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The interest in geographical infomiation technologies has grown considerably over the 

last three decades. Today, geographical information is no longer the exclusive domain 

of government and public administrations (in the areas of planning, demography and 

topography), thanks to the development of computer tools which have enabled firms 

and academic institutions to use this information. 

Statistical information of this kind is usually published at a variety of territorial levels 

in order to provide information of interest to all potential users. When using this 

information, researches have two alternatives for defining the basic territorial units for 

use in the study: first, they may use geographical units designed following normative 

criteria (that is, officially established territorial units such as towns or provinces) or, 

second, they can apply analytical criteria in order to design geographical units directly 

related to the phenomena under examination. 

"Normative regions are the expression of a political will; their limits are fixed 

according to the tasks allocated to the territorial communities, to the sizes of 

population necessary to carry out these tasks efficiently and economically, or 

according to historical, cultural and other factors. Whereas analytical (or functional) 

regions are defined according to analytical requirements: functional regions are 

formed by zones grouped together using geographical criteria (e.g., altitude or type of 

soil) or/and using socio-economic criteria (e.g., homogeneity, complementarity or 

polarity of regional economies) " (Eurostat, 2004). 

Most empirical studies use geographical units based on normative criteria, for several 

reasons: these units are officially established, they have traditionally been used in 

other studies, their use makes comparison of results easier and there is less scope for 

criticism. However, studies using units of this type may have an "Achilles' heel": they 

may be very restrictive, or unsuited the problem considered. For example, if we are 

analysing phenomena such as the regional effects of monetary and fiscal policy, how 
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will the results be affected if the aggregated areas^ in each region are heterogeneous? 

Can these results change if the areas are redefined in such a way that each region 

contains similar areas? 

This situation could be improved by the use of régionalisation processes to design 

geographical units based on analytical criteria by aggregating small geographical 

units^, but without reaching the upper level, or alternatively by combining information 

obtained from different levels^ In this context, the design of analytical geographical 

units should consider three fimdamental aspects: 

a. Geographical contiguity. The aggregation of areas into regions such that the 

areas assigned to a region are internally connected or contiguous. 

b. Equality: In some cases, it is important that the regions designed are "equal" in 

terms of a particular variable (for example population, size, presence of 

infrastructures, etc). 

In this thesis dissertation, the term "area" will be used to denote the smallest territorial unit. 
The aggregation of areas will form a "region" aod the aggregation of regions will cover the 
whole considered territory. 
Apart from aspects such as statistical secrets or other legislation on the treatment of 
statistical data, according to Wise et al. (1997), this kind of territorial units are designed in 
such a way as to be above minimum population or household thresholds, to reduce the 
effect of outliers when aggregating data or to reduce possible inaccuracies in the data, and 
to simplify information requirements for calculations and to facilitate its visualisation and 
interpretations in maps. 
See, for example, Albert et al. (2003), who analyse the spatial distribution of economic 
activity using information with different levels of regional aggregation, NUTS III for Spain 
and France and NUTS II for other countries, with the objective of "using similar territorial 
units". López-Bazo et al. (1999) analyse inequalities and regional convergence at the 
European level in terms of GDP per capita using a database for 143 regions using NUTS II 
data for Belgium, Denmark, Germany, Greece, Spain, France, Italy, Netherlands and 
Portugal, and NUTS-I data for the United Kingdom, Ireland and Luxembourg so as to 
ensure the comparability of geographical units. 
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c. Interaction between areas: Some variables do not exactly define geographical 

characteristics that can be used to aggregate the different areas, but may 

describe some kind of interaction between them (for example, distance, time, 

number or trips between areas, etc). These variables can also be used as 

interaction variables using a dissimilarity measure between areas in terms of 

socio-economic characteristics. The objective in this kind of régionalisation 

process is to make the areas belonging to the same region as homogeneous as 

possible with regard to the attribute(s) specified. 

Unfortunately, in most cases, the aggregation of territorial information is usually done 

using ""ad-hoc" criteria, due to the lack of sufficiently flexible régionalisation 

methods. In fact, most of these methods have been developed to deal with very 

particular régionalisation problems, so when applied in other contexts the results may 

be highly restrictive or inappropriate for the problem under consideration. However, 

whatever territorial aggregation method is applied, there is an implicit risk, known in 

the literature as the "Modifiable Areal Unit Problem" (Openshaw, 1984): the 

sensitivity of the results to the aggregation of geographical data and its consequences 

on the analysis. 

The main objective in this thesis dissertation is to implement a new automated 

régionalisation tool to design homogeneous geographical units directly related to the 

phenomena analysed which overcomes some of the disadvantages of the 

methodologies currently available. 

Thus, the specific objectives are: 

a. To formulate the régionalisation problem as a linear optimisation model able to 

take into account not only the areal characteristics but also their non-metric and 

contiguity relationships. 
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b. To propose a heuristic model able to solve bigger régionalisation problems, 

incorporating in its search procedure the characteristics of a régionalisation 

process. 

c. To compare the homogeneity of the analytical regions designed by applying the 

régionalisation model proposed in this thesis with those obtained using another 

régionalisation method based on normative criteria. For this comparison, 

provincial time series of unemployment rates in Spain will be used. 

This dissertation is organised as follows. Chjgje^^ briefly summarises the literature 

on different régionalisation methods. Special emphasis will be placed on those ^ 

methodologies which have made the greatest impact on the specialist literature and on 

those that have been tested satisfactorily in real problems. 

In chapter 3 the régionalisation problem is formulated as a linear optimisation model 

in which the problem of obtaining r homogeneous regions is based on the 

minimisation of the total heterogeneity, measured as the sum of the dissimilarity 

relationships between areas belonging to the same region.The proposed model has the 

following characteristics: 

a. It is an automated régionalisation model that is able to design a given number 

of homogeneous geographical units from aggregated small areas subject to 

contiguity requirements. 

b. The aggregation process takes into account not only the characteristics of each 

area but also the relationships between them (symmetric and not necessarily 

metric). 
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c. By formulating the régionalisation problem as a linear optimisation problem, 

we have the chance of finding the global optimum from among all feasible 

solutions. 

d. More consistent solutions can be easily obtained by introducing additional 

constraints taking into account other specific requirements that are relevant for 

the régionalisation process. 

e. There is more fi-eedom than in other methodologies regarding the shapes of the 

regions, which depend only on data characteristics and are not imposed by the 

methodology chosen. 

f. With this model a region consists of two or more contiguous areas; this implies 

that no region can be formed by a single area'*. 

In order to apply this model in larger-scale régionalisation processes, chapter 4 

presents an algorithm called the RASS (Régionalisation Algorithm with Selective 

Search). The key advantage of A^ i sn^ algorithm is that the way it operates is based 

on the features of régionalisation processes themselves, where available information 

about the relationships between areas can play a crucial role in directing the search 

process more selective, more efficient and less random fashion. In fact, the RASS 

incorporates inside the linear optimisation model presented in chapter 3 in order to 

achieve local improvements in the objective fimction. These improvements can 

generate significant changes in regional configurations, changes that would be very 

difficult to obtain using other adapted iterative methods. 

As Crone (2003) highlights, this is one of the conditions followed by the Bureau of 
Economic Analysis (BEA) for the régionalisation of the United States of America. 
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In chapter 5 provincial time series of unemployment rates in Spain are used to 

compare the results obtained by applying two analytical régionalisation models, each 

one representing a different régionalisation strategy: a two-stage procedure based on ^ 

cluster analysis and the RASS algorithm. The results will also be compared with 

normative regions available at two different scales: NUTS II and NUTS I. 

Lastly, in chapter 6 we present the most important conclusions and make proposals for 

further research lines. 
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2.1. Introduction. 

In this chapter the most frequently used methodologies for territorial aggregation will 

be briefly summarised. The summary will focus on methodologies with a higher 

impact in the specialised literature and on those that have been tested satisfactorily in 

real problems. 

Most of these methodologies use techniques based on cluster analysis^. In this context, 

the problem of aggregation of spatial data is considered as a particular case of 

clustering in which the geographical contiguity between the elements to be grouped 

should be considered. This particular case of clustering methods is usually known as 

contiguity-constrained clustering or simply the régionalisation problem. A detailed 

summary of these aggregation methodologies can be found in Gordon (1999) and for 

the case of constrained clustering in Fisher (1980), Murtagh (1985) and Gordon 

(1996). 

In this context, régionalisation algorithms can be categorized under three 

methodological strategies: two-stage aggregation; the inclusion of geographical 

information in the set of classification variables; and the use of additional instruments 

to control for the geographical contiguity constraint. 

2.2. Two stages aggregation. 

In this strategy, the first stage consists of applying a conventional clustering model 

without taking into account the contiguity constraint. In the second stage, the clusters 

are revised in terms of geographical contiguity. With this methodology, if the areas 

^ A multivariate statistical tool widely used to classify elements in terms of their similarities 
or dissimilarities (Jobson, 1991). 
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included in the same cluster are geographically disconnected, those areas are defined 

as different regions (Ohsumi, 1984). 

'j 

Two conventional clustering algorithms can be used in this context: hierarchical or 

partitioning. 

