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Chapter 1 

Introduction and motivation 

This thesis makes a contribution to the understanding of some elements in the assess­

ment of the business risk in insurance companies. In order to measure operational 

risk1, the insurer needs to account for the possibility of loosing a customer, i. e. to 

have a policy cancellation. 

In this first chapter the problem of customer retention in insurance companies 

is presented. There are two agents in the problem addressed throughout this text: 

the insurer and the customer. The asymmetrical information phenomenon makes 

the insurer quite fragile in front of actions undertaken by the insured person. The 

one that is studied here is the decision to cancel the contract or contracts (if the 

customer has many underwritten policies). Therefore, cancellation may be viewed 

as an operational risk for the insurer, who may suddenly experience market share 

loss and/or portfolio distortion (meaning that some type of risks may be leaving the 

company making the portfolio overall risk different from the portfolio profile used for 

risk evaluation and actuarial calculations). Below we present, the current challengers 

in actuarial science regarding operational risk and business risk management are 

described. In the second and third sections of the current chapter, the customer 

characteristics and typical contracts in the insurance economic sector are briefly 

.presented. The role of statistical survival analysis techniques in actuarial science 

1 We assume the classification of risks provided by Dhaene, Vanduffel, Tang, Goovaerts, Kaas 
& Vyncke (2004). 

1 
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is introduced in the fourth section, where applications to both life and non-life 

insurance are illustrated with some examples. 

The general and specific objectives of this thesis are presented in the final sec­

tion, where the current perspective of data analysis in insurance is presented. This 

thesis is based on the following idea: rather than segmenting by fine of business 

(which has been the traditional life, non-life dichotomy) one may see individual con­

tracts as customers each one of whom is holding a micro-portfolio composed of a 

few contracts. The individual information framework and decision making schemes 

should not ignore correlation effects between policies underwritten by the same cus­

tomer, which sometimes has traditionally been disregarded. This thesis is a little 

step forward in the multiline approach. 

1.1 New challenges in actuarial science 

Insurance companies provide cover against risks that citizens, corporations or orga­

nizations have to face. The importance of the insurance sector is not only derived 

from this significant fact, but also from their specific business activity. Insurance 

companies collect long-term savings of millions of citizens, and represent the largest 

institutional investor on EU stock exchanges (Linder &; Ronkainen, 2004). 

The EU solvency system, that is based on simple ratios representing percentages 

of risk exposure measures, was designed in a period which was completely differ­

ent from current economic environment and insurance practices. Nowadays, the 

economic reality incorporates increasing competition, convergence between financial 

sectors and an international dependence. 

One of the most important current challenges both in actuarial science and in­

surance practices, is driven by the implementation of the "Solvency II" project. In 

2000, the European Commission initiated the "Solvency I" project in order to change 

the solvency system directives. This first project increased the capital requirements 

for the most volatile classes of business and also introduced improvements regarding 

early supervisors' intervention powers. Nevertheless, it was necessary to examine 
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the fundamentals of the EU insurance supervisory system much more in detail, and 

therefore the "Solvency II" project was meant to provide for this review. 

The new system should include a framework that appropriately reflects insurance 

risks. Additionally, it should incorporate incentives for companies to assess and to 

manage these risks. Finally, it should be in line with international developments 

in solvency, risk management and accounting. In the new framework, operational 

risks, that has been traditionally forced into the background, has been recognized 

as one of the major sources of instability. Banks, for example, are required to meet 

a regulatory capital threshold to cover operational risks. 

Operational risks are those that cannot be classified as either asset or liability 

risks2. They are subdivided in business risks, such as a production lower than ex­

pected, and event risks, like system failure (see Dhaene, Vanduffel, Tang, Goovaerts, 

Kaas &; Vyncke, 2004). Traditionally, the lack of data has been one of the difficul­

ties that should be faced in order to measure operational risks. Nevertheless, during 

the last years, insurance companies have been collecting more and more statistical 

information (see Gustafsson, Guillén, Nielsen & Pritchard, 2005). This has been 

partly motivated by the extremely competitive economic environment, where busi­

ness risk management has become an important issue and a key factor for improving 

efficiency. 

Loosing customers is part of the operational risk assumed by insurers, though 

very little has been said on how to measure and handle this kind of risk. 

Not all customers have the same characteristics and not all policy cancellations 

are expected to have the same influence on the overall business risk. This influence 

is directly related to the lifetime value of the customer in the insurance company. 

While the estimation of the probability of a policy cancellation can be easily ad­

dressed, the assessment of the lifetime value of the customer in an insurance company 

incorporates several difficulties (Jackson, 1989). 

The main contribution of this thesis is to provide a new methodology, in the 

2Other definitions are possible, see for example the report "A global framework for insurer 
solvency assessment", IAA Documents, available at www.actuaries.org. 

http://www.actuaries.org
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field of survival analysis, to estimate important elements of the lifetime value of a 

customer: the time that he/she will stay in the insurance company and some of the 

changes that presumably are going to occur in his/her behaviour along this time 

(his/her lifecycle). 

An application of this methodology to real data has been carried out in order to 

analyse a particular period in the customer's lifetime. This research provides new 

insights and some conclusions that are a contribution to the understanding of the 

problem of policy cancellations and, therefore, to the assessment of the business risk. 

In consequence, this thesis aims to provide useful results for both the marketing and 

the risk manager in insurance companies. 

1.2 The insurance customer 

Schlesinger & Schulenburg (1993) claimed that many customers were unaware that 

there were price differences among insurance companies. Additionally, they re­

marked that comparative price shopping was very difficult since price differences for 

comparable coverages were not available in printed form. The same authors stressed 

two features of the automobile insurance market in 1993: substantial differences in 

price even though the contracts being sold were considered to be very homogeneous. 

The reasons for this phenomenon were mainly informational. Firstly, the in­

surance product is much more that the contract itself. Apart from the insurance 

contract, the reputation of the insurance company, the marketing strategies and the 

claims handling procedure are influencing the insurance relationship3, and therefore 

are part of the insurance product as a whole. Nevertheless, the information about 

most of these additional elements is not available for the customer at the time when 

the product is purchased. 

Definitely, many things have changed during the recent years. Nowadays cus­

tomers who want to switch insurers incur in much lower information search costs 

than before. One of the main reasons is the spread use of internet inside the infor-

3 The insurance relationship is the relationship between the customer and the insurer. 
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mation society. 

A very clear evidence of this change can be found in Denmark. The Danish 

insurance industry has developed an electronic system for comparing the three 

most common classes of customer insurance in terms of price and cover. These 

are household/contents insurance (which covers goods inside the house), build­

ings insurance (that covers the building itself) and motor insurance. The web site 

www.ForsikringsLuppen.dk presents the products in an easily understandable way 

next to each other and compared against a common standard. Moreover, the pre­

sentation includes a comparison of prices inclusive and exclusive of group discounts 

and comprises 14 of the largest insurers in the market. Surely, this is one of the 

reasons why the Danish insurance market is one of the most competitive among the 

European insurance markets. 

For all these reasons, during the last years the customer is playing a much more 

important role in the insurance relationship than before. As a consequence, insur­

ance companies have to face a new problem that was absolutely secondary some 

years ago: the retention and recruitment of customers, in order to keep or increase 

the market share, and the management of the business risk. 

1.3 Insurance contracts and loyalty 

Customer loyalty is becoming an important issue both in the actuarial science and 

insurance practice. It is important to remark that the specific features of the insur­

ance sector should be taken into account when implementing any customer loyalty 

strategy or business risk management policy. 

As mentioned before, insurance companies provide a complex product that in­

cludes much more elements that the contract itself (ranging from legal contrains to 

contract duration, financial management of funds and claims compensation). Ad­

ditionally, the insurance relationship is also unique. The insured pays a premium 

in advance to be covered against the risk that a particular event would occur. The 

insurer has the commitment to provide the corresponding economic compensation 

http://www.ForsikringsLuppen.dk
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in case that this loss event would occur. 

Apart from this, it is frequently the case that common risks affecting the members 

of the same household are covered by the same insurance company. The so-called 

cross-buying behaviour (the same household has different insurance contracts with 

the same insurer) is very common in the insurance market. 

Therefore, the insurance relationship should be understood by taking simultane­

ously into account all single insurance contracts the customer has with the insurer 

in order to have some understanding of the overall relationship of the customer with 

the insurer. 

The different business lines in insurance companies have been traditionally man­

aged independently. It is frequently not an easy task to combine all information 

about a particular customer in different lines of business in the same insurance 

company and to have an overall picture of the insurance relationship (the so-called 

multiline approach). 

Nevertheless, in the recent years, information systems and more sophisticated 

statistical tools have partly contributed to make information transfer and analysis 

much more efficient. That is why, in order to guarantee an overall view of the 

insurance relationship the multiline approach should be applied in the marketing 

and business risk management. 

1.4 Survival analysis in insurance 

Survival analysis is unavoidably part of the actuarial science. Most of the applica­

tions of statistical methods for mortality analysis are found in life insurance. The 

reason is obvious, the measurement of the time to death or the estimation of the 

risk of death in mortality studies should be necessarily addressed by using these 

techniques (see for example Guillen, Nielsen & Perez-Marin, 2006). An actuarial 

survey of statistical models for survival data can be found in MacDonald (1996). 

Apart from classical mortality studies, recent research has extended the applica­

tion of these methods to long-term-care insurance (Czado &; Rudolph, 2002), where 



1.5. OBJECTIVES 7 

a proportional hazards model is applied to estimate transition probabilities between 

care levels. More sophisticated models, such as random effects survival models, also 

called frailty models (Keiding, Andersen & Klein, 1997, and Hougaard, 1995) are 

nowadays widely extended in actuarial studies (Albers, 1999; Haberman & Pitacco, 

1996 and Olivieri, 2003). 

Nevertheless, survival analysis methods can also provide the solution to many 

new actuarial problems in non-life insurance. For example, Beirlant, Derveaux, 

De Meyer, Goovaerts, Labie & Maenhoudt (1991) used an accelerated failure time 

model when trying to explain claim size in the statistical risk evaluation applied to 

Belgian car insurance. 

Another example can be found in Herbst (1999), who presented an application 

of randomly truncated data models in reserving IBNR claims, where the total size 

of the IBNR claims can be reduced to determining the joint probability distribution 

of the delay variable (time elapsed between the occurrence and the notification of a 

claim) and the claim size variable under a model of random truncation. 

As a conclusion, survival analysis techniques have a great number of applications 

in actuarial science. The estimation of any time-to-event variable would require the 

use of such methods. In this thesis, a new non-parametric survival analysis technique 

is presented and it is applied to the estimation of customer lifetime duration in the 

non-life insurance lines of business. This new method can be used for improving the 

efficiency of estimations in survival studies with ritgh-censored data and so, it has 

a great number of potential additional applications in actuarial science. 

1.5 Objectives 

The general objective of this thesis is the identification of factors influencying cus­

tomer loyalty as a contribution to the understanding and measurement of business 

risk in insurance companies. This contribution is focused both on the methodology 

and the application to real data. 

Regarding the methodology, the objective is to provide a new technique in the 
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field of survival analysis methods with better efficiency performance than other 

standard methods. Additionally, the application to real data would provide the 

identification of factors influencing customer loyalty and the analysis of customer 

survival time in insurance companies. 

