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Study site 
The Breitenbach is an unpolluted first-order stream in Hesse (West Germany), 100 km 

north-east of Frankfurt (51 °N) which rises about 350 m a.s.l. in woodland (see Fig. 7 in chapter 

1). The stream is 4.2 Km long and flows into the river Fulda. The streambed surface area is 

3173 m .̂ The mid to lower reaches (studied here) flow predominantly through grassland with 

short shadier reaches flanked by alder {AInus glutinosa), willow (Salix) and hazel {Corylus 

avellana) (Cox, 1990a). The stream catchment is forested by Fagus sylvatica and Pinus 

sylvestris. The catchment geology is dominated by bunter sandstone resulting in low ion 

concentration in stream water (conductivity 140-190 nS cm'\ Ca *̂ 16-18 mg L'\ Mg^''2-5 mg 

L"̂ ) (Marxsen et al. 1997). Mean discharge was 26 L s'\ The average pH of the stream was 

7.1 with low levels of dissolved nutrients (SRP 20-45 ng L'\ NO3-N 600-1300 ^g L'̂ ) (Marxsen 

etal. 1997). 

Study site in the Breitenbach. 
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Ectoenzymatic activities In epilithic biofilms of the 
Breitenbach 

Abstract 
The activity of the extracellular enzymes ß-glucosidase, ß-xylosidase, phosphatase, and 
aminopeptidase were measured on ttie epilithic biofilms of the Breitenbach. Vmax values for 
the four enzymes were higher in the open, higher water velocity site (A), than in the open, low 
water velocity site (B) and the forested site (C). The higher algal biomass accumulated at site 
A might provide a higher substrate availability enhancing the hydrolytic capacity of ttie 
heterotrophs. At site C the high polysaccharide degradation capacity might result from the 
important input of leaf fall during the study period (October-November 1995). On average, 
tumover times of substrate hydrolysis (Tt) for the four enzymes were from highest to lowest: 80 
hours (ß-xylosidase), 19 hours (phosphatase), 17 hours (ß-glucosidase) and 5 hours 
(aminopeptidase) expressing the slow recycling of hemicellulosic compounds in contrast to the 
fast utilization of proteinaceous compounds. The Tt for the phosphatase activity was higher 
than that measured for Mediterranean streams. 

Introduction 

High extracellular enzymatic activity and bacterial biomass were found in sediments of 

the Breitenbach (Marxsen 1988, Marxsen and Witzel 1990, Marxsen and Fiebig 1993), since it 

is an important habitat for organic matter processing. However, in some stretches the 

streambed of the Breitenbach is covered with small stones. Extracellular enzymatic activity 

may also occur on the stones also contributing to the degradation of the organic matter of the 

stream. This study focus on the epilithic ectoenzymatic activities of the Breitenbach. 

Several environmental parameters affect the biomass accrual and activity of epilithic 

stream biofilms. Variations in the water velocity can influence biomass accumulation as well as 

nutrient uptake rate by tiie epilithic organisms especially in oligotrophic streams (Horner and 

Welch 1981, Stevenson 1984). Epilithic biomass and growth could also be influenced by light 

availability (Hill 1996), which would determine the availability of autochthonous organic matter 

for ttie heterotrophs. The input of allochthonous organic matter in low-order forest streams 

varies with the season becoming maximum during the leaf fall period (McDowell and Fisher 

1976). 

The objective of this study was to analyse the hydrolytic capacity of the epilithic 

community in this small unpolluted central European stream. To cover the different habitats 

found in this stream, and the possible diversity in organic matter input, three different sites, 

which differ In light, cun-ent velocity and allochthonous input, were investigated. The study 

period (autumn) involved a great input of leaves, especially at the forest site. 

The extracellular enzymes ß-glucosidase, ß-xylosidase, leucine-aminopeptidase, and 

phosphatase which are involved respectively in the degradation of polysaccharides, proteins 
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and organic phosphorus compounds were measured during autumn 1995. Vmax (maximal 

velocity of the enzyme), Km (apparent Michaelis constant) and Tt (turnover time of substrate 

hydrolysis) were obtained for each enzyme by the kinetic approach (chapter 5). The epilithic 

community was studied by the use of artificial substrates (clay tiles, Sabater and Romaní 

1996). 

Materials and Methods 

Sampling 
Epilithic biofilm samples from the Breitenbach at its mid reach were collected in 

October 1995. Artificial substrates (clay tiles, 0.64 cm^ surface area, 1 cm high), which were 

glued on stream boulders and placed in the streambed six-to-eight weeks before sampling 

(chapter 3.1), were collected as epilithic biofilm samples. Three sites (A, B and C) located in 

the same stream stretch (Fig.1) which differ in water velocity (Schiltknecht cun-entmeter. Table 

1 ) and light availability were considered. 

Fig. 1. Map of the Breitenbach and the sampling sttes. 
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Site A was open and with a mean water velocity of 0.219 m s'̂  (Table 1). Site B was 

also open but water velocity was the lowest (Table 1). Site C was covered by riparian canopy; 

cun-ent velocity was between that of site A and B but highly variable (Table 1). The experiment 

was carried out in autumn 1995 and therefore there was a considerable input of leaves to the 

streambed. Tiles from the three sampling sites were collected for enzymatic activity, 

chlorophyll-a analysis and bacterial counting. All activity measurements were perfomied 15-30 

minutes after sampling. 

TABLE 1. Current velocity and canopy of the Breitenbach at 
each sample site. Current values are means and standard 

Site Current (m s'̂ ) Canopy 

A 0.219(0.055) open 
B 0.125 (0.035) open 

0 0.191 (0.091) forested 

Enzyme assays 
Enzymatic activities were detennined using MUF (4-methyl-umbelliferyl)-substrate 

analogues (fi-om Signra) for the measurement of ß-glucosidase, ß-xylosidase, and 

phosphatase, and Leucine-MCA (L-leucine-4-methyl-coumarinyl-7-amide from Calbiochem) for 

the measurement of leucine-aminopeptidase. Tiles were incubated in a shaking bath at natural 

stream temperature (8°C) in the dark for two hours. For each enzyme determination, 4 ml of 

fluorogenic substrate at 0.01, 0.025, 0.05, 0.1, 0.2, 0.3, 0.5 mM concentration was added to 

each tile. A longer incubation period (2 h) and higher volume of incubated MUF-substrate 

solution (4 ml) were used here ttian for the Mediterranean streams, since a lower activity level 

was suspected In these biofilms from such a small, oligotrophic, central European stream. 

Four replicates and one blank were considered for each concentration and each site. Filtered 

sterilized stream water (0.2 um, Sartorius) was used for dilutions of fluorogenic substrates. 

Reaction was stopped by adding 1 ml of 0.05 glycine buffer pH 10.5 to each tube. The 

fluorescent product (MUF or MCA) released by enzyme activity was measured using a Kontron 

SFM25 spectrofluorometer at 455 nm emission under 365 nm excitation. Quantification was 

achieved by calibrating the spectrofluorometer with a standard alkaline solution of MUF or 

AMC. Enzymatic kinetic parameters, Vmax (maximal reaction velocity) and Km (apparent 

Michaelis constant), were calculated by non-linear regression analysis using the Enzfitter 

program for the PC, version 1.05 (Leatherbarrow 1987). The tumover time (Km/Vmax ratio) 

was also calculated after transformation of the parameters to the same units. 
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Algal biomass, bacterial density, and SEM observations 

Chlor*n3hyll-a was extracted from the tiles (10 replicates for each site) following the 

procedures described In chapter 2. Absorbance was measured In a Kontron 

spectrophotometer (Uvlkon 810). The ratio of chlorophyll to carotenoids and/or chlorophyll 

degradation products (OD430/OD665 ratio, Margalef 1983) was also calculated. The algal 

composition was determined under optical microscope after sonication of the tiles (120 sec). 

Tiles for bacterial counting were preserved in 2% formalin until the enumeration assay. 

Bacterial enumeration was achieved by direct counting of each tile (5 replicates for each site) 

following the procedures described in chapter 2. Samples were counted on a fluorescence 

microscope (Polyvar) under 1250 magnification. Samples for SEM observations were fixed 

with 2.5% gluteraldehyde In phosphate buffer pH 7.5 and stored in the dari< until observations 

were made. Sample preparation for the SEM is also described in chapter 2. 

The possible differences in chlorophyll-a and bacterial cell density between the three 

sampling sites were analysed using an analysis of variance (ANOVA). 

Results 

Mainly diatoms of the genera Navícula, Achnanthes, Gomphonema, Cymbella and 

Diatoma composed the algal community of the epilithic biofilms growing on the artificial clay 

tiles in the Breitenbach (Fig. 2). The epilithic bacteria were diverse in their morphologies (Fig. 

3). 80-85% of the bacterial cells were small cocci and coccobacilli (0.4-1.2 jim diameter). 9-

13% were rod-shaped bacteria (2-3 jim length) and 1.5-4% were filaments (4-8 ^m length). 

Filamentous cyanobacteria were also observed under the fluorescence microscope. 

Chlorophyll-a density was significantly higher for the epilithic biofilms from site A than 

from sites B and C (ANOVA, p<0.00001. Fig. 4a), being not significantly different between sites 

B and C (ANOVA, p=0.62). The OD430/OD665 ratio was around 2 for the three sites (Fig. 4a). 

Bacteria! density was on average 6.5 10' cell cm"̂  (Fig. 4b) and no significant 

differences were found between the three sampling sites (ANOVA, p=0.27). 

ß-glucosidase activity was similar at sites A and C but a higher afñnity for the substrate 

(lower Km) was observed at site C (Fig. 5a). At site B, the lowest Km (highest affinity for the 

substrate) and lowest Vmax were measured for ß-glucosidase. The turnover time of substrate 

hydrolysis was 17.4 hours on average being highest at site A (32.1 h. Fig. 6). 

For the ß-xylo8idase activity, the highest Vmax and Km values were measured at site 

A. The values at sHes B and C were lower and similar to each other (Fig. 5b). The Tt was 79.9 

hours on average being higher at sites A (116.3 h) and C (80.72 h) than at site B (Fig.6). Tt for 

this enzyme was the highest (the slowest in recycling). 
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Fig. 2. SEM photographs of the colonized ceramic tiles in the Breitenbach, a) Diatom cells 
(Diatoma, Achnanthes) and bacteria which composed the epilithic biofilm, b) Some areas of the 
tiles were totally covered by bacteria cells, c) General view of bacterial and algal community. 
Pennate diatoms (genera Cymbella, Gomphonema, Navícula, Achnanthes) were the majority 
of the diatoms observed, d) and e) The diatoms were covered with filaments and mucilagenous 
material, f) Approach to the bacterial community. 
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Fig. 3. Fluorescence microscope photograph of a DAPI stained bacterial preparation from the 
Breitenbach epilithic biofilm (growing on tiles). A great diversity in shapes of the rod-shaped 
bacteria can be observed. 

Phosphatase activity shoviied the highest values of Vmax and Km at site A, decreasing 

to sites B and C (Fig. 5c). The Tt was similar at the three sites (mean= 19.3 hours, Fig. 6) and 

slightly higher (slower recycling) than the mean Tt for the ß-glucosidase activity. 

Leucine-aminopeptidase activity (Fig. 5d) was higher at site A than B or C, the Km 

being similar at the three sites. The Tt for this enzyme was the lowest (mean= 4.9 hours, Fig. 

6) and similar at the three sites. 

Discussion 

The algal flora which grew on the artificial substrates, and the chlorophyll-a density 

accumulated, were similar to those observed on natural stones of the Breitenbach (Cox 1990a 

and b). The bacterial density on the epilithic biofilms was also similar to values obtained from 

this stream (Freeman et al. 1993). Therefore, the clay tiles were shown to be reliable for 

allowing the colonization of the epilithic biofilm in the Breitenbach. 

The epilithic ectoenzymes in the Breitenbach were similar to values reported from 

epilithic biofilms in low-order streams (Chapell and Goulder 1994a and 1994b) but slightly 

higher than those obtained from dark grown biofilms (Freeman et al. 1993). 
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Fig. 4. Algal bionnass and bacterial density on the epilithic biofilms of the Breitenbach growing 
at sites A, B and C (described In the text and in Fig. 1). a) Chlorophyli-a density and the 
OD430/OD665 ratio, b) Bacterial cell density. Means + standard en-ors (vertical lines) are 
shown (n=10 in a, n=5 in b). 

The three habitats (sites A, B, C) under consideration differ in their epilithic 

ectoenzymatic activities (Fig. 5) indicating that there are differences in organic matter input. 