2.2.1. Hierarchical algorithms. 

These algorithms are usually applied when the researcher is interested in obtaining a 

hierarchical and nested classification (for every scale level), that is usually summarised 

using dendograms^. The main disadvantage of using hierarchical clustering algorithms, 

apart fi-om the high computational requirements (Wise et al, 1997), is the high 

probability of obtaining a local optimum due to the fact that once two elements have 

been grouped in a particular aggregation level, they will not be re-evaluated 

independently at higher levels (Semple and Green, 1984). On the other hand, their 

main advantage is that there is no need to specify initial partitions to apply the 

algorithm (Macmillan and Pierce, 1994). 

2.2.2. Partitioning algorithms. 

The K-means procedure, which belongs to the partitioning clustering category, is more 

frequently used in régionalisation processes. This iterative technique consists of 

selecting from the elements to be grouped a predetermined number of k elements that 

will act as centroids (as many as there are groups to be formed). Each of the other 

elements is then assigned to the closest centroid. 

Graphic representations of the solutions of hierarchical cluster (Gordon, 1996). 
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The aggregation process is based on minimising a measure of dissimilarity among 

elements to aggregate in each cluster. This dissimilarity measure is usually calculated 

as the squared euclidean distance from the centroid of the cluster^: see equation 2.1. 

i=l 

Where denotes the value of variable i (/=1..^ for observation m (m=l.M), and 

is the centroid of the cluster c to which observation m is assigned or the 

average Jf, for all the observations in cluster c. 

The K-means algorithm is based on an iterative process in which initial centroids are 

explicitly or randomly assigned and the other elements are assigned to the nearest 

centroid. After this initial assignation, the initial centroids are reassigned in order to 

minimise the squared euclidean distance. The iterative process is terminated if there is 

no change that would improve the actual solution. 

It is important to note that the final solutions obtained by applying K-means algorithm 

depend on the starting point (that is, the designation of the initial centroids). This 

makes it quite difficult to obtain a global optimum solution. 

Finally, when a K-means algorithm is applied in a two-stage régionalisation process, it 

may be the case that the number of regions to be designed will not necessarily be equal 

to the value given to parameter k, since areas belonging to the same cluster have to be 

counted as different regions if they are not contiguous. So, different proofs have to be 

made with different values of k (lower than the number of regions desired), until 

' A detailed summary of these aggregation methodologies can be found in Gordon (1999) 
and for the case of constrained clustering in Fisher (1980), Murtagh (1985) and Gordon 
(1996). 
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contiguous regions are obtained. In some cases it may in fact be impossible to obtain 

the desired number of contiguous regions. 

i 

Among the advantages of the two-stage aggregation methodology, Openshaw and 

Wymer (1995) highlight the fact that the homogeneity of the regions defined is 

guaranteed by the first stage. Moreover, this methodology may also help to obtain 

evidence of spatial dependence between the elements. However, taking into account 

the objectives of the régionalisation process, the fact that the number of groups 

depends on the degree of spatial dependence® and not on the researcher may present a 

substantial problem. 

2.3. Inclusion of geographical information as classification variables. 

The second strategy includes as classification variables the geographical coordinates of 

centroids representing the areas to be grouped (Perruchet, 1983, Webster and 

Burrough, 1972). In this strategy, as a way to achieve geographical contiguity, the 

geographical coordinates are included in the calculation of dissimilarities between 

areas and conventional classification algorithms are then applied. 

An approach of this kind was implemented in the SAGE system {Spatial Analysis in a 

GIS Environment) (Haining et al., 1996). In its régionalisation algorithm, this system 

uses an objective function formed by three components. The first controls intra-group 

variance taking into account the non-spatial attributes; the second, the geographical 

component, includes the sum of the distances fi-om areal centroids to the cluster 

centroids in order to achieve geographical contiguity, and the third component is a 

measure of the deviation between the regional value of an attribute and its average 

value. A different weight is assigned to each of these components in the objective 

® When the spatial dependence is higher (lower) there will be a trend towards the creation of 
less (more) regions. 
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function in order to obtain a unique value to minimise. The régionalisation procedure 

is based on K-means a partitioning algorithm (Andemberg, 1973). 

Calciu (1996) uses the same territorial aggregation strategy, defining it as ''contrainte 

spatiale implicite" (implicit spatial constraint), which incorporates as geographical 

variables the Cartesian coordinates, appropriately transformed, of the points 

representing each area. This author favours applying a hierarchical classification 

algorithm, where the inclusion of the coordinates makes it possible to obtain an 

improved geographical continuity, although it also involves a certain degree of loss in 

terms of intragroup homogeneity compared with the case where the hierarchical 

algorithm is applied without considering these geographical variables. 

The main drawback associated with this methodology is the difficulty of 

simultaneously treating variables expressed in different measurement units and the 

definition of objective weights for each of the variables, especially the geographical 

variables as the weights should be strong enough to guarantee that geographical 

contiguous regions are formed (Wise et al., 1997). 

Another disadvantage is that the final solution may change depending on the method 

used to localise the centroid representing each of the areas to be grouped, especially in 

cases in which the areas are particularly large (Horn, 1995, Martin et ai, 2001). 

2.4. Additional instruments to control for the continuity restriction. 

The last and perhaps the commonest strategy for solving territorial aggregation 

problems is to control for the geographical contiguity constraint using additional 

instruments such as the contact matrix or its corresponding contiguity graph. The 

contact matrix is a binary matrix with elements cy, where Cy takes value 1 if areas i and 
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j share a border, and 0 otherwise. In the contiguity graph the areas to be grouped are 

represented as nodes, and arcs represent the adjacency relationship between them^. 

These elements are used to adapt conventional clustering algorithms, either 

hierarchical or partitioning, in order to respect the continuity constraint. 

The main problem with adapted hierarchical algorithms in the context of 

régionalisation processes is that there may be breaks in monotonicity between 

elements. This problem is known as reversal, that is, the distance between two objects 

may be higher than the distance between the union of this object with a third one ^ 

(Calciu, 1996, Gordon 1996, Feriigoj and Batagelj, 1982). Reversals complicate the 

task of interpreting classification. 

In adapted partitioning algorithms, contact matrices or contiguity graphs have mainly 

been applied in two different methodologies: mathematical programming, and iterative 

algorithms. 

As far as mathematical programming is concerned, Macmillan and Pierce (1994) 

define the régionalisation problem as an optimisation problem in which, given a 

predetermined number of groups to form, the solution will define the optimum 

territorial aggregation. The. solution proposed by these authors to ensure that 

geographical continuity consists of exponentiating the contact matrix, bearing in mind 

that for the formation of a region with n continuous areas the {n-1)^ power of the 

contact matrix may not contain null elements. This solution implies that the feasible 

space defined by the constraints is non-convex and, as a result, the objective fimction 

is likely to become trapped in a local optimal solution. 

^ For a more detailed description of the methods for the production of graphs of this kind, see 
Gordon (1996,1999). 
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Cutting algorithms for graph partitioning is another way to see the régionalisation 

problem from the perspective of mathematical programming. In these models, the 

contiguity graph stores in each arc (ij) a value of dissimilarity between areas i and j, 

i.e. G'^iV^, with a weight function w : E-^N. 

Cutting algorithm looks for a partition of the node set V into k disjoint sets F={Ci, 

€2,—, Q } where k is an integer and k e [2..|F]. Thus, in a régionalisation process, the 

idea would be to maximise the isolation between groups, so the objective in a 

"maximum k-cut" is to maximise the sum of the weight of the edges between the 

disjoint sets, i.e.: 

i t S M i v ^ v J ) (2-2) 
i=l j=i+l VigC, 

v^BCJ 

Where vi and V2 are the endpoints of an arc^°. 

Another method, cited by Neves et al. (2001), consists of the reduction of the 

contiguity graph (G=(F,£)) with w : E-^N). The reduction progressively eliminates the 

arcs until a minimum spanning tree is obtained. The main point of this representation 

is that the elimination of one arc at a time implies the partition of the graph in 

intraconnected, but not interconnected, subgroups (Ahuja et al., 1993). 

One disadvantage of the régionalisation methodologies that model the dissimilarity 

relationships by using the arcs of the contiguity graph is that they do not consider a 

large number of dissimilarity relationships between areas that are not contiguous. 

A compendium of models related to network design can be foimd in Crescenzi and Kann 
(2004). 
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Since the resolution of problems of this kind using conventional optimisation methods 

is extremely complex^ ̂  other methodologies have been developed in the field of 

régionalisation which have proved highly effective in those cases where a large 

number of elements are to be grouped. Among these solutions, the algorithms known 

as Iterative Relocation Algorithms have been widely analysed. These methods tiy to 

find the best regional configuration using a non-optimal configuration as a starting 

point'^ and then performing different movements of areas between regions in order to 

improve the objective fimction. Ferligoj and Batagelj (1982) provide different iterative 

reallocation algorithms that allow movement of an area to a different region only if 

contiguity constraints are satisfied. 

