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Part I

Structure formation through
cross-correlating sky maps





Chapter 2

The Integrated Sachs-Wolfe effect

In this chapter we present the Integrated Sachs-Wolfe effect and how we can detect it
through the cross-correlation of CMB temperature fluctuations with number density fluctua-
tions in large scale structure. We explain also the prediction in configuration space obtained
from harmonic space prediction.

2.1 Integrated Sachs-Wolfe effect introduction

The temperature of CMB photons can be influenced by any field which couples to photons.
The dominant effects of these fields occur at the surface of last scattering, but there are also
secondary effects in the way of the photons from CMB to us. The Integrated Sachs-Wolfe
effect (ISW) is a net gravitational blue shifting (or red shifting) when photons from CMB fall
into a deep potential valley gaining some energy (blueshift) and climb back out of a shallow
potential (redshift). Or the reverse way. This effect happens when there is an evolving gravi-
tational potential, either because the universe is flat or because there is a component of dark
energy. In a flat universe ΛCDM , the late ISW effect tells us about the time that matter
ceases to dominate (early ISW happens around the time radiation ceases to dominate). These
secondary temperature anisotropies are therefore correlated with local, evolving, structures
on large scales. For a universe without dark energy (Einstein-de-Sitter cosmology) there is
no cross-correlation signal because the gravitational potential remains constant, despite the
linear growth of matter fluctuations. The correlation is negative when the structures grow
faster than in the Einstein-de-Sitter cosmology, because the increasing potential redshifts pho-
tons and leaves a cold spot in the CMB sky. Otherwise the correlation is positive. The ISW
effect is expected to produce an increase of power (a bump) in the amplitude of the CMB
fluctuations at the largest scales, ie lower order multipoles, which are dominated by cosmic
variance. At small scales photons pass through so many potentials wells that there is an
almost net cancellation in the gravitational redshift. This expectation, seems challenged by
observations, as the first year WMAP results (WMAP1) confirmed the low amplitude of the
CMB quadrupole first measured by COBE (Hinshaw et al. 2003). The discrepancy between
the observations and the ΛCDM model is particularly evident in the temperature angular
correlation function w2(θ), which shows an almost complete lack of signal on angular scales
θ >
∼ 60 degrees. According to Spergel et al. (2007), the probability of finding such a result in a

spatially-flat ΛCDM cosmology is about 1.5× 10−3. This was questioned in Gaztañaga et al.
(2003) who found, using simulated ΛCDM WMAP maps, a much lower significance (less than
2-sigma) for w2(θ). A low significance was also estimated by different studies (eg Efstathiou
2003, de Oliveira-Costa et al. 2004), although a discrepancy larger than 3-sigma still remains
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on both the quadrupole-octopole alignment (Tegmark et al. 2003, de Oliveira-Costa et al.
2004) and the WMAP observed high value of the temperature-polarization cross-correlation
on large scales (Doré et al. 2004).

Given the observed anomalies on the ISW predictions, it is of particular interest to check
if the ISW effect can be detected observationally through an independent test, such as the
cross-correlation of temperature fluctuations with local tracers of the gravitational potential
(Crittenden & Turok 1996). A positive cross-correlation between WMAP1 and galaxy samples
from the Sloan Digital Sky Survey (SDSS) was first found by Fosalba et al. (2003) (FGC03
from now on) and Scranton et al. (2003). FGC03 used the 1yr WMAP data (WMAP1) and
the SDSS data release 1 (SDSS1). WMAP1 has also been correlated with the APM galaxies
(Fosalba & Gaztañaga 2004), infrared galaxies (Afshordi et al. 2004), radio galaxies (Nolta
et al. 2004), the hard X-ray background (Boughn & Crittenden 2004a,b) and luminous red
galaxies (Padmanabhan et al. 2005). The significance of these cross-correlations measurements
was low (about 2-3 σ, see Gaztañaga et al. (2006) for a summary and joint analysis), and
many scientists are still skeptical of the reality of these detections. A higher significance is
found in Chapter 6 when cross-correlating WMAP3 with SDSS data release 4. Giannantonio
et al. 2006 has correlated WMAP3 with a photometric selection of SDSS quasars and have
done a new compilation with the new detections, where one can see that the best fit WMAP
ΛCDM flat model is consistent with data from ISW effect, but with a tendency to higher
ΩΛ values, which has to be well understood. The WMAP3 temperature fluctuations has also
been correlated with 2MASS by Rassat et al. (2007) Giannantonio et al. (2008) have done a
combined analysis of the Integrated Sachs-Wolfe effect after this work was done.

2.2 Cross-correlation in configuration space from harmonic

space

One way to detect the ISW effect is to cross-correlate temperature fluctuations with galaxy
density fluctuations projected on the sky (Crittenden & Turok 1996). When photons com-
ing from last scattering surface CMB pass through gravitational potentials created by large
scale structure, they modify the temperature through the following equation, given by ISW
temperature anisotropies (Sachs & Wolfe 1967):

�ISW
T (n̂) ≡

T (n̂)− T0

T0
= −

∫
dz

d

dz
(Φ−Ψ) = −2

∫
dz

dΦ

dz
(n̂, z) (2.1)

where Φ and Ψ are the Newtonian gravitational potentials (Φ = −Ψ for non anisotropic stress)
and we suppose and instantaneous reionization with τ = ∞ before the reionization redshift
and τ = 0 after that.

We want to calculate the cross-correlation wISW
TG (θ) = < �ISW

T (n̂1)δG(n̂2) > of CMB
temperature with large scale structure, which is useful to expand in a Legendre polynomial
basis. On large linear scales and small angular separations it is:

wISW
TG (θ) =

∑
�

2�+ 1

4π
p�(cos θ)C

ISW
GT (�) (2.2)

Let’s suppose that we have two fields A(�x) and B(�x) in 3D which we want to project on
the sky to calculate the correlation between them. We define their Fourier transforms as

A(�k) =

∫
d3�x e−i�k.�xA(�x), B(�k) =

∫
d3�x e−i�k.�xB(�x). (2.3)
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The cross-correlation power spectrum, PAB(k) is defined by

〈A�k1
B�k2

〉 = (2π)3δ3(�k1 − �k2)PAB(k1). (2.4)

The projections of A and B on the sky are defined using FA and FB projection kernels

Ã(n̂) =

∫
dr FA(r)A(rn̂), and B̃(n̂) =

∫
dr FB(r)B(rn̂). (2.5)

For the projected galaxy overdensity, this kernel is

Fg(r) =
r2 φ(r)∫
dr′ r′2 φ(r′)

. (2.6)

where φ(r) is the survey galaxy selection function and r(z) is the comoving distance.
Now, expanding Ã and B̃ in terms of spherical harmonics, the cross-power spectrum,

CAB(�) is defined as

CAB(�) ≡ 〈Ã�mB̃
∗
�m〉

=
∫
dr1dr2FA(r1)FB(r2)×∫

d3�k
(2π)3

PAB(k)(4π)2j�(kr1)j�(kr2)Y�m(k̂)Y ∗�m(k̂)

=
∫
dr1dr2FA(r1)FB(r2)

∫
2k2dk

π j�(kr1)j�(kr2)PAB(k),

(2.7)

where j�’s are the spherical Bessel functions of rank � and Y�m’s are the spherical harmonics.
We have used the Rayleigh expansion for a plane wave with Bessel functions,

ei
�k.�x = 4π

∑
�,m

i�j�(kr)Y
∗
�m(k̂)Y�m(n̂) (2.8)

and also Eq.(2.3), Eq.(2.4) and Eq.(2.5). To proceed further, we use the small angle (large
�) approximation for the spherical Bessel functions

j�(x) =

√
π

2�+ 1
[δDirac(�+

1

2
− x) + O(�−2)], (2.9)

which yields

CAB(�) =

∫
dr

r2
FA(r)FB(r)PAB

(
�+ 1/2

r

)
· [1 + O(�−2)]. (2.10)

This is the so called Limber equation, with an error that decreases as �−2, inaccurate for small
multipoles. However, the sum in Eq.(12.3) begins from � = 2 because the monopole (� = 0)
and dipole (� = 1) have been removed from WMAP temperature fluctuations map, so we can
consider this one a good approximation.

We can relate the power spectrum of the cross-correlation to the auto-power spectrum
P (k)

< δkδk′ >= (2π)3δD(�k − �k′)P (k) (2.11)

using the Poisson equation for the gravitational potential in temperature fluctuations,

Δ2φ = 4πGa2δρ(x) (2.12)
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and his Fourier transform

φ(k) = −
4πG

a

ρm

k2
δ(k, z) = −

3

2

ΩM

a

H2
0

k2
δ(k, z) (2.13)

For the overdensity in large scale structure fluctuations, we assume a constant galaxy bias,
bg, which relates the galaxy fluctuations, δg, to the overall matter density fluctuations δm

δg = bgδm (2.14)

and we arrive to the following equations

CISW
GT (�) =

4

(2�+ 1)2

∫
dz WISW (z)WG(z)

H(z)

c
P (k)

WISW (z) = 3Ωm(H0/c)
2 d[D(z)/a]

dz
(2.15)

WG(z) = b(z)φG(z)D(z),

where k = �+1/2
r , φG(z) is the survey galaxy selection function, r(z) is the comoving

distance, b(z) is the galaxy bias at a redshift z, D(z) the lineal growth function which relates
the overdensity at a redshift z to the one at redshift 0, normalized to unity at present, δ(k, z) =
D(z)δ(k, 0). The Hubble equation: H(z)2/H2

0 = ΩM (1 + z)3 + ΩΛ(1 + z)3(1+w) relates the
comoving distance with the redshift (in our case we consider a flat universe and dark energy
models with an effective equation of state w = p/ρ). This is just a Legendre decomposition
of the equations presented in Fosalba & Gaztañaga (2004), see also Afshordi (2004). The
advantage of this formulation is that we can here set the monopole (� = 0) and dipole (� = 1)
contribution to zero, as it is done in the WMAP maps. The contribution of the monopole
and dipole to wTG is significant and over predicts wTG by about 10%. The power spectrum
is P (k) = A kns T 2(k), where T (k) is the ΛCDM transfer function, which we evaluate using
the fitting formula of Eisenstein & Hu (1998).

2.3 How to obtain cross-correlation in real data

We define the cross-correlation function as the expectation value of density fluctuations
δG = NG/ < NG > −1 and temperature anisotropies ΔT = T − T0 (in μK) at two angular
positions n̂1 and n̂2 in the sky: wTG(θ) ≡ 〈ΔT (n̂1)δG(n̂2)〉, where θ = |n̂2 − n̂1|, assuming
that the distribution is statistically isotropic. To estimate wTG(θ) from the pixel maps we
use:

wTG(θ) =

∑
i,j ΔT (n̂i) δG(n̂j) wi wj∑

i,j wi wj
, (2.16)

where the sum extends to all pairs i, j separated by θ ± Δθ. The weights wi can be used
to minimize the variance when the pixel noise is not uniform, however this introduces larger
cosmic variance. Here we follow the WMAP team and use uniform weights (i.e. wi = 1).