The specific microenvironment found at each site could be reponsible for such differences in 

heterotrophic metabolism. The higher water velocity as well as the lack of riparian vegetation 

(high incident light) at site A could provide favourable conditions for growing algae at this site 

(higher chlorophyll-a density, Fig 4a) in contrast to sites B and C, enhancing the ectoenzymatic 

activities at site A (Fig. 5). Although less biomass accumulation has been observed as a result 
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of shear stress (Lau and Liu 1993), water velocity may increase growtli by increasing tlie 

transport of nutrient from tlie stream water to the biofiim, through biotic and abiotic uptake 

processes (Whitford and Schumacher 1961, Pfeifer and McDiffett 1975, Lock and John 1979), 

which could be importent for biofilms living at low nutrient concentrations (Homer and Welch 

1981). The positive effect of light on growing algae has been described elsevirtiere (Sumner 

and Fischer 1979, HU11996), especially for those sites where light may be limiting the primary 

production (Guasch and Sabater 1994). The higher autochthonous organic matter input at site 

A might provkle the heterotrophs with "high quality" organic matter (Haack and McFeters 

1982b, Kaplan and Bott 1989) such as polymeric substrates for ectoenzyme hydrolysis (Jones 

and Lock 1993). An increase in fH)lysaccharidic ectoenzymatic activities along with chlorophyll-

a and photosynthette activity has been observed in epilithic bk>films (chapter 8). 

a ß-gluco8ldase 
Vmax 
Km b ß-xylosidase 

phosphatase d Leu-aminopeptidase 

Fig. 5. Ectoenzymatic activities on the epilithic biofilms of the Breitenbach growing at sites A, B 
end C. Vrrax Oed bars) and Km (right, thinner bars) are shown. Values are means + standard 
errors (vertical lines), a) ß-glucoskJase activity, b) ß-xylosidase activity, c) Phosphatase 
activity, d) Leudne-amlnopeptidase activity. 
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Aminopeptidase activity might be also enhanced by the release of proteinaceous substances 

by algal cells (Hoch et al. 1996). Degradation of senescent algal cells can also be a source of 

proteinaceous compounds (Jorgensen 1987) as has been observed in the photic zone of a 

lake during phytoplankton bloom and breakdown (Halemejko and Chróst 1986, Middelboe et 

al. 1995), and in sea water (Hollibaugh and Azam 1983). The higher phosphatase activity at 

site A may also be affected by the contribution of algal phosphatases (Janssen et al. 1988). 

120 

1 I I r 
ß-glucosidase ß-xylosidase phosphatase aminopeptidase 

Fig. 6. Turnover time of substrate hydrolysis for the four enzymes analysed on the epilithic 
biofilms of the Breitenbach growing at sites A, B and C. 

The lower ectoenzymatic activities at site B (open, low current) in comparison to site A 

might be a result of having a lower algal biomass (Fig. 4a). As explained above, the lower 

cun-ent velocity in such an oligotrophic stream could affect the algal growth, however, the lower 

chlorophyll-a density at site B could be further affected by macroinvertebrate grazing which 

was observed only on the tiles at site B and could diminish algal biomass (Hart 1992, Wellnitz 

et al. 1996). At this site a similar organic matter source to be used by the heterotrophs than at 

site A is suggested, since a similar value for the ß-xylosidase:ß-glucosidase ratio was obtained 
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(Table 2). However, the lower polysaccharide degradation capacity (Table 2) and lower Km 

values (higher affinity) expressed the lower amount of autochthonous input. 

TABLE 2. Polysaccharide degradation capacity (ß-glucosidase plus ß-xylosidase Vmax) and 

Polysaccharide degradation capacity ß-xyiosidase:ß-glucosidase 

(nmol MUF cm"̂  h'̂ ) ratio 

Site A 19.64 0.599 

Site B 8.07 0.559 

SIteC 16.48 0.196 

In contrast, at site C (forested) the lower ectoenzymatic activities (Fig. 5) might be a 

result of the low incident light due to the canopy cover which caused lower chlorophyll-a 

density (Fig. 4a) and therefore lower autochthonous input. However, ß-glucosidase activity at 

site C was as high as at site A (Fig. 5a). Although a lower algal biomass was accumulated at 

site C, the utilization of organic compounds from the leaves accumulated on the streambed is 

suggested since the collecting of the epilithic biofilm samples was made just after the leaf fail. 

The higher ß-glucosidase activity at site C could be a result of the use of leaf leachates (e.g. 

polysaccharides) (Sinsabaugh and Linkins 1988) which are released as water-soluble 

compounds during the initial stages of leaf decay (Lock and Hynes 1976, Boulton and Boon 

1991). The lower Km (higher affinity) for the ß-glucosidase at site C than at site A could 

indicate that the input of substrates for this enzymatic activity is a pulse source at site C but a 

constant source at site A (algal material). The polysaccharide degradation capacity at sites A 

and C vt^s similar (Table 2) but the difference in ttie ß-xylosidase:ß-glucosidase ratio (Table 2) 

indicates the use of a different organic matter source. Further experiments should be planned 

at the forested site during other periods of tiie year. 

Tumovw time of substi^te hydrolysis was on average 80:19:17:5 hours for ß-

xylosklase:phosphatase:ß-glucosidase:aminopeptidase (Fig. 6) indicating slower recycling for 

the polysaccharides than for the proteinaceous compounds. Values for the three sites were 

similar except for the higher Tt (slower recycling) for ß-glucosidase at site A and for ß-

xylosidase at sites A and C which might result from a greater availability of substrates for tiiese 

enzymes at these sites. These average turnover times were similar to tiiose measured for the 

epHithic btofMms In Riera Major stream (chapter 5) but significantiy higher for the phosphatase 

activity In the Breitenbach. The slower recycling of organic phosphorus materials in contrast to 

the recycling of the proteinaceous materials (low Tt) could indicate tiiat nitrogen is a more 

limiting corr^xjund tiievi phosphorus for ttie heterotrophs living in the Breitenbach stream 

MofVms. 
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8.1. Metabolic changes associated with biofllm formation in an 
undisturbed IVIediterranean stream 

Abstract 
Respiratory activity (ETS), ectoenzymatic activity (ß-glucosidase and ß-xylosidase) and 
photosynthetic activity (H^̂ COs incoiporation) in the biofllm were measured in a shaded stream 
during a colonization sequence (43 days) on artificial substrates (unglazed clay tiles) and 
compared with older (aged) tiles. In the first five days bacterial densities and ectoenzyme 
activities showed a sharp increase. After two weeks, algal density, chlorophyll-a and productivity 
increased moderately. Chlorophyll-a did not reach similar values to those of the aged biofilms 
until the last day of colonization. Photosynthetic activity seemed to be relevant to the 
heterotrophs metabolism during substrate colonization, as could be deduced from the significant 
correlation between ß-glucosidase and H^̂ COa incorporation, algal cell densities, and 
dilorophyll-a. Respiratory activity (ETS) decreased in the older biofilms, accordingly to their 
higher algal and bacterial density. Younger biofilms (up to 8 days old) showed higher ETS 
activity per cell, indicating a fast response of microorganisms to substrate availability. 

Introduction 

Some of the biofilm properties (polysaccharide matrix development, organic matter 

retention, ion-exchange mechanisms, nutrient diffusion) can change depending on its type or 

age. It has been shown that the biomass accrual related to biofilm age affects photosynthesis 

(Boston and Hill 1990, Guasch et al. 1995), as well as gas and nutrient diffusion (Mulholland et 

al. 1991) that occurs inside the biofilm. Other studies have highlighted that river biofilms appear 

remarkably resilient to organic matter depletion from the overlying waters, in part because of the 

function of carbon reserve of the polysaccharide matrix (Freeman and Lock 1995). Colonization 

of biofilm can be described as a process of several overiapping stages (Stock and Ward 1989) 

resulting from the progressive response of the organisms to imposing physical factors (light, 

temperature, water cun-ent) and nutrient availability. The evolution of biofilm metabolism have 

been monitored throughout the colonization of a bare substrate to determine whether a simple 

biofilm has a differential metabolism than another older, more complex biofilm. This study has 

been conducted in an oligotrophic, undisturbed stream during a period of low light availability 

(Guasch and Sabater 1994) to highlight the possible role of the primary producers in such an 

unfavourable situation for the algae. The main objective was to show that a progressive ageing 

and complexity of the biofllm would result in the respective metabolic variations in algae and 

bacteria. 
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Materials and methods 

study sHe 

The experiment was carried out in Riera l^iajor, an undisturbed second-order 

Mediterranean forest stream (chapter 3). The physical and chemical characteristics during the 

period of study (13 June to 26 July 1994) are summarized in Table 1. Light inradiance reaching 

the river bottom was very low. on the average ca. 20 jimol photons m"' s ' \ Very little 

precipitation was recorded over the sampling period, as is usual in Meditenranean streams 

during summer (Sabater et al. 1995). In this period water flow reached its minimum (12 L s ' l 

during mid July 1994). 

TABLE 1. Physical and chemical characteristics of Riera Major stream 

Mean (n=11) SD 

Temperature ("C) 14.04 1.26 

Incident light (nmol m'̂  sec 21.83 13.73 

pH 8.01 0.20 

Alkalinity (meq r ') 2.23 0.09 

Conductivity (jiS cm'^) 224.25 17.07 

Oxygen (mg r ' ) 8.81 0.85 

DOC (mg f ' ) 0.77 0.65 

Nitrate (^g r^) 276.6 50.65 

Ammonia (^g r^) 10.78 4.48 

SRP(ngr ) 7.44 4.25 

Sample coIlBctíon 

Small, unglazed clay tiles (0.64 cm' of surface area and 1cm height) were glued using 

colouriess silicone onto flat surfaces of natural boulders, and immersed in a stream riffle stretch 

to allow colonization. Tiles were randomly collected at 0.1,2,3,4,7,9.14,21,30 and 43 days 

of colonization. Tiles were gently rinsed of coarse debris and placed in sterile glass tubes with 

stream water and maintained cold (on ice), in the dark, during transport. Tiles for bacterial 

counts were fixed with 2% fomrialin. Samples for SEM observations were fixed with 2.5% 

glutaraldehyde In phosphate buffer pH 7.5 and stored in the darl< until SEM observations. Cell 

der«ities (bacteria and algae), enzymatic and respiratory activities, and primary production and 

chlorophyll-a were measured on the colonizing tiles. The same measurements (except cell 

dmsttles) were also perfonmed using six to twelve week old tiles located at the same site. From 

prevkxjs tests. It was mtabiished that six weeks was the minimum time to allow the development 
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of an aged community in Riera Major, i.e. one that strongly resembled the natural ones in 
species density and community structure. 

Light was measured with a LiCor undenwater cell immediately above the colonizing 
surfaces. Water temperature, pH, alkalinity, conductivity and dissolved oxygen were also 
measured at each sampling date. Water dissolved inorganic carbon (DIC) was calculated from 
measures of alkalinity, temperature, pH and conductivity using the computer program WATEQX 
(Van Gaans 1989). Water was filtered with precombusted Whatman GF/F filters to analyse 
dissolved inorganic nutrients (nitrate, ammonia and soluble reactive phosphorus), as well as 
DOC. Three replicates were perfomied for each analysis following the procedures described in 
chapter 2. 

Bacterial density, algal biomass, and SEM observations 
Bacterial densities (DAP! stain, epifluorescence microscopy) and algal densities 

(inverted microscxspe) were estimated in triplicate. Chlorophyll-a was measured separately in 

triplicate. SEM was used to follow the colonization sequence on the tiles. All measurements 

were detemriined following the procedures described in chapter 2. 

Metabolism measurements 
Extracellular ß-D-glucosidase and ß-D-xylosidase potential activities were determined in 

tiles (3 replicates) and one formaldehyde-killed control. Two blanks of filter-sterilized stream 

water were also incubated for each enzyme. The Electron Transport System (ETS) activity was 

measured using three replicate tiles and one killed-control tile. ETS activity was also expressed 

in a cell basis by summing bacteria and algal cells (chapter 2.2). Primary production was 

measured using three replicate tiles, one killed-control tile and one dark-incubated tile. All 

measurements were determined following the procedures described in cdiapter 2. Even though 

ambient light was below saturation, the saturated light conditions (150 lamol photons m'̂  s'^) was 

used for the ^̂ C incorporation assay since this is sometimes experienced by the summer algal 

communities in Riera Major, since sunflecks through the forest canopy (Guasch and Sabater 

1995) provide pulsing light energy. 