Algorithms such as the Automatic Zoning Procedure (AZP) (Openshaw, 1977), the 

Land Allocation Problem (Benabdallah and Wright, 1992), the Redistricting Problem 

(Macmillan and Pierce 1994) and the Regional Partitioning Problem (Horn, 1995) 

have been used in the literature in the context of the particular case of splitting a 

country into administrative areas or electoral districts so that the final régionalisation 

minimises the effects of the Modifiable Areal Unit Problem (MAUP)^^. 

Iterative Relocation Algorithms have been improved by using heuristics that permit an 

improved search among the different feasible solutions and avoid the risk of being 

trapped in a local optimimi. The heuristics most used in this context are the Simulated 

" Openshaw (1984) calculated that to aggregate 1,000 areas in 20 regions there are 101,260 
different solutions. For more information about combinatorial problems, see Aarts and 
Lenstra(1997). 

IA 
Different altematives for determining the initial solution can be found in Wise et al. (1997). 
Openshaw defined tiie Modifiable Areal Unit Problem (MAUP) as a potential source of 
error that can affect the results of studies based on geographical ag^egated information, as 
these results could vary depending on the configuration of this aggregation. The MAUP is 
related to two different problems regarding the analysis of spatial data: the problem of 
scale, related to the desired number of regions, and the problem of aggregation, related to 
the configuration of small areas inside bigger areas. For more information, see Openshaw 
(1977), Openshaw and Taylor (1981), and in an econometric context, see Fotheringham and 
Wong 0991) and Amrhein and Flowerdew (1992). 
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Annealing (AZP-SA) and the Tabu Search Algorithrn"^'^^ (AZP-TABU), proposed by 

Openshaw and Rao (1995), and the Anneal Redistricting Algorithm proposed by 

Macmillan and Pierce (1994). 

As algorithms of this kind are of special interest in this thesis dissertation, in the next 

section we present a brief description of the heuristics with the greatest impact in the 

field of régionalisation, and which fulfil the following conditions: their objective is to 

divide a territory into a pre-defined number of regions, and the areas to be grouped do 

not have a specific role. So, we are not considering here the heuristics applied in 

hierarchical partitions or those that try to find core areas or centroids in order to assign 

the rest of the areas. 

2.4.1. Automatic Zoning Procedure (AZP). 

This heuristic proposed by Openshaw (1977) is based on an iterative procedure. It 

consists of the optimisation of an objective fimction F(Z), where Z is the allocation of 

each of the N zones to one of M regions such that each zone is assigned to only one 

region and each region has at least one zone. 

The AZP algorithm consists of the following steps: 

Step 1 Start by generating a random zoning system of N small zones into M regions, 

M<N. 

Step 2 Make a list of the M regions. 

Step 3 Select and remove any region ^ at a random fi-om this list. 

^̂  The Simulated Annealing was proposed as an optimisation procedure by Kirkpatrick et al. 
(1983) and first applied in the Redistricting Problem by Browdy (1990). 
For more information on the Tabu Search Algorithm, see Glover (1977,1989, 1990). 
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Step 4 Identify a set of zones bordering on members of region K that could be moved 

into region without destroying the internal contiguity of the donor region(s). ̂  

Step 5 Randomly select zones from this list until there is a local improvement in the 

current value of the objective function or a move that is equivalently as good 

as the current best. Then make the move, update the list of candidate zones, 

and return to step 4 or else repeat step 5 until the list is exhausted. 

Step 6 When the list for region K is exhausted return to steps 3, select another region, 

and repeat steps 4-6. 

Step 7 Repeat steps 2-6 until no further improving moves are made. 

Among the main advantages of this heuristic is the possibility of using any objective 

function that is sensitive to the aggregation of zones. This characteristic is extremely 

useful for approximating the limit of the aggregation effects. It also served to 

demonstrate that MAUP exists. 

Its main disadvantages are related to the local search procedure (restricted to the 

selected region) and to the strong dependence of the results on the starting point 

selected (step 1). Equally, the strategy of ignoring the possibility of moving a zone that 

implies a decrease in the objective function may cause the heuristic to be trapped in a 

local optimum, Openshaw tried to solve this problem in later proposals. 

2.4.2. Simulated Annealing Variant of AZP (AZP-SA). 

This proposal of Openshaw and Rao (1995) incorporates a modification to the AZP: 

step 5 now consists of "Randomly sample this list until there is a local improvement in 

the objective function or an equivalently good move. Then make the move. Otherwise 

make the move with a probability given Boltzmann's equation ": 

i ? ( 0 , l ) < e x p ^ (2-3) 
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Vf is the change in the objective function caused by the move. 
T{k) is the temperature being applied at annealing time step k. 
i?(0,l) is a uniformly distributed random number in the range 0.0 to 1.0. 

The interest of this modification lies of the possibility of moving towards a solution 

that decrease the objective ftmction, but with a probability that diminishes gradually, 

through iteration time. 

In this heuristic, special attention should be given to the definition of the initial value 

of 71(0) and the cooling schedule, looking for an appropriate ''''trade-off'' between the 

execution time and a good solution. Openshaw adopts an exponential cooling scheme 

where the temperature in k is equal to a fraction of the temperature in k-\, this is: 

T{k)=fr{K-\) where/is typically between 0.8 and 0.95. 

So, the AZP-SA can be summarised in the following steps: 

Step a Set T^O), ^ 0 . 

Stepb Apply AZP with the modified step 5 imtil either MAXIT (a user-defined 

maximum number of) iterations or convergence or at least a minimum of Q 

simulated annealing moves have been made. 

Step c Update Tand k\ T{ky={),^5-T{k-\) and h=k+\. 

Step d Repeat steps b and c until no further moves occur over at least three different 

k values. 

Macmillan and Pierce (1994) apply the Simulated Annealing in the Redistricting 

Problem. Their heuristic, called the ANNEAL redistricting problem, aims to group C 

counties into D districts with the restrictions that each district should contain at least 

one county, and each county can only be assigned to one district. The optimisation 

criterion is the minimisation of the sum of the squares of the deviations of the district 

populations fi-om their population target {PID of the state's P electors). 
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Given that much of the complexity of the proposed heuristics for régionalisations 

problems is due to the control of contiguity, Macmillan (2001) proposes a 

régionalisation algorithm called SARA, which incorporates a more efficient 

methodology to control contiguity constraints based on the concept of switching 

points. This new proposal significantly improves the execution times obtained by 

Openshaw and Rao (1995). 

2.43. Tabu Search Algorithm (AZP-TABU). 

This heuristic was adapted by Openshaw for régionalisation problems. Its main 

advantage is the possibility of achieving similar results to the Simulated Annealing, but 

with a lower computational cost. The AZP-TABU steps are the following: 

Step 1 Find the global best move that is not prohibited or tabu. 

Step 2 Make this move if it is an improvement or equivalent in value, else: 

Step 3 If no improving move can be made, then see if a tabu move can be made 

which improves on the current local best (termed an aspiration move), else: 

Step 4 If there is no improving and no aspirational move, then make the best move 

even if it is nonimproving (that is, results in a worse value of the objective 

function). 

Step 5 Tabu the reverse move for R iterations. 

Step 6 Return to step 1. 

The main advantage of this algorithm is that it permits us to escape from local 

optimums or cyclical behaviour. Its disadvantage lies in the definition of an adequate 

value of R, as the results depend heavily on this parameter. Battiti and Tecchiolli 

(1994) propose the Reactive Tabu Search where R is dynamically adjusted. 
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2.4.4. Heuristic based on spanning trees for territorial aggregation. 

The heuristic proposed by Maravalle and Simeone (1995), called MIDAS {Méthode 

Itérative D'Agrégation Spatiale) incorporates the relationships between vertices 

(areas) in order to build homogeneous regions with respect to a certain set of 

characteristics. The problem is formulated in the following way: "Given a connected 

graph G, in which a vector of characteristics is associated with each vertex, find a 

minimum inertia partition of the vertex-set of G into a prescribed number of connected 

clusters". 

The proposed heuristic follows a strategy based on the simplification of G, such that G 

is replaced by one of its spanning tree T in which each pair of vertices are connected 

by one and only one group of arcs. The group of arcs belonging to 7 is a subgroup of 

the arcs belonging to G. The most relevant characteristic of T is that deleting one of its 

arcs will generate a partition of the vertices in two groups that are intraconnected but 

not interconnected. This result is consistent with the régionalisation requirements. 

The MIDAS heuristic can be summarised in the following steps'^: 

Step 1 (Initial tree) Find a good initial sparming tree Toi G. 

Step 2 (Initial partition) Find a good initial partition it from the whole group of 

possible partitions of G, Yipij')-, 

Step 3 (Tree-optimisation) Starting from A, perform a local search to find a near-

optimal solution K* to the problem 

min t / - ( ; r ) : / rend i r )} (2-4) 

16 A detailed description of the different steps can be foimd in Maravalle and Simeone (1995). 
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Step 4 (Tree-modification) Attempt to find, if possible, another p-partition ñ and 

another tree T of G such that: ^ 

f{it)<f[n) (i) 

K^Y{p(T) (ii) 

K ^ I V p ^ ) (iii) 

If no such pair {K,T) can be found, then stop: output the current partition n * (since 

n* is feasible in T, it is also feasible in G)\ else replace it hy K and go to step 3. 