Chapter 3

Errors analysis in the
cross-correlation

Constraining cosmological parameters from measurements of the Integrated Sachs-Wolfe
effect requires developing robust and accurate methods for computing statistical errors in the
cross-correlation between maps. This chapter presents a detailed comparison of such error
estimation applied to the case of cross-correlation of Cosmic Microwave Background (CMB)
and large-scale structure data. We compare theoretical models for error estimation with
Monte Carlo simulations where both the galaxy and the CMB maps vary around a fiducial
auto-correlation and cross-correlation model which agrees well with the current concordance
ΛCDM cosmology. Our analysis compares estimators both in harmonic and configuration (or
real) space, quantifies the accuracy of the error analysis and discuss the impact of partial sky
survey area and the choice of input fiducial model on dark-energy constraints. We show that
purely analytic approaches yield accurate errors even in surveys that cover only 10% of the sky
and that parameter constraints strongly depend on the fiducial model employed. Alternatively,
we discuss the advantages and limitations of error estimators that can be directly applied to
data. In particular, we show that errors and covariances from the jackknife method agree well
with the theoretical approaches and simulations. We also introduce a novel method in real
space that is computationally efficient and can be applied to real data and realistic survey
geometries. Finally, we present a number of new findings and prescriptions that can be useful
for analysis of real data and forecasts, and present a critical summary of the analyses done to
date. This work can be found in Cabré et al. (2007).

3.1 Introduction to errors and literature

Sample variance from the primary CMB anisotropies limits the ability with which one can
detect CMB-LSS correlations. For the observationally favored flat ΛCDM model, even an op-
timal measurement of the cross-correlation could only achieve a signal-to-noise ratio of ∼ 10
(Crittenden & Turok 1996; Peiris & Spergel 2000; Afshordi 2004). Given the low significance
level of ISW detections, a good understanding of the systematic and statistical errors is crucial
to optimally exploit CMB-LSS correlation data that will be collected in future surveys such as
PLANCK, DES, SPT, LSST, etc., for cosmological purposes (see e.g., Pogosian et al. 2005).
Recent work has focused on the impact of known systematics on cross-correlation measure-
ments (Boughn & Crittenden 2004a; Afshordi et al. 2004), however no detailed analysis has
been carried out to assess how different error estimates compare or what is the accuracy de-
livered by each of them. So far, most of the published analyses have implemented one specific
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error estimator (primarily in real or configuration space) without justifying the choice of that
particular estimator or quantifying its degree of accuracy.

In particular, most of the groups that first claimed ISW detections (Boughn & Crit-
tenden 2004a; Nolta et al. 2004; Fosalba & Gaztañaga 2004; Fosalba et al. 2003; Scranton
et al. 2003; Rassat et al. 2007) estimated errors from CMB Gaussian Monte Carlo (MC)
simulations alone. In this approach statistical errors are obtained from the dispersion of the
cross-correlation between the CMB sky realizations with a (single) fixed observed map trac-
ing the nearby large-scale structure. This estimator is expected to be reasonably accurate as
long as the cross-correlation signal is weak and the CMB auto-correlation dominates the total
variance of the estimator. We shall call this error estimator MC1 (see below).

Fosalba et al. (2003); Fosalba & Gaztañaga (2004) also used jackknife (JK) errors. They
found that the JK errors perform well as compared to the MC1 estimator, but the JK error
from the real data seems up to a factor of two smaller (on sub-degree scales) than the JK error
estimated from simulations. This discrepancy arise from the fact that the fiducial theoretical
model used in the MC1 simulations does not match the best fit to the data (see conclusions).

Afshordi et al. (2004) criticize the MC1 and JK estimators and implement a purely the-
oretical Gaussian estimator in harmonic space (which we shall call TH bellow). However,
they did not show why their choice of estimator should be more optimal or validate it with
simulations. This criticism to the JK approach has been spread in the literature without
any critical assessment. Vielva et al. (2006) also point out the apparent limitations of the
JK method and adopted the MC1 simulations instead. However they seem to find that the
signal-to-noise of their measurement depends on the statistical method used.

Padmanabhan et al. (2005) use Fisher matrix approach and MC1-type simulations to val-
idate and calibrate their errors. They also claim that JK errors tend to underestimate errors
because of the small number of uncorrelated JK patches on the sky, but they provide no proof
of that.

Giannantonio et al. (2006) use errors from MC simulations that follow the method put
forward by Boughn et al. (1998). In their work the error estimator is built from pairs of
simulation maps (of the CMB and large-scale structure fields) including the predicted auto
and cross-correlation. This is the estimator we shall name MC2 below. They point out that
their results are consistent with what is obtained from the simpler MC1 estimator. See also
Giannantonio et al. (2008) for a recent study of MC1, MC2 and also JK errors.

In this part we develop a systematic approach to compare different error estimators in
cross-correlation analyses. Armed with this machinery, we address some of the open ques-
tions that have been raised in previous work on the ISW effect detection: how accurate are
JK errors? Are error estimators different due to the input theoretical models or the data
themselves? How many Monte Carlo simulations should one use to get accurate results? Can
we safely neglect the cross-correlation signal in the simulations? Do harmonic and real space
methods yield compatible results? What is the uncertainty associated to the different error
estimates?

The methodology and results presented here should apply to other cross-correlation anal-
yses of different sky maps such as galaxy-galaxy or lensing-galaxy studies.
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Table 3.1: Notation used in this part.

TC Theory in Configuration space
TH Theory in Harmonic space
MC Monte Carlo simulations
MC2 MC of the 2 fields, with correlation signal
MC1 MC of 1 field alone (CMB), no correlation signal
JK Jackknife errors

MC2-w errors in wTG from MC2 simulations
MC1-w errors in wTG from MC1 simulations
MC2-C� errors in C� from MC2 simulations
TH-w errors in wTG from TH theory
TC-w errors in wTG from TC theory
TH-C� errors in C� from TH theory
JK-w errors in wTG from JK simulations

3.2 Introduction to the methods to calculate errors

We consider four methods to estimate errors. The first one is based on Monte Carlo (MC)
simulations of the pair of maps we want to correlate. We consider two variants: MC2, where
pairs are correlated with a given fiducial model and MC1, where one map in each pair is
fixed and no cross-correlation signal is included. The next two methods rely on theoretical
estimation. We will use a popular harmonic space prediction, that we shall call TH (Theory
in Harmonic space). We will also compare all these errors with a novel error estimator that is
an analytic function of the auto and cross-correlation of the fields in real space that we shall
call TC (Theory in Configuration space), an approach done by Marc Manera. Finally, we will
estimate jackknife (JK) errors which uses sub-regions of the actual data map to calculate the
dispersion in our estimator.

Once we have errors estimated in one space, it is also possible to translate them, through
Legendre transformation, into the complementary space. We shall make a clear distinction
between the method for the error calculation (i.e., MC, TH, TC or JK), and the estimator
onto which the errors are propagated: i.e. either w(θ) or C�. For example, TH − w means
errors in w(θ) propagated from theoretical errors originally computed in harmonic space. This
notation is summarized in Table 3.1.

In all cases (except for the JK) we are assuming Gaussian statistics. In principle, it is also
possible to do all this with non-Gaussian statistics but this requires particular non-Gaussian
models, which are currently not well motivated by observations. Ultimately, our focus here is
on the comparison of different methods for a well defined set of reasonable assumptions.

3.3 Monte Carlo simulations (MC)

Pablo Fosalba has run 1000 Monte Carlo (MC) simulation pairs of the CMB temperature
anisotropy and the dark-matter over-density field, including its cross-correlation, following
the approach presented in Boughn et al. (1998) (see Eq.(3.2) below). These simulations are



20 3 Errors analysis in the cross-correlation

produced using the synfast routine of the Healpix package1. We assume that both fields are
Gaussian: this is a good approximation for the CMB field on the largest scales (i.e few degrees
on the sky), which are the relevant scales for the ISW effect. However, the matter density field
is weakly non-linear on these scales (eg see Bernardeau et al. 2002) and therefore non-Gaussian,
i.e it has non-vanishing higher-order moments. Therefore our simulations are realistic as
long as non-Gaussianity does not significantly alter the CMB-matter cross-correlation and its
associated errors. 2 We take galaxies to be fair tracers of the underlying spatial distribution
of the matter density field on large-scales: we assume that a simple linear bias model relates
both fields, so that wGG = b2wMM and wTG = b wTM . Therefore, in what follows, we make
no difference between matter and galaxies in our analysis (other than b), without loss of
generality.

Decomposing our simulated fields on the sphere, we have

f(n̂) =
∑
�m

a�mY�m(n̂) (3.1)

where alm are the amplitudes of the scalar field projected on the spherical harmonic basis
Y�m. In our simulations, the a�m’s are given by linear combinations of unit variance random
Gaussian fields ψ ,

aT
�m =

√
CTT

� ψ1,�m, (3.2)

aG
�m =

CTG
�√
CTT

�

ψ1,�m +

(
CGG

� −
[CTG

� ]2

CTT
�

)1/2

ψ2,�m

for the CMB temperature (T) and galaxy over-density (G) fields, respectively, and CXY
� is

the (cross) angular power spectrum of the X and Y fields.

Our simulations assume a model that is broadly speaking in agreement with current ob-
servations, although the precise choice of parameter values is not critical for the purpose of
this paper. We assume adiabatic initial conditions and a spatially flat FRW model with the
following fiducial cosmological parameters: ΩDE = 0.7, ΩB = 0.05, Ων = 0, n = 1, h = 0.7,
σ8 = 0.9. Although we will base most of our analyses on this fiducial model, we have also run
a set of 1000 MC simulations for a more strongly dark-energy dominated ΛCDM model with
ΩDE = 0.8 (other parameters remain as in our fiducial model). This will allow us to test how
robust are our main results to changes around our fiducial model.

Galaxies are distributed in redshift according to an analytic selection function,

dN

dz
=

3

2

z2

z3
0

e−(z/z0)3/2

(3.3)

where zm = 1.412 z0 is the median redshift of the source distribution, and by definition,∫
dN/dz = 1. Note that for such a selection function, one can show that its width simply scales

with its median value, σz � zm/2. For convenience we shall take zm = 0.33 as our fiducial
model. For all the sky we have set the monopole (� = 0) and dipole (� = 1) contribution to
zero in order to be consistent with the WMAP data.

1http://healpix.jpl.nasa.gov/
2As a check, we will compare below, in Fig.4.5, the results of the MC1 simulations, which have a fix galaxy

map with Gaussian statistics, with the results using the observed SDSS DR5, which is not Gaussian. We find
no significant differences, indicating that the level of non-Gaussianity in observations does not influence much
the error estimation.
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We have run simulations for surveys covering different areas, ranging from an all-sky survey
(fsky = 1) to a survey that covers only 10% of the sky (fsky = 0.1). The latter is realized by
intersecting a cone with an opening angle of 37◦ from the north pole with the sphere. Larger
survey areas are obtained by taking larger opening angles. For fsky = 0.1 we have done the
same analysis taking a compact square in the equator (with galactic coordinates l = 0o to
l = 66o and b = −33o to b = 33o) and have found similar results. We note that the wide
fsky = 0.1 survey is comparable in area and depth to the distribution of main sample galaxies
in the SDSS DR2-DR3.