Data analyses 
Significant differences between the colonization and the aged tiles were analyzed through a 

one-way analysis of variance (ANOVA). Con-elation analysis of the colonization and 

environmental data set was perfomied using product-moment Pearson coefficient. 

Results 

Bacteria were the eariiest colonizers of the bare tiles (Fig. la, b, and c). Bacteria showed a 

first phase of rapid occupation (up to day 5), followed by a slower increase, although cell 

densities continued to rise (Fig. 2a). No dear succession of bacterial forms was apparent during 
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the colonization period. Rod-shaped and small coccoid bacteria constituted the characteristic 

population throughout. Algal colonization followed a similar two period-pattem to the bacteria, 

but the magnitude and respective time length differed when compared with results observed for 

bacterial density. The density of algal cells remained very low until day 22, and reached the 

highest values during the last three weeks of the experiment (Fig. 2b). Algal remains (such as 

empty diatom frustules and dead cells) were common in the eariier days, but the density of 

pioneer taxa increased from day 14, These were mainly diatoms of the genus Achnanthes (Fig. 

1d) and small cyanobacteria filaments (Fig. 1a). Progressively some green algae {Ulothnx) as 

well as other diatom taxa (mainly from the genera Amphora, Gomphonema and Cymbella) were 

increasingly frequent (Fig. 1e and f). Chlorophyll-a increased from day 8 onwards, but it 

approached similar concentrations to those of the aged tiles only on day 43 (Fig. 2c). 

Low levels of C uptake were observed until the last days of the experiment (Fig. 2d). 

H^̂ COa incorporation on the colonizing tiles was significantly different to that recorded in aged 

tiles, whfch however, was highly irregular. Incorporation of H^COa on the colonizing tiles was 

correlated with chlorophyll-a content (r=0.87, p<0.05. n=11) and density of algal cells (r=0.79, 

p<0.05, n=11). 

Ectoenzymatic activities are shown in Fig. 2e and f. The comparison between aged and 

colonizing tiles shows that the activity of both ß-glucosidase and ß-xylosldase Increased steeply 

during the first eight and five days of the colonization respectively. Thereafter, differences 

between the two kinds of tiles were not significant (p= 0.0699 and p= 0.1798 respectively). From 

day 8 onwards the ectoenzyme activities fluctuated maritedly both in the aged and in the 

cotonizing tHes. Their trends of change remained very similar, except at the end of the 

experiment, when ß-glucosidase tended to increase while ß-xylosldase decreased. Con-elation 

analysis revealed that ß-glucosidase and ß-xylosldase activities increased with bacterial density 

in the colonizing tiles (r= 0.84 and 0.6 respectively, p<0.05, n=11). ß-glucosidase shows a 

positive correlatkMi with algal density, H^̂ COa incorporation and chlorophyll-a concentration 

(r=0.66, 0.64 and 0.86, respectively p<0.05, n=11). In contrast, enzyme activities in the aged 

substrata did not show any significant con-elation either with the environmental or with the 

bk>k)gteal variables measured. 

ETS activity per unit area showed a steep increase at day 4, but from day 5 significant 

differences with the aged tiles were not found (Fig. 2g). ETS fluctuated both in the colonizing 

and in the aged «les. ETS was significantly correlated only to ß-xylosidase activity (r=0.8, 

p<0.05, n«11). When ETS activity per cell was considered (Fig. 2h) two periods of different 

activity were apparent. Up to day 8 there was a distinctly higher respiratory activity (5.19 +/- 3.64 

10'" ^g ceir^ h'' on average), which decreased during the last part of the colonization (average 

value of 1.29 +/-1.16 10"'° ng cell ' h"'). 
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600 5315 15kV SOum 

Fig. 1. Sequence of SEM photographs of the colonizing tiles, (a) Bacteria and filamentous 
cyanobacteria scattered on the substrate of a young biofilm (day 2). (b) EpHhemia (left) and 
Synedra (right) diatom cells partially covered by mucopolysacharide strips in day 3. (c) Web of 
mucopolysacharide strips covering the tile in the day 4. (d) Some cells of the diatom Achnanthes 
minutissima are apparent over the day 21 tile, (e) Abundance of A. minutissima and Amphora 
ovalis (on the left) in day 30. (f) Green algae (upper filament) and rare diatoms (Gomphonema 
acuminatum) occurred scarcely at day 30. 
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Discussion 

Bacteria colonized the bare tiles rapidly but algae were far slower to colonize (Fig. 1a, b, 

and c). Algal activity remained very low during the whole experiment, even though chlorophyll-a 

vras noticeable on day 9. Low light availability clearly slows algal colonization (e.g. Hill and 

Knight 1988). In fact only the chlorophyll-a values of day 43 (Fig. 2c) were of the same order as 

those regularly occuning in Riera Major during summer (Guasch and Sabater 1994). The 

apparent predominance of heterotrophs over autotrophs during the colonization period is not 

uncommon in low order, light-limited streams of temperate regions (Minshall et al. 1983). The 

initially high heterotrophic character of the biofilm is evidenced by a quicker increase in the 

ectoenzymatic activities than in the algal activity. 

Ectoenzymatic activity became similar in the colonizing and in the aged tiles in only six 

days. Polysaccharides (both from plant litter and algae) constitute a significant portion of DOM in 

aquatic systems (Münster and Chróst 1990), and are therefore a major source of carbon and 

energy for epilithic bacteria (Kaplan and Bott 1989). The predominance of cellulose rather than 

hemicellulose as a carbon source can be inferred from the higher activity of ß-glucosidase than 

ß-xylosidase. This was the characteristic both in the colonizing and aged tiles. Their activities 

respectively reflect, at least in part, the use of autochthonous (algal) or allochthonous (plant) 

carbon material by heterotrophic bacteria. The possibility of a direct relationship with the 

allochthonous organic carbon was not confimned by any correlation between the ectoenzymatic 

activities and the stream DOC concentration. 

Ectoenzyme activities were highly correlated with microbial and algal biomass and primary 

production, ß-glucosidase activity in the colonizing tiles was correlated to algal-related variables, 

suggesting that algal extracellular products were being used by ttie bacteria. Even though ß-

glucosidase mediates the hydrolysis of cellobiose both from allochthonous plant and algal 

celluloses, a preeminence in the degradation of autochthonous algal material could be assumed, 

ß-glucosidase activity increased during colonization, as well as bacterial and algal biomass, 

while ß-xylosidase activity was seen to decrease, ß-glucosidase and ß-xylosidase followed the 

same pattern during the first 5 to 8 days of colonization, when the biofilm was still scarce in 

algae. Only when the autotrophic biomass and activity became apparent, did ß-glucosidase and 

ß-xylosidase follow different patterns. There was a significant conrelation between ß-glucosidase 

and algal chlorophyll-a when the last days of the colonization experiment (from day 15 to day 31 ) 

were considered separately. These results indicate the existence of a trophic link between the 

algae and the bacteria in an unfavourable situation for the photosynthetic activity. Similar 

connections were observed during the decay of a phytoplankton bloom, when ß-glucosidase had 

the maximum activity (Chróst 1989). Also in light- incubated biofilms ß-glucosidase activity was 

strongly correlated with photosynthetic communities (Jones and Lock 1993). 

The higher ETS activity per cell was distinctive of the earlier colonized biofilms. Higher 

activities per cell have also been observed in disturbed biofilms, such as those affected by 

grazing or by a stomn-flow. A higher ETS activity per cell at the first days of colonization of bare 
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grazing or by a storm-flow. A higher ETS activity per cell at the first days of colonization of bare 

substrates has been also calculated for dark and light-incubated tiles in a similar experiment 

performed in spring (chapter 8.2). Blenkinsopp and Lock (1992) found that biofilms disrupted by 

flooding had higher respiratory activities than intact biofilms, concluding that nutrient diffusion 

and ectoenzymatic activity increased after disruption. The ETS activity per cell in the biofilms 

decreased when the algal chlorophyll-a became more important, and the associated biofilm 

complexity increased. This is possibly related to the resistance to diffusion exerted by the 

polysaccharides matrix (Burkholder et al. 1990), which is capable to detemiine oxygen gradients 

in aerobic biofilnns (Ramsing et al. 1993) and to modify nutrient transport through the biofilm 

(Stevenson and Glover 1993). 
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8.2. Effect of primary producers on the heterotrophic 
metabolism of a stream biofiim 

Abstract 

Algal biomass (chlorophyll-a) and metabolism (H^̂ COg incorporation) were significantly 
con-elated to heterotrophic metabolism (ectoen^matic activities) in stream biofilms. Regression 
lines obtained using dark-grown biofilms and light-grown biofilms suggest that the response of 
the heterotrophs is fóster in blofilms with low algal biomass accrual, and slows down when algae 
increase in their biomass. In light-grown biofilms a steeper slope of the regression lines was 
observed for the ß-glucosidase activity than for the ß-xylosidase activity. Also, ß-glucosidase 
activity per cell was higher in the light-grown biofiims. These observations indicated the 
preferential use for algal-related (cellobiosic polysaccharides) products by the heterotrophs, 
when they are available, than others allochthonous (xylobiosic polysaccharides). This was 
ojnfinrned by the similar slopes between ß-glucosidase and ß-xylosidase in dark-grown biofilms. 

Introduction 

Microbial sessile communities exposed to light in natural stream environments are 

associated with phototrophic organisms in a dense polymeric matrix (chapter 1). In epilithic 

biofilms, biomass accumulation, polysaccharide matrix development, difussion properties, and 

the input of allocthonous organic matter play an important role in biofilm metabolism (Lock 

1993), hindering the identification of bacterial-algal relationships. However, in marine and 

freshwater planktonic environments bacterial-algal relationships have been widely desoibed 

(Cole 1982, Bird and Kalff 1984, Le et al. 1994) and it is generally accepted that heterotrophic 

bacteria directly utilize products excreted by algae (Chróst 1981, Brock and Clyne 1984, Siuda 

et al. 1991). Only in específic conditions, an uncoupling of bacteria and phytoplankton has been 

observed such as in strong tidal mixing environments (Cho et al. 1994) and in a highly 

heterotrophic estuary (Findlay et al. 1991). In some oligotrophic streams a strong bacterial-algal 

link has been found (Stock and Ward 1989), while in others it was evidenced that allochthonous 

input was the main support for bacteria, thus masking a possible bacterial-algal relationship 

(Findlay et al. 1993). Several studies of epilithic biofilms conclude that algal exudates are a 

major carbon source for bacteria (Haack and McFeters 1982b, Geesey et al. 1978, Kaplan and 

Bott 1989). Furthermore, the development of algal biomass and the polysaccharide matrix 

increase the surface area which is available for bacterial colonization (Geesey et al. 1978). The 

link between bacteria and algae in the biofiim is possibly dependent on algal accrual (Sobczak 

1996). 

This study seeks to determine whether the algal growth affects the microbial metabolism 

in an epilithic biofiim, and whether biomass accrual might modulate this effect. Therefore, biofiim 

biomass and metabolism was analyzed during colonization (in dark and light conditions) to 
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monitor biomass intensively, from the bare substrate to a mature biofilm. The evolution in the 

use of organic material of algal origin by the heterotrophs was investigated through the 

variations in the activities of the ectoenzymes ß-glucosidase and ß-xylosidase (Chróst 1990), as 

well as in bacterial cell density, respiration activity (ETS) and photosynthetic biomass and 

activitiy. The experiment was perfomied in spring (maximum primary production of the epilithic 

community, Guasch and Sabater 1994) to maximize the possible effect of algae on the 

heterotrophic component of the biofilm. 