The main drawback with this methodology is the loss of control on the number of 

elements included in each partition, and, more importantly, the use of arcs of the 

contact matrix G as a way to represent the relationships between vertices, since this 

implies ignoring other relationships between non-adjacent vertices. 

The methodologies of constrained clustering in which additional instruments are 

included have as a common characteristic that the relationships between the areas to be 

grouped are symmetrical. Ferligoj and Batagelj (1983) have developed agglomerative 

algorithms where asymmetric relationships can be considered. 

All the methods presented above are "supervised" models, which means that the 

researcher knows a priori the data structure of the phenomenon analysed. But there are 

other unsupervised models that can be useful when the researcher wants to analyse a 

large amount of data and there is not enough information on the factors that can affect 

the system. In these cases, one possibility is to apply a non-parametric analysis of data 

that will identify patterns and relationships among the elements under consideration. 

Among the best known applications of these methods in the field of régionalisation are 

Self Organization Maps (SOM) proposed by Kohonen (1984). There is no consensus 
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among researchers on the validity of this methodology, originally developed in the 

field of artificial intelligence, due to the lack of a theoretical basis that complicates the 

interpretation of the results (Openshaw, 1992). 

A summary of the methodologies described in this chapter can be found in table 2.1. 
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Table 2.1. Summary of the methodologies available for the reduction of 
geographical data. 
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CHAPTER 3 

A linear optimisation model for the design of homogeneous territorial 

units 
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3.1. Introduction. 

In this chapter, the régionalisation problem is formulated as a linear optimisation 

model that allows the design of regions taking into account not only the characteristics 

of the areas but also their relationships. The possibility of treating the régionalisation 

problem as a linear model implies that, by its mathematical properties, the feasible 

region is convex and, as a result, it is possible to find the optimal solution. Other 

advantages of this formulation are that it is easy and relatively cheap to implement in a 

great variety of commercial software, and is flexible when some changes or additional 

constraints are needed. 

Before introducing the mathematical formalisation of the model, we should mention its 

main characteristics and assumptions. 

3.2. Model description. 

3.2.1. Representation of the geographical set. 

The starting point of any régionalisation process is the identification of the territory to 

régionalisé. Figure 3.1 shows an example of a territory comprising a finite number («) 

of geographical areas of smaller size forming a geographical contiguous region 

A = {ai, a2, as,.. . , a„}. 

Once the territory of interest has been defined, the next step is to simplify the 

previously defined geographical set so that each of the elements considered (n areas) 

and their neighbourhood relationships can be easily represented. This simplification 

can be done using a graph formed by n nodes, each of them representing one of the 

areas considered, and arcs that represent the geographical contiguity between them. 
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Several methods are available for simplification of this kind. We selected the most 
> 

general one, Delaunay Triangulation (DT) (Aurenhammer, 1991). With this method, 

each arc relates areas with a common border. One of the main advantages of this 

method is that the location of the point representing each of the areas does not affect 

the result of the graph. Other methods, such as the Gabriel Graph (Matula and Sokal, 

1980), the Relative Neighbourhood Graph (Toussaint, 1980) or the Minimum 

Spanning Tree (Graham and Hell, 1985) are particular cases of DT and results may 

differ depending on the location of the areal centroids. Figure 3.2 shows the DT graph 

of the territory considered in the example. 

Figure 3.1. Group of areas that form the territory to régionalisé. 

Source: Own elaboration. 

Figure 3.2. Delaunay Triangulation (DT). 

Source: Own elaboration. 
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3.2.2. Relationships between the elements to be grouped. 

The next step consists of the consideration of the relationships between areas (or nodes 

of the graph). The consideration of these relationships is one of the most important 

stages in the régionalisation process proposed in this chapter, since taking into account 

interactions between areas could be very useful in a wide range of applications. For 

example, if the objective of the study is to build regions with a similar population in 

order to establish proper comparisons, it will be helpfiil also to consider information 

on dissimilarities regarding other socio-economic variables in order to obtain more 

homogenous regions. 

These relationships are incorporated in the model through a squared and symmetric 

matrix Dy (i = 1, 2, ..., n and j = 1, 2, ... , n) where dy contains a dissimilarity measure 

between every pair of areas i,j. 

The function selected to calculate dissimilarities between pairs of areas should satisfy 

the following properties: 

d i j = d j i = (3-1) 

4 >o, [dij=mi=j) Vz,y/=1,...,« (3-2) 

These properties imply that the function need not be metric (it does not have to satisfy 

the triangular inequality^^): 

dij < dik+dj^ ^ i ^ j y k = 1,...,« (3-3) 

17 For more information, see Gower and Legendre (1986). 
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The possibility of using distance functions that need not be metric can be understood 

as a relaxation of the hypothesis used in the régionalisation models based on centroids 

where the rest of areas are assigned to each region depending on their proximity. 

When metric distance functions are used, the centroid-based approach ensures that the 

final solution will satisfy the geographical continuity constraint. 

3.2.3. Strategy for the configuratíon of regions. 

Once we have information about the territorial configuration and the relationships 

between the different areas, the next step is to group the n areas {ai, a2,..., an} into m 

non-empty sets or regions {1, 2, ... , m} in a way that the areas belonging to each 

region are geographically contiguous. 

To define these regions we need to select n-m arcs from the global set of arcs that 

define the contiguity graph. These n-m arcs can be understood as a necessary but not 

sufficient condition for the formation of m regions in a way that areas belonging to 

each region are totally interconnected but disconnected fi-om the areas belonging to 

other regions. This selection should take into account the following conditions: each 

region must have a number of arcs equal to the number of areas belonging to the 

region less one, each region should be formed by a minimum of two areas and, last, in 

each region, every pair of areas should be coimected by one and only one combination 

of arcs^^. This kind of regional configurations implies that the minimum number of 

areas in each region will be two (one arc connecting two areas), this is m = [M/2]. This 

condition is less restrictive as the number of areas forming the territory increases^^. 

Figure 3.3 shows a possible solution for designing 2 regions from 7 areas. 

For more information about the properties of this (and other) configurations, see Ahuja et 
al. (1993). 
If we have one area that is considered as an outlier it should be treated as a region; the 
solution is to exclude it from the analysis and to form m-1 groups with the other n-1 areas. 



Chapter 3. A linear optimisation model for the design of homogeneous territorial vmits 33 

Figure 3.3. Feasible result for the design of two regions. 

Source: Own elaboration. 

The location of arcs in each region has no influence on the final result. For example, 

the region formed by the areas connected by arcs 1-2, 2-3 and 2-4 can be also 

configured with arcs 1-3, 2-4 and 3-4. This equivalence is due with the fact that the 

arcs fimction is only to ensure geographical contiguity, because they have no value 

assigned to them. This strategy can be very useftil to identify regional configurations 

with a high variety of shapes (elongated or compact regions), as it does not rely on 

centroids, which tend to produce compact areas. 

3.2.4. Criteria considered for the configuration of regions: the objective 

function. 

The objective of grouping n areas in m regions is that the areas belonging to each 

region form a homogeneous, geographically contiguous unit. So a partition criterion 

establishing which of the possible configurations of n areas in m regions is the best 

suited should be defined. 

With this aim, it is necessary to define a measure of adequacy of a regional 

configuration. One possibility is to calculate the degree of heterogeneity of the areas 

assigned to a region; another is to calculate the degree of isolation of the areas of one 

region related to the rest. The heterogeneity measure selected in this dissertation 
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consists of the sum of the elements of the upper triangular matrix of dissimilarity^ 

relationships between the areas in the considered region. Following Gordon (1999), 

the heterogeneity measure for region r, Cr can be calculated as follows: 

Taking this into account, the problem of obtaining r homogeneous classes (regions) 

can be formulated as the minimisation of the sum of the heterogeneity measures o f 

each class (region) r: 

(3-5) 

or, following the MIN-MAX strategy, we can also try to minimise the value of the 

most heterogeneous region as this implies that the rest of the regions would be equal or 

less heterogeneous: 

P{H,Max) = H(Cr ) (3-6) 

One disadvantage of the second strategy is that once the value of the most 

heterogeneous region is minimised, the configuration of the rest of the regions will not 

be revised, precluding the chance to make changes that could improve their 

heterogeneity. For this reason, the selected strategy has been the minimisation of the 

sum of the heterogeneity measures of each region (P(/i,S)). 

It is worth mentioning that both objectives, minimising internal heterogeneity H(Cr) 

and maximising the isolation among regions IfQ), are not independent. In fact, we can 

formulate an equivalent objective in terms of isolation criteria: 
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With = 

3.3. Mathematical model. 

Parameters : 

i, I index and set of areas, i = {l,..., n\ 

k,K index and set of regions, A: = {l,..., w}, 

1, if I and j are continuous (share a border), with i < j, 

0, otherwise; 

M Max X ^ i i ' - ' E ^ « / -
7=1 7=1 

D¿j Dissimilarity relationships between areas i and j, with i<j'. 