3.3.1 Clustering in the simulations

We have computed the angular 2-point correlation function for the galaxy over-density
wGG, the temperature wTT and their cross-correlation wTG, as well as their (inverse) Legendre
transforms, i.e, the angular power spectra,

w(θ) =
∑

�

2�+ 1

4π
C�P�(cosθ) (3.4)

C� = 2π

∫ 1

−1
dcosθ w(θ)P�(cosθ) (3.5)

where we denote by P� the Legendre polynomial of order �.

In real space, we define the cross-correlation function as the expectation value of galaxy
number density δG and temperature ΔT fluctuations:

δG =
NG

< NG >
− 1 (3.6)

ΔT = T − T0 (in μK) (3.7)

at two positions n̂1 and n̂2 in the sky:

wTG(θ) ≡ 〈ΔT (n̂1)δG(n̂2)〉, (3.8)

where θ = |n̂2 − n̂1|, assuming that the distribution is statistically isotropic. To estimate
wTG(θ) from the pixel maps we use:

wTG(θ) =

∑
i,j ΔT (n̂i) δG(n̂j)

Npairs
, (3.9)

where the sum extends to all pairs i, j separated by θ ± Δθ. Survey mask and pixel win-
dow function effects have been appropriately taken into account using SpICE (Szapudi et al.
2001b,a). This code has been probed to yield correct results not only on simulations but also
on real data from surveys with partial sky coverage and complex survey geometries (Fosalba &
Szapudi 2004). In Fig.3.1 we show results from the all-sky MC2 simulations, whereas Fig.3.2
displays the same for a survey covering 10% of the sky alone (fsky = 0.1). Error bars are
computed as the rms dispersion over the MC2 simulations. For the C�’s, we use linear bins
with Δ� = 18, to get approximately uncorrelated error bars for fsky = 0.1 (see Fig.4.2 and
chapter 12.4). As shown in the plots, our all-sky simulations are unbiased with respect to
the input fiducial model (continuous lines): the mean over 1000 simulations lies on top of the
theoretical (input model) curve. For finite area surveys, sample variance makes measurements
on the largest scales (i.e, lower �’s) fluctuate around the input theoretical model 3.
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Figure 3.1: 2-point angular correlation function (top panels) and angular power spectra (bottom panels)
for all-sky surveys with median depth zm = 0.3. Different panels correspond to TT (Temperature-
Temperature), GG (Galaxy-Galaxy) and TG (Temperature-Galaxy) cross-correlation. Errors shown
correspond to dispersion over Monte Carlo MC2-type simulations binned with Δ� = 18 (see text for
details)

3.3.2 Convergence in simulations

The MC covariance is defined as:

3When we calculate the cross-correlation in a fraction of the sky, there is a residual monopole in the galaxy
and temperature maps, which changes the normalization of both fluctuations. In a real survey we are limited
by the survey area covered by galaxies and we need to normalize the fluctuations using the local mean, which is
in general different from the mean in all sky (because of sampling variance). We find that the cross-correlation
calculated with the local normalization with fsky = 0.1 is about 10% lower for our fiducial ΛCDM model, but
the value can vary for other models and different fsky.
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Figure 3.2: Same as Fig.3.1 but for a wide field survey fsky = 0.1

Figure 3.3: Convergence in normalized covariance matrix for Monte Carlo simulations (MC2). We
compare covariance when we increase the number of simulations. Here we show the difference between
a) the first 100 with respect to the first 200 simulations (100-200), b) 200-400, c)400-700, d)700-1000.
Results show that one needs at least 700 simulations for the normalized covariance to converge (we
use 1000 in our analysis).
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Figure 3.4: Convergence in diagonal error for Monte Carlo simulations. It is shown the error for the
first 100 simulations (dotted), 200 (dashed), 400 (dash-dot), 700 (dash-dot-dot) and 999 (solid line).
With 200 simulations the accuracy in errors is about 20%.

Cij =
1

M

M∑
k=1

Δwk
TG(θi)Δw

k
TG(θj) (3.10)

Δwk
TG(θi) = wk

TG(θi)− ŵTG(θi) (3.11)

where wk
TG(θi) is the measure in the k-th simulation (k=1,...M) and ŵTG(θi) is the mean over

M realizations. The case i=j gives the diagonal error (i.e, variance).

In order to check the numerical convergence in the computation of the covariance matrix,
we compare the results using all 1000 (MC2) simulations with the ones using the first 100,
200, 400 or 700 simulations. For clarity we separate our converge analysis into the diagonal
elements (the variance) and normalized covariance, where we divide the covariance by the
diagonal elements (see Eq.(4.1)). As shown in Fig.3.3, we find that there is no noticeable
difference (� 5% accuracy) in the normalized covariance from 700 and 1000 simulations. This
suggests that 700 simulations are enough for our purposes. To be safe, we shall use all 1000
simulations to derive our main results.

On the other hand, Fig.3.4 shows the convergence on the variance estimation (diagonal
elements of the covariance matrix) for an increasing number of simulations. One needs about
200 simulations to converge within 20% accuracy. This is similar to the dispersion in the
errors for a given realization due to sampling variance, see Fig.4.7 below. We will use 1000
simulations which will give us better than 5% accuracy in the error estimation from these
simulations.

3.3.3 Simulations with a fixed galaxy map (MC1)

We can also calculate Monte Carlo errors by cross-correlating 1000 simulations of CMB
with a fixed sky for galaxies (MC1). This is a common practice because it is quite easy to
simulate CMB maps and not so easy to simulate galaxy maps. In this case the common (and
easiest) thing to do is not to include any cross-correlation signal in the simulated CMB maps.
Thus, this approach represents two levels of additional approximations: no variance coming
from the galaxy maps and no cross-correlation within the maps. Despite these approximations
one expects MC1 errors to be reasonably accurate because most of the variance should come
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from the large scale primary CMB anisotropies, and the cross-correlation signal is small in
comparison.

Here we want to test in detail what is the accuracy of this approach. We have taken the
mean of 20 different cases. Each case has a different fix galaxy map which is paired with 999
CMB maps, which are not correlated. For each fixed galaxy case we obtain a MC1 error, so
we can calculate the dispersion of this error with the 20 different galaxy maps. This will be
discussed in more detail in §4.6.

3.4 Jackknife errors (JK)

The JK method is closely related to the bootstrap method (Press et al. 1992) which under
certain circumstances can provide accurate errors. The idea is that the data is grouped in sub-
regions or zones which are more or less independent.4 We then use the fair sample hypothesis
(ie ergodicity) to estimate the error (variance between zones) for the quantity under study. In
the bootstrap methods one defines new sub-samples (which approach statistically independent
realizations) by a random selection of sub-regions. In the jackknife method each new sub-
sample contains all sub-regions but one. A potential disadvantage of the JK error is that one
may think that it can not be used on scales that are comparable to the sub-regions size. This
is not necessarily so. Rare events (such as superclusters) can dominate sampling errors on
all scales even if they only extend over small regions (Baugh et al. 2004). If JK sub-regions
are large enough to encompass these rare events, they can reproduce well errors on all scales.
Nevertheless it is clear that a danger with JK errors is that the result could in principle depend
on the size and shape of the sub-regions. So this needs to be tested in each situation.

We can therefore calculate the error from each single map using the JK method. To
study the JK error in a fraction of the sky of 10%, we divide a compact square area in M
zones or sub-regions. Fig.3.5 shows the case M = 36, but we have tried different values for
M = 20 − 80, and find similar results. The JK regions have roughly equal area and shape.
This is important; we have found that the JK method could give unrealistic errors when the
areas or shapes are not even. To calculate the covariance, we take a JK sub-sample to be all
the data removing one of these JK zones, this means that we remove all the pairs that fall
completely or partially in the JK zone that is removed. To compensate for the correlation
between the JK sub-samples, we multiply the resulting covariance by M − 1. The covariance
for this case is thus:

Cij =
M − 1

M

M∑
k=1

Δwk
TG(θi)Δw

k
TG(θj) (3.12)

Δwk
TG(θi) = wk

TG(θi)− ŵTG(θi) (3.13)

where wk
TG(θi) is the measurement in the k-th sub-sample (k = 1, ...M) and ŵTG(θi) is the

mean for the M sub-samples. For each of the MC2 pair of simulated maps we have a JK
estimation of Cij . We can therefore calculate a JK mean and its dispersion (and distribution)
to compare to the true MC2 covariance in the maps.

3.5 Errors in harmonic space (TH)

Theoretical expectations for the errors are the simplest in harmonic space where the covari-
ance matrix is diagonal in the all-sky limit. In particular, for Gaussian fields, one can easily

4It is not adequate here to consider individual points or pixels as the units (sub-regions) to bootstrap
because they are highly correlated.
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Figure 3.5: Compact square with 36 zones, covering a 10% of the sky, used to calculate JK error in
galactic coordinates (l = 0o to l = 66o and b = −33o to b = 33o). We see that the shapes and sizes of
the zones are similar.

see that the variance (or diagonal error) is,

Δ2CTG
� =

1

fsky(2�+ 1)

[
(CTG

� )2 + CTT
� CGG

�

]
. (3.14)

This indicates that the variance of the power spectrum estimator results from quadratic
combinations of the auto and cross power, with an amplitude that depends on the number
of independent m-modes available to estimate the power at a scale �, which is approximately
given by fsky(2� + 1). We shall emphasize that this is only approximate and rigorously it is
only expected to yield accurate predictions for azimuthal sky cuts. However, as we shall see
later, this result is of more general applicability. We note that the dominant contribution
to the error and covariance comes from the auto-power of the fields CTT

� CGG
� involved in

the cross-correlation, whereas the cross-correlation signal (CTG
� )2 only gives a few percent

contribution, depending on cosmology and survey selection function.
Partial sky coverage introduces a boundary which results in the coupling (or correlation)

of different � modes: the spherical harmonic basis in no longer orthonormal on an incomplete
sky. Thus the covariance matrix between different modes,

Cov(C�, C�′) =< (C�− < C� >)(C�′− < C�′ >) > (3.15)

is no longer diagonal (ie see Fig.4.2). Because of the partial sky coverage there is less power
on the smaller multipoles. This results in a systematic bias on the low multipoles of C� that
can sometimes be modeled with the appropriate window correction of the survey mask. Here
we will use a simple scaling: CAllSky

� /CPartialSky
� to compensate for this effect.

Using the Legendre transform one can propagate the error ΔC� in Eq.(3.14) above to
configuration space,

Δ2w(θ) =
∑

l

(
2�+ 1

4π

)2

P 2
� (μ) Δ2C�, (3.16)

where μ ≡ cosθ. For the covariance matrix, we find:

Cij ≡ Cov(w(θi), w(θj)) (3.17)

=
∑

l

(
2�+ 1

4π

)2

P�(μi) P�(μj) Δ2C�,

where μi ≡ cosθi. Eq.(3.17) and Eq.(3.16) assumes that different � multipoles are uncorrelated
which is only strictly true for all-sky surveys. We shall see below that this approximation is
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quite accurate anyway even for surveys that cover only 10% of the sky, i.e, cosmological pa-
rameter contours derived from this expression do not significantly differ from those computed
with simulations that take into account the exact covariance matrix.