Materials and Methods 

study site 
The experiment was earned out in Riera Major, an undisturbed second-order 

Meditenanean forest stream (chapter 3). The physical and chemical characteristics during the 

period of study (13 March to 11 May 1995) are summarized in Table 1. Incident light was high 

(Table 1), and did not, therefore limit primary production (Guasch and Sabater 1995). Flow 

averaged 40 L s \ 

TABLE 1. Physical and chemical characteristics 
Major stream during the study period. 

of Riera 

Mean (n=12) SD 

Temperature (°C) 7.48 1.398 

Incident light (jxmol m"' sec"^) 812.9 217.2 

PH 8.18 0.12 

Conductivity (nS cm"̂ ) 193.6 9.68 

Oxygen (mg r^) 10.63 0.76 

DOC (mg T̂ ) 2.34 1.86 

DIC (mg r^) 21.24 0.79 

Nitrate (ng r^) 256.76 98.7 

Ammonia (ng P̂ ) 17.36 27.82 

Phosphate (fig 1"') 2.48 3.28 

Sample collection 

Small, unglazed ceramic tiles (0.64 cm' of surface area and 1cm height) were glued 

onto the flat surfaces of natural boulders using colouriess silicone, and immersed in a stream 

stretch where they were to be colonized. Half of the boulders were left in the stream stretch in 

natural conditions (light-incubated), while the rest were placed inside an immersed dark tube 
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(dark-incubated). The plastic (PVC) tube (1.20 m long, 25 cm diameter) was partially buried in 

the streambed so as to ensure similar hydrological conditions to those in the stream. Light 

irradiance inside the tube was below 0.2 ^mol photons m'̂  s ' \ At the same site, six-to-eight 

week old tiles were used as control (Sabater and Romaní 1996). Tiles from light, dark, and 

control conditions, were randomly collected at 0,1, 2, 3, 4, 7, 9,14, 21, 29, 44, and 59 days of 

colonization, and dark tiles were also collected at 81 and 105 days of colonization to assure total 

colonization in the dark. Tiles were placed in sterile glass vials with stream water and kept cold 

(on Ice) in ttie dark until their arrh^l in the laboratory. Samples for bacterial cell counting were 

fixed with 2% formalin. Cell numbers (bacteria and algae), ectoenzymatic activities, respiratory 

activities (ETS), chlorophyll-a, and primary production were measured in the light, datic and 

œntrol tiles at each sampling date. Algal and bacterial cell numbers in the control tiles were only 

measured on the first and the last sampling dates. All activity measurements were performed in 

the laboratory, two to three hours after sampling. 

Light was measured with a LiCor underwater cell situated immediately above the 

colonizing surfaces. Water temperature, pH, dissolved oxygen and conductivity were also 

measured on each sampling date. Filtered (precombusted Whatman GF/F filters) water samples 

(three replicates) were taken to analyse inorganic nutrients (nitrate, ammonia and soluble 

reactive phosphorus), as well as dissolved organic carbon (DOC) and dissolved inorganic 

carbon (DIC) following the procedures described in chapter 2. 

Bacterial density, algal blomass, and SEM observations 

Bacterial density (DAPI s^in, epifluorescence microscopy) and algal density (inverted 

microscope) were estimated in triplicate following the procedures described in chapter 2. 

Chlorophyll-a was measured separately in triplicate after extraction in 90% acetone (chapter 2). 

The ratio of chlorophyll to carotenoids and/or chlorophyll degradation products was measured as 

the quotient of the optical densities at 430/665 nm (Margalef 1983). SEM was used to follow the 

colonization sequence on the tiles in light and dark conditions. 

Metabolism measurements 

Extracellular enzyme potential activities (ß-D-glucosidase and ß-D-xylosidase), 

community respiration (ETS), and primary production (H '̂̂ COj incorporation) were assayed 

following the procedures described in chapter 2. For each assay, five replicates of each sample 

type (light-incubated, dark-incubated and control tiles) and two killed-control tiles (and two tiles in 

darkened tubes for primary production) were used. For the ectoenzymatic activities, two blanks 

of each MUF-substrate prepared with filter-sterilized stream water was also included. 

Data analyses 

Differences between control and light-grown biofims, and light and dark-grown biofilms 

were anal^^ed through an analysis of variance (ANOVA, two single factor with replicates). 
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Differences between control and light-grown biofilms, and light and dark-grown biofilnns after 

sixty days of colonization were analyzed by a f-test. Values in dark incubated biofiims taken after 

81 and 105 days of colonization were compared to values at day 59 by a f-test. Congelation 

analysis was perfomied using product-moment Pearson coefficient. Regression analyses were 

performed for ectoenzymatic activities to chlorophyll-a and H^̂ COg incorporation in light-

incubated. dark-incubated, and control tiles. 

Results 

Bacteria and diatoms (mainly the genera Cocconeis, Achnanthes and Cymbella) had 

accumulated on the light-incubated tiles after three weeks (Fig. 1a). This contrasted with the 

scarce amount of material accumulated on the dark-incubated tiles (Fig Id). At week eight, other 

algae appeared on the light-incubated tiles (Fig. lb) and a mucilagenous material developed 

among the bacterial community (Fig. 1c). On the dark-incubated tiles damaged diatoms and 

broken valves were observed (Fig. le and f). 

Bacterial cell density increased during colonization on both light and dark-incubated 

tiles. Significant differences between the two were observed after 9 days of colonization 

(ANOVA, p<0.0004) (Fig. 2a). However, differences in algal cell density between light and áark-
incubated tiles were significant firom the first day of the experiment (ANOVA, p<0.0001. Fig. 2b). 

Both bacterial and algal cell density on light-incubated tiles were not significantly different to 

those of the control tiles at the end of the experiment (Mest, p=0.66, p=0.64, respectively). 

Chlorophyll-a density increased drastically on light-incubated tiles after one week of 

colonization; whereas a very low chlorophyll-a accumulation was observed on dark-incubated 

tiles (Fig. 2c). Significant differences between light and dark were found after 5 days of 

colonization (ANOVA, p<0.0001). A significantly lower chlorophyll-a concentration and higher 

OD430/OD665 ratio were observed on dark-incubated tiles at the end of the experiment (Table 

2). Chlorophyll-a densities on light-incubated tiles were not significantly different from those on 

control tiles after three weeks of colonization (ANOVA, p>0.1), but values diverged at the end of 

the experinient (ANOVA, p=0.0006) (Fig. 2c). 

Photosynthetic activity on the light-incubated tiles increased steeply during the first 

week, and after 9 days it was not significantly different to that of the control tiles (ANOVA, 

p=0.058. Fig. 2d). H^COg incorporation was not detected in dark-incubated tiles. 

Light and daric ETS activity were significantly different after 9 days of colonization 

(ANOVA, p<0.0001. Fig. 2g). Differences were not significant between light and control tiles after 

29 days of cotonization (ANOVA, p=0.053). 

Light and darit ETS per cell was also calculated and a peak was observed after 3 days 

of cokmizatkxi. At the end of the experiment activity per cell was higher in light-incubated than in 

daric-incubated tiies (Fig. 2h). 
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Fig. 1. Sequence of SEM photographs on the light-incubated (a, b, c) and dark-incubated (d, e, 
f) tiles, (a) Bacteria and diatom cells {Achnanthes, Cocconeis) totally covered the light-incubated 
tiles by day 21. (b) Larger diatoms (Diatoma) appeared by day 59. (c) Bacterial cells were 
covered by mucopolysaccharide (day 59). (d) Few baterial ceils and diatoms were observed on 
the dark-incubated tiles by day 21. (e) Empty diatoms and broken frustules on day 59. (f) 
Mucilagenous material and detritus accumulated on the dark-incubated tiles (day 59). 
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ß-glucosidase and ß-xylosidase activities increased slowly during the first week of the 

experiment on both light and dark-incubated tiles. Afterwards, a higher increase was observed 

on light-incubated tiles (Fig. 2e and f), differences being significant after 7 days for ß-glucosidase 

(ANOVA, P<0.0001) and after 9 days for ß-xylosidase (ANOVA, p<0.0001). Ectoenzymatic 

activities on light-incubated tiles were not significantly diferent to those of the control tiles at the 

end of the experiment (ANOVA, p=0.45 for ß-glucosidase and p=0.62 for ß-xylosidase). 

However, light-incubated tiles had significantly higher ß-glucosidase and ß-xylosidase activities 

than dark-incubated tiles, but ectoenzymatic activities per cell were only significantly higher for 

ß-glucosidase (Table 2). 

TABLE 2. Mean bacterial and algal activities and biomass on dark-incubated and light-incubated 
tiles after slx^ days of colonization. Differences are expressed by the f-test probability.  

n 

LIGHT 

Mean SD 

DARK 

Mean SD 

Most 

probability 

Algae (cell 10= cm'^) 3 4.32 1.62 0.72 0.28 0.03 

Bacteria (cell 10" cm'^) 3 2.18 0.43 1.49 0.16 0.04 

ß-glucosidase (nmol MUF cm'^ h'̂ ) 5 12.41 3.23 4.93 2.26 0.002 

ß-xylosidase (nmol MUF cm'̂  h"̂ ) 5 6.96 1.31 4.91 1.08 0.01 

ß-glucosidase/cell (10-^° nmol ceir^ h"̂ ) 5 6.19 0.72 3.82 0.44 0.02 

ß-xylosidase/cell (10"'° nmol cell"' h'̂ ) 5 3.18 0.02 3.31 0.96 0.42 

Chlorophyll-a (^g cm" )̂ 3 3.97 0.42 0.78 0.12 0.003 

OD430/OD665 3 2.61 0.73 3.93 0.94 0.006 

H^̂ COa incorporation (figC cm'̂  h"̂ ) 5 14.13 3.04 0 0 0.0002 

ETS (ng fomnazan cm"̂  h"̂ ) 5 4.31 0.53 0.60 0.02 0.00005 

Ectoenzymatic, ETS activities and algal and bacterial densities in dark-incubated tiles at 

days 81 and 105 (not shown) did not differ significantly from those at day 59 (f-test, p>0.05) 

indicating that the microbial populations had reached the steady state in the dark. 

Ectoenzymatic activities were significantly related to chlorophyll-a and photosynthetic activity 

throughout colonization, fitting linear regressions (Fig. 3 and Fig. 4). Slopes and square 

con-elation coefficients for chlorophyll-a were the highest for the dark-incubated tiles. In this 

case, the regression lines were similar for ß-glucosidase and ß-xylosidase. For light-incubated 

and control tiles, regressions were not as significant, and a gentler slope was characteristic of 

the ß-xylosidase regression line. For H^̂ COg incorporation, the regression coefficients were 

significant for both enzymes for light-incubated tiles, but only for ß-xylosidase on the control tiles 

(Fig. 4). A lower slope for ß-xylosidase was also observed for light-incubated and control tiles. 

199 



chapter 8.2 effect of algae on heterotix>phs 

"I 1 r 
0.0 .4 .8 1,2 1,6 2,0 

Chlorophyli-a (|ig cm'') 

1 1 1 1 
D 1 2 3 4 5 

Chlorophyii-a (no cm"^ 

CONTROL 

ß-glu-0.23+5.72 Chi 
r^=0.86, p<0.0001 
ß-xyl=-0.50+5.24 Chi 
r^=0.76, p=0.0002 

ß-glu=0.18+1.34 Chi 
r^=0.50, p=0.01 
ß-xyl=-0.10+0.78 Chi 
r^=0.53, p=0.007 

ß-glu=2.07+1.05 Chi 
r^=0.41, p=0.024 

ß-xyl=0.57+0.63 Chi 
r^=0.57. p=0.004 

Chloroph^l-a (»tg cm''} 

Fig. 3. Linear regressions between the chlorophyll-a concentration and the ectoenzymatic 
activities on darlt-incubated, light-incubated and control tiles. The single points indicate the mean 
values oMained at each sample time (dark circles for ß-glucosidase and empty circles for ß-
x^o^dase). The regresión Imes, square corr^ation and the probability of F-Fischer after the 
ANOVA analysis eue shown for both ß-glucosidase activity (ß-glu) and ß-xylosidase activity (ß-
xyl). 
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ß-glu=-0.62+0.60 C-14 
r^=0.71. p=0.0006 
ß-xyl=-0.45+0.33 C-14 
r^=0.67, p=0.001 

ß-glu=2.68+0.39 C-14 
r^=0.19, p=0.15 
ß-xyl=0.10+0.32 C-14 
r^=0.50, p=0.010 

Fig. 4. Linear regressions between the pliotosynthetic activity (as H^̂ COa incorporation) and tlie 
ectoenzymatic activities on light-incubated and control tiles. The single points indicate the mean 
values obtained at each sample time (dark circles for ß-glucosidase and empty circles for ß-
xylosidase). The regression lines, square correlation and the probability of F-Fischer after the 
ANOVA analysis are shown for both ß-glucosidase activity (ß-glu) and ß-xylosidase activity (ß-
xyl). 

Ectoenzymatic activities were significantly related to chlorophyll-a and photosynthetic 

activity throughout colonization, fitting linear regressions (Fig. 3 and Fig. 4). Slopes and square 

correlation coefficients for chlorophyll-a were the highest for the dai1<-incubated tiles. In this 

case, the regression lines were similar for ß-glucosidase and ß-xylosidase. For light-incubated 

and control tiles, regressions were not as significant, and a gentler slope was characteristic of 

the ß-xylosidase regression line. For H^COa incorporation, the regression coefficients were 
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significant for both enzymes for light-incubated tHes, but only for ß-xyiosidase on the control tiles 

(Fig. 4). A lower slope for ß-xylosidase was also observed for light-incubated and control tiles. 