Decision Variables : 

^ijk 
1, if areas i and j\j e JV,- belong to the same region k, with i < j, 

0, otherwise; 

Z ik 
1, if area i belongs to region k, 

0, otherwise; 

T-

1, the disimilarity relationship between i and j is considered if both areas 

belong to the same region k, i < j, 

0, otherwise; 
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n n 
Objective function : Miri^ ^ Dy • Ty 

i=l j=l 
Subject to: 

Tij >Yik+ Yjk -1, V/,Y/- = l,...,n ; VA: = L,...,M (3-8) 

f^Yik>2, VÄ: = l,...,m (3-9) 
/=l 
m 

V/ = l n (3-10) 
k=l 

J^Xijk < Yik • M V I = 1 n ; Vk = 1 m (3-11) 

-M, V / = L,...,« ; \fk = \,...,m (3-12) 
j^Nt 

VA: = 1 m (3-13) 
/=1 JbNi 1=1 

y Xijk V non - empty subset of C ç {3,..., (n-2m +1)}, 
ijec (3-14) 

Xyk e {1,0} ; Yik ̂  M ; Ty > 0, V/, V/ = 1 n ; VA: = 1 m (3-15) 

As previously mentioned, the objective function seeks the minimisation of total 

heterogeneity, measured as the sum of the elements of the upper triangular matrix (Dy) 

of dissimilarity relationships between areas belonging to the same region (the elements 

defined by the binary matrix T,y). Restriction (3-8) controls the assignation of the 

values of matrix T,y where, by the nature of the objective fimction, the relationship 

between areas i and y' will only be taken into account if they belong to the same region. 

Restriction (3 -9) imposes the requirement that the minimum number of areas defining 

a region is two. As previously mentioned, the restriction is less strong as the number of 

areas increases. Restriction (3 10) imposes the condition that each area must be 
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assigned to one and only one region. Restrictions (3-11) and (3-12) require that only 

when the area i is assigned to region k, it will be possible to establish arcs to the 

neighbourhoods of the area (/GN,). TO avoid an excessive reduction of feasible 

regional configurations, the number of arcs from an area can be greater than one. 

Restriction (3-13) imposes the condition that the number of arcs to ensure geographical 

contiguity of the areas assigned to one region must be equal to the number of areas in 

the region less one. However, this restriction does not totally ensure that the final 

solution will be formed by contiguous regions. There are cases such as the one shown 

in Figure 3.4, where region A, formed by areas 1, 2, 3, 6 and 7, satisfies restriction 

(3-13) - there are four connecting arcs for five areas - but the combination of arcs 1-2, 

1-3, 2-3 generates a cycle that breaks the geographical contiguity of the region. For 

this reason, it will be necessary to control some of the arcs, if there are cycles and this 

is the origin of restriction (3-14). 

Figure 3.4. Non-feasible regional configuration. 

Region A 

Region B 

Source: Own elaboration. 

The problem of cycles has been treated in the literature as the analysis of subtours in 

transport models such as the Vehicle Routing Problem (VRP) . The VRP consists of 

defining vehicle routes with a given origin and end in the same node (called the depot) 

and trying to minimize costs. The design of a tour for a certain vehicle cannot contain 

^̂  This problem was first proposed by Dantzing and Ramser (1959). A survey about the 
models derived from this approach can be found in Laport and Osman (1995). 
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subtours and to control for this condition, the VRP incorporates the following^ 

constraint: 

^ X i ß < 1̂ 1 - 1 , V non-empty subset of ...,«}; (3-16) 
jJmS 

The main disadvantage of this approach is that the number of restrictions increases 

exponentially with n and m. For this reason, and although the proposal is theoretically 

adequate, at the practical level it has been necessary to implement other restrictions to ' 

solve this problem in a more efficient way. These alternatives can be appropriated for 

the specific problem of the VRP (although they do not ensure the elimination of 

subtours in problems of a certain size), but not for the régionalisation problem. For 

example, a depot node must be established a priori as the origin and end of all the 

tours, and it is also necessary to establish a sequential order among nodes. 

However, the theoretical restriction of the VRP can be adapted in an efficient way in 

this geographical context as we know the number of elements of the set S. For 

example, in the territorial configuration of Figure 3.5 we can clearly identify the 

different combination of arcs Cy that can generate cycles. The combination of arcs 1-2, 

1-3, 2-3 (or 2-3, 2-4, 3-4) will produce a cycle where 3 areas would be involved, 1, 2 

and 3 (or 2, 3, 4), while the combination of arcs 1-2, 1-3, 3-4, 2-4 will generate a cycle 

between the four areas. 

Figure 3.5. Configuration of areas with potential cycles. 

Source: Own elaboration. 
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Moreover, in a territorial configuration such as the one shown in Figure 3.6, there is no 

combination of arcs Cy that could generate a cycle. For this reason, at the territorial 

level, not every subset S can have cycles as the number of potential arcs Cy is limited to 

those combinations i J where the value of the contact matrix wij =1. This is the set of 

potential arcs Cy that are included in Ni. 

Figure 3.6. Configuration of areas without potential cycles. 

Source: Own elaboration. 

But is there any special pattern that could help to detect potential cycles in a specific 

territorial configuration? The answer is yes: we only have to identify the combinations 

of arcs where the number or arcs is equal to the number of areas connected through 

them. For example, in the case shown in Figure 3.5, the three arcs 1-2, 1-3, 2-3 (or 2-3, 

2-4, 3-4) connect three areas, 1,2,3 (or 2,3,4), and as a result, 3 arcs and 3 areas imply 

the existence of a cycle. The same happens with the combination of arcs 1-2, 1-3, 3-4, 

2-4 which connect four areas (1,2,3,4). Again, 4 arcs and 4 areas imply the existence 

of a cycle of 4 elements. 

But for a territorial configuration of n areas that will be grouped in m regions, what is 

the maxiTTiiim number of areas tiiat can be involved in a cycle? As the model, in 

restriction (3-9), requires that the minimum number of areas in a region is 2, in the 

case where (m-1) regions are formed by two areas, there will be no possibility of 

cycles, as each region will have only one possible arc (restriction 3-13). For this 

reason, when creating m-1 regions with 2 areas, we will have a region formed by 
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n-2{m-\) areas with («-2(m-l))-l arc, which is the maximum number of arcs that can 

create a cycle. Simplifying this expression, we have that: , 

n-2m+\ (3-17) 

So, the minimum number of areas where the possibility of finding a cycle should be 

evaluated is three, as this problem is impossible for a lower number of areas. As a 

result, restriction (3 14) is related to the modification of the set S as proposed in the 

VRP, which in the context of our problem was stated as C. Using this modification, we 

achieve a substantial reduction in the number of restrictions to satisfy, avoiding the 

exponential increase in the number of restrictions with n and m. This allows us to use 

commercial software in the context of régionalisation problems with a high number of 

areas and regions. 

Last, restriction (3-15) only implies that X^ß and Yî  should be binary variables. 

Although the variable Ty has been defined as positive, and not as binary, it will 

always take values 0 or 1 because of the combination of restriction (3-8) and the 

objective of minimisation of the model . 

3.4. Application of the model. 

In this subsection, several examples are shown with the aim of illustrating the model's 

capacity to design regional configurations with different characteristics. A first set of 

four examples is used, each one with different dissimilarity matrixes (D^), where 

values dij have been established in such a way that it is possible to know a priori the 

The possibility of defining a variable taking values 0 or 1 as positive and not as a binary 
variable has an advantage when using the branch and bound algorithm, as the number of 
sub-problems is drastically reduced. For more information about this algorithm, see Hiriart 
eia/. (1983). 
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optimum regional configurations. The procedure for obtaining the dissimilarity matrix 

in each example is as follows: 

1. n areas have been grouped in m contiguous regions, assigning each area 

/ = {1,...,«} to a region k = {I,...,m). This aggregation makes it possible to build 

the sQiRkiijiek}. 

2. A value is assigned to each of the areas i = {l,...,n} depending on their region. 

This value is given by the sum of a constant with a random term, generated 

from a uniform distribution between 0 and 1. The value of the constant is 

different for each region, as there should be a large enough difference (D) to 

obtain significant different average values for each region. The expression 

applied is: 

A € R , = C + {D*k)+e V/ = l,...,«;VA: = l,...,m;£~C/[0,l] (3-18) 

3. Next, the relationships between areas are calculated using a distance fimction. 

The weighted euclidean distance is applied in order to calculate distances 

between the elements of the A¡ vector after centering it. 

dy = 4 c 4 

s s 
yij=1,...,« \i<j (3-19) 

where S is the standard deviation of the At, vector and is a centered vector 

calculated as follows fi-om^,: 

4 - = 4 -
i=\ 

Vi = 1,...,« (3-20) 

The matrixes obtained with this procedure are shown in Table 3.1. 
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Table 3.1. Relationships matrixes for examples 1 to 4. 