The specific objectives are summarized as follows in nine items: 

• Definition of a new methodology for the estimation of customer lifetime dura­

tion. This methodology would have a number of applications both in actuarial 

science and survival analysis. 

• Estimation of the probability that a customer with several policies in the same 

insurance company would cancel all of them simultaneously, the so-called total 

cancellation. 

• Determination of the factors associated to a higher risk of a total cancellation. 

• Application of the new methodology to the analysis of a specific period of 

customer lifecycle: from the first cancellation of a policy to the moment when 

all the remaining policies would be cancelled. 

• Analysis of survival beyond the first cancellation, with a specific attention to 

both the lifetime duration and the survival probabilities. 

• Determination of the factors associated to a higher risk of cancelling all the 

remaining policies (shorter residual lifetime), given that one policy has already 

been cancelled. 

• Comparison between the proposed methodology and other standard methods 

frequently used in marketing, such as the Tobit model. 

• Extensions to the case where effects of covariates are allowed to vary over time 

in regression models for survival analysis. 

• Conclusions about what should be taken into account when dealing with the 

insurance business risk management related to policy cancellations. 



Chapter 2 

Nonparametric methods for 
survival analysis 

In this chapter the notation and functions describing the time-to-event variable in 

survival analysis are introduced. The basic elements of counting process theory 

that will be applied in Chapter 3 are presented in the second section. Two general 

approaches can be used in survival studies: parametric and nonparametric meth­

ods. The differences between them are extensively discussed, and the most widely 

used models are briefly presented. Regression methods for modelling the survival 

experience of a heterogeneous population are described in section 2.4. A main is­

sue in survival analysis is the changing effect of covariates over time. The models 

that incorporate these time-varying effects are presented in the last section of this 

chapter. 

2.1 Notation and functions 

We will denote by X the random variable that measures time until some specified 

event. In classical survival analysis methods this event may be, for example, the 

death or the development of a certain disease. Duration data has a peculiar feature: 

our possibility to measure the time-tc-event variable may be limited by our particular 

observation period and other characteristics of the phenomena being studied. This 

is the reason why specific methods in survival analysis and statistics have been 

9 
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developed. Firstly, these methods have to deal with problems arising due to some 

of the properties of time-to-event variables, namely, censoring and truncation. 

Generally speaking, censoring occurs when some lifetimes are known to have 

occurred only within certain intervals. There are three different types of censor­

ing, namely, right censoring, left censoring and interval censoring. Right censoring 

corresponds to the case when the event is observed only if it occurs prior to some 

pre-specified time. If the event of interest has already occurred before the individual 

is observed in the study then the corresponding observation is said to be left cen­

sored. Finally, interval censoring can be considered a more general type of censoring, 

it occurs when individuals in the study have a periodic follow-up and the event time 

is only known to fall in the corresponding temporal interval. 

Truncation occurs when the only individuals observed by the researcher are those 

who experience some event. This event may be some condition that occurs prior to 

the event of interest, and in this case the main event of interest is said to be left 

truncated. Right truncation occurs when individuals who have experienced the event 

are the only included in the study, while those individuals who have not experienced 

the event are not considered. More details about these definitions can be found in 

Klein & Moeschberger (1997). 

We will consider three functions to characterize the distribution of X, such that, 

by knowing any of them, the other two can be determined uniquely. These functions 

are the survival function, which is the probability of surviving beyond a certain 

moment in time x, the probability density function, which is the probability of the 

event occurring at time x, and the hazard rate function, which can be interpreted 

as the chance that an individual of age x has to experience the event in the next 

instant. 

The survival function is the probability of an individual to experience the event 

after time x, and is defined by 

S(x) = Pr(X > x). 
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If X is a continuous random variable then the survival function is the complement 

of the distribution function 

S(x) = l-F(x), 

where F(x) = Pr(X < x). The survival function also equals the integral of the 

probability density function f(x) 

oo 

S(x) = Pr(X > x) = f f(u)du. 

Among the basic properties of survival curves we point out that they are monotone, 

non-increasing functions equal to one at zero and equal to zero as the time (x) tends 

to infinity. The survival function is a widely-used tool to describe survival and to 

compare two or more mortality experiences. 

The probability density function f(x) can be written in terms of the survival 

function S(x) according to the following relationship: 

In order to have an interpretation of the previous function, we should note that 

f(x) Ax is an approximation of the probability that the event occurs in (x, x + Ax). 

It is also important to remark that f(x) is a nonnegative function with the area 

under f(x) being equal to one. 

The hazard rate function (or simply, hazard function) is defined by 

,. P[x<X <x + Ax\X>x] 
a(x) — hm — - • -. 

V ' Aa:->0 Ax 

In order to have an interpretation of the hazard rate, one can see that a(x)Ax 

corresponds to an approximation of the probability that an individual of age x 

experiences the event in the next instant (x, x + Ax). In other words the individual 

has to be alive at the beginning of the interval. The hazard function corresponds 

to the force of mortality in demography and the intensity function in stochastic 

processes. If X is a continuous random variable, then 

„M - M - -dHS(x)] 
[ ] - S{x) - dx • 
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The hazard rate can be increasing, decreasing or constant, there is no specific 

shape describing the failure pattern. The only requirement is that the hazard rate 

function must be a non-negative function, a(x) > 0 for all x > 0. 

A very important related quantity is the cumulative hazard function A.(x) denned 

by 
r 

A(x) = / a{u)du = -ln[5(a;)], 
Jo 

and in the case of continuous lifetimes the following equality holds: 

r 
S(x) = exp[—A(a;)] = exp[— / a{u)dv\. 

Jo 

2.2 Counting process theory 

Counting process methodology results from a combination of stochastic integration, 

continuous time margingale theory and counting process theory that leads to the 

development of inference techniques for censored and truncated survival data. 

We assume in this section the same notation and formulation as in Klein & 

Moeschberger (1997). 

A counting process N(t), t > 0, is a stochastic process with the following prop­

erties: N(Q) is zero, N(t) < oo, with probability one, and the sample paths of N(t) 

are right-continuous and piecewise constant with jumps of size +1 . 

Let us consider a right censored sample of n individuals. For any individual in 

the study we assume that there is a lifetime X and a censoring time C¿, known but 

possibly different for each individual. We also assume that the X 's are independent 

and identically distributed with probability density function f(x) and survival func­

tion S(x). Then the exact lifetime X of an individual can be known if and only if 

X is less than or equal to C¿. If X is greater than C¿ the event time is censored at 

Ci. We can conveniently represent survival data for individual i from this sample 

by a pair of random variables (T¿, 5¿), where the censoring indicator Si is equal to 1 

when the lifetime X correspods to an event, and is equal to 0 when the observation 

is censored. T¿ is equal to X if the lifetime is observed, and T¿ is equal to C¿ if it is 
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censored, thus T¿ = min(X, Ci). 

For a right-censored sample, we have that the process iV¿(í) = I [Ti < t, Si — 1], 

where / represents an indicator function, is a counting process. Note that this 

process is zero until the individual i dies and then jumps to one. Similarly, we have 

that the process that counts the number of deaths in the sample at or prior to time 

i, namely, N(t) — E"=1A^(i) = Y,ti<t5i, is also a counting process. 

The history or filtration of the counting process at time £, Tu is the accumulated 

knowledge about the process up to time t. This knowledge includes information 

about when events occur, and additionally, in the case of right censored data, in­

cludes knowledge of which individuals have been censored prior to time t. In a causal 

model framework this knowledge about the process includes information about val­

ues for fixed or time-dependent covariates. We will require that Ts C Tt for s < t, 

because as time progresses it is natural to expect that we accumulate more and 

more information about the sample. Additionally, we will denote the history at an 

instant just prior to time t by Tt~-

We define dN(t) as the change in the counting process N(t) over a short time 

interval [t, t + dt), thus dN(t) — N[(t + dt)~] — N(t~), where t~ represents a time 

just prior to t. Additionally we define Y(t) as the number of individuals with a 

study time T¿ > t, thus provide us with the number of individuals at risk at a given 

time t. Then it can be proved that E[dN(t)\!Ft-\ = Y(t)a(t)dt, where the process 

\(t) = Y(t)a(t) is called the intensity process of the counting process. 

We define the cumulative intensity process A(i) = JQ \(s)ds, t > 0, that has the 

property that E[N{t)\Tt-} = E[k{t)\Tt-] = A(t), that is derived from the fact that 

once we know the history just prior to t, the value of Y (t) is fixed and thus A(i) is not 

random. The stochastic process M{t) — N(t) — A(t) is called the counting process 

martingale. This process has the property E[dM(t)\Tt-] = 0, i.e. the increments of 

this process have an expected value, given the strict past Tt-, that are zero. It can 

bè proved that this property is equivalent to E[M{t)\!Fs\ — M{s) for s < t, that is 

the property that characterized the so-called martingale stochastic processes. Note 

that the counting process martingale M(t) = N(t) — A(t) consist of two parts: N(t) 
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that is a nondecreasing step function and A(i), that is called compensator of the 

counting process, that is a smooth process which is predictable, because its value at 

time t is fixed just prior to time t. 

Another basic quantity in the theory of counting processes is the predictable 

variation process of M(t), that is denoted by (M) (£). This process is defined as 

the compensator of the process M2(i), i.e. the predictable process needed to be 

substracted from M2(t) to produce a martingale. The label "predictable variation 

process" comes from the fact that, for a martingale M(t), it can be proved that 

var(dM(t)\Ft_) = d(M) (t). 

In Chapter 3 of this thesis we will deal with a number of statistics that are essen­

tially stochastic integrals of the martingale discussed in this section. To introduce 

this notion, let us assume that K(t) is a predictable stochastic process, i.e. its value 

is known given the history just prior to time t, Tt-. Over the interval 0 to t, the 

stochastic integral of such a process, with respect to a martingale, is denoted by 

J0K(u)dM(u). These stochastic integrals have the property that they themselves 

are martingales as a function of t and their predictable variation process can be 

obtained from the predictable variation process of the original marginale, 

/ / K{u)dM{u)\ = Í K{ufd{M) (u). 

In Andersen, Borgan, Gill k Keiding (1993) and Klein & Moeschberger (1997) 

a more detailed discussion about stochastic integrals can be found. 

2.3 Parametric versus non parametric methods 

Two general approaches can be used in survival studies: parametric and nonpara-

metric methods. Parametric methods assume that the time-to-event variable comes 

from a specific distributional family, while nonparametric methods make no as­

sumption about the distribution of the time-to-event variable. More sophisticated 

methods are derived from the combination of these two approaches, the so-called 

semiparametric methods. 
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Nonparametric and semiparametric methods are extensively applied in survival 

studies. They will be widely used in subsequent sections of this thesis. Nevertheless, 

parametric models are very popular among researchers. Bowers, Gerber, Hickman, 

Jones, &; Nesbitt (1997) summarize the justifications for postulating an analytic 

form for mortality basically according to both philosophic and practical arguments. 

Firstly, many phenomena analysed in physics have been explained efficiently by 

simple formulas, therefore using biological arguments, some authors have suggested 

that human survival is governed by an equally simple law. Secondly, it is easy to 

estimate a few parameters of the function from mortality data and besides it is also 

easier to provide a function with few parameters than a life table with may be 100 

mortality probabilities. 

Apart from these two arguments, it is important to remark that the main ad­

vantage of parametric methods is that in some cases there is a direct interpretation 

of some of these parameters in terms of specific functions describing the survival 

pattern. 