3.6 Errors in configuration space (TC)

The cross-correlation function in configuration space is estimated by averaging over all pairs
of points separated an angle θ in the survey,

wTG(θ) =< ΔT (q)δg(q
′) | ˆqq′=θ >survey . (3.18)

Marc Manera has derived a formula for the covariance of the estimator in an ensemble of
sky realizations. Details of this derivation can be found in Appendix A, in Cabré et al. 2007.

Cij =
1

8π2P (θi)P (θj)

∫ π

0

K[θi, θj , ψ]

P (ψ)
sinψdψ (3.19)

where the kernel K is given by:

K[θ, θ′, ψ] = 1
2 [WTT (θ, ψ)WGG(θ′, ψ)+ (3.20)

WTT (θ′, ψ)WGG(θ, ψ)] +WTG(θ, ψ)WTG(θ′, ψ)

and WX is a mean over the corresponding correlation wX , with X = TT,GG or TG:

WX(θ, ψ) = 2

∫ π

0
dϕP (ψ, θ, φ) wX(φ) (3.21)

where cosφ = cosθ cosψ+sinθ sinψ cosϕ. Survey geometry is encoded in P (θ) and P (ψ, θ, φ)
probabilities. These are the probabilities for two points separated by an angle θ or for a
triangle of sides ψ, θ,φ to fall completely into the survey area if they are thrown randomly
on the full sky. For partial sky surveys these probabilities depend mainly on the survey
area and can be well approximated by the formula provided in Appendix A (Cabré et al.
2007). Particularly simple analytic expressions can be obtained for a “polar cap” survey (area
obtained by intersecting a cone with the sphere) and are given in the Appendix B (Cabré
et al. 2007).

This new method of computing errors in real space has several advantages. Since it takes
into account the survey geometry, it can provide more accurate errors at large angles where
both the jackknife errors and the harmonic-space errors become more inaccurate. Compared
to Monte Carlo errors this method is faster because one does not need to generate a large
number of sky realizations. What is more, this estimator does not need to rely on any
theoretical/fiducial model, because the input can be based on the observed maps, so one can
readily apply it to correlation functions measured on the real data to estimate the errors. 5

5A FORTRAN code (named TC-ERROR) which takes as input wTG,wTT ,and wGG and compute the co-
variance matrix and errors for the cross-correlation function, can be obtained upon request from the authors
(please contact Marc Manera). Of course, this code can also be used to estimate the auto-correlation error in
a single map by just placing wTG = wTT = 0.





Chapter 4

Comparison between different error
estimators

For each one of the methods presented in the previous section, we next compare the nor-
malized covariance:

Ĉij =
Cij√

(CiiCjj)
(4.1)

and the diagonal errors (variance) and its associated dispersion.

4.1 Configuration space

As shown in Fig.4.1 all the normalized covariances Ĉij in real space are very similar. The
appearance of the plots does not seem to depend strongly on the method we use to estimate
them, or the survey area fsky. Here we only show results for 10% and all the sky, but
intermediate values yield similar results. However, we want to question if slight differences in
the covariance could have a non-negligible impact on cosmological parameter estimation. We
will discuss this in detail in §5.3.
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Figure 4.1: Normalized covariances in real space for different methods as labeled in the figure. No
significant changes are found for different methods and sky fractions used.

Figure 4.2: Normalized covariances in C� space from Monte Carlo (MC2) method. The covariance
becomes progressively dominated by its diagonal elements as we increase the sky fraction fsky .
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Figure 4.3: Eigenvalues in real space for 10% sky (left panel) and all sky (right).

4.2 Harmonic space

In C� space, there is no correlation between different l-modes (bins Δ� = 1) for the case
of all sky (MC2) maps. The normalized covariance matrix is diagonal, as can be seen in the
right panel of Fig.4.2. Also shown, in the left and central panels, are the results for 10%
and 40% of the sky, where the covariance between modes gives rise to large amplitude off-
diagonal elements. This is in sharp contrast to the results in configuration space (in Fig.4.1)
where there is no significant difference between normalized covariances in real space when we
decrease the area. This is because the main effect of increasing the area in configuration space
is the reduction of diagonal errors (which are shown in next section), while in harmonic space
there is a transfer of power from diagonal to off-diagonal elements.

4.3 Eigenvalues and Eigenvectors from SVD

To calculate the distribution χ2 and the signal to noise we need to invert the covariance
matrix. We use the Singular Value Decomposition method to decompose the covariance in
two orthogonal matrices U and V and a diagonal matrix W which contains the singular values
λi squared on the diagonal (eg see Press et al. 1992). This method is adequate to separate
the signal from the noise:

Ĉij = (UT
ik)WklVlj (4.2)

where Wij = λ2
i δij and Ĉij is the normalized covariance in Eq.(4.1). By doing this decompo-

sition, we can choose the number of modes that we wish to include in the analysis. This SVD
is effectively a decomposition in different modes ordered in decreasing amplitude.

We obtain very similar singular values for each mode and for each method, as show in
Fig.4.3 for some of the cases (other cases give very similar results).

We can understand the effect of modal decomposition looking at the eigenvectors shown
in Fig.4.4, where we have plotted the four dominant eigenvectors as a function of angle: first
mode (solid) affects only the amplitude, second mode (dotted) shows a bimodal pattern. The
following modes, third (dashed) and fourth (dot-dash), correspond to modulations on smaller
angular scales. As can be seen in the figure, we obtain nearly the same eigenvectors in all
the cases, in agreement to what was found by direct comparison of the covariance matrices in
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Figure 4.4: Eigenvectors in real space for 10% of the sky and for all sky, as labeled in each panel. First
eigenvector is shown as solid lines, second as dotted, third dashed and fourth dot-dash. Results for
MC1− w and TC − w, not shown here, are very similar.

Fig.4.1. Again, we can ask: are the small differences significant? We will study this in detail
in Chapter 5.

4.4 Variance in w(θ)

Fig.4.5 is one of the main results of this chapter. We compare the variance for the different
methods, which is the diagonal part of the covariance matrix. By construction, in the limit
of infinite number of realizations, the MC2 error from simulations should provide the best
approximation to the errors. We have demonstrated (in section §3.3.2) that 1000 simulations
are enough for convergence within 5% accuracy. For all sky maps (lower lines in the Figure)
we can see that the three methods used: MC2-w, TH-w and TC-w, yield identical results,
as expected. For smaller survey areas we do expect some deviations, because of the different
approximations on dealing with the survey boundary. For a survey covering 10% of the sky
these 3 methods also agree well up to 10 degrees. At larger scales TH-w (dashed lines) starts
to deviate, because boundary effects are in fact not taken into account in this method. The JK
error (triangles) has a slope as a function of θ that seems less steep than the other methods,
but still gives a reasonably good approximation given that the dispersion in the errors is
about 20% (as discussed in §4.6 below). Note how on scales larger than 10 degrees the JK
method performs better (ie it is closer to MC2) than the TH-w error. The TC method seems
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Figure 4.5: Error calculated with different methods (as labeled in the figure) in real space for ΩDE =
0.7. For a map covering 10% of the sky (top lines and symbols), the TC (crosses) and TH (dashed
line) theoretical errors work well compared to the Monte Carlo MC2 simulations (solid line), while
MC1 simulations (dotted line) seems to underestimate the errors by 10%. The JK method (triangles)
seems slightly biased up/down on large/small scales, although all the errors are compatible given the
sampling variance dispersion we expect (see Fig.4.7). For all sky maps (bottom lines and symbols), we
show how results for MC2 (solid), TH (dashed) and TC-w (cross) agree very well.

to account well for the boundary effects, as it reproduces the MC2 errors all the way to 50
degrees, where all other methods fail.

If we only use one single realization for the galaxies (MC1) the error seems to be systemat-
ically underestimated by about 10% on all scales. This bias is expected as we have neglected
the variance in the galaxy field and the cross-correlation signal. A particular case of MC1 is
done with real data from SDSS DR5 (shown as long dashed line in Fig.4.5). We have used
here a compact square of 10% of the sky from the SDSS r magnitude slice of 20-21, which
has a redshift selection function similar to the one in our simulations (zm = 0.33). This case
works surprisingly well once scaled with linear bias b (estimated by comparing the measured
galaxy auto-correlation function with the one in our fiducial ΛCDM model). It happens to
closely follow the JK prediction, rather than the MC1 prediction, but we believe this is just a
fluke, given the dispersion in the errors (see §4.6) and the uncertainties in the fiducial model.

4.5 Effect of partial sky coverage

We have tested MC2-w, TH-w and TC-w for different partial sky survey areas fsky and
obtained similar results. In Fig.4.6 we have plotted the error for a fixed angle of 5 degrees
(top) and 20 degrees (bottom) for the different values of fsky. The three methods coincide for
large areas. The error scales by a factor 1/

√
fsky, as expected.

Notice that errors at angles comparable to the width of the survey are difficult to estimate
theoretically because one needs to take into account the survey geometry. Even for a map as
wide as 10% of the sky, the survey geometry starts to be important for errors in the cross-
correlation above 10 degrees. This is shown in simulations as a sharp inflection that begins at
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Figure 4.6: Error at a two fix angles: 5 deg (upper lines) and 20 deg (lower lines) as a function of fsky,

the fraction of the sky covered by the map. As predicted, errors decrease as 1/
√
fsky in both cases.

Note how for small areas, the TC-w prediction (continuous line) performs better than the TH-w model
(dashed line) as it better reproduces the MC2 simulations (squares).

30 degrees in Fig.4.5 (solid line) . Our new TC-w method predicts well this inflection, while
the more traditional TH method totally misses this feature. This can also be seen in Fig.4.6
for 20 degrees when we approach small values of fsky.

4.6 Uncertainty in w(θ) errors

To assess the significance of the differences in the error estimation that we find using
different methods, we will compute here the sampling uncertainties associated with error
estimation. Fig.4.7 shows the sampling dispersion in the error estimates. This can be cal-
culated from the TH and TC approaches by using C� or w(θ) measured in each realization
as the input model for error theoretical predictions (Eq.(3.16) or Eq.(3.19)), ignoring the
covariances. To get an unbiased estimator for unbinned multipoles we apply this window
correction: mean(Callsky

� )/mean(C10%sky
� ). In Fig.4.7 solid (or dotted) line shows the result

of using Eq.(3.16) for each of the MC2 (or MC1) simulations. This produces an error for each
realization and we can therefore study the error distribution. The uncertainty in the error (or
error in the error) corresponds to the rms dispersion of this distribution. The error propaga-
tion Eq.(3.16) is not linear and we find that this produces a bias of 3% when we compare the
mean of the propagated errors in each simulation with the propagation of the mean error in
all simulations.