Example 1 

area 2 3 4 5 6 7 8 9 10 11 
1 1.04 1.21 1.18 1.11 0.17 0.14 2.26 2.31 0.09 2.31 
2 0.17 0.14 0.07 1.22 1.18 1.22 1.27 1.14 1.27 
3 0.03 0.10 1.38 1.35 1.05 1.10 1.31 1.10 
4 0.07 1.35 1.32 1.08 1.13 1.27 1.13 
5 1.29 1.25 1.15 1.20 1.21 1.20 
6 0.03 2.43 2.48 0.08 2.49 
7 2.40 2.45 0.05 2.45 
8 0.05 2.36 0.05 
9 2.41 0.00 
10 2.41 

Example 2 

area 2 3 4 5 6 7 8 9 10 11 
1 0.06 0.02 0.03 2.42 2.49 1.23 0.03 1.19 0.04 0.02 
2 0.07 0.03 2.37 2.44 1.18 0.09 1.13 0.01 0.04 
3 0.04 2.44 2.51 1.25 0.01 1.20 0.06 0.03 
4 2.40 2.47 1.21 0.06 1.16 0.02 0.01 
5 0.07 1.19 2.45 1.23 2.38 2.40 
6 1.26 2.52 1.31 2.45 2.48 
7 1.27 0.05 1.19 1.22 
8 1.22 0.07 0.05 
9 1.14 1.17 
10 0.02 

Example 3 

area 2 3 4 5 6 7 8 9 10 11 
1 0.64 0.80 1.36 1.27 2.03 1.98 0.08 1.98 2.78 2.79 
2 0.15 0.72 0.62 1.39 1.34 0.73 1.34 2.13 2.14 
3 0.57 0.47 1.23 1.19 0.88 1.18 1.98 1.99 
4 0.10 0.67 0.62 1.45 0.62 1.41 1.42 
5 0.76 0.72 1.35 0.71 1.51 1.52 
6 0.05 2.11 0.05 0.75 0.76 
7 2.07 0.00 0.79 0.80 
8 2.06 2.86 2.87 
9 0.79 0.80 
10 0.01 

continue. 
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Example 4 

area 2 3 4 5 6 7 8 9 10 11 
1 0.23 0.27 0.16 2.45 2.56 0.22 0.04 0.06 0.17 0.04 
2 0.05 0.06 2.23 2.34 0.00 0.27 0.28 0.40 0.27 
3 0.11 2.18 2.29 0.05 0.31 0.33 0.45 0.31 
4 2.29 2.40 0.06 0.21 0.22 0.34 0.21 
5 0.11 2.23 2.49 2.51 2.63 2.50 
6 2.34 2.61 2.62 2.74 2.61 
7 0.26 0.28 0.40 0.26 
8 0.02 0.13 0.00 
9 0.11 0.02 
10 0.13 

Source: Own elaboration. 

The regional configurations obtained after applying the optimisation model with the 

different relationship matrices are shown in the maps in Table 3.2. The solutions 

coincide with the optimal regional configurations predefined above and so the model 

seems able to design regions with a high variety of shapes. 

Table 3.2. Solutions for the relationships matrixes from Table 3.1. 

Example 1 Example 2 

n=ll and m=3 n=ll and m=3 
continue. 
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Example 3 Example 4 

n=ll and m=5 n=ll and m=2 

Source: Own elaboration. 

3.5. Additional restrictions that can be incorporated to the model. 

In this sub-section a second block of examples are shown in order to introduce some 

restrictions in the model that are usually considered in régionalisation processes. 

Using a similar procedure to the one explained in the previous section, a relationship 

matrix {Dij) has been calculated from demographic data^^ for the 11 statistical areas in 

which the Comunidad de Madrid is divided at the NUTS IV level (see Table 3.3). 

22 Replacing ratio: (Population between 15 and 39 years old)/(Population between 40 and 64 
years old). Dependence ratio: (Younger than 15 years old and older than 64 years 
old)/(Population between 15 and 64 years old). Progressivity ratio: (Population between 0 
and 4 years old)/(Population between 5 and 9 years old)xlOO. 
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Table 3.3. Demographic variables at the NUTS IV level zones of the Madrid 
Autonomous Community. 

Area Replacing ratio Dependence ratio Progresivitv ratio Population 
1 1.333494 0.544033 95.220244 22,407 
2 1.491906 0.430047 95.915703 86,954 
3 1.343378 0.577842 89.237288 21,719 
4 1.564950 0.440989 90.867430 48,655 
5 1.440734 0.369530 97.272824 292,155 
6 1.263530 0.464020 100.935145 2,879,052 
7 1.502627 0.355461 95.658407 233,035 
8 1.706222 0.435573 96.254891 25,602 
9 1.511078 0.342928 87.525416 452,188 
10 1.445924 0.316330 88.654766 1,024,513 
11 1.463349 0.529148 86.576424 59,045 

1.35 0.41 95.68 5,145,325 
Source: Padrón continuo 1999. Instituto de Estadística de la Comunidad de Madrid.^^ 

To combine the information of the three variables (replacing ratio, dependence ratio 

and progressivity ratio) (v = 1, 2, 3) in the relationship matrix, the following distance 

function is used: 

± 
V=1 

îV ^jv 
c V 

, v/,vy = i,...,« ¿ < y ; V v = (3-21) 

Expression (3-21) is a multivariate version of (3-19) which permits the incorporation of 

p variables, thanks to the inclusion of subindex v. Using this expression, the distance 

between areas i and J is the square root of the sum, from 1 to p, of the squared 

distances between i and j. The relationship matrix obtained is shown in Table 3.4. 

23 http://www.madrid.org/iestadis/pc99_d99.htm. 

http://www.madrid.org/iestadis/pc99_d99.htm
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Table 3.4. Relationships matrix from demographic variables in Table 3.3. 

area 2 3 4 5 6 7 8 9 10 11 
1 1.86 1.33 2.44 2.24 1.63 2.59 3.34 3.20 3.12 2.14 
2 2.54 1.24 0.87 2.21 0.87 1.78 2.05 2.06 2.30 
3 2.44 3.06 2.89 3.19 3.73 3.07 3.14 1.27 
4 1.90 3.30 1.51 1.64 1.41 1.81 1.60 
5 1.99 0.64 2.34 2.18 1.93 2.93 
6 2.60 3.81 3.78 3.46 3.55 
7 1.93 1.74 1.63 2.80 
8 2.68 3.02 3.07 
9 0.67 2.19 
10 2.50 

Source: Own elaboration. 

3.5.1. Requirement of a population minimum. 

In order to guarantee that each of the regions designed has a population minimum, it is 

necessary to introduce the following restriction in the mathematical model: 

i=l 
m (3-22) 

where P, is a vector containing information on the population of each of the areas 

considered and Z is a constant that specifies the population minimum required. For this 

example, this minimum has been set at 800,000 inhabitants. 

Following the suggestions of Openshaw et al (1998), the aim of reducing the 

population differences between regions has been formulated as an inequality 

restriction. Using this formulation, it is clear that if the value of L is very high, the 

problem may not be feasible. However, situations of this kind can be avoided using a 

multi-objective function with the objective of minimising the regional heterogeneity 

and also the differences in terms of population. The problem with this approach is the 

assignation of weights for these objectives. 
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The results obtained after solving a model with and without a minimum population 

requirement are shown in Table 3.5. In the solution for the unrestricted model (left 

map), region 1 has the lowest value for population, 131,080 inhabitants, while in the 

solution for the restricted model (right map), the same region still has the lowest 

population value, but it rises to 820,186 inhabitants (>800,000 inhabitants). 

Table 3.5. Solutions with and without requirements of a population minimum. 

Without population minimum With population minimi^ > 800,000 

Region 1 Region 2 Region 3 Region 1 ^^ Region 2 Region 3 
Population I Population 2 Population 3 Population! 

131,080 1,584,401 3,429,844 
Source: Own elaboration. 

Population 2 Population 3 
820,186 1,153,932 3,171,207 

3.5.2. Configuration of regions with mandatory isolation. 

A different kind of restriction that is possibly of interest is to require that certain areas 

belong to different regions in the final solution (mandatory isolation). In this case, the 

following restriction should be added to the model: 

i=i 
m (3-23) 
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where O, is a binary vector that takes 1 for selected areas and 0 for the rest. Note that, 

when defining Oj, the number of selected areas must be equal to the desired number of 

regions: 

m (3-24) 

In marketing, this restriction would be useful when it is necessary to divide a territory 

in zones in such a way that each zone must be assigned to pre-located warehouses. 

Table 3.6 shows the results of applying the model with data from Table 3.4, but 

imposing the condition that some preselected areas, marked with a red circle, must 

belong to different regions in the final solution. The results show that the model 

achieves both objectives: the areas are assigned to different regions and each region is 

homogeneous in terms of demographic variables. 

Table 3.6. Solutions with mandatory isolation. 

Source: Own elaboration. 
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3.6. Computational results. 

One of the most interesting features of optimisation models when applied to real 

problems is the computational time required to achieve the optimal solution. 