Among parametric models or mortality laws formulated in the context of actu­

arial science and biometrics the Gomperz, Makeham and Weibull laws of mortality 

are specially relevant because of they are widely used. 

Gompertz (1825) discovered a pattern in human mortality. He found that the 

probability of dying is high at birth but then declined until sexual maturity. Af­

terwards, it increases at an exponential rate. Thus, according to Gompertz's law 

of mortality the hazard rate has an exponential form a{x) — B(f, where B > 0 

and c > 1 and the survival function is S(x) — exp[—m(<f — 1)]. Note that Gom­

pertz's law can also be expressed in the linear form \na(x) = InB + xInc. The 

basic characteristic of this parametric model is that the hazard function is increas­

ing but the relative increase is constant, i.e. a'(x)/a(x) = Inc. Makeham (1860) 

suggested that Gompertz's law could be improved by adding a constant term so that 

a(x) — A + B(f, where B > 0 , A > —B and c > 1. Note that the Gompertz's law 

is a special case of Makeham's law with A = 0. This constant A has been interpeted 

as capturing accident hazard and the term B<f as capturing the hazard of aging. 
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It has been found to fit adult populations well, with variations in the parameters 

allowing for differences between populations. 

Before describing the Weibull law of mortality it is convenient to introduce the 

exponential distribution, that is one of the most significant parametric models be­

cause of its mathematical simplicity and important properties. The survival function 

is S(x) = exp(-Xx), X > 0, x > 0, and the hazard function is constant a(x) — X. 

One basic property of the exponential distribution is the so-called lack of memory 

property, that is given by P(X > x+z\X > x) — P{X > z). Despite the mathemat­

ical tractability that result from this property, it is also reducing its applicability to 

many realistic situations. Another property is that the so-called mean residual life 

is constant. This property can be expressed like E(X — x\X > x) — E(X) — 1/A, 

and is directly derived from the lack of memory property. 

According to the Weibull law of mortality (Weibull, 1951), the distribution func­

tion is given by S(x) — exp(—Xxa), where À > 0 is called the scale parameter and 

a > 0 is called the shape parameter. The hazard function has a very flexible form 

a(x) — Xaxa~x. This flexibility allows for decreasing (a < 1), increasing (a > 1) and 

constant hazard rate (a = 1). This flexibility and the model's simple formulation 

have made it a very popular parametric model. 

Apart from these parametric models that have been formulated in the context of 

actuarial science and biometrics, other well known probability distributions are used 

in the context of survival analysis. This is the case of the gamma and the lognormal 

distribution. 

The gamma distribution has similar properties to the Weibull distribution, but 

is not as mathematically tractable. Its density function is given by f(x) = X^x^~l 

exp(—Xx)/T(ß), where A > 0 , ß > 0, x > 0 and T(-) is the gamma function. Due 

to its similarity to the Weibull distribution, A is called the scale parameter and ß is 

the shape parameter. The hazard function for the gamma distribution is monotone 

increasing for ß > 1, with a(0) = 0 and a(x) —> A as x —> oo, and monotone 

decreasing for ß < 1, with ct(0) = oo and a{x) —> X as x —> oo. 

The lognormal distribution is also very used when modelling time-to-event data, 
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not only because of its relationship with the well known normal distribution, but also 

because some authors have observed that the lognormal distribution approximates 

survival times or ages at the onset of certain diseases. The survival funciton is given 

by S(x) = 1 — $[(lnx — n)/a\ where <£>[•] represents the standard normal distribution 

function. The hazard rate of the lognormal distribution is hump-shaped, i.e. its 

value at 0 is 0, it increases to a maximum and then decreases to 0 as x approaches 

infinity. Main critics to this models are based on the decreasing shape of the hazard 

function for large x, which seems not very realistic. Nevertheless the model fit very 

well in certain cases when large values of x are not of interest. 

As claimed in Bowers, Gerber, Hickman, Jones & Nesbitt (1997), the support 

for simple analytic survival functions has declined in recent years, not only because 

many researchers have the feeling that to believe in universal laws is naive, but also 

because high-speed computers have made possible to develop sophisticated nonpara-

metric and semiparametric methods that have provided new approaches to deal with 

advanced issued in mortality studies. 

As an example of nonparametric methods, we mention because of its significance, 

the Product-Limit estimator, introduced by Kaplan & Meier (1958). This estimator 

is defined as follows 

i i í¿<t 

1 if t < *i 

if t > ii 1 _ <k 
1 Yi 

where U represents the different values of t "where there is data", di is the number 

of events at time U and Yi is the number of individuals at risk at time í¿. 

Estimations of the survival function, and therefore of the cumulative hazard rate, 

for right-censored data can be easily obtained by using the Product-Limit estimator. 

An alternative method to estimate the cumulative hazard rate with better small-

sample-size properties than the one based on the Product-Limit estimator is the 

so-called Nelson-Aalen estimator (Nelson, 1969; Nelson, 1972 and Aalen, 1978), 

that will be discussed in detail in Chapter 3. 
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2.4 Causal models in survival analysis 

The methods discussed until this point have dealt with modelling the survival ex­

perience of a homogeneous population, but sometimes when analyzing survival data 

it is necessary to adjust the survival function to account for additional information 

that identifies heterogeneous populations. This information is normally given by the 

so-called independent variables, explanatory variables or covariates. In this section 

we will make an introduction to regression models in survival analysis, where this ad­

ditional information is used to differenciate the survival experience of heterogeneous 

populations. 

We will consider a time-to-event variable T and a p— dimensional vector Z = 

(Z\,..., Zp) of covariates associated with the variable T. The vector Z can include 

quantitative variables, qualitative variables, and/or time-dependent covariates in 

which case we have that Z(t) — [Zi(t),..., Zp(t)]. The matter of interest in this 

framework is to analyse the relationship between one or more explanatory covariates 

and the time-to-event variable. 

Two approaches can be found in the statistical literature for modeling the co-

variate effects on the survival. The first approach is similar to the classical linear 

regression approach, and is called the accelerated failure time model. The natural 

logarith of the survival time Y — In T is modelled linearly 

Y = ß + itZ + aW 

where 7* the transpose vector of regression coefficients, i.e. 7* = (7i>--->7p)> and 

W is the error distribution, that is commonly modelled by using a standard normal 

distribution, which yields a lognormal distribution. Other possibilities include the 

extreme value distribution that yields a Weibull regression model or a logistic distri­

bution which yields a log logistic regression model. The estimation of the regression 

coefficients is performed by using maximum likelihood methods. 

The reason why this model is called the accelerated failure-time model is derived 

from the following equality Pr[T > t\Z] = So[texp(—7*Z)] where So(t) denote the 
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survival function of T = eY when Z is zero, that is, S0(t) is the survival function of 

exp|/t + aW]. Then the effect of the explanatory variables in the original time scale 

is to change the time scale by a factor exp(—rfZ). Therefore, the sign of j*Z has 

the effect of either an acceleration or a degradation of the time by a constant factor. 

In this model the hazard rate of an individual with covariate value Z is related to a 

baseline hazard rate a0 by a{t\Z) = a0[texp(—rfZ)) exp(—rfZ). 

The accelerated failure time model represents a direct extension of the classi­

cal linear model, but its use is restricted by the choice of the error distributions. 

Therefore, other approaches have been proposed, for example those arising from 

modelling the conditional hazard rate as a function of covariates. As mentioned in 

Klein & Moeschberger (1997), the easiest survival parameter to model is the hazard 

rate which reports how quickly individuals of a particular age are experiencing the 

event of interest. In this second approach two classes of models have been used to 

relate covariate effects to survival, namely the multiplicative hazard (rate) models 

and the additive hazard rate models. 

Multiplicative hazard rate models specify the conditional hazard rate of an indi­

vidual with covariate vector z as the product of a baseline hazard rate aQ(t) and a 

non-negative function of the covariates c(ßtz), i.e. 

a(t\z) = aoitXß'z) 

In applications of this type of models, ao(t) may have a specific parametric from 

or may be estimated nonparametrically directly from the data. Regarding c(-), any 

nonnegative function can be used. Most applications use the Cox (1972) model 

(also called proportional hazards regression model), where c(-) is assume to have an 

exponential form. The main feature of multiplicative hazards models is that when 

all covariates are fixed at time 0 the hazard rates of two individuals with distinct 

values of z are proportional. It can be easily showed by considering two individuals 

with covariate values Z\ and 22> then we have that 

a(t\zi) _ a0(t)c(ßtz1) _ c ( ^ ) 

<*{t\z2) a0(t)c{ßtz2) ciß'zt)' 
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For the class of additive hazard rate models, the conditional hazard function is 

modelled according to this specification 

a(t\z) = a0{t) + ,tzj(t)ßj(t). (2.1) 
¿=i 

Note that the regression coefficients for these models are functions of time. 

Therefore, the effect of a given covariate on survival varies over time. The values 

of the p regression functions may be positive or negative, but they are constrained 

because (2.1) must be positive. 

2.5 Time varying coefficients 

The changing effect of covariates over time in a causal model is a main issue in 

survival analysis. Even when the model seems to provide a proper description of the 

covariate effect it is convenient to carry out some procedure to investigate whether 

or not the effect of covariate changes over time. 

In Andersen, Borgan, Gill & Keiding (1993) we can find a summary of the 

approaches traditionally used for this purpose in the case of the proportional hazards 

regression model. According to this model, the intensity is specified as follows 

\i(t)=Yi(t)aQ(t)exp(ßtZi) 

where l¿(í) is an indicator equal to 1 if the subject is at risk and zero otherwise, oio(t) 

is the baseline hazard, Z¿ = (Zu,..., Zip) is the p— dimensional vector of covariates 

(which may also be time-dependent) and ß is the p— dimensional vector of unknown 

regression parameters. 

One method traditionally used to check whether or not the effect of covariates 

changes over time consist on investigating whether the baseline hazards for each 

strata in the data are proportional. Strata are defined according to the value of 

categorical covariates. In the case of a huge number of categorical covariates in the 

data set, the number of strata could be so large that it would not be possible to 

perform this procedure efficiently. In the case of continuous covariates strata can 
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ve arbitrarily defined based on the covariate values, but then the model is different 

than the original one. 

Another approach consists on investigating whether or not a time-dependency 

with a pre-specified parametric form is present. For example, the following model 

can be consider (Scheike & Martinussen, 2004) 

\(t) = Yi(t)a0(t) expiß'Zi + Z«0/(i)) 

where f(x) is a pre-specified function. Then, it should be tested whether or not 6 is 

equal to 0. With this procedure evidences of departures close to f(t) can be found, 

but it has the disadvantage that it is necessary to have a precise idea about the type 

of departure from proportionality, which rarely occurs. This is even more difficult 

in the case of an extended version of this model where more than one dimension are 

considered. 

These two traditional approaches can be used to have some rough evidence of 

departures from the model, but both of them have the disadvantage of considering 

the covariates one at a time in a model where constant effects are assumed for the 

rest of covariates. Scheike and Martinussen (2004) claim that it is preferable to 

make test for one component at a time, starting with the model where all effects are 

allowed to be time-varying and then gradually simplifying the model appropriately. 