We can also calculate the JK-w dispersion of the error, because we have the JK error for
each MC2 simulation (remember that we only need one realization to obtain the JK error).
The JK-w dispersion (triangles) in Fig.4.7 is quite close to the MC2-w values. They are
both of the order of 20% relative to the mean error. This uncertainty can be interpreted as
the result of the uncertainties in our input model; typically the model is only known to the
accuracy given by the data and a given sky realization will deviate from the ’true’ model (i.e,
the mean over realizations). Thus, if one chooses to use the estimated values from the data
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Figure 4.7: Dispersion of the error calculated with different methods in real space for ΩDE = 0.7. For
MC2-w (solid line) or MC1-w (dotted lines), we take each pair of MC2 or MC1 simulations as the
input for the error in the TH-w calculation in Eq.(3.16). For JK (triangles), we have one error for each
MC2 simulation. We can see how the error in the error is of order 20% for MC2 or JK and is lower
for MC1 (mainly because one of the maps in each pair is kept fixed). The lower line corresponds to
the dispersion in all sky maps.

(or its best fit model) as input to the error estimation, this produces an uncertainty in the
error which is of the order of this scatter. This is always the case with the JK errors, which
do not use any model, but the uncertainty is similar if we use direct measurements as input
to the other error estimations, as shown in Fig.4.7.

For completeness, Fig.4.7 also shows the dispersion for the MC1 error (dotted). There is
less dispersion in the MC1 method because one of the maps is always fixed and this reduces
both the error and, more strongly, its dispersion.

4.7 Error distribution for JK

Fig.4.8 shows the distribution of JK errors in the MC2 simulations as compared to a Gaus-
sian fit with the same mean and dispersion. Each panel shows the distribution of w(θ) errors
at a given fixed angle. The mean MC2-w error (shown as solid line in Fig.4.5) is shown here
by a dotted vertical line, while the mean of the JK errors (shown as triangles in Fig.4.5)
corresponds here to the continuous vertical line. We can see here how the MC2-w error and
the mean JK-w error are quite similar. The variance in the distribution agrees with the re-
sults in §4.6 above. Note also that the JK distribution of w(θ) errors can be well fitted by
a Gaussian. This is important for two reasons. First it shows that there are no important
outliers or systematic bias when one uses a JK estimator in a single realization, as is the case
with real data. Second, it indicates that the error in the error (ie the rms dispersion of this
distribution) entails all relevant information needed to asses in more detail the accuracy of
the JK error analysis. One could for example fold the uncertainties in this distribution to
asses the significance of a detection.
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Figure 4.8: Histograms show the error distribution in JK errors from 1000 simulations at different
angles. Solid line shows a Gaussian with the same mean and dispersion. Vertical lines correspond to
mean JK error (solid) and the true mean MC2 error (dotted).

4.8 Variance in C�

In C� space, we have compared MC2 errors to TH theory. Fig.4.9 shows how both errors
are hard to distinguish for the case of all sky (middle dashed line matches closely the jagged
line). Note the shape of the C� errors exhibits a broad peak around � = 200 illustrating the
fact that errors are dominated by the CTT

� term. For 10% of the sky the TH error (upper
dashed line) obtained theoretically from Eq.(3.14) (with a factor 1/

√
fsky respect to all the

sky) is much larger than the MC2 error (upper jagged line) in the simulations. As we have
shown in Fig.4.2, there is a strong covariance between different bins when fsky < 1, this is
in contrast with the TH estimation in Eq.(3.14) which assumes a diagonal covariance matrix.
We understand this discrepancy in the variance prediction as a transfer of power from the
diagonal to off-diagonal errors.

We can get a better diagonal error estimation by binning C� in a Δ� that makes the
covariance approximately diagonal. 1 When binning by Δ�, the theoretical error (TH-Cl) in
Eq.(3.14) is reduced in quadrature to:

Δ2CTG
� =

1

Δ�fsky(2�+ 1)

[
(CTG

� )2 + CTT
� CGG

�

]
, (4.3)

This assumes that the bins are independent. Because of the partial sky coverage, the bins are
not independent and the above formula will only be valid in the limit of large Δ�.

We have tested the above formula for different sky fractions by binning the C� spectrum
in the simulations and estimating the error from the scatter in different realizations. We find
that the formula works above some minimum Δ� which roughly agrees with the width of
off-diagonal coupling in the covariance matrix estimated from simulations (Fig.4.2). We find

1This is clear in Fig.4.2 which shows that the covariance is confined to a finite number of Δ� of off-diagonal
elements. It is also apparent in Fig.4.9 where the jagged line for10% of the sky is clearly correlated on scales
of Δ� � 20, in contrast to the all-sky jagged line which shows no correlation from bin to bin.
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Figure 4.9: Errors in C� space calculated with (MC2) simulations as compare to (TH-C�) theory. For
all sky maps, the theoretical prediction works well, but for 10% of the sky we see a big discrepancy
between theory (dashed lines) and simulations (jagged lines). This is due to covariance between modes
and can be solved by binning the C� spectrum, as shown by the symbols (simulations) and sold line
(predictions in Eq.(4.3)).

that Δ�=20,16,8,1 for fsky=0.1,0.2,0.4,0.8 respectively, diagonalize the covariance matrix and
provide a good fit to the above theoretical error for binned spectra. In Fig.4.9 we show the
results for Δ� = 20 for both all sky (triangles) and 10% of the sky (squares). The theoretical
prediction in Eq.(4.3) (solid lines) works very well in both cases, because the covariance with
this binning is approximately diagonal.

4.9 Dependence on ΩDE

Fig.4.10 shows a relative comparison of how our error estimation changes for a different
cosmology with ΩDE = 0.8 instead of ΩDE = 0.7. The MC error still fits well the TH and TC
predictions, but the JK errors seem to underestimate the errors more than in the ΩDE = 0.7
case. This effect is not large given the dispersion in the errors from realization to realization
(error bars in Fig.4.10).
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Figure 4.10: Relative error for the two fiducial models ΩDE = 0.7 (top) and ΩDE = 0.8 (bottom). The
different methods are labeled in the figure. We see that the relative error depends on the model, and
that in the case ΩDE = 0.8 there is also a good agreement within the errors.



Chapter 5

Constraints and significance

ISW measurements can directly constrain dark-energy parameters independent of other
cosmological probes. Here we shall use the covariance analysis presented in the previous
section to derive significance levels for the cosmological parameter constraints obtained from
a cross-correlation analysis.

5.1 Signal-to-noise from w(θ)

The signal-to-noise (S/N hereafter) depends on both the input fiducial model used in the
simulations and the covariance matrix method we implement. In this paper we shall invert
the covariance matrix using the standard method of singular value decomposition (SVD), see
§4.3. In this approach one projects the signal to the eigenvector space of the thus diagonalized
matrix and only the most significant eigenvalues are kept for the analysis,

( S
N

)
i
=

∣∣∣ŵTG(i)

λi

∣∣∣ =
∣∣∣ 1

λi

Nb∑
j=1

Uji
wTG(j)

σw(j)

∣∣∣. (5.1)

Fig.5.1 shows the S/N for each singular value. All methods agree well even for 10% of the
sky. We get excellent agreement for all sky maps.

Because eigenvectors are orthogonal the total S/N is just added in quadrature:

( S
N

)2

T
=

∑
i

( S
N

)2

i
(5.2)

Table 5.1 compares total S/N values from simulations and theory for different survey areas.
Here by Simulations we mean the MC2-w method where we have used 6 singular values and
theory refers to the different methods, including the TH-C� approach (see below). We note

S/N 10% 20% 40% 80% all sky

Simulations MC2-w 1.2 1.7 2.5 3.5 3.8
Theory TH-Cl 1.2 1.7 2.4 3.4 3.8
Theory TH-w 1.2 1.7 2.4 3.4 3.8

Table 5.1: Signal-to-noise as a function of fsky covered in a survey with a broad distribution of sources
with median redshift zm = 0.33 for the ΩDE = 0.7 flat ΛCDM model with different error assumptions
(see Table 3.1). Similar results are found for TC-w and JK-w methods.
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Figure 5.1: Signal-to-noise for 10% of the sky for each singular value. Different lines correspond to
methods as labeled.

that we find apparently lower values than quoted in the literature (see e.g, Afshordi 2004).
This is due to the low value adopted for ΩDE (i.e ΩDE = 0.8 models yield a S/N ratio ∼ 2
larger than our fiducial value ΩDE = 0.7), and the fact that these are predictions for a single
broad redshift bin (similar to the selection function for SDSS main sample galaxies), with
median redshift zm = 0.33. A combination of several narrow bins at different redshifts will
also increase the S/N (see Fig.5.2 and Table 5.2).

5.2 Signal-to-noise forecast from C�

In harmonic space the S/N is estimated as

( S
N

)2

T
=

∑
�

( CTG
�

ΔCTG
�

)2
(5.3)

using Eq.(3.14) in the denominator. Note in particular that the dominant contribution to
ΔCTG in Eq.(3.14), comes from the CTT CGG term and not from CTG which is an order of
magnitude smaller. This means that the (S/N)2 approximately scales as:

( S
N

)2

T
�

∑
l

CTG
� CTG

�

CGG
� CTT

�

∝ σ2
8 (5.4)

and therefore depends strongly on the normalization of the dark matter power spectrum P (k),
and is independent of the galaxies bias b. In principle CTT depends on σ8 but note that σ8

from CMB is degenerated with several other parameters. We take the approach here of fixing
CTT to the observed value and allow σ8 to vary.

Clearly, the S/N will change depending on the fiducial model used. Fig.5.2 shows this
dependence on the plane DE density vs. equation of state, w. Each panel corresponds to
different smooth redshift distributions that closely match current or planned surveys (trans-
late to all sky). The upper panels show predictions for SDSS main sample (zm = 0.33), that
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Figure 5.2: All sky values of the S/N for different models. Each panel corresponds to different redshift
distribution: SDSS (zm = 0.3), DES(zm = 0.7), DES+VISTA (zm = 1) and DES+VISTA NARROW
(zm = 1). Expectations for smaller survey areas are obtained by scaling the displayed values by

√
fsky,

where fsky is the sky fraction covered.

S/N zm = 0.33 zm = 0.7 zm = 1 zm = 1 (N)

ΩDE = 0.7 3.8 6.0 6.3 4.2
ΩDE = 0.8 5.5 9.5 10.6 7.6

Table 5.2: Signal-to-noise for all sky maps in harmonic space for two different values of ΩDE and
for galaxy maps with different mean depths zm. The width of the redshift distribution is given by
σz � zm/2 (see Eq.(3.3)) except in the last case (zm = 1 Narrow), where σz � 0.17

anticipated for the DES (zm = 0.7), and a combined DES+VISTA survey (zm = 1), respec-
tively. For these 3 surveys we use broad distributions as given by Eq.(3.3), with a width
that grows linearly with depth, σz � zm/2. For this rather generic parametrization of the
selection function, the S/N monotonically increases with zm as shown by the 3 upper panels
in Fig.5.2, although the differential contribution, d(S/N)/dz, drops for sources at z >

∼ 0.4 (see
Afshordi 2004 for an analytic account of this effect). As said, the estimations are done for all
sky surveys, to be able to compare between them. Expectations for smaller survey areas are
obtained by scaling the displayed values by

√
fsky, where fsky is the sky fraction covered.

