

La composicio de functors

HoDecW
e

Ho (MHD') <~ Ho (MHD!) =% Ho (MHC) G*(MHS)

defineiz un functor
7 : Ho (MHD') — G™(MHS)
que associa a cada diagrama de Hodge mixt 1-connexr A, [’estructura de

Hodge mizta graduada w(A) = Q(Ma), on Mg ~ A és un model de A.

La part racional de ’estructura de Hodge mixta graduada associada a cada
diagrama de Hodge mixt coincideix amb la homotopia de la part racional del
diagrama. Com a conseqiiéncia, els grups d’homotopia racional de tot dia-
grama de Hodge mixt 1-connex estan dotats d’estructures de Hodge mixtes

functorials i multiplicatives.

El Teorema de Deligne es pot reformular mitjangant I’existéncia d’un functor

Hdg : V*(C) — MHC
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assignant a cada compactificacio llisa U C X de varietats algebraiques sobre
C, amb D = X — U un divisor amb encreuaments normals, un complex
de Hodge mixt, que calcula la cohomologia de U (veure Teorema 5.3.3).
Inspirat en els treballs de Deligne i Morgan, i amb ’objectiu d’estendre els
resultats de Morgan al cas singular, Navarro [Nav87| defineix una versié
multiplicativa del functor de Deligne

Hdg : V*(C) — MHD

amb valors en la categoria de diagrames de Hodge mixtos d’algebres dg
(veure Teorema 5.3.6). Ambdés functors s’estenen a functors definits sobre
les varietats llises. Donem una prova via el criteri d’extensié de [GN02],
que es basa en la hipotesi de que la categoria d’arribada és de descens coho-
mologic. Essencialment, és una categoria D amb una classe d’equivalencies
saturada WV i un functor simple s que assigna a cada diagrama ctbic de D,
un objecte de la categoria, i que satisfa certes propietats de compatibilitat

analogues a les propietats del complex total d’'un diagrama de complexos.

L’exemple primari de categoria de descens cohomologic és la categoria CT(.A)
de complexos d’'una categoria abeliana, amb la classe dels quasi-isomorfismes
i el functor simple definit pel complex total. L’eleccié de certes filtracions
originalment introduides per Deligne donen lloc a un simple sp per a dia-
grames cubics de Hodge mixtos, definit nivell a nivell. El Teorema 8.1.15
de Deligne [Del74b] es por enunciar de la segiient manera:

Teorema 5.2.20. La categoria de complexos de Hodge mixtos MHC amb
la classe Q de quasi-isomorfismes i el simple sp €s de descens cohomologic.

Un resultat analeg en el context de les categories de descens simplicial ha
estat provat per [Rod12b]. Seguin la linia de Deligne, 1’aplicaci6 principal
d’aquest resultat és I'extensié del functor de Deligne a varietats singulars.

Teorema 5.3.4. Eristeiz un functor essencialment inic i ®-rectificat
Hdg' : Sch(C) — Ho (MHC)

que estén el functor Hdg : V(% — MHC del Teorema 5.3.3 tal que:
(1) Hdg' satisfa la condicié de descens (D) del Teorema 5.2.7.
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(2) La cohomologia H(Hdg' (X)) és Uestructura de Hodge mizta de la coho-
mologia de X.

El simple de Thom-Whitney per a algebres cosimplicials estrictes de Navar-
ro [Nav87] s’adapta al cas cibic per a donar lloc a una estructura de
descens cohomologic sobre la categoria d’algebres dg. L’eleccié de certes
filtracions sobre aquest simple, déna lloc a un simple de Thom-Whitney
per a diagrames cibics de diagrames de Hodge mixtos d’algebres dg. Hi ha
un quasi-isomorfisme de simples sty — sp. Analogament al cas additiu

obtenim:

Teorema 5.2.30. La categoria de diagrames de Hodge d’algebres dg MHD
amb la classe Q de quasi-isomorfismes i el simple de Thom-Whitney spw

és de descens cohomologic.

Seguint els treballs de Navarro, la principal aplicacié d’aquest resultat és
I’extensié del functor de Navarro a les varietats singulars.

Teorema 5.3.7. Eristeiz un functor essencialment unic i ®-rectificat
Hdg' : Sch(C) — Ho (MHD)

que estén el functor Hdg : V(% — MHD del Teorema 5.3.6 4 tal que:

(1) Hdg' satisfa la propietat de descens (D) del Teorema 5.2.7.

(2) La part racional de Hdg'(X) és Ag = Ag,(X").

(3) La cohomologia H(Hdg' (X)) és l'estructura de Hodge mizta de la coho-
mologia de X.

Com a conseqiiencia dels Teoremes 5.3.7 i 5.1.19, recuperem el resultat
de [Nav87], que déna estructures de Hodge mixtes functorials en el tipus
d’homotopia de les varietats algebraiques complexes simplement connexes.
A més, provem el segiient resultat de formalitat, que estén els resultats de
Morgan [Mor78]| sobre la formalitat filtrada de les varietats llises.

Teorema 5.3.9. FEl tipus d’homotopia de tot morfisme de varietats alge-
braiques complexes simplement conmnexes és una conseqiencia formal del
primer terme de la successio espectral associada a la filtracio per al pes. Es

a dir:
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(1) Si X és una varietat algebraica complexa simplement connexa, hi ha
una cadena de quasi-isomorfismes

(Ax(Q),d) +— (Mx,d) — (E\(Ax(Q), W), dy),

on (Mx,d) és una algebra minimal de Sullivan sobre Q i Ax(Q) l’algebra
de de Rham de X sobre Q.
(2) Si f: X —Y ésun morfisme de varietats, hi ha un diagrama

if@ v \LEl(f@)
(Ay(Q),d) <— (My,d) —— (E1(Ay(Q), W), d1)

que commuta modul homotopia.

Aquests resultats es poden resumir mitjancant ’existéncia d’un isomorfisme
de functors
Ug o Hdg' = Fy o (Ug o Hdg') : Sch! (C) — Hoy (FDGAY(Q)),

on Ug denota el functor oblit que envia tot diagrama de Hodge mixt A, a
la seva part racional (Ag, W).
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