Alternative approaches based on functionals of martingale residuals have been 

proposed, for example Lin, Wei L· Ying (1993) and Schoenfeld (1982), who intro­

duced the so-called Schoenfeld residuals. Grambsch & Therneau (1994) (GT) es­

timated time-varying regression coefficients by smoothing Schoenfeld residuals (see 

Martinussen, Scheike & Skovgaard, 2002, for detailed comments about this proce­

dure). Despite the fact that the GT method is widely used, two potential drawbacks 

of this procedure are mentioned in Scheike &; Martinussen (2004): firstly, the method 

results in a one-step estimator based on Cox's estimate and cannot be proved to have 

good properties, such as consistency if the true model contains time-varying effects; 

secondly, confidence intervals are computed assuming the Cox model and are only 

valid under this model. Additionally, Scheike & Martinussen (2004) remark the 
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difficulties arising when the estimation of the possible time-dependent regression 

coefficient ß(t) is used for hypothesis testing. Many authors argue that cumulative 

regression functions, B(t) — / 0 ß(s)ds, are preferable when hypothesis testing about 

ß(t) is the issue, see Murphy (1993) and Murphy & Sen (1991). 

The following extension of the Cox model have been studied by a number of 

authors, Murphy & Sen (1991) and Grambsch & Thearneau (1994) among many 

others 

Xi(t) = Yi(t)exp[ß(t)tZi(t)] (2.2) 

where Z^t) are p-dimensional covariates and ß(t) denote the associated regression 

coefficients. When the first covariate is constant and equal to one Zn(t) — 1 the 

model contains a baseline oco(t) that is parametrized as expf/^i)]. Martinussen, 

Scheike & Skovgaard (2002) generalized the previous model to allow that some 

covariates have constant effects, therefore they formulate the following model 

\(t) = Yi(t) exp [ß(tyZi(t) + *yXi(t)] (2.3) 

where Z¿(í) and Xi(t) are covariates of dimension p\ and p2, respectively, and ß(t) 

and 7 denote the associated regression coefficients. Martinussen, Scheike & Skov­

gaard (2002) remark that some effects may not depend on time and should there­

fore not be fitted as general non-parametric regression functions. The same authors 

recommend to start with the model where all the covariates are allowed to have 

time-varying effects, and provide tests to decide if these effects are in fact time-

varying (see Martinussen, Scheike & Skovgaard, 2002, and Scheike & Martinussen, 

2004). The corresponding test statistics are based on the asymptotic analysis of the 

cumulative regression functions in model (2.3). These tests are easy to implement, 

but the main contribution of the authors is that they propose a simple new proce­

dure where they test if a specific covariate has a time-constant effect using a model 

that allows the other covariates to have combinations of time-varying and constant 

effects. The simulation techniques suggested by Lin, Wei & Ying (1993) and Lin, 

Fleming & Wei (1994) are used by the authors for the calculation of p—values and 
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the practical implementation of this procedure (for a more detailed description see 

Scheike & Martinussen, 2004). 
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Chapter 3 

Improving the efficiency of the 
Nelson-Aalen estimator: the naive 
local constant estimator 

3.1 Introduction 

The Nelson-Aalen estimator, devised by Nelson (1969), Nelson (1972) and Aalen 

(1978), is well known to be an asymptotically efficient estimator of the cumulative 

hazard function, see Andersen, Borgan, Gill & Keiding (1993) among many others. 

In this chapter1, we show that the efficiency of the Nelson-Aalen estimator can be 

considerably improved by using more information in the estimation process than 

the traditional Nelson-Aalen estimator uses. While our approach results in a biased 

estimator, the variance improvement is substantial. By carefully optimizing the 

balance between the bias loss and the variance improvement, we obtain results on 

the efficiency gain. Several examples for known failure time distributions are used 

to illustrate these ideas. In the following chapters, the proposed non-parametric 

estimator will be used in survival models. Here, for sake of simplicity, a small 

application of the proposed estimator is used in a classical context. A well-known 

survival data set on cancer research is used for illustrative pruposes and a comparison 

1Some parts of this chapter are also part of the paper: Guillén, M., Nielsen, J.P. & Perez-
Marin, A.M. (2005), "Imporving the efficiency of the Nelson-Aalen estimator: the naive local 
constant estimator," submitted for publication. 

25 
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with the traditional Nelson-Aalen estimator is discussed. 

3.2 The naive local constant estimator 

There is a comprehensive knowledge of the main statistical properties of the basic 

nonparametric estimators of the survival function, the hazard rate, the density func­

tion and the distribution function. Azzalini (1981), Reiss (1981) and Falk (1983) 

can be mentioned as examples of contributions to the knowledge of the theoreti­

cal properties of the kernel distribution function estimator introduced by Nadaraya 

(1964). 

Bandwidth selection is essential in non-parametric estimation. A number of 

methods have been proposed for selecting the smoothing parameter in kernel density 

estimation, see for example Rudemo (1982) and Bowman (1984). Wand &; Jones 

(1995, Ch. 3) give a thorough discussion of those methods. Sarda (1993) and Altman 

& Leger (1995), studied bandwidth selection for estimating distribution functions. 

Falk (1983) also gave relative efficiencies of kernel type estimators of distribution 

functions. 

Bowman, Hall & Prvan (1998) discussed the performance of optimal, data-based 

methods of bandwidth choices for distribution functions leading to results which 

do not have analogues in the context of density estimation. In the discussion they 

pointed out that "care should be taken in cases where the largest survival times 

are censored. A further issue arises from the fact that survival times are usually 

greater than zero. This 'edge effect' will also require special attention". In this 

chapter we will use counting process theory for non-parametric estimation of the 

cumulative hazard rate function of a duration variable in the context of censored 

data. Moreover, the behaviour of durations near zero ('edge effect') is studied in 

detail. Both problems were mentioned in Bowman, Hall &; Prvan (1998) but have 

not been addressed before. 

The Nelson-Aalen estimator has proved useful for a number of applications in 

fields including actuarial science, biostatistics, finance and reliability theory. The 
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Nelson-Aalen estimator is well known to be an asymptotically efficient estimator of 

the cumulative hazard, see Andersen, Borgan, Gill & Keiding (1993, section IV. 1) 

among many others. In this chapter we challenge the more or less accepted point 

of view that the Nelson-Aalen estimator is also close to efficiency when it comes 

to the small samples encountered in real life. Consider the following quite simple 

heuristics: when the Nelson-Aalen estimator is estimated at a point t, indicating 

duration, then it only uses the information available in the interval [0,t]. One 

might be able to improve the Nelson-Aalen estimator using some information just 

to the right of i, let us say, in [t, t + b], where b is small and depends on t. This 

will certainly improve on the variance, since more information is included. It does, 

however, introduce some bias. The more information we include, i.e. the bigger b 

is, the bigger the variance improvement and the bigger the bias. It seems natural 

to expect that there could exist some kind of trade-off, an optimal 6, that gives the 

optimal balance between improved variance and penalty of bias. 

We introduce the simplest possible estimator of the cumulative hazard that em­

ploys information to the right of the point of interest. Since our approach is based 

on the assumption that the hazard is locally constant around the point of interest, 

we name our estimator the naive local constant estimator. The term 'naive' is taken 

from Silverman (1986) who used it for a kernel density estimator, where the ker­

nel equalled the uniform distribution. Our mathematical analysis shows that the 

variance improves for increasing b and a non trivial optimal 6 exists that has an 

improved performance compared to the Nelson-Aalen estimator. This improvement 

is quite substantial with efficiency gains of up to 60%. Not surprisingly, we normally 

obtain the biggest efficiency gains for small í's, where the variance improvement is 

more important than for big í's, and we normally see that the efficiency gain is a 

falling function of i. Exceptions to this simple and intuitive rule do however exist. If 

we consider a Gamma distribution on the positive axis, then the efficiency gain has 

a i7-shape as a function of time, with the smallest efficiency gain obtained around 

the central quantiles. The naive local constant estimator can be seen as a second 

order approximation to the Nelson-Aalen estimator. Our efficiency considerations 



28 CHAPTER 3. THE NAIVE LOCAL CONSTANT ESTIMATOR 

are therefore most important for small sample sizes. This parallels other second or­

der approximations in the statistical literature, for example the Bartlett correction 

(Bartlett, 1937 and Lawley, 1956). Even though the derivation of the Bartlett cor­

rection is based on asymptotic theory, it is designed to work well for smaller sample 

sizes, where the first order correction is not sufficiently accurate. 

The ideas presented here can be extended with few modifications to the Kaplan-

Meier estimator (Kaplan L· Meier, 1958) or even to the analysis of conditional sur­

vival functions (Tsai, Jewell & Wang, 1987, and Van der Laan, Jewell & Peterson, 

1997). 

We adapt the model formulation of Andersen, Borgan, Gill & Keiding (1993, p. 

176) with an infinite terminal point r — oo and where this terminal point is not in­

cluded in the considered interval, namely [0, oo[. We are interested in the asymptotic 

distribution of an estimator of the cumulated hazard for some t G [0, oo[. We con­

sider a measurable space (fi, F), equipped with a filtration (Ft, t e [0, oo[) satisfying 

the usual conditions except for possible completeness, see Andersen, Borgan, Gill 

L· Keiding (1993, p. 60), for each member of a family P of probability measures. 

Defined on (Í2, F) and adapted to the filtration, we have a multivariate counting 

process N = {Ni(t),... ,Nn(t)}, where i e [0, oo[ and n is the number of counting 

processes, satisfying Aalen's multiplicative intensity model, i.e., its (P, Ft)— intensity 

process is A¿(¿) = a(í)Y¿(í), where 1¿ is an observable predictable process taking val­

ues in {0,1}, indicating, by the value 1, when the ith individual is under risk. We 

assume in the following that the hazard function a does not depend on i, is twice 

continuously differentiable, f0 a(s)ds < oo, £a(s)ds ¿ 0 and a'(t) ¿ 0 for all 

t G [0, oo[. When studing the large sample properties in section 3.2, we consider the 

limit n —»• oo, and we also assume that the usual Lindeberg type of conditions, that 

make Rebolledo's martingale theorem apply, hold. Thus, we assume that conditions 

4.1.12, 4.1.13 and 4.1.14 of Andersen, Borgan, Gill k Keiding (1993, p. 191) hold. 

Our efficiency comparison of the classical Nelson-Aalen estimator and our naive 

local constant estimator of the cumulative hazard is based on the above standard 

assumptions. 
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If Y — 5^r=i Yi is the aggregated exposure, the sum of individual processes 

indicating that the unit is under risk, and 

A(i) = / a(s)I{Y(s)>0}ds, 
Jo 

is the cumulative hazard, where I{y(s)>o} denotes the indicator for Y(s) > 0. Then 

the classical Nelson-Aalen estimator equals 

We now get that 

ANA(t)-A(t) = J2 ÍvndM¿sí 
i=1 JO Y \8) 

is a martingale since Y(s) is predictable, where M¿ = Ni —Ai is the counting process 

martingale and A¿(t) = J0 a(s)Yi(s)ds is the compensator of JV¿ with respect to the 

considered filtration. 

The original standard Nelson-Aalen estimator is changed to incorporate some 

information to the right of t in order to reduce the variance and obtain a more 

efficient estimator. To be precise, we include information from the interval [t, t + b], 

where 6 is a bandwidth. It is clear that including some information above t implies 

that this estimator introduces some bias and that this bias increases with b, just as 

the improvement in variance increases with b. So, given t, we therefore expect some 

optimal b to exist, where we would get a good variance reduction without being 

penalized too much with respect to bias. Below we define our naive local constant 

estimator and show that with respect to mean square error an optimal non trivial 

b exists. That the optimal bandwidth is non trivial is defined to mean that it is 

above zero. This implies that our naive local constant estimator improves efficiency 

compared to the classical Nelson-Aalen estimator. 