In particular, for our baseline survey, SDSS, and our fiducial ΛCDM model, we estimate
S/N = 3.8, what is in good agreement with simulations in configuration space (see Table
5.1). As we sample a wider range of the ISW signal in redshift, the S/N raises by ∼ 60%
when we increase the survey depth by a factor ∼ 2 to match the depth of the DES-like survey.
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However, there is little gain in ISW detection significance when combining DES+VISTA, as
the S/N only increases by an additional 5% with respect to the DES survey. For comparison,
we also show the case of what we shall call DES+VISTA NARROW survey. This survey has
a Gaussian distribution of sources around zm = 1, but with a narrow width, similar to that
of SDSS above (σz = 0.17). In this case, the high redshift population of sources brings a poor
added value to the baseline survey (SDSS) by improving the S/N by only 10%. As shown in
Table 5.2 these conclusions vary somewhat for different values of ΩDE.

We point out that in these estimations we have ignored the lensing magnification bias
contribution (see Loverde et al. 2007) which could be important for z > 1.

5.3 χ2 estimation

We shall discuss below to what extent the choice of covariance matrix estimation method
affects cosmological parameter constraints. This is specially relevant because current ISW
detection significance levels are still rather poor (i.e, at the 4-σ level at most, see Chapter 6)
and the practical implementation of methods might yield noticeably different results.

We shall compare the methods described in Chapter 3, whereas the fiducial model is the
one implemented in the simulations. Our significance levels are derived from a χ2 statistic:

χ2 =

N∑
i,j=1

Δi Ĉ
−1
ij Δj (5.5)

where:

Δi ≡
(wE

TG(θi)− w
M
TG(θi))

σTG(θi)
(5.6)

is the difference between the ”estimation” E and the model M . We have run models for ΩDE

from 0.5 to 0.9 and for w from -3.0 to -0.2 and we fix the estimation E to be our fiducial
model ΩDE = 0.7 and w = −1 which was input in the simulation. The size of the resulting
confidence level contours depends implicitly on the best-fit model (i.e, the fiducial model) by
construction.

In each case, the error used is the one obtained from the simulations (for cases MC2-w,
MC1-w, JK-w, MC2-C�) or from the theoretical estimator (TH-w and TH-C�) for the given
fiducial model. That is, the errors are not varied as we sample parameter space in the χ2

estimation. This allows a direct comparison on the contours when using different covariance
matrix estimators.

Results are shown in Fig.5.3,5.4 and 5.5. In the different figures we compare the real space
MC (MC2-w) result (colored contours) with the other methods (contours traced by solid lines).
Contours from different methods agree remarkably well: it does not depend neither on which
space we compute the errors and covariance (real or harmonic space), nor on the portion
of the sky used. We have checked that small contour differences are compatible once we
take into account uncertainties in the errors, as shown in Fig.4.7. Moreover using a diagonal
approximation for the C� covariance matrix to infer the covariance in real space (through the
Legendre transform in Eq.(3.16)), works for a small portion of the sky surprisingly well. As
explained in section §4.8, when we use the theoretical error in C� space (TH-C�) for real data,
we should use a bin of width of Δl that varies with the portion of the sky.
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Figure 5.3: χ2 contours from (MC2-w) simulations (in color) compared to the other methods (solid
line): JK-w, MC1-w, TC-w, TH-w, TH-C� as labeled in each panel. All cases correspond to 10% of
the sky. The contour levels are: 0.25, 1., 4. and 9.

Figure 5.4: Same as Fig.5.3, but here each panel compares to the method TH-C� for 20%, 40% and
80% of the sky.

Figure 5.5: Same as Fig.5.3 for all sky maps. Here solid lines correspond to methods TH-w (left panel)
and TH-Cl (right panel).

5.4 Best fit model

In this section we investigate how the error method used affects the best fit estimation of
cosmological parameters. We fix all the parameters as in the fiducial model, except for ΩDE.
We focus on the case of the angular 2-point correlation w(θ) and compare results for JK-w
to those for MC2-w. We do a χ2 fit of the correlation from each single simulation, which is
used as the ”E” estimator in Eq.(5.6). This follows what is done with real data where the
observations correspond to a single realization. We can make a distribution for all the best
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fit values of ΩDE that we obtain from each realization, which is shown in Fig.5.6. The error
and covariance used in the fit is in one case the JK-w obtained using this single simulation
(dashed line in Fig.5.6) or the MC2-w calculated from all the simulations (continuous line).
Despite these differences there is an excellent agreement between the JK-w and the MC2-w
results.

We see that the distribution of best fit values is biased towards higher values than the
underlying fiducial model value ΩDE = 0.7. In particular, the distribution of best-fit values
is skewed, showing a long tail of values smaller than the input model. This is due to the fact
that contours in χ2 (and in the S/N) are not symmetric. The reason for this is the nonlinear
mapping between values of ΩDE and the amplitude of w(θ). When the errors are large,
this non-linear mapping transforms an approximate Gaussian distribution (which is a good
approximation for the distribution of w(θ)) into a strongly non-Gaussian distribution in ΩDE.
When the errors are smaller, as happens for larger ΩDE, the mapping between w(θ) and ΩDE,
is better approximated by a linear relation which results in a more Gaussian distribution.
Thus, if we have small enough errors, this bias is negligible, as we can see for the all-sky case
shown by the dotted lines in Fig.5.6.
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Figure 5.6: Distribution of best fit values for ΩDE fixing w = −1 and all the other parameters to the
fiducial model. For JK (dotted lines), we use the JK-w error obtained for each simulation. For the
MC2 simulations (solid line), we use a fixed error obtained from the dispersion in the simulations.





Chapter 6

Cross-correlation between WMAP
3rd year and SDSS galaxy survey

We cross-correlate the third-year WMAP data with galaxy samples extracted from the SDSS
DR4 (SDSS4) covering 13% of the sky , increasing by a factor of 3.7 the volume sampled in
previous analysis. The new measurements confirm a positive cross-correlation with higher
significance (total signal-to-noise of about 4.7). The correlation as a function of angular scale
is well fitted by the integrated Sachs-Wolfe (ISW) effect for LCDM flat FRW models with
a cosmological constant. The combined analysis of different samples gives ΩΛ = 0.80 − 0.85
(68% Confidence Level, CL) or 0.77−0.86 (95% CL). We find similar best fit values for ΩΛ for
different galaxy samples with median redshifts of z � 0.3 and z � 0.5, indicating that the data
scale with redshift as predicted by the LCDM cosmology (with equation of state parameter
w = −1). This agreement is not trivial, but can not yet be used to break the degeneracy
constraints in the w versus ΩΛ plane using only the ISW data. This work can be found in
Cabré et al. 2006. Then we compare the results with the cross-correlation with SDSS DR5
noticing that there is no improvement or significant difference in the results.

Figure 6.1: SDSS DR4 galaxy density (LRG) fluctuation maps (right panel) compared to WMAP
(V-band 3yr) temperature map (left panel). Both maps are smoothed with a Gaussian beam of
FWHM= 0.3deg.

6.1 The Data

In order to trace the changing gravitational potentials we use galaxies selected from the
Sloan Digital Sky Survey Data Release 4 Adelman-McCarthy et al. 2006, SDSS4 hereafter,
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which covers 6670 deg2 (i.e, 16% of the sky). We have also done the same analysis with
data from SDSS DR5. We have selected subsamples with different redshift distributions
to check the reliability of the detection and to probe the evolution of the ISW effect. All
subsamples studied contain large number of galaxies, between 106-107, depending on the
subsample. We concentrate our analysis on the North Galactic Cap SDSS4 Area (∼ 5500
deg2), because it contains the most contiguous area. We have selected 3 magnitude subsamples
with r = 18−19, r = 19−20 and r = 20−21 and a high redshift Luminous Red Galaxy (LRG;
e.g. Eisenstein et al. 2001) color selected subsample (17 < r < 21, (r − i) > (g − r)/4 + 0.36,
(g− r) > 0.72 ∗ (r− i) + 1.7). Because of the smaller volume, the r = 18− 19 and r = 19− 20
subsamples provide low signal-to-noise (S/N<2) in the cross-correlation with WMAP, and we
therefore center our analysis on the two deeper subsamples. The mask used for these data
avoids pixels with observed holes, trails, bleeding, bright stars or seeing greater than 1.8.

To model the redshift distribution of our samples we take a generic form of the type:

N(z) ∼ φG(z) ∼ (z − zc)
2 exp

(
−
z − zc
z0 − zc

)3/2

, (6.1)

for z > zc and zero otherwise. The N(z) distribution of the r = 20 − 21 subsample is quite
broad with zc � 0 and z0 � 0.2 which results in a median redshift, z̄ = 1.4z0 � 0.3 (e.g.,
Dodelson et al. 2001, Brown et al. 2003). On the other hand, the LRG subsample has a
narrower redshift distribution. The first color cut is perpendicular to the galaxy evolutionary
tracks in the (g-r) .vs.(r-i) color space and ensures that very few z < 0.40 galaxies are selected,
which translates into a cut zc � 0.37 in the above N(z) model. The second col-our cut is
parallel to evolution and perpendicular to spectral type differences and selects only red galaxies
with old stellar populations. The faint magnitude limit (r < 21) cuts high redshift galaxies
(z0 � 0.45), which results in an overall median redshift of z̄ � 0.5.

We use the full-sky CMB maps from the third-year WMAP data Hinshaw et al. 2007;
Spergel et al. 2007 (WMAP3 from now on). In particular, we have chosen the V-band (∼ 61
GHz) for our analysis since it has a lower pixel noise than the highest frequency W-band (∼ 94
GHz), while it has sufficient high spatial resolution (21′) to map the typical Abell cluster radius
at the mean SDSS depth. We use a combined SDSS+WMAP mask that includes the Kp0
mask, which cuts 21.4% of WMAP sky pixels Bennett et al. 2003, to make sure Galactic
emission does not affect our analysis. WMAP and SDSS data are digitized into 7′ pixels using
the HEALPix tessellation 1. Figure 6.1 shows how the WMAP3 and SDSS4 pixel maps look
like when density and temperature fluctuations are smoothed on 0.3 deg scale.

6.2 Cross-Correlation and errors

We define the cross-correlation function as the expectation value of density fluctuations
δG = NG/ < NG > −1 and temperature anisotropies ΔT = T − T0 (in μK) at two positions
n̂1 and n̂2 in the sky: wTG(θ) ≡ 〈ΔT (n̂1)δG(n̂2)〉, where θ = |n̂2 − n̂1|, assuming that the
distribution is statistically isotropic. To estimate wTG(θ) from the pixel maps we use:

wTG(θ) =

∑
i,j ΔT (n̂i) δG(n̂j) wi wj∑

i,j wi wj
, (6.2)

where the sum extends to all pairs i, j separated by θ ± Δθ. The weights wi can be used
to minimize the variance when the pixel noise is not uniform, however this introduces larger

1Some of the results in this thesis have been derived using HEALPix Górski & et al. 1999,
http://www.eso.org/science/healpix
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cosmic variance. Here we follow the WMAP team and use uniform weights (i.e. wi = 1). The
resulting correlation is displayed in Fig.6.2. On scales up to 10 degrees we find significant
correlation above the estimated error-bars. The dotted and continuous lines correspond to
WMAP1 and WMAP3 data respectively, and show little difference within the errors. This
indicates that the cross-correlation is signal dominated.