With the aim of testing the computational capacity of the model, we applied it to 

different random territorial configurations. The procedure used to obtain these random 

configurations was the following: 

a. For a given number n of areas, a triangular matrix was randomly generated 

following a [0,1] uniform distribution. 

b. A threshold point, between 0 and 1, was fixed in a way that random numbers 

above this point were replaced by 1, and 0 otherwise. The binary matrix 

obtained can be interpreted as a contact matrix, which should be evaluated in 

terms of contiguity. The threshold value was assigned taking into account that 

the resulting territorial configuration (or connecting arcs) was realistic in term 

of the neighbourhoods of each area. The selected matrices have an average 

density of 28.3% and a median of 3 neighbourhoods per area, ranging from 1 to 

8. 

c. Every randomly generated matrix was evaluated in terms of geographical 

contiguity, and the feasible ones selected^" .̂ 

d. Last, the relationships between the n areas considered were randomly generated 

fi-om a [0,1] uniform distribution. Using this method, a scenario is assumed 

where relationships between areas are not geographically dependent. 

^̂  Although the decision of evaluating a posteriori the contiguity of the matrix would imply a 
longer computation time for the generation of the different examples, this methodology 
ensures that the territorial configurations in each example are totally random. 
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Table 3.7 shows the average running times^^ for different combinations of areas and 

regions (5 examples for each combination). 

Table 3.7. Average running time, in seconds, for different combinations (areas-
regions). 

Regions 
2 4 6 

5 <1* - -

8 <1* 3.00 -

11 < r 19.00 -

14 5.80 117.40 2,571.00 
17 2.20 2,458.20 42,283.80 

Note: Five examples for each combination of areas and regions. 
* Execution times lower than a second. 
Source: Own elaboration. 

Although the number of restrictions was clearly reduced with the modification of 

restriction (3-14) controlling the elimination of cycles, the running time is still very 

high. Indeed, for cases with more than 17 areas the running time increases 

substantially. For this reason, another alternative that would increase the 

computational capacity of the model will be considered in the next chapter. 

^^The calculations in this paper are performed using Extended LINGO/PC 6.0 in a PC 
computer with a Pentium 4 processor at 2.40C GHz and 256 Mb of RAM memory. 
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CHAPTER 4 

A solution for the "computational problem ": The RASS algorithm 
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4.1. Introduction. 

In this chapter, a new algorithm called the RASS (Régionalisation Algorithm with 

Selective Search), is proposed. The most important feature of this algorithm is that the 

way it operates is based on the characteristics of régionalisation processes, where the 

information available about the relationships between areas can play a crucial role in 

directing the search process in a more selective, more efficient and less random way. 

The RASS incorporates inside its algorithm the optimisation model presented in 

chapter 3 in order to achieve local improvements in the objective fimction. These 

improvements can generate significant changes in regional configurations; these 

changes would be very difficult to obtain using other iterative methods. 

4.2. Steps for the application of RASS. 

Step 1: Take as a starting point a feasible solution of m regions that group n areas. 

Step 2: Select fi-om these m regions the most heterogeneous geographical contiguity 

formed by r regions with 2 < r < (m - 1 ) . 

- . M a x 
meM, 

\ / 

(4-1) 

where Mi is the set formed by the different alternatives of selection of r contiguous 

regions of the available m regions. 

Step 3: Application of the direct optimisation model to the areas of the r selected 

regions to create r* regions. 
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Step 4: Select a region to include (e): From the {m-r) regions that were not considered, 

identify those areas bordering on territory formed by the r regions and select the one 

with the highest similarities to any of the regions in r . 

Mm[l(C¿^)) (4-2) 
V / 

where d is the set of the r regions which are inside, and / is a subset of regions 

bordering on d. Each of the {m-r) regions that were not selected in step 2 will only be 

selected once in every cycle (steps 2 to 8). 

Step 5: Select the region that will be removed (5): The region with the greatest 

differences compared with the region to be included (e) in step 4 will be removed from 

d. The region to be removed cannot destroy the intemal contiguity of d. 

d^j UMax[l(C¿^,)) (4-3) 
\ / 

Step 6: Include in the set of r regions the region (e) and remove (5): d={d+e-s). The 

direct optimisation model will be applied to the new configuration of r regions to 

create r regions. 

Step 7: Repeat steps 4 to 6 until the (m-r) regions that were not selected in step 2 have 

been included at any time in d, or until there are no more candidates for selection in 

the bordering on d. 

Step 8: Calculate the value of the objective ftmction. 
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Step 9: If the value of the objective function improves, step 2 will be repeated. If the 

value of the objective function does not improve, step 2 will be repeated, but the next 

most heterogeneous group will be selected. Steps 2 to 8 will be repeated until no 

significant improvement in the objective function is found in a given number of cycles 

( Q or until the list of alternative r contiguous regions is exhausted. 

Some of the most interesting characteristics of the RASS algorithm are the following: 

a. The application of direct optimisation to a group of regions, in steps 3 to 6, 

allows improvements in the objective fimction that can be accompanied by 

major changes in regional configurations because of the re-assignation of a 

large number of areas. 

b. The criteria used in step 2 for the selection of r regions and the criteria for 

including/removing regions in steps 4 and 5 aim to keep the regions in the 

optimisation model (step 3) that have the highest potential to improve the 

objective function after reconfiguration. 

The objective is to ensure that the region included is the one that presents the 

highest probability of containing areas belonging to other regions. This 

potential re-assignation is identified assimiing that in two regions with 

exchanged areas the dissimilarities decrease. 

Last, when the region to be included (e) is selected, the next step establishes 

that the region to be removed (j) (in order to keep an appropriate number of 

areas for the optimisation model) is the one that differs most from the region to 

be included. This region has the fewest possibilities of exchanging areas with 

the region to be included (e). 
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c. The conditions in steps 7 and 9 aim to avoid repetitive searching patterns. 

Moreover, the criteria for including/removing regions and the use of the 

optimisation model clearly improve the capacity of RASS to escape from the 

local optimum. 

d. The fact that the optimisation model is applied only to a part of the territory 

considered does not imply that each local improvement could worsen the global 

solution. In fact, after each cycle, the value of the objective fimction will 

always be lower than or equal to the value of the objective fimction at the 

beginning of the cycle. 

4.3. Computational results and comparison with the direct optimisation. 

This section seeks to evaluate the performance of the RASS algorithm with respect to 

the direct optimisation model proposed in chapter 3. The examples solved are the ones 

that were randomly generated in section 3.6^^. In order to apply the algorithm to these 

examples, it was necessary to define an initial feasible partition that could be used as a 

starting point for RASS. The initial partition was randomly generated following these 

steps: 

a. Generate a vector with n values (as many as there are areas) using a uniform 

distribution between 0 and 1. 

b. The interval [0,1] is divided into equal sized intervals, as many as the number 

of regions to be designed. For example: for 2 regions we used the intervals [0, 

0.5) and [0.5, 1] and for 4 regions, the intervals were [0, 0.25), [0.25, 0.5), [0.5, 

^̂  In this analysis we have excluded the examples where 2 regions should be formed, as in 
this case the application of the RASS would be equivalent to the direct application of the 
optimisation model: there is no difference between the values of parameters m and r of 
RASS and, as a result, the application of step 3 will lead directly to the optimal solution. 
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0.75) and [0.75, 1). Each of these intervals represents a region, in such a way 

that the elements of the random vectors can be transformed in a vector that 

assigns areas to regions (potential initial partition). 

c. If the initial partition is feasible in terms of geographical contiguity, this 

partition is used as a starting point for RASS. 

Some descriptions of the results for the 30 problems considered (5 for each 

combination of regions and areas) are shown in Table 4.1. RASS achieved the optimal 

solution in 100% of the examples considered in a considerably shorter time than the 

direct solution method. 

Table 4.1. Comparisoii of RASS with the direct solution method. 

Regions Areas 
Optimum/ 

5 
Seconds 
(JL451S) 

Seconds 
(Direct) 

aOF-OFlc> 
(lOF - OS*) 

4 8 5/5 3.40 3.00 76.45% 
11 5/5 5.80 19.00 86.70% 
14 5/5 29.00 117.40 74.31% 
17 5/5 247.20 2,458.20 69.46% 

6 14 """5Ï5 "25.'20  25,710.00 " ""85.93®/o" " 
17 5/5 250.00 42,283.80 66.71% 

IOF= Initial objective function, OFlc= Objective function afier the first 
cycle, OF*= Optimal solution. 
Source: Own elaboration. 

In the last column, it can be seen that after the first cycle of the RASS, the value of the 

objective function is reduced by 80% of the total reduction required to achieve the 

global optimum. 

Using the information available about ruiming times of both régionalisation methods, 

the direct method and the RASS, it is possible to calculate the time savings by applying 

the algorithm. Figure 4.1 shows the relationship between the savings and an indicator 

of complexity that is defined as the product between the number of areas and the 
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number of regions considered. The results in this figure show that in less complex 

models the direct method is the best option, while in complex models the RASS 

provides better results. The results suggest that this change happens for models with a 
27 complexity above 57.83 (58 if we retain the discrete nature of the variable ). 

Figure 4.1. Relationship between the complexity of the problem and the time 
savings obtained after applying RASS. 
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Source: Own elaboration. 

In order to obtain a better measure of the time savings achieved with RASS, we 

estimated a quadratic model between time savings and the measure of complexity^^'^^. 