Minimizing the mean square error is the classical method applied to get an opti­

mal bandwidth. A number of references can be mentioned in that sense. Bowman, 

Hall & Prvan (1998) propose a crossvalidation procedure consisting on minimizing 
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an unbiased estimator of the mean integrated squared error curve to get the optimal 

bandwidth parameter in kernel estimation of distribution functions, but censoring 

was not considered in their investigation. 

Our approach is the following, we keep the classical Nelson-Aalen estimator 

on the interval [0,t — b], but while estimating the part of the cumulative hazard 

belonging to the interval [t — b,t], we use information from the interval [t — b,t + b]. 

We do not use a smooth kernel or any other kind of smoothing while including this 

extra information. This is the reason for proposing the term naive when naming 

the estimator. This parallels the way Silverman (1986) uses this notion when it 

comes to kernel density estimators. Our point of view is that this is the simplest 

possible way we can include the extra information on the interval [t, t + b] and 

that this estimator has to be analysed and understood before other more advanced 

estimators are proposed. 

Now consider a counting process martingale in T defined as 

V f hi(a)dMi(a), 

where each hi is a predictable function with respect to filtration (Fs,s G [0,T[). 

Then 

^2 / hi(s)dMi(s) = ] T / I{se[aija2]}hi{s)dMi(s) (3.1) 

is a martingale in T. 

In the rest of the paper we will call an expression of form (3.1) a martingale. 

Often we will have a?, = t + b, where 6 is a bandwidth that might itself depend on t. 

The expression (3.1) is not a martingale in t in this case, but a martingale in some 

T bigger than a,2-

The naive local constant estimator is defined as follows 

/•oo 

AJVLC(Í) = / w(s,t)dANA(s), for all t 
Jo 

where w(s,t) is some weight function, which in this paper we assume to be the 
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"naive" function 

where 

w(s,t) = I{s<t-b} H I{se(t-b,t+b)}, 
lt,b 

t + b- max(i - b, 0) 

or equivalently 

t — max(£ — 6,0) 

j 2 if t>b , . 
%b - | t±b if t < b , K¿-¿) 

for some b > 0. Note that when considering a "naive" weight function, this estimator 

can be expressed as follows 

n /.max(t-6,0) -i " pt+b -, 

èf ^ y (S) E l Jrn^t-bfi) lt,bYiS) 

= ANA {max(i - b, 0)} H | ANA(t + b)- ANA {max(i - b, 0)} . 
7i,6 L J 

One could of course extend the same ideas to the local linear estimator or even 

the multiplicative bias correction method, see Jones, Linton &; Nielsen (1995) for 

the density equivalent. 

3.3 Efficiency considerations and bandwidth se­
lection 

In this section we consider the mean square error of the naive local constant esti­

mator. Based on this calculation we can develop an optimal local bandwidth for 

the naive local constant estimator of the cumulative hazard. We divide the analysis 

in two parts according to whether we are estimating at a point t belonging to the 

boundary region or whether we are estimating at a point t belonging to the interior 

of the interval. We assume that a T bigger than t + b and a positive continuous 

function y exist such that 

sup\^--y(s)\^0 
se[o,r] n 
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in probability. We also assume that Y (s) is strictly positive for s G [0, T]. We do 

this for notational convenience. 

In the Appendix A we have derived the following expansion of our naive local 

constant estimator 

_ n /•max(í-6,0) i n rt+b i 

W-A(i) = Y, Y(7)dMi{s) + ^ VYÜ)dMi{s) 

~l JO Y Vs) ~ l 7max(i-6,0) lt,bY Ks) 

ft+b 

+ 
' —a(s)ds — I a(s)ds 
max(i-6,0) lt,b Jmax(t-b,0) 

= Vt + Bt, 

where the variable term Vt asymptotic variance is defined as 

n pmax(t-b,0) -, n rt+b i 
Vt = E / Vr^dMi^ + E / —TTprdMiis), 

fe Jo Y{S) jr( Jm^t-bfi) lt,bY{s) 

and the stable term Bt asymptotic bias is defined as 

ft+b 2 /"* 
Bt = —a(s)ds — I a(s)ds 

Jmax(t-b,0) lt,b Jmax(t-b,0) 

rt / 1 \ ft+b 1 
= / I 1 I a(s)ds + / —a(s)ds. 

Jmax(t-b,0) \lt,b ) Jt lt,b 

The predictable variation of the variable part process is 

rmax( t-6,0) ^ rt+b ^ /•max^-o,u; / \ pt 

c(í-6,0) Ít,bY(s) 
ds. 

Once we have obtained the general expression for the bias and the variance, in 

order to calculate the relative efficiency of the naive local constant estimator we 

have found it convenient to consider the standard case, t > b, and the boundary 

case, t < b, separately. 
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3.3.1 Relative efficiency if t > b 

First we consider the analysis, where we are at the interior of the interval, t > b. 

The bias expression is 

ft i rt+b r 1 r+01 
Bt = - -a(s)ds+ / -a(s)ds 

pt+b i rt+b ^ 

= — / ña(s ~ b)ds + / -a(s)ds 
Jt 2 Jt 2 

1 / • i + b 1 

= i y {a(s)-a(s-b)}ds = -b2a'(t)+oP(b2), 

and the predictable variation of the variable part is 

The variance gain with respect to the original Nelson-Aalen estimator is 

Jo Y{s) [Jo Y{s) Jt_b 4Y(s) J Jt-bY(s) Jt_b 4Y(s) 
l . a ( i ) ,. _ u 

= 26yb)+ 0" ( 6 n >• 
Then the total gain in terms of mean square error is 

Qo(b) = \ b ^ - { ^ ' ( i ) } 2 + opiba-1) + oP(b% 

When a'{t) is positive this defines the leading term of the total gain as 

The optimal bandwidth 6 is found by differentiating the total gain, 

Q'(M = \y^ - 6k«W = o, 

so that the optimal bandwidth is 

bopt ~ { 2Y{t)a'{ty j • (3-3) 
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The efficiency gain at the optimal bandwidth b can be simplified as 

nth \ _ 3 A a (*) 
i°¿V>opt) — g^YM' 

The ratio between the total gain obtained for the naive local constant estimator 

and the variance of the Nelson-Aalen estimator, the relative efficiency gain, equals 

h nids 8 Jo a(s)ds 
Qjb^t) = 3 a(t) 

The relative efficiency gain is therefore of the quite significant order of magnitude 

The relative efficiency gain does, however, also depend on i, and we see that it 

will go to 0 for t going to infinity for any bounded a. However, many hazards are 

unbounded and for some of those, a significant relative efficiency gain remains for 

t —• oo. In section 3.4, where the relative efficiency gain is analysed for a number of 

realistic hazards, we see that the gain is far from negligible, with values up to 60% 

and mostly above 10% for most of the relevant t's considered. 

3.3.2 Relative efficiency if t < b 

Now we investigate the boundary case, where t < b. The bias is 

rt+b j . ft 

= / -a(s)ds - I a(s)ds 
Jo t + b J0 

= Í ¡a ( — a ) - a(s)\d8 = ¿bta/(t) + oP(bt) 

and the predictable variation process is 

The variance gain is 

f a(s) „ ft+b ( t \ 2 a(s) J tb a{t) . tb , 

Jo W)ds-1 \JTb) W)ds = tTbW)+ °P(^}-
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The total gain is 

So, we define the leading term of the total gain as 

2 
2+2 

where bopt = [ot{t)/ {2Y(t)a'(t)2}] ' is the optimal bandwidth we would have got in 

t, if t had not been in the boundary region. 

In order to find the optimal bandwidth in the boundary case defined by t < b^t, 

we normalise our optimization problem and express b as some portion of b^. Thus, 

b = qibopt for qx G (0, q2), where q2 = t/b^t for q2 G (0,1). 

Note that the boundary bandwidth b can not be bigger than t. The variance 

gain in the boundary case can be expressed as 

V l 91+92 4 r Q(ft) = a'(i)2C 2-^2- - ^ , for ft G (0, <?2) and q2 G (0,1). 

The slope of Q{q\) is strictly greater than 0 and the maximum is therefore 

obtained for q\ = q2 and we get the optimal boundary bandwidth b^b — t. 

The total efficiency gain at the optimal boundary bandwidth b^tfi is 

«»•»>-5 {S§-^ ( t ) '} 
and the relative efficiency gain is 

QM l{"(t)-Y^(t?} 
Y (s)1 

£{t) Jorfes ti*(s)ds 

This is always positive since 6 ^ > t. This condition is equivalent to Y(t)t3a'(t)2 < 

a(t)/2, and then Y{t)tza'{tf/2 < a(t)/4. 

. A general description of the relative efficiency gain is 

Ij^k6^ Íf bopt<t 
e(t) = { Ja{t)_mñaW\ (3.4) 
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Note that the relative efficiency gain is continuous in bopt since 

I {«(t) - * r f ( i ) ' } 3 a(() 
h m — - j — = h m - ————bopt, 

t^b-pt f0 a(s)ds t^b+pt 8 JQ a(s)ds 

and the optimal bandwidth b^t is a function of t. 

3.4 Relative efficiency gain 

In this section we present the relative efficiency gain curve which compares, at every 

given i, the relative efficiency gain of the naive local constant estimator to the 

Nelson-Aalen estimator. Several typical distributions of a random variable mea­

suring time-to-event are considered in this section. In the calculations Y(t), the 

function that indicates the exposure risk, is assumed to be equal to lOOS'(i), where 

S(t) is the survival function. For each distribution function considered here, the sur­

vival function, the hazard function and the relative efficiency gain curve are shown 

(see, Figures 3.1 and 3.2). The hazard and the relative efficiency gain are plotted as 

a function of the percentile of t. 

Uniform distribution 

Let us assume that the true distribution for the time-to-event variable is the 

uniform distribution. So, the density function f(t) equals 1/6 for 0 < t < 6, where 9 

represents the maximum value for the random variable measuring the time-to-event. 

The survival function is then a straight line with a constant negative slope and the 

hazard is an increasing function defined by a(t) — 1/(0 — t) for 0 < t < 6. 

The relative efficiency gain of the naive local constant estimator with respect to 

the Nelson-Aalen estimator has the following simple expression 

Pu\ _ / -8iog(i-|3){2y(t)}1/3 i f & op t< i 

{ -4(0-i)4log(l-f) U °°Pt > l 

It is easy to prove positiveness for b^ < t, but when b^t > t, the boundary case, 

we have to take into account that t3 < (t — 6)3/ {2Y(t)}} which is the boundary 



3.4. RELATIVE EFFICIENCY GAIN 37 

condition for the uniform distribution. Therefore, the naive local constant estimator 

is more efficient than the Nelson-Aalen estimator in terms of the mean square error, 

and its relative efficiency gain depends on t, 9, and Y(t) which is now supposed to 

be equal to lOOS'(i). Figure 3.1 shows the survival function, the hazard and the 

relative efficiency gain curve for three given values of 6. 