Figure 6.2: The continuous line with error-bars shows the WMAP3-SDSS angular cross-correlation as
a function of scale for the r = 20−21 sample (left) and the LRG sample (right). In the top it is plotted
the cross-correlation with SDSS4 and in the bottom with SDSS5. The dotted line corresponds to using
the 1st yr WMAP (WMAP1-SDSS4) data, which is very close to the WMAP3 results (continuous
line). The dashed lines show the ΛCDM model with ΩΛ = 0.83 for SDSS4 and ΩΛ = 0.81 for SDSS5 (
best overall fit) scaled to the appropriate bias and projected to each sample redshift.

We have used different prescriptions to estimate the covariance matrix: a) jack-knife, b)
1000 Monte Carlo simulations c) theoretical estimation (including cross-correlation signal)
both in configuration and harmonic space. Our Monte Carlo simulations in b) include inde-
pendent simulations of both the CMB and galaxy maps, with the adequate cross-correlation
signal. All three estimates give very similar results for covariance and the χ2 results.
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θ(deg) wTG(20 − 21) wTG(LRG)

0.316 0.711 ± 0.198 0.876 ± 0.279
0.398 0.712 ± 0.180 0.793 ± 0.266
0.501 0.700 ± 0.190 0.781 ± 0.266
0.631 0.662 ± 0.187 0.724 ± 0.268
0.794 0.626 ± 0.179 0.691 ± 0.255
1.000 0.622 ± 0.179 0.606 ± 0.251
1.259 0.634 ± 0.176 0.547 ± 0.258
1.585 0.637 ± 0.175 0.602 ± 0.260
1.995 0.603 ± 0.178 0.637 ± 0.261
2.512 0.540 ± 0.182 0.552 ± 0.263
3.162 0.511 ± 0.183 0.394 ± 0.249
3.981 0.488 ± 0.194 0.298 ± 0.241
5.012 0.470 ± 0.188 0.281 ± 0.222
6.310 0.488 ± 0.168 0.277 ± 0.192
7.943 0.407 ± 0.172 0.224 ± 0.181

10.000 0.320 ± 0.150 0.158 ± 0.183
12.589 0.265 ± 0.121 −0.004 ± 0.182
15.849 0.247 ± 0.094 −0.031 ± 0.172
19.953 0.086 ± 0.087 −0.052 ± 0.128

Table 6.1: wTG(θ) for WMAP3-SDSS4.

To compare models we use a χ2 test:

χ2 =
N∑

i,j=1

Δi C
−1
ij Δj, (6.3)

where Δi ≡ wE
TG(θi) − wM

TG(θi) is the difference between the ”estimation” E and the model
M . We perform a Singular Value Decomposition (SVD) of the covariance matrix Cij =
(Uik)

†DklVlj where Dij = λ2
i δij is a diagonal matrix with the singular values on the diagonal,

and U and V are orthogonal matrices that span the range and nullspace of Cij. We can
choose the number of eigenvectors ŵTG(i) (or principal components) we wish to include in
our χ2 by effectively setting the corresponding inverses of the small singular values to zero.
In practice, we work only with the subspace of “dominant modes” which have a significant
“signal-to-noise” (S/N). The S/N of each eigenmode, labeled by i, is:

( S
N

)
i
=

∣∣∣ŵTG(i)

λi

∣∣∣ =
∣∣∣ 1

λi

Nb∑
j=1

Uji
wTG(j)

σw(j)

∣∣∣. (6.4)

As S/N depends strongly on the assumed cosmological model, we use the direct measurements
of wTG to estimate this quantity. The total S/N can be obtained by adding the individual
modes in quadrature. In our analysis we have used 5 eigenmodes for the r = 20 − 21 sample
and 3 for the LRG sample. The results are similar if we use less eigenmodes. With more
eigenmodes, the inversion becomes unstable because we include eigenvalues which are very
close to zero and are dominated by noise.
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6.2.1 Comparison with Predictions

We make the assumption that on very large scales the galaxy distribution is a tracer
of the underlaying matter fluctuations, related through the linear bias factor, δG(n̂, z) =
b(z)δm(n̂, z). We estimate b(z) from the angular galaxy-galaxy auto-correlation wGG(θ) in
each sample by fitting to the linear flat ΛCDM model prediction wGG(θ) and marginalizing
over the value of Ωm. The models have h = 0.71, TCMB = 2.725, ΩB = 0.022/h2, ns = 0.938
and Ωk = 0. and are normalized to the value of σ8 that best fits WMAP3 data (Spergel et al.
2007): σ8 = 0.75±0.03

0.04. With this procedure we find a normalization of bσ8 � 0.90 − 0.96
and bσ8 � 1.02 − 1.12 for the r = 20 − 21 and LRG samples respectively. We marginalize
all our results over the uncertainties in both σ8 and bσ8. This also roughly accounts for the
uncertainty in the selection function. The predictions of wTG do no change much with the
selection function (see §4.1 in Gaztañaga et al. 2006), but the bias estimated from from wGG

depends strongly on the effective volume covered by φG(z). Because of the marginalization
our final results do not change much when we change the median redshift of the sample by
∼ 10%, which represents current uncertainties in N(z). But in the case of the LRG it is crit-
ical to include not only the correct value of the mean redshift (or z0 in Eq.(6.1)) but also the
redshift cut zc introduced by the color selection in Eq.(6.1). In previous LRG cross-correlation
analysis (eg Fosalba et al. 2003) the value of zc was neglected. This can over predict bσ8, as
estimated from wGG, by a factor of two. Uncertainties in the shape of N(z) considered here
are within the normalization errors we have already included for σ8 and bσ8. We have also
made predictions for the best fit WMAP3 data with ns = 1 which gives different parameters
and normalization (σ8 = 0.79±0.05

0.06) and find very similar results.

Under the above assumptions we are left with only one free parameter, which is Ωm

or ΩΛ = 1 − Ωm. Fig.6.3 shows the probability distribution estimated for ΩΛ from the
Δχ2 = χ2−χ2

min analysis away from the minimum value χ2
min. Both samples prefer the same

value of ΩΛ. This is a consistency check for the ΛCDM model. The combined best fit model
has ΩΛ � 0.83+0.02

−0.03. The predictions for this ΩΛ best value are shown as a dashed line in
Fig.6.2. When doing the same with SDSS DR5 the best fit model shifts to ΩΛ � 0.81, which
can be understood within the errors.

Fig.7.1 shows the joint 2D contours for dark energy models with an effective equation
of state w = p/ρ, assuming not perturbations in DE and a Hubble equation: H2/H2

0 =
Ω(1 + z)3 + ΩΛ(1 + z)3(1+w). For each (w,ΩΛ) we derive bσ8 consistently from the galaxy-
galaxy auto-correlation data. We also marginalize over the uncertainties in bσ8 and over
σ8 ∈ (0.65, 0.85), to account for the WMAP3 σ8 normalization for w �= −1. The cosmological
constant model w = −1, however, still remains a very good fit to the data. This is due to
the large degeneracy of the equation of state parameter w with ΩΛ. This degeneracy can be
broken by supernovae SNIa data (eg see Corasaniti et al. 2005 and Fig.8 in Gaztañaga et al.
2006 ).
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Figure 6.3: Probability distribution: 1 − Pχ[> Δχ2, ν = 1] for ΩΛ in the r = 20 − 21 sample
(short-dashed line), the LRG sample (long-dashed line) and the combined analysis (continuous middle
curve). The range of 68% and 95% confidence regions in ΩΛ are defined by the intersection with the
corresponding horizontal lines. The cross-correlation with SDSS DR4 is plot in the left and with DR5
in the right. We don’t see any significant difference.
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6.3 Systematic errors

In this section, we study systematic effects in the selection of galaxies to explore how they
can change our results.

After correcting petrosian magnitudes for extinction we have included some additional
cuts to ensure that we work with good galaxies: 1) petroMagErr < 0.2 (error in the apparent
petrosian magnitude in filter r) to include only magnitudes that are well measured in r. 2)
0<g-r<3 and 0<r-i<2 to make sure that colors correspond to a galaxy. 3) Surface brightness
in r (at half light radius) mu50 < 24.5. This cut avoids galaxies which are not well measured.
We have plotted the fraction of galaxies after selecting them for each one of the additional
cuts, to the number of total galaxies without extra selection, per pixel. For the selection in
color (2) and the surface brightness cut (3), the resulting plot is almost completely uniform.
This means that these cuts do not include any effect that we can associate with a zone of the
sky. Moreover, the clustering does not change significantly, probably because the number of
excluded galaxies is not significant. But when we plot the fraction in case (1) we can see some
marked yellow zones with lower fraction (red is fraction=1, blue fraction=0) (Fig.6.4). This
means that galaxies with bad magnitudes are concentrated in concrete zones.

All this analysis only affects the dimmest galaxies, our slice m=20-21. LRG galaxies are
not affected for these selection effects. For the case m=20-21, we think that we should ex-
tract from our analysis all the bad zones traced by the error in magnitude which can bias the
analysis. This new mask can be obtained by extracting all the pixels that have a fraction of
“good” galaxies lower than 0.65. After removing the bad observational zones, the fraction
map becomes almost uniform. A fraction of 0.65 seems enough to remove all the bad zones
that can be seen in the figures.

In Fig.6.5 we compare the angular correlation wGG (top panel) and wTG (bottom panel)
for different cases. The black line represents our analysis presented in previous section, which
excludes bad photometry, suspicious colors or the cut in surface brightness, but it does not
exclude bad zones. We think that the adequate result (in red) should exclude the bad zones
(fraction < 0.65), while keeping the selection cuts. The green line shows the result when we
exclude the bad zones but we do not include any selection in galaxies. Finally the dotted line
shows the result when no selection effects or bad zones are taken into account. The green and
dotted line are very similar because they are tracing basically the same, no selection in galaxies.
This indicates that the area covered by bad zones is not large enough to change the correlation
(ie by cosmic variance). But we remark that both these results include galaxies that have
an unusually large magnitude error and may not belong to the slice in apparent magnitude
m=20-21. This could result in slightly deeper sample, which results in a larger depth and
a lower amplitude of clustering (which decreases with depth just because of projection effects).