Discussion 

Light-grown biofilms accumulated higher algal and bacterial densities than were 

accumulated by dark-grown biofilms. Algae provide a greater surface area for colonization 

(Gessey et al. 1978, Hamilton 1987) than is provided by a bare substrate deprived of light. 

Bacteria feeding on algal material have favourable growth conditions (Gessey et al. 1978, Haack 

and McFeters 1982a and 1982b, Stock and Ward 1989). The development of primary produœrs 

In light-grown and control biofilms might also be responsible for the higher respiratory activity 

here, in contrast to that recorded in dark-grown biofilms (Blenkinsopp et al. 1991). Light-grown 

biofilms (both light-incubated and control tiles in this experiment) show higher degradation 

activities because of the higher availability of substrates (Blenkinsopp and Lock 1992). 

The increase in the ectoenzymatic activities along with chlorophyll-a and photosynthetic 

activity in dark, light and (x>ntrol blofilms (Fig. 3 and Fig. 4) would seem to confirm that algal 

material is used by the heterotrophic community (chapter 8.1). However, autotrophic biofiims 

showed a different response to increasing algal biomass and activity to that shown by 

heterotrof^ic biofilms (Fig. 3 and 4). Dark-grown btofilms respond rapidly to chlorophyll-a 

accumulation (higher slope of the regression line), while in light-grown and control biofilms, a 

higher increase of chlorophyll-a density is necessary to observe an analogous increase in the 

ectoenzymatk: activities. Therefore, the more algae aoximulated on the bioflim, the slower is the 

ectoenzymatte response of the microbial community. In light-grown biofilms, algae, bacteria and 

polysaccharide accumulation might act as an organic matter reservoir (Freeman and Lock 1995) 

toning down the respwise to increasing algal biomass. It could be argued that such differences 

between light-grown and dark-grown biofilms are an effect of differences in nutrient diffusion 

being limited in the thicker biofilms (Hamilton 1987). However, light and dark-grown biofilms 

were similar in their thickness, being botti rather thin. Furthermore, the shaking procedure used 

during the Incubatbn was designed to eliminate any diffusion barrier. 

The non-limiting light conditions for primary producers during the experimental period 

(Guasch and Sabater 1995) could be thought to be the only scenario where this heterotrophic 

behaviour in response to algae could be detected. But, the validity of this heterotrophic 

behaviour in Riera Major stream is stressed when analyzing other data from an analogous 

experiment performed in the summer (when the canopy limits light availability, chapter 8.1). In 

that case, a significant linear regression was found between ß-glucosidase activity and 

chk>rophytl-a (ß-glu=^.62+3.79 Chi, r^so.73, p^.0008). The slope under that conditions was in 

between those found for light and dari<-grovm blofilms in the cun-ent study. This was not 

unœcpected, since the chlorophyll-a concentration also ranged between that of the light and 

dark-fptywn bbfilms. 
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The different response of ß-glucosidase and ß-xylosidase activities to chiorophyil-a 

accrual and H^̂ COg incorporation was observed in both light-grown and control biofilms (Fig. 3 

and Fig. 4). The steeper slope found for ß-glucosidase than for ß-xylosidase reflects the 

preferential use of cellulose compounds, which are more easily and more rapidly degraded than 

hemicellulose compounds (Opsahl and Benner 1993, Boschkner et al. 1995, Lachke 1988). 

When available, bacteria preferentially use metabolites of phototrophs (Haack and McFeters 

1982a), such as cellobiosic molecules, cleaved by ß-glucosidase (Deshpande and Eriksson 

1988). In contrast, in dark-grown biofilms there would seem to be little choice between the two 

enzymes (similar response) since high quality organic matter input (such as polysaccharides 

released by algae) is scarce. The (low) chlorophyll-a accrual in dark-grown biofilms might be due 

to passive settlement of colonists (Steinman and Parker 1990). 

The highest values for ß-glucosidase activity per cell (Table 2) underlie the greater 

utilization of cellobiose molecules by the heterotrophic community In light-grown biofilms. Algal 

released polysaccharides in light-grown biofilms might enhance ß-glucosidase activity (Somville 

1984, Jones and Lock 1993). The ratio ß-xylosidase:ß-glucosidase in light incubated biofilms 

was ca. 0.5, a value commonly quoted for stream biofllms (Sinsabaugh and Linkins 1988, 

Chapell and Goulder 1994a). In contrast, in dark incubated biofilms, this ratio was nearly 1, 

which might be related to the higher input of hemicellulose polysaccharides with respect to 

cellulose in dark conditions. The accumulation of decaying algae in dark-grown biofilms is 

indicated by the high values of the OD430/OD665 ratio (Table 2) (Margalef 1983). 

We conclude that algal accumulation on the epilithic biofilm modulates the utilization of 

the organic matter by the heterotrophic community in three aspects: a) it increases the amount 

of organic substrate available for bacteria and therefore leads to a higher cleavage of 

macromolecules, b) it favours the use of cellobiosic as opposed to xylobiosic polysaccharides, 

probably due to the presence of high quality organic matter such as algal exudates, and c) it 

confers a slower response to the microbial community in relation to its own accrual. The low 

nutrient and DOC concentration in Riera Major stream water probably reinforces the capacity of 

the bacterial community to respond to changes in algal density and activity as has been 

observed in a laboratory prepared biofilm under low DOC conditions (Mun-ay et al. 1986). 

Additional research needs to be conducted so as to validate the applicability of this model to 

different environmental situations. 
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9. Measuring ectoenzymatic activities in IVIediterranean 
stream biofilms: general trends and relationship to the 
bacteria/algae biomass ratio 

Abstract 
Seasonal studies of biofilm ectoenzymatic activities performed in Meditenranean streams 
provided enough data to investigate the existence of any general behaviour for such activities. 
Statistical analyses of the data (Principal components, Pearson Correlation, Canonical 
Correlation) were used. From the physico-chemical parameters, conductivity and DIC 
(dissolved inorganic matter) were mostly responsible for ectoenzyme variability, while biofilm 
chlorophyll-a density was the most relevant biological parameter, ß-xylosidase was more 
closely related to the allochthonous than the autochthonous organic matter sources. High 
phosphatase activities were found with low values of SRP in stream water. The ectoenzymatic 
activities measured in Mediten-anean streams were higher than those from European streams 
but similar to those from North American and Australian streams. However, the ratio of ß-
xylosidase:ß-glucosidase activity was similar for the streams of the different regions 
considered, being ca. 0.5. A negative relationship was found between the ectoenzymatic 
activities and the bacteria/algae biomass ratio of each studied stream biofilm (the 
Mediterranean and several European streams), stressing the importance of algae for the 
heterotrophs. It is concluded that autotrophs play a more relevant role as an organic matter 
source for the heterotrophs and therefore for carbon cycling than has generally been 
postulated for stream biofilms. 

Introduction 

The ectoenzymatic activities measured in stream biofilms have been related to 

environmental parameters such as nutrient concentration (chapter 3.1, chapter 6), water 

discharge (chapter 6, chapter 7), light and temperature (Sinsabaugh and Linkins 1988, 

chapter 3.3, chapter 5, chapter 6), and to biological parameters (Chapell and Goulder 1994a, 

chapter 3, chapter 4, chapter 8). In several studies ectoenzymatic activities have also been 

related to substrate availability in preference to environmental changes (e.g. Meyer-Reil 1987). 

In this chapter the relationship of ectoenzymatic activities to the environmental parameters 

and physiographic features was Investigated for the three Mediterranean streams studied. The 

main objective was to find out whether there is any general trend for these heterotrophic 

activities for the Mediten-anean streams and whether they differ from other studied streams in 

other regions (Europe, America, Australia). For this first purpose, ectoenzymatic data from the 

studied Mediterranean streams and from bibliographic sources for the European, American 

and Australian streams were analysed. 

The second main objective was to investigate whether there is a relationship between 

the biomass of bacteria and algae of a given stream biofilm and its capacity to cleave organic 
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substrates. Few studies have focused on the effect of biofilm related parameters (i.e. bacteria 

and algal biomass, the main organisms which compose the biofiim structure) on the enzymatic 

activltiy in a given stream biofilm. In some stream biofilms, a significant con-elation between 

ectoenzyme activity and bacterial cell density and/or chlorophyll or biomass has been 

observed (Sinsabaugh and Linitins 1988, Chapeil and Goulder 1994a, chapter 8), but in other 

studies this relationship is weak or non-existent (Sinsabaugh et al. 1991a, Chapeil and 

Goulder 1992, Jones and Lock 1993). Although the accrual of bacteria and algae might be 

important for the regulation of organic matter degradation capacity in a given stream biofilm, 

the relative amount of algal and bacterial biomass (bacteria/algae ratio) is probably more 

important in regulating the ectoenzymatic activity, since there are structural and functional 

relattonships between them (chapter 8). Depending on the relative contribution of bacteria and 

algae on the biofilm biomass, the biofilm metabolism would be more autrotrophic or 

heterotrophto, whteh may detemnine a higher or lower level of enzymatic activity. 

For this second purpose, data fi-om the four study sites considered in this project 

(Riera Major, La Solana. Ter and Breitenbach) and their different benthic substrates (epilithic, 

epipsammte, cyanobacterial crust) were analyzed together with results from other studied 

streams (European, American, Australian) also considering different substrates (wood, leaves, 

natural stones, glass beads). The collection of data from such different substrates and sites 

provided us with results from different stream biofilms, which differed in the density of bacteria 

and algae, giving us the possibility of investigating a wide range of biofilm compositions. 

Results of the ß-glucosidase. ß-xylosidase and phosphatase activities and the bacterial and 

chlorophyll-a densities and biomass have been analyzed together. 

Stream comparison 

Comparison of the studied streams 

The data from the seasonal studies in the Riera Major (chapters 3.1 and 3.2). La 

Solana (chapter 4.1), and river Ter (chapter 6). and from the study in the Breitenbach (chapter 

7). were collected (Table 1). For the Riera Major the three substrate types were considered: 

stream-edge sand (n=10). mid-channel sand (chapter 3.1 together with the surface sand 

results from 3.2, n=21), tiles (n=10) and subsurface sand (n=9). For La Solana, the four 

stromatolitic algal patches of the cyanobacterial crust were considered: the mixed community 

(n=11), the Rîvutaria community (n=6). the Zygnema-Spirogyra community (n=6) and the 

diatom bloom (n=2). For the Ter (n=8) and the Breitenbach (n=3) dafa from the artificial clay 

tiles were considered (chapters 6 and 7. respectively). Values of ß-glucosidase activity, ß-

xylosidase activity, phosphatase activity, chlorophyll-a density and bacterial cell density at all 

sites and sampling times (n=84) were used in the Principal Components Analysis (PCA) so as 

to visualiza the stream differences and the seasonal distribution of the samples. 
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The ectoenzymatic activities, respiratory activity, and chlorophyll-a and bacterial 

density in the different study sites and substrates are summarized in Table 1. Since these 

variables were considered for the PCA, the results wilt be discussed together. 

The results of the PCA showed an anrangement of ß-glucosidase, ß-xyiosidase and 

chlorophyll-a by the first component which explains 42.3% of the variance (Table 2). The 

second component an^nges with bacterial density and chlorophyll-a and negatively with ß-

xylosidase activity, explaining 24.4 % of the variance. 

TABLE 2. Results of the PCA perfonned with 
data from Riera Major, La Solana, river Ter 
and Breitenbach. Loadings for the factors 1 
and 2 (PC I and PC 11) and the eigenvalues 
and percentage of total variance explained by 
each factcM- are also shown. 
Variable PCI PC II 

ß-glucosidase 0.90 -0.16 

ß-x^(^idase 0.81 -0.44 

Phosphatase 0.47 0.22 

Chlorophyil-a 0.64 0.49 

Bacterial density 0.10 0.84 

Eigenvalue 2.11 1.22 

% variance 42.3 24.4 

The different streams were represented In the PCA by their scores (Fig. 1 ). On the left 

side of the first component were placed the Riera Major (sand and tiles), and Breitenbach, 

indicating a lower ectoenzymatic activity in these streams than in the river Ter and La Solana 

(pleK»d m ttie right side of the firat component). The scores for the PC I for ttie liver Ter were 

similar to those for La Solana, indicating that ectoenzymatic activities were in the same range 

of values. Tbe higher ectoenzymatic activity for the biofilms growing on calcareous 

watwsheds (the riva- Ter at Montesquiu and La Solana, Table 3) could be in part a result of 

4ie higher concentration of the calcium and magnesium Ions in these study sites (Sabater 

1988. Mart! and Sabater 1996, Table 3) than in Riera Major and the Breitenbach (Martí and 

S^)at«-1996. Mar?»en et al. 1997). A positive response of ß-glucosidase to added calcium, 

and especially m ^ e s i u m . has been observed In sediments (King 1986). Furthemriore, these 

lorw. espedally magnmium, could act as activating cations for the enzyme reaction (Chróst 

1990). Greater ectoenzymatic activity on calcareous watersheds was also observed for 

several strrams in N England (Chapell and Goulder 1994a). These two sites (La 

210 



chapter 9 general trends in ectoenzynrie activities 

Solana and river Ter) showed higher respiratory activity (ETS, not included in the PCA) (Table 

1), indicating more relevant heterotrophic activities than in the silicic sites. 