On the one hand, for a given value for 6 and Y(t), the relative efficiency gain 

decreases as t increases, as expected. It can be shown that 

3 
\ime(t) = lim TT^ = 0. 

t^e ^ - 8 1 o g ( l - f ) { 2 y ( i ) } 1 / 3 

On the other hand the limit of e(t) when t —> 0 is 

,. , , ,. 2t(6 -1)3 - Y(t)t* 1 
hme(i) = lim—— ——j- rr- = - . 
t^o v ' t-»o -4(0 - i)4 log(l - | ) 2 

The maximum relative efficiency gain is not obtained for t —> 0, because e(t) 

takes values greater than 1/2 for some 0 < t < òopt. As shown in Figure 3.1, the 

relative efficiency gain is well above 20% in the first quartile, with values around 

50% in the first decile. 
Weibull distribution 

If we assume that the time-to-event random variable follows a Weibull distribu­

tion, with density f(t) equal to a\ta~l exp (—\ta) for A > 0, a > 0 and t > 0, then 

the hazard is a(t) = a;Aia_1and the relative efficiency gain is then 

p(f] = i i^WM«-!)»*-}1'" Íf bopt - l 

In Figure 3.1, we have also presented a graph showing the survival function, the 

hazard function and the relative efficiency gain curve for some parameter values of 

the Weibull distribution. 

Maximum relative efficiency gain is obtained for t —+ 0, and its value is OJ/2. 

Notice that the minimum relative efficiency gain is not neglectable, as one can see 

in Figure 3.1 that there is a relative efficiency gain above 30% for any value of t. 
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Gamma distribution 

We will now assume that the distribution for the random variable indicating 

time to event is the Gamma distribution. In this situation, the density is f(t) = 

{/TIX«)} -1 ta~l exp(-t/ß), where a > 0, ß > 0 and t > 0. The hazard function is 

(t) = / ( ¿ ) = ^ f e ) ¿ a - 1 e x p ( - ^ ) = ^t^exyj-t/ß) 
1 - nt) 1 - £ ^ f e y ^ - 1 exp(-s/ß)ds ¡r trm3"-1 *Ms/ß)ds ' 

where /(•) and F(-) represent the Gamma density function and distribution function, 

respectively. The relative efficiency gain is 

{
3 /(t)4/3  

8-log{l-F(t)}{2y(t)}
1/3[/'(t){1_F(t)}+{/(t)}2]2/3 if bopt < t 

tf(t){l-F(t)}3-^^\f'(t){l~F(t)}Hf(t)}2}2 . , , , 
_2iog{i_/T(t)}{i_F(i)}4 i r °°Pt > Z-

In Figure 3.1, we have shown an example of the survival function, the hazard 

and the relative efficiency gain curve for this type of distribution. 

When the duration variable follows a Gamma distribution, one can notice that 

the best gain is obtained at the lower and higher distribution quantiles. For the 

values of the parameters that were used for illustration, we see that the relative 

efficiency gain is in general above 20%, but it may reach almost 60% for the highest 

quantiles. 
Lognormal distribution 

Let us now assume that the random variable which measures time to event follows 

a Lognormal distribution, so 

2" 

The hazard function is 

i f log®-/* y for a > 0, and t > 0. 

a{) l-F(t) x-çîIssSpLX 
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where /(•) and F(-) represent the Lognormal density function and distribution func­

tion, respectively, and $(•) is the standard Normal distribution function. 

The relative efficiency gain is 

/(*)4/3 

_ 8 _ l o g [ l - * { Í H g í ^ } ] { 2 y W } V 3 ( r ( t ) [ 1 _ ^ l o S í ^ } ] + { / ( í ) } 2 ) V 3 if bopt < t 

£ ^ - \ t/(t)[l-^{M^})3-^(f(t)[l^{i3Si^M}j+{/(t)}^)2 

.2iog[i-*{í2«í^}][i-*{4tíazí}j¥ u Oopí > r-

Figure 3.1 shows an example for the survival function, the hazard and the relative 

efficiency gain curve in the Lognormal situation. The shape of the relative efficiency 

gain curve is different to the previous ones for this kind of distribution. While lying 

above about 20% in all the domain, the relative efficiency gain may reach about 70% 

in the central part of the distribution domain. 

Log-logistic distribution 

Let us assume that the distribution for the time-to-event variable is the Log-

logistic distribution. Then, the density is f(t) = aXt01"1 (1 + Xta)~2 for a > 0, A > 0 

and t > 0. The hazard function is now a(t) = a\ta-l{l + At**)-1. 

The relative efficiency gain is 

(aAt"-1) 4 / 3 

if brmt < t 
£U\ — ) 8 1og(l+At«){2y(t)}1/3{Q:(a-l)Ata-2(l+Ai«)-(AatQ!-1)2}2/3 x i uopt 

| ata\(l+Xta)3-^^{a(a-l)\ta-2(l+Xta)-(a\ta-1)2}2 . f , 
V 2(l+Ata)4log(l+Aía) Ü 0oP* > t· 

In Figure 3.2 we graph the survival function, the hazard and the relative efficiency 

gain curve for a Log-logistic distribution. 

When looking at the plot of the relative efficiency gain curve, we see that the 

larger gains, of about 50%, are reached at the lowest quantiles. 
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Figure 3.1. Survival function, hazard function and relative efficiency gain curve for some 

known distributions: Uniform, Weibull, Gamma and Lognormal, (a), (d), (g) and (j) 

survival function, (b), (e), (h) and (k) hazard function and (c), (f), (i) and (1) relative 

efficiency gain curve. 
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Figure 3.2. Survival function, hazard function and relative efficiency gain curve for some 

known distributions: Log-logistic, Exponential-Power and Gompertz. (a), (d) and (g) 

survival function, (b), (e) and (h) hazard function and (c), (f) and (i) relative efficiency 

gain curve. 
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Exponential Power distribution 

If the distribution for the time-to-event variable is now the Exponential Power 

distribution, the density is f(t) = aX^'1 exp [1 + (Xt)a - exp {(At)a}] for a, A > 0 

and t > 0. The hazard function is ait) = aA a i a _ 1exp{(Ai) a} and the relative 

efficiency gain is then 

Í 3 [aA"*°-iexp{(Atn]4/3 - f , < , 
e(t)= < 8{2y(í)}1/3[exp{(Aí)a}-ll[aAaí«-2exp{(Aí)a}{a-l+a(a)«}]2/3 ""* ~ 

) aAataexp{(Af)°}-^t4[aA°t°-2exP{(At)°}{a-l+a(a)°}]2 

[ 2[exp{(Atn-l] " 

apt 2 : 

bryrrt > t. Jopt 

In Figure 3.2 the survival function, the hazard and the relative efficiency gain 

curve are shown for the Exponential Power distribution. The maximum relative 

efficiency gain is obtained at the lower quantiles. 

Gompertz distribution 

Let us assume that the distribution for the time-to-event variable is the Gompertz 

distribution, so the density is f(t) = 9 exp(ai) exp {(6/a) {1 — exp (at)}} for 6, a > 0, 

and t > 0. The hazard is a (t) = 0exp (at). The relative efficiency gain is 

e(t) = { 
3 aWmpJio*) -fh < f 
8 {20y(i)}1/3{exp(at)-l} U U°Pt - L 

t9eat - ^ | ^ {6a expiat)}2 .f , . 
2f{exP(aí)-l} H 0 o p í > t . 

In Figure 3.2, we graph the survival function, the hazard and the relative effi­

ciency gain curve. The best relative efficiency gains have been obtained at the lowest 

quantiles for this type of distribution, and again one can see gains reaching 50%. 

3.5 The efficiency curve after estimating b 
1 

The theoretical efficiency curves shown in Figure 3.1 and 3.2 are based on knowing 

the optimal b, thus knowing a(t) and a'(t). Therefore, they do not adjust for the 

effect of plugging-in an estimation of b when calculating the efficiency. 

A simulation study has been performed in order to account for the estimation of 

the optimal 6 (see Figure 3.3). 
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(a) Uniform, 9 = 10. 
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(c) Gamma, a = 3, ß — 1.5. 
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Figure 3.3. Adjustment for the effect of estimating b in the efficiency 
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In the central quantiles, efficiencies resulting from the plug-in procedure are very 

similar to the theoretical ones. More advanced methods can be proposed to get 

better estimations for lower and higher quantiles. These methods can be based 

on using more sophisticated versions of the naive local constant estimator, where 

non-uniform weight functions could be considered. Nevertheless, we advocate for 

a detailed knowledge of the naive local constant estimator (the simplest possible 

estimator of the cumulative hazard that employs information to the right of the 

point of interest) before more advanced estimators would be investigated. 

3.6 Implementation 

As the optimal bandwidth b at t depends on a(t) and a'(t)2 both of them should 

be estimated first. We start with a local linear estimator of a(t) and a'(t). Nielsen 

& Tanggaard (2001) introduced local linear hazard estimation by transferring the 

well known principles from nonparametric regression and kernel density estimation 

(Wand k Jones, 1995; Fan & Gijbels, 1996 and Jones, 1993). 

While the classical kernel hazard estimator of Ramlau-Hansen (1983) can be 

interpreted as a local linear estimator, we prefer the local linear estimator corre-

sponding to a natural weighting defined as o¿2(t) — Oo, according to 

n />0O 

= arg e o , e i min V / {AN^s) - 9 0 - 0 i (t - s)}2 Kb(t - s)Yi(s)ds, 

where K(-) is a probability density function with support [—1,1] which is symmetric 

around zero and /£&(•) = b~1K(-/b) for a bandwidth b. This estimator has better 

robustness properties, and it is the direct analogy to the local linear estimator known 

from nonparametric regression. 

Let 
/•oo 

aj(t) = / Kb(t - s)(t - s)jY{s)ds, for j = 0,1 and 2 
Jo 

and 
" />oo 

Gj(t) = J2 Kb(t - s)(t - s)jdNi(s), for j - 0 and 1. 
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Then, to find Oo and 0 ! the following equations have to be solved 

G0(t) = e0ao(i) + eiOi(t) (3.5) 

dit) = QotuM+QMt). (3.6) 

And this results in the local linear estimator 0O — ^ ( i ) , where 

n /-oo 

a2(t) = Y, Ktib(t-s)dNi(s), 
i=iJo 

and 
_ _ a2(t)Kb{t -s)- ai(t)Kb(t - s)(t - s) 
A i M t S) ao(t)a2(t) - {ai(t)Y 

An estimation of the first derivative a'(t) is provided by — ©i, which can be 

directly obtained from (3.5) or (3.6) once 0O has been estimated. Let us call #i(i) 

the estimator that we get for a'(i) based on —©i. For more details on local linear 

kernel hazard estimation see Nielsen &; Tanggaard (2001). 

Notice, that we do not wish our estimator of a'(t)2 to become too close to zero. 

Then we almost divide by zero while calculating our optimal b, that might become 

very big. The worst thing that can happen in our estimation process is that the 

bandwidth b becomes so big that the naive local constant estimator does not perform 

better than the classical Nelson-Aalen estimator. If the estimation procedure results 

in a bandwidth smaller than the optimal, we only lose some of the efficiency gain, but 

not all of it. The consequence of these considerations is that we define a robustified 

estimator «72(i) of a'(t)2 by smoothing one more time. Thus, in practice we will use 

Uoo "\ — 1 />oo 

K(t-s)ds\ J Kty-sfiMds. 