As we can see in Fig.6.5, the amplitudes of wGG and wTG change as it was due some bias
in the amplitude of galaxy fluctuations. The relative change in wTG is roughly the squared
root of the relative change in wGG. We can use the relative bias in wGG to explain the
difference in cross-correlation wTG (ie between the red line and the black line on the bottom
panel). This prediction is shown as dotted red. When we eliminate the galaxies with errors
above 0.2, we are dropping out statistically the dimmest galaxies and this translates into
sallower survey, resulting in a larger amplitude of both wTG and wGG. This effect scales as
the selection function φ(z) for wTG and as its square, φ(z)2, for wGG, which agrees with the
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scaling that is measured. Thus, we believe that the difference between the black and the red
line is primordially due to this projection effect. The lesson learn is that one should be careful
when working with galaxies which are close to the limit of a given survey.

Figure 6.4: We plot the fraction of galaxies with error in the apparent magnitude r > 0.2 to the total
number of galaxies per pixel (blue=0, red=1)
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Figure 6.5: Top panel: Galaxy-Galaxy (GG) angular correlation function for different assumptions
when selecting the data (as indicated in the figure). Bottom panel: Galaxy-Temperature (TG) angular
correlation function with the same colors as top panel, in red dashed we plot the red line multiplied
by the linear bias obtained from the top panel GG (between black line and red line)





Chapter 7

Summary & Conclusions for ISW

The objective of our analysis in this part of the thesis was two fold. On one hand we
wanted to study in detail different methods for error analysis, in particular the comparison of
JK and MC methods. On the other hand, we wanted to check if we could confirm or refute
with higher significance the findings of the WMAP1-SDSS1 cross-correlation by Fosalba et al.
(2003). With an increase in area of a factor of � 3.7 in SDSS4, larger signal-to-noise and
better understanding of foregrounds in WMAP3, our new analysis shows that the signal is
robust. This is also in line with the first findings using optical (APM) galaxies by Fosalba &
Gaztañaga (2004). The cross-correlation signal in WMAP3-SDSS4 seems slightly larger than
in previous WMAP1-SDSS1 measurements which results in slightly larger values for ΩΛ (see
Fosalba et al. 2003 and Gaztañaga et al. 2006). This is probably due to sampling variance, as
the SDSS4 volume has increase by almost a factor of 4 over SDSS1. We find little difference
within the errors in the cross-correlation of WMAP1-SDSS4 and WMAP3-SDSS4 (see Fig.6.2).

The total S/N in Eq.(6.4) of the WMAP3-SDSS4 correlation is S/N � 3.6 for the
r = 20 − 21 sample and S/N � 3.0 for the LRG, which gives a combined S/N � 4.7,
assuming the two samples are independent. We have checked the validity of this assumption
by doing a proper join analysis where we include the covariance between the two samples. For
the join analysis we find a S/N � 4.4 with the first 2 dominant eigenvectors and S/N � 4.8
with 4 eigenvectors.

We find that a ΛCDM model with ΩΛ � 0.83 successfully explains the ISW effect for
both samples of galaxies without need of any further modeling. The best fit for ΩΛ for each
individual sample are very close. This is significant and can be understood as a consistency
test for the ΛCDM model. We also see that there is no significant difference between the
results obtained using SDSS DR4 and SDSS DR5.

The equation of state parameter appears to be very degenerate and it is not well con-
strained by current ISW data alone (see also Corasaniti et al. 2005 and Gaztañaga et al. 2006).
Upcoming surveys such as the Dark Energy Survey (DES, www.darkenergysurvey.org), with
deeper galaxy samples and more accurate redshift information should be able to break the
w − ΩΛ degeneracy and maybe shed new light on the the nature of dark energy.
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Figure 7.1: Two dimensional contours for ΩΛ andw, the DE effective equation of state. The inner black
contour limits the 1D marginalized 68% confidence region (Δχ2 = 1). The other contour correspond
to 95% limits (Δχ2 = 4).

7.1 Conclusions for error estimation

We have run a large number of pairs of sky map simulations, that we call MC2. Each
pair is a stochastic realization of an auto and cross correlation signal, that we input to the
simulation, what we call the fiducial model. We have focused our attention in testing the
galaxy-temperature cross-correlation, so each pair of simulations corresponds to a CMB and
a galaxy map. For the fiducial model we take the current concordance ΛCDM scenario. We
have run simulations for different values of ΩDE and have tested maps with different fractions
of the sky. We have concentrated on the case ΩDE = 0.7 and fsky = 0.1 which broadly
matches current observations and results in large errors (> 50%).

We are interested in error analysis/forecast and significance estimation. We calculate the
correlation between maps and use the different realizations to work out the statistics. We
then compare the results to the different approximations that have been used so far in the
literature. One of the approximations, that we call MC1, uses Monte Carlo simulations for the
CMB maps with a fixed (observed) galaxy map (ie with no cross-correlation signal or sampling
variance in the galaxies). We test a popular harmonic space prediction, that we shall call TH
(Theory in Harmonic space). We also test jackknife (JK) errors which uses sub-regions of the
actual data to calculate the dispersion in our estimator. Finally, we introduce a novel error
estimator in real space, that call TC (Theory in Configuration space). For both models and
simulations we have assumed that the underlaying statistics in the maps is Gaussian. Our
main results can be summarized as follows:

a) The number of simulations needed for numerical convergence (to within � 5% accuracy)
in the computation of the covariance matrix is about 1000 simulations (see §3.3.2).

b) Diagonal errors in w(θ) are very accurate in both TH and TC approximations for all
sky maps. This is shown in the bottom lines of Fig.4.5. For maps with different fraction
of the sky fsky < 1, the agreement is also good on small scales (θ < 20 deg) as can be
seen in Fig.4.6.

c) Even for a map as wide as 10% of the sky, the survey geometry starts to be important
for errors in the cross-correlation above 10 degrees. This is shown in simulations as a
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sharp inflection that begins at 30 degrees in Fig.4.5 (solid line) . Our new TC method
predicts well this inflection, while the more traditional TH method totally misses this
feature.

d) If we only use one single realization for the galaxies (MC1) the error seems to be sys-
tematically underestimated by about 10% on all scales. This bias is expected as we have
neglected the variance in the galaxy field and the cross-correlation signal.

e) The JK errors do quite well within 10% accuracy on all scales, including the larger scales
where boundary effects start to be important (see triangles in Fig.4.5).

f) The dispersion in the error estimator (error in the error) for individual realizations is of
the order 20% (see Fig.4.7). This uncertainty is inherent to the JK method, because
one uses the observations (a single realization) to estimate errors. But it is also implicit
in other methods because our knowledge of the models is limited by the data and can
be thought of as a “sampling variance error”.

g) S/N (see Fig.5.1) and parameter estimation (see Fig.5.5 and Table 5.1) are equivalent
when we do the analysis in configuration and harmonic space. This was expected for all
sky maps, but it is not trivial for partial sky coverage (see comments below).

h) It is possible to propagate errors and covariances from C� to w(θ) (harmonic to con-
figuration space) using Eq.(3.16). Starting from a diagonal (all sky) covariance matrix
in C�, the resulting covariance matrix in w(θ) is quite accurate as compared to direct
estimation from simulations.

i) The above propagation also works well for a map with a fraction fsky of the sky, by
just scaling the C� errors by a factor 1/

√
fsky respect to all the sky. This is surprising

because for fsky < 1 the covariance matrix in C� is no longer diagonal (see Fig.4.2)
and the actual measured C� errors in simulations do not simply scale with 1/

√
fsky

(see Fig.4.9). Thus, Eq.(3.16) should not be valid. We believe that this works because
the two effects compensate. There is a transfer of power from diagonal to off-diagonal
elements of the covariance matrix which for the scales of interest (smaller than the
survey area) seems to corresponds to a rotation that somehow does not affect the final
errors from Eq.(3.16).

j) If we want to use the popular TH approach in Eq.(3.14) with fsky < 1 we need to bin the
C� data in multipole bands of width Δ�. The binned spectrum has a diagonal covariance
when Δl is large enough and the error in the binned spectrum approximately follows
Eq.(4.3).

k) When the errors are large (i.e., for partial sky coverage and ΛCDM models with not so
large ΩDE) there is a significant bias in the distribution of the recovered best-fit values
of ΩDE, as shown in Fig.5.6. This is because of the non linear mapping between ΩDE

and the amplitude of w(θ).

l) S/N forecasts for future surveys, shown in Fig.5.2 and Table 5.2, strongly depend on the
fiducial model used. For example, an all-sky survey with broadly distributed sources
around a median redshift zm = 1 and ΩDE = 0.8 can detect the ISW effect with a
S/N� 11.

What method should be used when confronted with real data? Running realistic simula-
tions seems the best approach, but is very costly because we need of order 1000 simulations
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for each model we want to explore. The theoretical modeling of errors seems quite accurate
and is much faster to implement. The main advantage of the JK approach is that the errors
are obtained from the same data in a model independent way. This is important because real
data could surprise our prejudices and also because, in the ISW case, the errors are very large
and the data can accommodate different models.

7.2 Conclusions for real data

As an example, consider the analysis presented in Chapter 6 where we cross-correlated
the SDSS-DR4 galaxy with the WMAP3 CMB anisotropies. Using the JK approach with
w(θ) they estimate a S/N � 3.6 for the r = 20 − 21 sample, which has a mean redshift of
zm � 0.33. These numbers are high compared with the values in Table 5.2 for zm = 0.33 which
for fsky = 0.13 gives a low S/N � 2, even for ΩDE = 0.8. The dominant contribution to the

S/N in Table 5.2 scales as CTG
� /

√
CGG

� (ie see Eq.(5.4)) and is therefore independent of bias,

but depends on σ8. We have noticed that in fact the actual measured values of CTG
� /

√
CGG

�

in the SDSS DR4-WMAP3 maps are almost a factor of 2 larger than the values in the con-
cordance ΩDE = 0.8 (σ8 = 0.9, n = 1, Ων = 0, ΩB = 0.05, h = 0.7) model. This explains the
discrepancy in the S/N and illustrates the danger of blindly using theoretical errors that are
model dependent. The discrepancy of the concordance model with the SDSS4-WMAP3 mea-

sured values of CTG
� /

√
CGG

� is not very significant once we account for sampling errors (less

than 3-sigma), but it could be an indication of new physics that make the P (k) normalization
higher than the concordance model, ie deviations in σ8, spectral index n, neutrinos Ων, etc,
away from the fiducial model we are considering.

Also note, that there are systematic effects discussed in §6.3 that can bias the amplitude
of the cross-correlation measurements. The biases can sometime be as large as the sampling
errors which could help reducing the significance of the discrepancies with the LCDM model.

We have also shown that it is possible to use the other theoretical models (ie TC and
TH) to make model independent error predictions from observations. Contrary to all other
methods, the JK approach does not assume Gaussian statistics, but its accuracy could depend
on the model or the way it is implemented (ie shape and number of sub-regions). We conclude
that to be safe one needs to validate the JK method with simulations, but there is no reason
priori to expect that this method is inaccurate.

In summary, we have presented a detailed testing of different error approximations that
have been used in the literature, both in configuration and harmonic space. Contrary to some
claims in the literature (see Introduction), we show that the different errors (including the JK
method) are equivalent within the sampling uncertainties. By this we mean not only that the
error and covariance are similar but also that they produce very similar signal-to-noise (S/N)
and recovery of cosmological parameters.