However the river Ter and La Solana differ in their distribution throughout the second 

component. At the upper extreme are located the spring samples from the river Ter (Ter3 and 

Ter5) and the winter sample for the RIvularia community (R1). These biofilms are 

characterized by a low ß-xylosidase activity and high bacterial and chlorophyll-a density. In 

constrast in the lower extreme of the second component, the samples from the mixed 

community In La Solana in autumn and winter (M8, M9, M11, M12, M1) were found. These are 

characterized by a high ß-xylosidase activity and low bacterial and chlorophyll-a density. The 
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Fig. 1. Plot of the scores of the PCA performed with Riera Major mid-channel sand (mS), 
stream-edge sand (eS), subsurface sand (subS) and epilithic biofilm (T), the algal patches of 
La Solana cyanobacterial crust: Mixed community (M), Rivulana community (R), Zygnema-
Spirogyra community (Z) and Diatom bloom (D), the river Ter epilithic biofilm (Ter), the 
Breitenbach epilithic biofilm (Breit). The numbers indicate the sampling month. 
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detailed distribution throughout PC II can be interpreted in temis of efficiency of organic matter 
utilization. In the upper extreme are located the more eutrophic systems, less efficient in 
organic matter use and based on both autochthonous and allochthonous sources. In the 
bottom extreme the systems are more oligotrophic, more efficient in organic matter use and 
mainly based on allochthonous sources. Following this reasoning, the mixed community of La 
Solana cyanobacterial coist is the most efficient in the utilization of organic matter of all the 
biofilms studied (as has already been described in chapter 4.1). Moreover, the epilithic biofilms 
in Riera Major might be less efficient in organic matter use than the sandy biofilms (Fig. 1 ) 
coinciding with the higher capacity to degrade organic matter suggested for the sandy 
substrate than for the rocky substrate (chapter 3.1). 

The Breitenbach had similar scores to those of Riera Major. Both streams have similar 
environmental characteristics (Table 3) which make these streams similar in their biofilm 
metabolisms (Table 1). Both streams have a catchment geology which results in a low ion 
concentration in the stream water (Bunter sandstone for the Breitenbach, Marxsen et al. 1997, 
and granodiorite for Riera Major, Marti and Sabater 1996). Riera Major was covered by a 
riparian forest {AInus glutinosa) and the Breitenbach drains a highly forested area {Fagus 
sylvatica and Pinus sylvestris) with riparian vegetation {AInus glutinosa) in some stretches. 
However, there were large differences in bacterial cell density (Table 1), which were very 
much lower in the Breitenbach. 

Regularities in temporal variations in the studied streams 
The seasonal distribution of the different biofilms in the PCA is presented separately 

for each stream (Fig. 2,3 and 4). in Riera Major, variations are mainly attributable to the PC II, 

and thus due to bacterial and chiorophyll-a density variations (Fig. 2). This is especially clear 

for the tiles, which showed no variation on the first axis (PC I), indicating the lack of 

seasonality in the ectoenzymatic activities. For the sand, the higher values for the PCI were 

observed in the spring and summer months. As was described in the seasonal study of the 

Riera Major (chapter 3.1) there was no clear seasonality for the epilithic biofilm metabolism 

while the activities in the sandy biofilm followed seasonal variations. The few temporal 

fluctuations for the subsurface zone (chapter 3.2) are expressed by the very close distribution 

of all the samples from this habitat. 

In La Solana, time variations were due to PC I and PC II which also distribute the 

different algal patches (Fig 3). The highest ectoenzymatic activities in the mixed community 

(M) (Table 1 and chapter 4.1) are expressed by the distribution of this algal patch in the right 

hand side of the PC I, while the lower ectoenzymatic values and score values of the PC I were 

characteristic of the diatom bloom (D). In between the M and D community, the Zygnema-

Spirogyra (Z) and RIvularia (R) communities were found with much higher scores of the PC II 

for the R community, expressing the higher bacterial density in this algal patch. A seasonal 

pattern was observed for the RIvularia and the mixed community, which decrease throughout 

the second component in summer (R7, M8). This could indicate the decrease in bacterial and 
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chlorophyll-a density during ttie drought period but the rapid recove^ of the ectoenzymatic 

activities (chapter 4.2) meaning a high level of efficiency of organic matter use especially in 

the R and M algal patches (lower values in PCII, as discussed above). 
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Fig. 2. Partial plot of the PCA (as in Fig. 1) for the Riera Major mid-channel sand (mS), 
stream-edge sand (eS), subsurfôce sand (subS), and tiles (T) and the Breitenbach (Breit). 

The drastic seasonal changes in ectoenzymatic activities in the river Ter (chapter 6) 

are also expressed by the PCA analysis (Fig. 4). When drawing a line through the monthly 

samples, there seems to be a clear seasonality in epilithic biofilm metabolism for this 

Mediterranean river. The year of study (1994-95) was especially dry, detemiining the low 

summer acUvities and the high autajmn activities when the flow was recovered (diapter 6). 
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Fig. 3. Partial plot of the PCA (as In Fig. 1) for the algal patches of La Solana cyanobacterial crust: Mixed 
community (M), Rivularia community (R), Zygnema-Splrogyra community (Z), and diatom bloom (D). 

PCI 

Fig. 4. Partial plot of the PCA (as in Fig. 1 ) for the river Ter. A line was drawn between the points 
to outline the seasonal sequence. 
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General trends In the Mediterranean stream blofllnts 

Correlation analysis of the environmental and biological parameters for the 

Meditenanean streams was perfomned using product-moment Pearson coefflcient In addition 

a Canonical Con-elation Analysis (CCA) was perfomned between the heterotrophic activities 

(ß-glucosidase, ß-xylosidase, phosphatase and ETS) and the physico-chemical and biological 

variables (bacterial density, chlorophyli-a, bacteria/algae biomass ratio, DOC, DIC, SRP, 

nitrate, ammonia, pH, temperature, conductivity and light). CCA was designed in order to 

elucidate which variables of this second variable group (physico-chemical and biological) had 

the greatest weight in determining the variation of the heterofrophic activities in the 

Mediterranean streams. 

The con-elation analysis perfonned witti all data from Riera Major, La Solana and tiie 

river Ter, showed several highly significant relationships (Tables 4 and 5). The three enzymes, 

ß-glucosidase. ß-xylosidase and phosphatase were significantly con-elated witti respiratory 

activity (Table 4), which indicates that enzymatic activities are an expression of heterotrophic 

activity. A significant con-elation between ectoenzymes and bacterial activity (thymidine 

incorporation) was observed especially for ß-glucosidase (Somville 1984, Chróst and 

Overbeck 1990, Chróst 1991b, Chróst 1994) and for proteolytic activity (Admiraal and Tubbing 

1991, Gajewsid and Chróst 1995). It has been concluded that ectoenzymes may be a useful 

indicator of the bacterial activity in aquatic environments (Gajewski and Chróst 1995). 

However, although a strong relationship between bacterial production (thymidine 

incorporation) and enzymatic activity was also found in the Adriatic Sea, the two activity 

measurements followed a different trend during a diatom bloom leaving unclear whether 

extracellular enzymatic activity and bacterial production are mediated by the same part of tiie 

active proportion of the bacteria! community (Kamer et al. 1992). For the Medlten-anean 

streams, no significant conrelations were found between ectoen2^matic activities and bacterial 

cell density (Table 4). This contradictory finding is possibly due to the presence of non-active 

bacteria in certain biofilms (i.e. in sand, Bott and Kaplan 1985), whidi have been included in 

the data set 

Relationships with physico-diemical variables have also been explored. The three 

ectoenzymes were in general significantiy correlated to conductivity, DIC and nitrate (Table 5). 

More scattered conrelations were also found with oxygen, DOC, SRP and ammonia, indicating 

that the nutrient content in stream water must be an important parameter for the regulation of 

the ectoenzymatic activities. These con-elations suggest that there is a negative relationship 

betwem ttte en^nat ic activities and discharge as will be discussed after the CCA analysis. 
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TABLE 4. Significant Pearson con-elation coefficients between enzymatic activities, 
respiratory activity, bacteria and chlorophyll-a for the three Mediterranean study sites (Riera 
Major, La Solana, Ter). The level of significance is expressed by the star: *p<0.05, "p<0.01. 

ß-xyl Phosp ETS Bact Chl-a Sac. Bac/alg xyl/glu 
biovol. ratio ratio 

ß-glucosidase 0.77*** 0.38" 0.45*** 

ß-xylosidase - 0.22* 0.30** 0.57*** 

Phosphatase - 0.61*** 0.27* 0.75*** 

ETS - 0.61*** -0.23* 

Bacteria 0.24* 

Chlorophyll-a -

Bad. biovolume -

Bac./alg. ratio -

TABLE 5. Significant Pearson correlation coefficients between enzymatic activities, respiratory activity, 
bacteria and chlorophyll, and the physical and chemical parameters for the three Mediterranean study sites 
(Riera Major, La Solana, Ter). The level of significance is expressed by the star: *p<0.05, **p<0.01. 

Cond Oxygen DOC DIC NH4 NO3 SRP pH Light Temp. 

ß-glucosidase 0.70*** -0.39*** 0.40*** 0.54*** 0.27* -0.33** 0.30** 

ß-xylosidase 0.62*** 0.55*** -0.29** 

Phosphatase 0.50*** 0.57*** -0.23* 

ETS 0.51*** -0.36** 0.60*** -0.37** 0.57*** 0.22* 

Bacteria 0.29** 

Chlorophyll-a 0.52*** -0.28* 0.48*** 0.25* 0.55*** 0.31** 0.62*** 0.22* 

Bac. biovol. 0.43** 0.54*** -0.27* -0.27* 

Bac./alg. -0.31** -0.31** 0.23* 

However, to distinguish which variables were the best predictors for the variability of 

the heterotrophic biofilm metabolism, a CCA was performed with the data. It is obvious that 

the variation in the heterotrophic activities could be determined not only by a unique 

environmental or biological variable but by a combination of variables which will also be 

elucidated by the CCA. 

The CCA determines linear combinations within the variables of each set when 

obtaining the canonical variables. The canonical variables obtained for each set are equal to 

the number of variables in the set with fewer variables, which will be named Ui, Uj, ... U^ for 

the left set and V,, Vj, ... Vn, for the right set. These linear combinations are removed from 

each set in order to obtain the maximum correlation (canonical R) between them (U, with V^, 

Uj with V2,...). The canonical roots are pairs of variables (U1V1, U2V2,...). The con-elation 
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between U^ and Vj is maximum, as is ttiat between U2 and Vj under the condition ttiat they are 

not correlated with U, and V^, and successively. 

The two variable sets chosen for this analysis and the initial results are summarized in 

Table 6. The analysis showed that the four canonical roots removed were significant (p<0.5, 

Manly 1995) (Table 7). 