3.7 An application to survival data 

In the period from 1962 to 1977, 79 male and 126 female patients with malignant 

melanoma, cancer of the skin, had radical operations performed at the Department of 

Plastic Surgery, University Hospital of Odense, Denmark. The tumor was completely 
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removed together with the skin within a distance of about 2.5 cm around it. All 

patients were followed until the end of 1977 and it was noted if and when any of 

the patients died, as well as the cause of death. Of the 79 male patients, 29 were 

observed to die from the disease, and of the 126 female patients, 28 were observed 

to die from the disease, while 14 died from other causes. The rest of them were alive 

at the end of 1977. The objective of this historically prospective clinical study was 

to asses the effect of risk factors on survival. The most important time variable is 

time since operation. Other factors were screened such as gender, age at operation 

and several variables related to the characteristics of the tumor. 

Andersen, Borgan, Gill & Keiding (1993, example IV.1.2) present Nelson-Aalen 

estimates for these male and female patients where the survival time is measured 

since the time of operation. We will now compare their results with those corre­

sponding to the naive local constant estimator. 

As we mentioned before, in order to get the optimal bandwidth b both a(t) 

and a'(t)2 should be estimated first. According to the methodology described in 

section 5 these estimations can be obtained by using the local linear estimator. In 

that application a suitable probability function Ä&(-) is the biweight kernel K\,{-) — 

f |{ l - (-/b)2}2 where 6 = 800 for both male and female. The same biweight kernel 

with the same b has been used to smooth a'{t)2 one more time (see Appendix B for 

details about the calculations). Thus, a more robustified estimator for ct'{t)2 have 

been obtained, see Figure 3.4. 

Once estimations of a(t) and a'(t)2 have been obtained the optimal b can easily 

be calculated according to (3.3). In Figure 3.5 optimal b as a function of t is shown 

both for male and female. Note that for small t's, in the boundary case, (3.3) 

provides bigger b's than the corresponding t, so the optimal solution in that case is 

b — t, as we showed in section 3.2. At a certain point b equals zero, and O0 and 

c¿2(t) too. 
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Figure 3.4. Estimation of a'{t)2. 
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Figure 3.5. Optimal b used in the naive local constant estimator for male and female. 

In Figure 3.6 we show the Nelson-Aalen and the naive local constant estimates 

of the cumulative hazard for both male and female. The most relevant feature of 

the curves being compared is that the naive local constant estimator provides a 

smoother curve than the Nelson-Aalen estimator. For any given t, the estimation 

of the cumulative hazard provided by the naive local constant estimator is taking 

into account all occurrences that took place in some period [t — b, t + b] around t. 

For example, note that for both male and female the most important increase in 

the number of deaths occurs approximately around the end of the second year after 

operation or the beginning of the third year, approximately when t = 621 days 

for male and t = 817 days for female. This fact is reflected in the corresponding 

estimates of the naive local constant estimator prior to these time points, providing 

larger estimates than the Nelson-Aalen estimator. 

The ratio between the naive local constant and the Nelson-Aalen estimator, see 

Figure 3.7, can be used for comparative purposes. Note that the ratio is quite large 

for small t's but it decreases for larger t's. This ratio becomes very close to one after 

day 2000. After day 3000, approximately, the estimates seem to be equal, thus the 

ratio is 1. 
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Figure 3.6. Comparison between the Nelson-Aalen and the naive local constant estimator 
for .both male and female. 
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Figure 3.7. Comparison between the Nelson-Aalen and the naive local constant estimator 

for bo th male and female. 
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Figure 3.8. Relative efficiency gain curve of the naive local constant with respect 
to the Nelson-Aalen estimator. 

For males, when t < 779 days, the naive local constant estimator provides larger 

estimates than the Nelson-Aalen estimator, except during a short period between 

day 210 and day 351. The reason is that it includes some information about what is 

going to happen after the time point being considered, so the substantial increase in 

the number of deaths occurring between day 621 and day 793 is taken into account. 

During a second period between day 779 and day 1892, the naive local constant 

estimator provides smaller estimates than the Nelson-Aalen, because it takes into 

consideration that no sudden increases in the mortality occur in subsequent periods. 

After day 1892, both estimates are close together, but the cumulative hazard curves 

do not become equal until day 3091. 

A similar pattern is observed for women when comparing both estimates. During 

the period for t < 872 the naive local constant estimator provides larger estimates 

than the Nelson-Aalen estimator, except between day 386 and day 555. Again the 

naive local constant estimator captures the great increase that is going to occur in 

the number of deaths between day 817 and day 872. From t — 872 to t = 2062, the 

difference between the naive local constant and the Nelson-Aalen estimates is not 

so large, but after day 2062 the naive local constant estimator provides smaller esti-
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mates than Nelson-Aalen, except during a short period around day 3000. Estimates 

become equal at day 3745. 

Finally, in Figure 3.8 we plot the relative efficiency gain curve (3.4) for male and 

female. For males, the maximum value is 0.55 at t = 146 days. For females, the 

maximum value is 0.77 at t — 67 days. Relative efficiency gains range from 40% to 

55%, for t < 373 for males. For females, relative efficiency gains for t < 443 go from 

40% up to 70%. 



Chapter 4 

Customer lifetime duration 

In this chapter1 we introduce customer lifetime duration analysis in insurace com­

panies. In the first section, the models traditionally used in this field of marketing 

are presented. Secondly, we describe the empirical and conceptual framework of 

customer lifetime duration analysis with a specific remark concerning the most im­

portant empirical studies in the field of customer loyalty in insurance companies. 

Finally, we present the empirical application to a real household dataset. The hy­

pothesis and methodology applied in this empirical study are detailed in the last 

section of this chapter. 

4.1 Models for customer lifetime duration 

It was in the 50's when firms started to be interested in the reasons why customers 

are choosing a particular product or brand. The behavioural concept of loyalty 

was introduced by Brown (1952). According to his definition, customer loyalty is a 

tendency to buy one brand and it is directly related to the frequency of purchase. 

Nevertheless, many authours were not satisfied with a pure behavoural concept 

of loyalty and they included a positive attitude towards the brand in the definition of 

loyalty (Day, 1969, and Jacoby & Chestnut, 1978). This was a second step towards 

1Most parts of this chapter are also part of the paper: Brockett, P.L., Golden, L.L., Guillen, 
M., Nielsen, J.P., Parner, J. & Perez-Marin, A.M. (2005), "Household multiple policy retention 
effects of first policy cancellation: how much time do you have to stop total customer defection?," 
submitted for publication. 
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the modern idea of loyalty. 

Nowadays, the idea that customer loyalty has both a behavioural and attitudi-

nal component is widely accepted. Moreover, in recent years new factors such as 

sensitivity (Kapferer & Laurent, 1983), emotions towards the brand (Fourier & Yao, 

1997) and stochastic elements (Uncles & Laurent, 1997) have been considered. 

It is also well accepted that people grow into loyal customers by following a step-

by-step progression2 (Griffin, 2004). It has been proved that high levels of loyalty 

result in an increase in the customer average value (Riechheld, 1996). Mittal & 

Kamakura (2001) found out that keeping current customers is cheaper than recruit­

ing new ones. Other important contributions to the analysis of customer loyalty 

are provided by Levitt (1988), Fornell (1992) and Bon k Tissier-Desbordes (2000) 

among many others. 

Reinartz & Kumar (2003) give a brief review of the major findings of studies 

concerned with customer lifetime duration modelling. Firstly, the authors stress the 

limitations of several empirical studies (Allenby, Leone & Jen, 1999; Bolton, 1998; 

Dwyer, 1997 and Schmittlein & Peterson, 1994) due to the general lack of customer 

purchase history data. Nevertheless, during last years there is an increasing avail­

ability of longitudinal customer databases and researchers have started to take a 

longitudinal perspective in their work. Therefore, nowadays studies are mainly fo­

cused on the empirical measurement and modelization of the customer's relationship 

with the firm (Reinartz & Kumar, 2000). 

Regarding the methodology, in some of these studies survival analysis techniques 

are used, namely the proportional regression model (Li, 1995 and Bolton, 1998). 

Helsen & Schmittlein (1993) supported the superiority of these methods when han­

dling duration type data. Other methodologies are also applied, such as, for ex­

ample, the Tobit regression model (Thomas, 2001) and Bayes models of customer 

interpurchase time (Allenby, Leone & Jen, 1999). 

2Murray (1988) was the first to introduce a scale, and he proposed five levels of loyalty: 
prospects, shoppers, customers, clients and advocates. 
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Regarding the data sets used in these empirical studies, they are concerned about 

financial brokerage services, cellular or long-distance telephone service among many 

others. These results have provided several key results. The model proposed by 

Li (1995) identified variables (usage, marketing, demographics,...) that affect the 

lenght of customer subscription and made it possible to build profile of customers 

with high and low lifetimes in the long-distance telephone service. 

Bolton (1998) found out that customer satisfaction is related positively to sub­

scription duration in cellular phone service, but prior cumulative satisfaction is 

weighted more heavily than recent satisfaction in the decision on whether to con­

tinue or not. The Bayes model proposed by Allenby, Leone & Jen (1999) allows 

managers to recognize when a customer is changing his or her purchase patterns in 

financial brokerage services. 

Very few applications to the insurance market can be mentioned. Reinartz & 

Kumar (2003) specially remark the contritution of Crosby & Stephens (1987) to 

the modelization of satisfaction with the service provider in life insurance. Their 

results suggest that nonlapsing customers report higher satisfaction than lapsed 

customers, but insureds were followed for 13 months only. The contribution of the 

rest of empirical studies about the insurance market will be quoted in the following 

sections, but in general they should be classified as studies related to purchasing 

behaviour. 

4.2 Empirical and conceptual framework 

It has long been recognized that insurance operates in a marketplace. Yet, the 

focus of the vast majority of research on this marketplace has traditionally been 

supply-side, emphasizing study of financial and actuarial elements. Very little has 

been published concerning the dynamics behind customer demand for insurance 

products. Demand side influences have been addressed, but to a lesser extent than 

have supply side considerations. For example, habit formation and the demand for 

insurance has been studied (e.g. Ben-Arab, Brys & Schlesinger, 1996), consumer 
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perceptions of service quality (Wells & Stafford, 1995 and Stafford, Stafford & Wells, 

1998), individual portfolio decisions and demand (Mayers & Smith, 1983), household 

characteristics (Showers & Shotick, 1994), and demand in the presence of other risks 

(Doherty & Schlesinger, 1983; Schlesinger L· Doherty, 1985; GoUier & Scharmure, 

1994). 

This chapter expands perspectives on the marketplace to the study of the behav­

iours of customers, who are the ultimate reason for the existence of insurance in the 

first place. Only by understanding the whole of the marketplace, both supply-side 

factors and demand-side factors, can insurance firms more optimally manage their 

operations in the marketplace. 

The importance of demand-side analysis and money for product exchange 

Without the ultimate sale of the insurance product, in the form of an exchange 

between a buyer and the insurer seller, there is no need for actuarial estimation or 

financial analysis, as there is no customer to insure. The firm must generate sales 

to survive, and just as actuarial estimations and financial analyses are critical for 

an insurer's long-term business survival, so too are sales and customer relationship 

management. 

The firm's sales are not only a function of how many new customers are at­

tracted, but are also a function of how many existing customers are retained. By 

retaining existing customers and attracting new customers profitably, the insurer 

can grow the business and potentially increase market share. Managing customer 

growth and market share requires an incorporation of consideration of demand side 

marketplace dynamics to better understand customer behaviours and responses, in 

order that customer relationships may be developed and matured. Insurance has 

long focused on compensation and marketing techniques, including a comparison of 

distribution systems, to study methods for providing sales incentives and better cus­

tomer relationship management (although not necessarily discussed in those terms). 