^̂  It should be highlighted that this value can be obtained with different combinations of areas 
and regions. 
We have considered together the effects of the number of areas and regions because when 
they are introduced separately in the regression, there is a problem of collinearity due to the 
hig^ correlation between them. 
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The results of estimating this model are shown in Table 4.2. There is a significant 

relationship between the two variables at 1% significance level. With a marginal 

increase in the complexity of the problem, the use of RASS offers a time saving of 

426.08-14.73 (areas*regions), a result that confirms our intuition mentioned above. 

Table 4.2. Quadratic regression among the time savings obtained with RASS and 
the complexity indicator. 

n=30 Coefficient 
(areasxregions) 426.078* 
(areasxregions)^ -IMl* 

0.566 
F 18.269* 
* Significant at 1% 
Source: Own elaboration. 

4.4. Capacity of the RASS to achieve global optimums in more complex 

problems. 

As in more complex problems, it is impossible to compare the results obtained by the 

RASS and direct optimisation because the running time for the latter would increases 

considerably. In this section we present the solution obtained for a régionalisation 

process where 38 areas are grouped in 10 regions (complexity of 38*10 = 380). For 

this comparison, the same procedure was applied as in the examples in section 3.4: A 

relationship matrix is defined in a way that it is possible to know a priori the 

optimal solution of the régionalisation process. This optimal solution can be compared 

with the solution obtained by the RASS. 

^̂  We have excluded the intercept from this regression in order to require that the execution 
time is equal to zero when the complexity is equal to zero. 
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4.4.1. Data 

4.4.1.1. Characteristics of the territory to régionalisé. 

The areas selected for this example are the 38 areas {Zones Estadístiques Grans) of the 

city of Barcelona. The first step consists of considering the contiguity relationships 

between these 38 areas or, in other words, obtaining the contact matrix. 

4.4.1.2. Relationships between areas. 

The relationships between areas (see Table 4.3) were created in such a way that the 

optimal solution grouped the 38 areas in 10 regions, each of them with different shapes 

and sizes (between 2 and 6 areas by region). This optimal solution is shown in Figure 

4.2, and this is the solution that the RASS algorithm should be able to identify. 

Figure 4.2. Pre-established optimal regional configuration. 

Source: Own elaboration. 
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Table 4.3. Relationships matrix between the 38 areas. 
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Source: Own elaboration. 
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4.4.2. Evaluation of results. 

The initial partition is shown in Table 4.4. This is the partition that is considered by the 

RASS in step 1. Note that this configuration differs substantially from the optimal one. 

After 5 cycles, the RASS algorithm reaches the optimal solution. 

The regional configurations considered by the RASS in the various steps and iterations 

are shown in the Annex. 

Table 4.4. Initial partition and solution obtained by the RASS. 

continue... 
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Source: Own elaboration. 

In order to evaluate the evolution of the results from the initial partition up to the final 

results, Table 4.5 presents the value of the objective function at the end of each cycle 

in the application of the algorithm. The value of the objective function for the initial 

partition is 34.36, and in the first cycle a reduction of 24.15 is achieved. This value is 

reduced in the following cycles until its minimum value is reached (1.08). 

As Figure 4.3 shows, the behaviour of the objective function is as expected: the 

highest improvements are achieved in the first cycles.It is also confirmed that in each 

cycle the value of the objective function is better than, or at least equal to, the value in 

the previous cycle. 



64 Chapter 4. A solution for the "computational problem": The RASS algoritiim 

Table 4.5. Values of the objective function in the initial partition and at the end of 
each cycle. 

Initial cycle 1 cycle 2 cycle 3 cycle 4 cycle 5 
1 10.35 5.21 2.21 1.04 1.04 0.23 
2 8.07 2.21 1.04 0.93 0.30 0.18 
3 5.61 1.70 0.93 0.23 0.23 0.16 
4 3.52 0.60 0.23 0.16 0.18 0.13 
5 2.89 0.13 0.13 0.13 0.16 0.10 
6 1.34 0.10 0.11 0.09 0.13 0.09 
7 1.28 0.09 0.09 0.07 0.09 0.07 
8 0.59 0.07 0.07 0.04 0.07 0.06 
9 0.36 0.06 0.06 0.02 0.04 0.04 
10 0.35 0.04 0.04 0.02 0.03 0.02 

Objective 
function 34.36 10.21 4.91 2.73 2.27 1.08 

Source: Own elaboration. 

Figure 4.3. Evolution of the objective function during the application of RASS. 
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Source: Own elaboration. 

The number of regions in the optimisation model was set to 4 (r = 4). With this value, 

the average number of areas where each optimisation model was running was 15. This 

number was enough to permit that the running times were appropriate: the average 



65 Chapter 4. A solution for the "computational problem": The RASS algoritiim 

running time was 2.43 minutes by model. These running times are shown in Figure 

4.4. 

Figure 4.4. Running times of optimisation models. 
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As can be seen, the running times of the different optimisation models were higher at 

the beginning of each cycle and, in particular, the first time it is executed (although 

this is also when the highest reduction in the objective function is achieved). This is 

related to the fact that the first model of each cycle is executed considering the 4 (r) 

most heterogeneous regions, which may imply that the re-assignation of the areas in 

these r regions is very high. For this example, the first model re-assigned 37% of these 

areas (or 18.4% if we take into account the 38 areas) and achieved a reduction in the 

objective function of 13.18 points, 54.6% of the reduction obtained in the first cycle 

(or 39.6% of the total reduction). 

4.4.3. Sensitivity of the results to the initial partition. 

How can the initial partition affect the final result? In this sub-section, a different 

initial partition is used to solve the same problem as above. Thus, the initial partition 

in step 1 of RASS will be closer to the optimum regional configuration. With this 
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partition, a lower number of cycles are expected, and results similar to those in the 

previous sub-section. 

In this case, the optimal configuration was found after 2 cycles (see Table 4.6), 3 

cycles less than in the previous example. The results shown in Table 4.7 and Figure 

4.5 indicate that, as before, the greatest reductions in the objective function are 

achieved in the initial cycles of the RASS. 

Regarding the impact of the first optimisation model on the objective function, there is 

now a reduction of 19.33 points (from 26.94 to 7.61), 79.25% of the total reduction 

obtained in the first cycle. Fifty per cent of the areas in the 4 (r) regions considered are 

now re-assigned (21.1% if the 38 areas are considered). 

Table 4.6. Initial partition (close to optimum) and solution obtained. 

continue... 
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Source: Own elaboration. 

Table 4.7. Values of the objective function in the initial partition (closest to the 
optimal solution) and at the end of each cycle. 

Regions Initial cycle 1 cycle 2 
1 10.31 1.71 0.23 
2 6.83 0.18 0.18 
3 2.33 0.15 0.16 
4 1.95 0.13 0.13 
5 1.93 0.10 0.10 
6 1.04 0.09 0.09 
7 0.93 0.07 0.07 
8 0.88 0.06 0.06 
9 0.65 0.04 0.04 
10 0.09 0.02 0.02 

Objective 
function 26.94 2.55 1.08 

Source: Own elaboration. 
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Figure 4.5. Evolution of the objective function during the application of RASS 
with the initial partition closest to the optimal solution. 
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4.5. Final remarks. 

The results obtained allow us to conclude that the RASS, due to the incorporation of a 

direct optimisation routine as part of the algorithm, is well suited to achieving global 

optima in the context of régionalisation problems. However, it is worth mentioning 

that the relationship between the number of regions (m) and the number of areas (n) 

should be defined in such a way that the number of regions considered by the direct 

optimisation model (r) is 2 or higher and these regions should contain a number of 

areas in line with the computational capacity of the model. It has been calculated that 

the most appropriate m/n relationship is above 14%. For example, if a territory formed 

by 8,000 areas is considered, the number of regions that can be obtained will be higher 

than or equal to 1,120 regions (an average size of 7 areas per region). This relationship 

ensures that r can take values higher than or equal to 2 without substantially increasing 

the running time. 
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If the relationship between regions and the number of areas is very low, one possible 

strategy is to design nested régionalisation problems, which would involve sequential 

application of the RASS. For example, the city of Barcelona is divided into 1,919 

statistical sections {Seccions Estadístiques, SE), which are grouped in 248 small 

research areas {Zones de Recerca Petites, ZRP). These areas are also grouped in 110 

basic statistical units {Unitats Estadístiques Bàsiques, UEB) which form the 38 large 

statistical areas {Zones Estadístiques Grans, ZEG). Finally, the large statistical areas 

are grouped to obtain the 10 districts of the city^°. Each territorial level is formed by 

grouping the previous one, and this also guarantees that the various grouping levels are 

self-contained. 

Thus, from a theoretical point of view, it is possible to introduce useful elements for an 

analytical régionalisation process. The next chapter presents an empirical application. 

This application will allow us to assess the algorithm's performance in realistic 

régionalisation processes, and the results can be compared with other normative and 

analytical régionalisation methods. 

For more information, see: http://www.bcn.es/estadisitica/catala/terri/index.htm. 

http://www.bcn.es/estadisitica/catala/terri/index.htm
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