TABLE 6. Results of the CCA and the variables considered for the left set and right set. 
Canonical R: 0.90053 

Chi» (d.f. 48) = 185.78 p=0.0000 

Left set Right set 

No. of variables 4 12 

Variance extracted 100.000% 45.6287% 

Total redundancy 56.2016% 26.7921% 

Variables: Respiratory activity ETS Bacteria! density BAC 

ß-glucosidase activity GLU Chlorophyll-a density CHLA 

ß-xylosidase activity XYL Bacteria/algae ratio BAC/ALG 

Phosphatase activity P Dissolved organic carbon DOC 

Dissolved inorganic carbon Die 

Soluble reactive phosphorus SRP 

Nitrate N03 

Ammonia NH4 

PH PH 

Temperature TEMP 

Conductivity COND 

Incident light LIGHT 

TABLE 7. ChhSquare tests with successive roots removed by the CCA. The canonical 
correlatiu (R). squared canonical con-elation (R^), Chl-square, degrees of freedom (df) 

R canonical R^can. Chi' df P 

0 0,901 0,811 185,779 48 4,9E-18 

1 0,744 0,554 80,006 33 9.03E-06 

2 0,506 0,256 28,740 20 0,0931 

3 0,380 0,145 9,917 9 0,357 

To intopret each canonical variable we used the correlation between the variables 

arKl Oie carKmical roots in each set (Table 8). The most Indicative variables for each canonical 

varisdïie are those which have the highest conrelation (> + 0.5, < -0.5). 
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TABLE 8. Correlation of each variable to the canonical roots removed. 
Left set Root 1 Root 2 Root 3 Root 4 

Ui U2 U3 U4 
ETS -0,838 0,106 -0,455 0,282 
GLU -0,760 -0,292 0,207 -0,543 
XYL -0,486 -0,720 -0,186 -0,458 

P -0,693 -0.354 0,195 0,597 

Right set Root 1 Root 2 Root 3 Root 4 

Vi V2 V3 V4 
BAC -0,220 0,436 0,117 -0,104 

CHLA -0,765 0,357 -0,001 -0,016 

BAC/ALG 0,287 0,071 0,064 0,010 

DOC -0,308 -0,298 0,733 -0,257 

DIC -0,774 -0,432 -0,092 0,277 

SRP -0,247 0,280 0,164 -0,366 

N03 0,467 0,138 0,126 0,022 

NH4 -0,141 -0,234 0,581 -0,303 

PH -0,251 0,015 -0,070 0,118 

IfcMP -0,332 0,098 0,167 -0,254 

COND -0,838 -0,457 0,095 -0,114 

LLUM -0,492 0,259 -0,199 0,335 

Each canonical variable of the left and right side could be Interpreted as follows: 

Left set 
U,: low respiratory and ectoenzymatic activities 

Uj: low ß-xyiosidase activity 

U,: low respiratory activity 

U4: high phosphatase activity, low ß-glucosidase and ß-xylosidase activities 

Right set 

V,: late autumn-winter conditions (low conductivity and DIC, low chlorophyll-a density, low light 

and temperature, high nitrate) 

Vj: spring conditions (low conductivity and DIC), importance of benthic biomass (high bacterial 

and chlorophyll-a density). 

Vj: high DOC and ammonia concentration 

V4: low nutrient content (low phosphorus and ammonia), high incident light 
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The most significant conflation (that betvt^n Û  and V^, Table 7), indicates that low 

values of ectoenzymatic and respiratory activities are related to low values of conductivity, 

DIC, chlorophyll-a density, light and temperature, and high nitrate content. These conditions in 

Meditenranean sfreams are usually found in late autumn and winter when there is a high 

discharge (floods usually occur in autumn), low nutrient and mineral content resulting in low 

conductivity in the stream water and low benthic biomass. The reverse situation (high 

conductivify, DIC and chlorophyll-a density) will be attained in late spring and summer with the 

highest values of ectoenzymatic and respiratory activity. The positive relationship to the DIC 

content express the higher ectoenzymatic activities measured in calcareous streams (as 

discussed above, in the section comparison of the studied streams). A similar positive 

relationship between epilithic ectoenzymatic activities and conductivity as well as variables 

related to water quality was found by Chapell and Goulder (1994a) for several English 

streams. In the Mediten^nean streams a direct relationship has been observed between 

conductivity and discharge (especially for the river Ter and Riera Major) (Sabater F 1988, A. 

Butturini, pers. comm.). This general conclusion Is in disagre^nent with the increase in the 

ectoenzymatic activities and discharge obsen/ed in the river Ter (chapter 6). Such a difference 

could be related to the higher DOC content in stream water in higher-order rivers during high 

discharge p«1ods, which amid provide organic substrates for the enzymatic hydrolysis. 

However, the lack of values ft-om the high flood events for the river Ter as well as the 

representativeness of the seasonal study in an especially dry year (low heterotrophic activities 

in summer) could influen<» In this positive relationship between enzymatic activity and 

discharge in the river Ter, therefore contrasting to the negative relationship suggested in the 

lower-order streams (Riera Major and La Solana). 

Algal biomass ((^lorophyll-a density) appears as the most important biological factor 

for the variations in the ectoenzymatic and respiratory activities. Algae are an important 

source of high quality organic matter for heterotrophs (chapter 3, 4, 5 and 7) and a suitable 

site for bacteria attachment (chapter 8). Photosynthetic activity and biomass are related with 

ectoenzymatic activity (chapter 8). Concluding, algal biomass has a stimulating effect on 

heterotrophic acUvities in MedKen^nean stream biofílms. 

The second canonical root show that low values of ß-xylosidase activity were related 

to high chlorophyN-a and bacterial density in the biofilm. This combination of variables 

indicates the conditions when ß-xylosidase activity is enhanced: high conductivity, DIC and 

DOC In streamwater, and low chlorophyll-a and bacterial density. This could be a further 

evidence of ttie greater dependence of the ß-xylosidase activity on allochthonous than on 

autodithonous org^k: matter. 

The third canonical root relates low values of respiratory activity (ETS) with high DOC 

and ammonia in the stream water, condKions which were atteined in the studied 

MedKerraneafi streams during t ^ dry season. Specially dry conditk}ns were found during the 

annual sfajdy (1994-95), compared to other annual periods (Guasch 1995, Martí 1995). 

Partkndaty hi La Solana, k>w values of respiratory activity were found during the drought 
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period (chapter 4.1), coinciding with a high DOC and ammonia content in the stream water. 

Depletion of nutrients (e.g. inoi^anic phosphorus) during these dry periods might limit the 

bacterial and algal metabolic activity, in spite of having enough substrates available for 

heterotrophs (high DOC). 

The fourth canonical root relates the low nutrient concentrations (soluble reactive 

phosphorus and ammonia) in stream water to high values of phosphatase activity and low 

values of polysaccharidic enzymes. Phosphatase activity may be important in Mediterranean 

streams to obtain inorganic phosphorus when it is scarce in the stream water. This has been 

observed for La Solana stream (chapters 3 and 5) where this activity is enhanced when there 

is a low phosphorus concentration in stream water. However, the general use of phosphatase 

activity to indicate the phosphorus state of natural waters has been under discussion (Jansson 

et al. 1988). 

It is generally accepted that temperature regulates the metabolic processes (e.g. 

Peters et al. 1987, Kaplan and Bott 1989) and thus ectoenzymatic activities (Chróst 1991b, 

Münster et al 1992, Wiebe et al. 1992). However this was not revealed to be an important 

parameter for the ectoenzymatic activities in the river systems studied. Significant correlations 

with temperature were found only with ß-glucosidase and ETS activity (Table 5). Analogous 

studies which have analysed seasonal variations found that ectoenzymatic activity and 

temperature is not always correlated (Jones and Lock 1993, Hoch et al. 1996). Sediment 

bacteria do not show significant differences in bacterial growth when the temperature is 

Increased by 5 degrees (Bott et al. 1984). Substrate concentration was more important than 

temperature (in the range 8-25''C) for bacterial growth in culture (Barillier and Gamier 1993). It 

is possible that in more extreme conditions there would be a clear response to temperature, 

as has been observed in a boreal lake (Tulonen et al. 1994). Substrate availability and nutrient 

content are probably the main ectoenzyme regulators in temperate streams (Sinsabaugh and 

Llnklns 1988, Jones and Lock 1993). The apparent relationship to temperature could also be 

masked by the retarded response of extracellular enzyme activity to changing water 

temperature (Hoppe et al 1988). 

Comparison with other lotie systems 
Comparison with other systems is difficult since few studies which gather enzymatic, 

bacterial, algal, and environmental data are available. Those which better fullfil these 

requirements have been included in Table 9. 

The ectoenzymatic activities measured in the Mediterranean stream biofilms were in 

general higher than those reported from European streams (e.g. Jones and Lock 1993, 

Chapell and Goulder 1994, Table 9) but similar to the values reported for the St. Regis River 

(New York) (Sinsabaugh et al. 1991a) and for the the Billabong periphyton in Australia (lentic 

environment) (Scoltz and Boon 1993). The different climatic characteristics (pluviosity, 

temperature, incident light) in each region could be related with such differences in 

heterotrophic activities. The European streams considered, which were in fact north-European 
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streams (latitude >50° N, Table 9) have a lower light irradiance and tennperature and a higher 

rainfall (especially in the north Wales streams) than the Mediterranean streams (Margalef 

1989). However, the light irradiance, temperature and pluviosity in New York is similar than in 

the Mediten-anean region (Margalef 1989). The high activities in the Billabong periphyton in 

Australia (36° S) could be due to the different habitat (lentic), with a developed photic and 

aphotic zone, which makes difficult its comparison to the other stream substrates considered. 

However, this site may indicate that the ectoenzymatic activities in perifiton are higher than in 

benthic substrates. 

The ratio of ß-xylosidase:ß-glucosidase activity gives values rather similar for all the 

streams and substrates, being around 0.5 (Table 10), even ttiough ectoenzymatic activities 

differ between geographical regions and stream benthic substrates. In all streams there is a 

major utilization of cellobiosic to xyloblosic molecules. The greater activity of ß-glucosidase 

than ß-xylosidase In all the stream biofilms considered œuld not be only a response to the 

composition of organic matter input (more cellulose than hemicellulose) but also a preference 

of bacteria to produce those ectoenzymes catalyzing more efficient reactions (Gazewski and 

Chróst 1995). The enzyme ß-glucosidase splits ß-linked polysaccharides found in a great 

variety of molecules, while ß-xylosidase is involved in xylobiose degradation usually found in 

more complicated molecules. 

It is suggested that a higher production of the ß-xylosidase occurs only when it is 

strictly necessary to degrade organic matter with a large amount of hemicellulosic molecules, 

as will happen when allochthonous material Is the main organic matter source. In this way, 

higher values of the ß-xylosldase:ß-glucosidase ratio (0.7-1) were observed in the mixed 

community of La Solana cyanobacterial crust, in the natural stones of the Breitenbach, in the 

wood substrates of the St. Regis River (Table 5), and in the dark-grown epilithic biofilms in 

Riera Major (chapter 8.2). These four substrates coincide in their low autochthonous input, 

allochthonous materials being the main organic matter source: low algal density in the mixed 

community of La Solana cyanobacterial crust; low chlorophyll, low incident light and 

accumulation of leaves in the Breitenbach natural stones in autumn; and low chlorophyll 

density and great accumulation of leaf material (from the riparian vegetation and the 

neighbouring high forested watershed) on the wood substrate of the St. Regis river). Therefore 

a high ß-xylosidase:ß-glucosidase ratio (ca. >0.6) in a given stream biofilm might indicate that 

allochthonous material is the major source of organic matter for the heterotrophs. In addition, 

the different substrate (xyloblosic or cellobiosic) that is being used by the heterotrophs might 

not be characteristic of a given stream but of a given streambed substrate, since in the same 

stream different values of this ratio have been calculated for the different substrates (Table 

10). The microenvironment of each biofilm therefore plays a key role in the organic matter 

source to be used by the heterotrophs. 
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TABLE 10. ß-xylosidaserß-glucosidase ratio in tlie different stream biofilms for the Mediterranean 
sites (left side) and for several European and American streams (right side) (from Table 9 when 
both ß-glucosidase and ß-xylosidase activities v\^re available) (see bibliographic sources in Table 
9). Values are means from monthly values and standard deviations (n as in Table 1 ) for the streams 
s t u d ^ in this project and mean values for the resulte found In the bibliography.  
ß-xyiosidase/ß-glucosidase ratio 

Mediterranean streams European and American streams 

Site and substrate Mean Site and substrate Mean 

Riera Miûor Breitenbach 

Current sand 0.48 (0.25) Artificial substrates (tiles) 0.45 (0.22) 

Littoral sand 0.44 (0.37) Natural stones 1.03 

Hyporheic sand 0.39 (0.08) Sediment 0.52 

Artificial substrates (tiles) 0.44 (0.24) S t Regis River 

La Solana Glass slides 0.40 

Mixed community 0.71 (0.33) Wood slides 0.71 

Rivulala community 0.42 (0.08) Nant Waen (glass beads) 0.25 

Zygnema-Spirogyra (immunity 0.49 (0.24) River Clywedog (glass beads) 0.30 

Diatom bloom 0.63 (0.3-0.9) Driffield Beck (stones) 0.40 

Ter Birk Gill (stones) 0.38 

Artificial substrates (tiles) 0.39 (0.29) Long Glii (stones) 0.16 

Calcareous streams (stones) 0.33 

IMillstone-grit streams (stcxies) 0.35 

Relationships between ectoenzymatic activities and tiie bacterial/algal 

biomass ratio 

The bacteria/algae ratio in terms of biomass (|ag C cm^ of biofilm) was calculated for 

the shJdied sfreams (Riera Major, La Solana, river Ter and Breitenbach) at the different 

sul»trate typ^, and for those streams from Table 9 where both bacterial density and 

chlorophylt was d^mnined (from Jones and Lock 1993, Chapell and Goulder 1994a, Chapell 

and Goulder 1 ^ b , Chapell and Goulder 1992) being all them North-european. Algal biomass 

was transfonmed from dilorophyll-a density using the conversion factor C.Chl of 60, which 

v ^ in the middte erf the range 20-100 suggested by Margalef for algae of the river benthos 

(1983) and applied In a mountain stream benthic community (Geesey et al. 1978). Although 

h ^ w C:Chl retios ha\^ been measured in cyanobacteria dominated communities (900-2500 

for a Nostoc sp. dominated community, 227-1400 for Phomidium sp 
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dominated œmmunlty, Vincent and Howard-Williams 1986; but 45.8 for Phormidium sp, 

Hawes 1993), measurements for diatoms, u^ich were the most abundant in the biofilms 

studied, have always been lower (29.7-41.8 for Thalassiosira sp, Montagnes et al. 1994, 25-

100 for Thalassiosira pseudonana, Geider and Maclntyre 1996). Similar conversion factors 

have been reported for natural phytoplanltton (Banse 1977). 

Bacterial biomass was calculated from bacterial cell biovolume using the conversion 

factor of 2.2 10'" gC (Bratbak and Dundas 1984, Kemp 1990) (chapter 2). For the 

results found in the bibliography bacterial biomass was calculated from bacterial density 

results and assuming a mean bacterial cell volume of 0.1 ^m^. 

TABLE 11. Bacteria/algae biomass ratio in the different stream biofilms for the Meditenranean study sites 
(left side) and for several European streams (right site) (see bibliographic source in Table 9). Values are 
means from monthly values and standani deviations (n as in Table 1) for the streams studied in this project 
and mean values for the results found in the bibliography. The symbols for the European streams are those 
used in Fig. 5. 
Bacteria/algae biomass ratio 

Mediten-anean streams European streams 

Site and substrate Mean Site and substrate Mean 

Riera Major Breitenbach 

Current sand 4.60 (9.52) Artificial substrates (tiles) Breit 0.006 (0.003) 

Littoral sand 1.81 (2.63) Nant Waen (glass beads) NW93 0.055 

Hyporheic sand 2.26 (2.31) River Clywedog (glass beads) RC93 0.092 

Artificial substrates (tiles) 2.98(2.01) Driffield Beck (stones) DB94a 0.022 

La Solana Birk Gill (stones) BG94a 0.052 

Mixed community 0.15(0.10) Long Gill (stones) LG94a 0.049 

Rivularia community 0.66 (0.72) Welghton Beck (stones) WB94b 0.018 

Zygnema-Spirogyra community 0.20(0.17) Calcareous streams (stones) CAL92 0.002 

Diatom bloom 0.06 (0.009) Millstone-grit streams (stones) MILL92 0.012 

Ter 

^i f ic ial substrates (tiles) 0.25 (0.28) 

The different stream biofilms showed a different bacteria/algae biomass ratio (Table 

11). The more heterotrophic biofilms (more abundant in bacteria) were found in Riera Major, 

especially in the sandy substrate, while La Solana and river Ter were more autotrophic (more 

abundant in algae). The Breitenbach epilithic biofilm had a drastically higher algal biomass 

than bacterial. The other European streams have also lower bacteria/algae biomass ratios 

than the Mediterranean streams (Table 11). The bacteria/algae biomass ratio can be used as 

an indicative value of the relative amount of algal and bacterial biomass on each biofilm. 

However, empirical values have to be managed with care, since the utilization of a single 
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Fig. 5. Relationship between the bacteria/algae biomass ratio (in logarithms) and the 
ectoenzymatic activities (in logarithms) in the difFerent stream biofiims: the Mediten-anean 
streams: Riera Major (mid-channel sand, mS, stream-edge sand, eS, subsurface sand, subS, 
and tiles, T), La Solana (mixed community, M, Rivularia community, R, Zygnema-Spirogyra 
community, Z, diatom bloom, D), and river Ter; and several North European streams: the 
Breitenbach (Breit), Nant Waen (NW93), River Clywedog (RC93), Driffield Beck (DF94a), Birk 
Gill (BG94a), Long Gill (LG94a), Weighton Beck (WB94b), 7 English Calcareous streams 
(CAL92), 8 English Millstone-grit streams (MILL92). a) ß-glucosidase, b) ß-xylosidase and c) 
phosphatase. The significant regression line for each enzyme and for the Mediterranean and 
European streams is also shown following the equations indicated in Table 12. 

conversion factor for the algal and bacterial biomass could imply deviations from the real 

values in diverse communities. Especially in La Solana, where the cyanobacteria are an 

important component of the biofilm species, the algal biomass is possibly underestimated, and 

thus this ratio would be lower than the calculated one. 

In this section, regularities in the relationships between ectoenzymatic activities and 

the bacteria/algae biomass ratio are explored in the studied streams and compared to the 

North-european streams considered (Table 11). These relationships were analyzed after 

drawing the scatter plot and by performing non-linear regression analyses. Since a potential 
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relationship was found for the three enzymes, data were transformed to logarithms and a 

linear regression was performed. The relationship between the bacteria/algae biomass ratio 

and the respiratory activity was also investigated for the Mediterranean streams. 

Significant negative relationships were found between the bacteria/algae biomass 

ratio and the three ectoenzymatic activities for the Mediterranean streams studied (Fig. 5, 

Table 12). This relationship indicates that in highly heterotrophic biofilms (high values for the 

bacteria/algae biomass ratio) ectoenzymatic activities are lower than in more autofrophic 

biofilms (low values for the bacteria/algae biomass ratio) suggesting that there is a limitation to 

hydrolytic activities in the more heterotrophic biofilms. When the bacterial biomass of the 

biofilm Is higher ttian the algal biomass, the ectoenzymatic activities do not increase but 

decrease. The highest heterotrophic biofilms were those found in Riera Major. Although 

allochthonous organic matter input may be an important carbon source for the heterotrophs in 

the Riera Major (chapter 3), ectoenzymatic activities could be substrate limited when the algal 

biomass is low. In contrast, when the bacteria/algae ratio is low (i.e. La Solana and river Ter, 

Table 11) ectoenzymatic activities were higher (Fig. 5). Therefore, higher algal biomass with 

respect to bacteria enhances the activity of the ectoenzymes. An extreme example of this 

tendency is the low ectoenzymatic activities measured in the darl< incubated biofilms of Riera 

Major (chapter 8.2), where algae were very scarce (bacteria/algae biomass ratio =8.8, on 

average). It seems that given a bacteria/algae biomass ratio of a stream biofilm, the potential 

ectoenzymatic activities have a thereshold which is not exceeded. A part from stream 

differences tiiere seems to be an upper limit for the enzymatic activities. 

Related with this pattem, it is observed a positive correlation between ß-glucosidase 

and phosphatase to chlorophyll-a (Table 4). This indicates tiie importance of algae as an 

organic matter source for tiie heterotrophs, which is cleaved faster than allochthonous 

materials (chapter 5). 

Significant negative relationships between the bacteria/algae biomass ratio and ß-

glucosidase and ß-xylosldase activities were also found when considering the Breitenbach 

and other 8 European stream sites described in Table 9 (Fig. 5, Table 12). However, any 

significant relationship could be stablished for tiie phosphatase activity. The slopes of the 

regression lines were similar but the constants were lower than tiiose found in the 

Mediterranean streams (Table 12), as a result of the lower ectoenzymatic characteristic of the 

European streams. Similar slopes in Meditennnean and European streams indicates tiiat, at 

least for ttie studied systems, there is a general decrease in ectoenzymatic activities when the 

bacteria/algae biomass ratio increases. It is worth to be noted tiiat calcareous streams are 

p lac^ cm ttie left side of the graph indicating a lower bacteria/algae biomass ratio and a 

higher ectoenzymatic activity In such habitats (La Solana and Ter for tiie Mediterranean 

streams » id the seven headwater English calcareous streams, CAL92, for the European 

streamr». Fig. 5). 
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TABLE 12. Equations for the linear regressions obtained between the (log) 
ectoenzymatic activities and the (log) bacteria/algae biomass ratio (bac/alg) with 
Mediterranean and North-european streams. Coefficients of detemiination (R^), 
degrees of freedom (df) and significance of the F-Fischer (F and signif. F) are also 
shown. 
Equation R^ df F signif F 

Mediterranean streams 

log ß-glucosidase = 1.15-0.39 (log bac/alg) 0.355 79 43.55 0.000 

log ß-xylosidase = 0.77-0.40 (log bac/alg) 0.286 78 31.18 0.000 

log Phosphatase = 1.42-0.42 (log bac/alg) 0.231 79 23.72 0.000 

log ETS = -0.02-0.56 (log bac/alg) 0.437 72 55.99 0.000 

North-european streams 

log ß-glucosidase = -0.46-0.49 (log bac/alg) 0.500 9 9.01 0.015 

log ß-xylosidase = -1.26-0.65 (log bac/alg) 0.587 8 11.37 0.010 

log Phosphatase= 0.92-0.12 (log bac/alg) 0.051 7 0.38 0.558 
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Fig. 6. Relationship between the bacteria/algae biomass ratio (in logarithms) and the 
respiratory activity in Riera Major, La Solana and river Ter biofilms (symbols as in Fig. 5). The 
significant regression line is also shown and the equation is indicated in Table 12. 
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Respiratory activity also showed a significant negative relationship with the 

algae/bacteria biomass ratio (Fig. 6). The higher slope than those found for ectoenzymatic 

activities might indicate that there is a considerable contribution of algae to the respiratory 

activity. Furthermore, it also stresses that algae are relevant for the heterotrophic metabolism 

of the biofilm. 

Conclusions and perspectives 

Autochthonous organic matter, also known as high quality material for its lability, plays 

an important role for the hydrolysis capacity of the heterotrophs in biofilms with low chlorophyll 

density. The algal content of a highly heterotrophic biofilm in an oligotrophic stream is a 

valuable organic matter source for the heterotrophs. In more autotrophic biofilms, the role of 

algae decreases as a regulator parameter for the heterotrophic activity while the geochemical 

features and environmental conditions of the stream become important for the microbial 

activity. 

In this study, special attention has been given to the role of the autotrophs in the 

biofilm metabolism, and it is concluded that they play an important role. Less importance is 

generally given to the autochthonous input for the microbial loop in flowing waters than to the 

allochthonous input (e.g. Meyer 1994), possibly as a result of more study sites described in 

the literature being devoted to forested streams. 

Organic matter use in stream biofilms could experience variations in the short-time 

scale. An analysis of the houriy and daily changes in ectoenzymatic activity probably would 

give more light Into the detailed dynamics of organic matter processing, especially on what 

concems to the role of heterotrophs and their link with the autotrophs. In the planktonic 

environment It has been observed an hourly variation of ectoenzymatic activities following the 

variations in the primary production (Kamer and Rassoulzadegan 1995). 

Furthermore, to widely analyse the factors which control the hydrolytic capacity of the 

stream btofilms, we should also study allochthonous input, such as the specific analysis of 

DOC composition. In a large number of studies of organic matter cycling in streams, the 

influence of DOC composition for microbial uptake and growth, rather than DOC 

COTicentratlon. has been suggested and noted (e.g. Bäriocher and Murdoch 1989, Hedin 1990, 

Middelboe and Sondergaard 1993, Koetsier III et al. 1997), strongly encouraging this analysis 

to a mi^or knowledge of the microbial loop in stream ecosystems (Meyer 1994). The DOC 

composltton of ttie stream water, and therefore thé lability or recalcitrancy of the compounds 

being transported wHI detemnine the quantity of ectoenzymes synthesized and their activities. 

On the other hand, a wider approach to the bacterial heterotrophic activity (i.e 

measuring Incorporation of organic substrates and bacterial production) should be planned as 
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a complement to the ectoenzymatic activities since they are direct measures of heterotrophic 

activity. 

Multidisplinarity is probalby necessary since the complication of all different 

appoaches to the study of organic matter use in stream environments. However, by knowing 

ttie natural substrate concentration of a given organic compound, the kinetic parameters of the 

specific ectoenzyme and the incorporation of this compound by the heterotrophs, we will be 

able to calculate the real hydrolytic activity and thus the total organic matter which is being 

used by the biofilm community and therefore the self depuration capacity of a stream stretch. 
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