Examples of this type of research are: Bárrese, Doerpinghaus & Nelson (1995) and 

Gravelle (1994). 
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Persistency studies and the importance of the first lapse signal 

Persistency studies have been conducted in life insurance to determine factors 

causing policy lapses (Kuo, Tsai & Chen, 2003). These studies often provide 

demand-side information, but are generally conducted for a single policy. Persis­

tency studies, however, have not tended to be conducted for property and casualty 

insurance, even for single policies. 

In spite of the lack of attention given to persistency in property and casualty, 

policy lapses are likely to be similarly important for the property and casualty area. 

They are a customer behaviour that can signal purchasing decisions in-process or on 

the customer's decision-making horizon. And, often a household will buy multiple 

policies from the same insurer, such that a lapse in one may be only the beginning 

of the customer's defection to a competitor. 

Lapses signal the customer's brand switching behaviour: moving from one in­

surer/company to another indicates the customer's defection to the competitor in 

a demand-side market analysis. Customer retention is the opposite of customer 

defection-one firm's gain is another firm's loss. And, customer retention becomes 

increasingly important in a multiple product situation, where the company sells 

multiple policies to the same person or household. Losing one policy is likely to 

be the first step in a customer decision-making process resulting in lapses in all 

policies sold to a household. And, whether comprised of one individual or several, 

the household is an appropriate unit of analysis, because insurance purchases are 

often made as a bundle of products serving multiple risk management needs of the 

household operating as a decision-making unit. 

Losing and gaining customers through brand switching is a major concern for 

firms in the insurance industry. This concern is well-founded, as customer market­

place purchasing is dynamic. For example, Schlesinger L· Schulenberg (1993) found 

that 30.1% of customers interviewed had switched automobile insurance carriers at 

some point in time. 
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Insurance companies focus on both retention of existing customers and attraction 

of new customers (Cooley, 2002). And, retention is particularly important, because 

the most undesired consequence of losing a good customer is the possibility that they 

will be replaced by a not so good customer. The quality of the customer portfolio 

is essential to profitable survival in the insurance business, because pricing is based 

on an estimation of the quality and quantity of the risk being covered. 

The Concept of Policy Lapse Versus Changing Customer Needs 

In the insurance setting, when a policy is ended two basic situations are possible: 

(1) the risk is going to be covered by another insurance company (e.g., an automobile 

insurance policy is taken out with another insurance company), or (2) the risk does 

not exist any more for the policy holder (e.g., a car being sold). Any investigation 

into policy lapse must explicitly take the difference between these two situations 

into account empirically. The first type of policy termination, brand switching via 

the customer purchasing from another company, is the termination of interest to 

understanding demand-side market dynamics and customer relationships. 

In keeping with the importance of distinguishing policy terminations from policy 

lapses, this research does not view all terminations as cancellations or lapses. The 

rule that we have applied to determine whether a termination is regarded as a can­

cellation or lapse, and thus immediately relevant as a signal of impending customer 

defection for other policies purchased from the same firm, is whether the risk still 

exists at the time the contract is ended. 

It is important to note here differences that exist between the European processes 

of insurance contract renewal and those used in other countries, for example the 

United States of America. In Europe, the source of the longitudinal database used 

in this research, a policy will be automatically continued, via a bank account debit, 

unless the customer takes an explicit action to terminate it. Thus, a termination, 

because of a brand switch or lack of need, requires explicit action in Europe. 

In the United States of America, the policy will automatically lapse if it is not 

explicitly renewed. The two processes are essentially reversed: Europe requires 
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explicit action to terminate (or a bank account debit will automatically occur and 

the policy will renew) and, conversely, the United States requires explicit action (i.e., 

payment) for renewal or the policy will automatically terminate after thirty days 

with non-payment. Europe is automatic renewal and the United States is automatic 

termination. 

While this international difference is important to note, it makes the European 

database particularly relevant for study, even to gain insights into brand switch 

in any country. Customers in any country might notify their insurer of an intent 

to switch firms prior to non-payment, but customers in Europe (either the new 

firm or the customer) must notify the current insurer in order to switch brands. 

Thus, European insurers automatically have information of an impending brand 

switch without having to wait to realize a lost sale/customer. And, while the brand 

switch intention signal may come to the company in a non-European country at a 

later point in time (i.e., after thirty days of non-payment), the methodology and 

customer relationship management implications of this research are still relevant to 

guide further customer retention investigations in any country. 

Customer Lapse Example: Policy Coverage Data versus Customer Notification Data 

Here we present an example of customer lapse behaviour to illustrate the nature 

and scope of the investigation. Our focus will be on three types of insurance con­

tracts: contents, house, and automobile. Contents insurance covers the items inside 

the house subject to loss, such as furniture, silver and gold, paintings, clothes, and 

audiovisual equipment. House insurance covers the building itself (roughly speak­

ing, the bricks) from damage generally caused by phenomena such as fire, storm, or 

water. Automobile insurance covers bodily injury and property liability. 

All notifications of cancellation in the house, contents, and automobile lines of 

business occur close to the renewal date. As mentioned previously, before a policy 

is cancelled there has to be a notification from the customer. If a customer does not 

want to renew a particular policy on the day it is due, the notification has to be 

made a minimum of one month before the renewal date. If the notification is made 
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during the last month before the renewal date, the policy will not be cancelled in 

the next renewal but will be cancelled in the following one, thirteen months after 

notification, i.e. the year after. Therefore, there is a period of time that can take up 

to 13 months from when the cancellation is notified until it is actually made effective 

via policy termination. 

Thus, if several cancellation notices are made by the customer, the first to be 

actually cancelled is not necessarily the first policy the customer notified the insurer 

about canceling. It depends on the corresponding renewal dates. Figure 4.1 consid­

ers the number of policies that a particular customer has of a certain type (contents, 

house, and automobile) at each moment in time. 

The customer shown in Figure 4.1 first purchases a house policy, and shortly 

afterwards an automobile policy, followed by a contents policy purchase. In this 

example, the first policy the customer cancels is the automobile policy. 

Compare Figure 4.2 which represents the same information and adds a dashed 

line for the period of time when the risk is covered by the corresponding policy, 

even though the insurer has been notified of the cancellation. Note that the first 

notification corresponds to the house policy, while the first risk to be out of coverage 

corresponds to the automobile policy, because its renewal date comes first. 

From the perspective of understanding the customer's intention and predicting 

the length of time the customer is likely to remain with an insurer after cancellation 

of a policy, the type of first notice of cancellation contains relevant information. 

Notification data properly reflects the customer point of view with respect to the 

insurance relationship, while policy lapse date information only describes the risk 

being covered. Therefore, the customer's intent is properly established by the type 

and moment in time of the first notification of cancellation (not the first policy to 

actually lapse). 
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Figure 4.1. Number of contents, house and motor policies a customer has 
at a particular moment in time (policy coverage data). 

When the first risk out of coverage is taken to define the first lapse then there is 

a problem of misclassification that clearly affects both the type and the time of the 

first lapse. 

This distinction between lapse and notification is important, as the notification 

data define the demand side characteristics which are the source of the ultimate 

lapse. This issue only arises for multiple policies underwritten by the same insurer, 

as is considered here. The brand switch signal must be taken from the time of the 

first cancellation notification (and not the time of the first lapse in coverage). 

This research measures lapse from the time of first policy cancellation notification 

to the insurer (not first policy to actually lapse in coverage). 
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Figure 4.2. Number of contents, house and motor policies a customer has 
at a particular moment in time. Dashed lines represent the period when 
the risk is covered even though the cancellation has been notified. 

Thus, we capture the brand switch signal so as to be able to analyze the response 

time available to the insurer before the customer is lost, as well as the probability 

that the customer household will subsequently cancel additional policies. 

4.3 The household data set 

The dataset used in this research consists of 151290 households possessing multiple 

insurance policies, who sent notification of cancellation of their first policy to a 

particular major Danish insurer between January 1, 1997 and June 1, 2001. The 

information was collected according to the time frame shown in Figure 4.3. 
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Figure 4.3. Time frame. 

Some of the household covariates refer to the occurrence of an event (a claim, 

a premium increase, or a change of address) from January 1, 1997 until the date 

of the first lapse while other covariates are measured at the time of first policy 

cancellation (for example, the tenure or the age of the policy holder). Once the first 

policy cancellation occurs, the residual household customer lifetime is measured by 

the number of days until all remaining policies are notified for cancellation or until 

the end of the study, June 1, 2001, whichever comes first (some policyholders will 

cancel one policy but keep others). 

In situation (a) in Figure 4.3, all the remaining policies are cancelled before June 

1, 2001, so the household customer residual life is the time from the first lapse date 

until total cancellation of all other policies occurs. In situation Figure 4.3 (b), at 

the end of the study, we only know that the residual life is greater than the time 

from the first lapse until June 1, 2001. In this case, the residual life is the listed as 

the time elapsed from first policy cancellation until June 1, 2001, but note that the 

observation is right censored. 

Table 4.1 lists the variables in the database and the label given to teach. Some 

of the variables that may not be immediately self-explanatory are explained further 

in the text. 
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Table 4.1. Variables in the Household Data Set 
Age of named policyholder at the date of the first lapse (Age) 
Gender of named policyholder (Gender) 
Time from notification of first policy cancellation until the actual first 

cancellation (Notice) 
Tenure of household with insurer (Tenure) 
Core customer status =1 if two policies in addition to contents insurance (Corecust) 
Change of address prior to cancellation (Change of Address, broken into 
six subcategories) 

First Cancellation notice furnished by external company A (External Company A) 
First Cancellation notice furnished by external company B (External Company B) 
First Cancellation notice furnished by external company C (External Company C) 
First Cancellation notice furnished by external company D (External Company D) 
First Cancellation notice furnished by another known external company 

(Another Known External Company) 
Claims history: Time since last claim (Claims, broken into six subcategories) 
Contents insurance prior to cancellation (ContentsO) 
Contents after cancellation of first policy(Contentsl) 
House insurance prior to cancellation (HouseO 
House after cancellation of first policy (Housel) 
Automobile insurance prior to cancellation (MotorO) 
Automobile after cancellation of first policy (Motorl) 
Indicator of household having underwritten the first contents policy within the 12 

months previous to the date of the first lapse (Newcontents) 
Indicator of if household has underwritten the first house policy within the 12 

months previous to the date of the first lapse (Newhouse) 
Indicator of if household has underwritten the first automobile policy within the 12 

months previous to the date of the first lapse (Newmotor) 
Premium increase (Pruning, broken into three subcategories) 

Tenure is the number of years the household has been a customer of the company 

calculated as the number of years from the first policy issued to the policy holder, 

within the types of policies considered here, until the date of the first lapse. Notice 

is the t ime interval from notification of the first policy cancellation until the actual 

occurrence of the corresponding cancellation. 

Since the types of policies held by the household could conceivably affect the 

retention attributes of the client with respect to the insurer, the following dummy 
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variables were developed: contentsO, houseO and rnotorO. They indicate whether 

the household has contents, house, or automobile policies respectively before the 

first lapse. Contentsl, housel and motor 1 indicate whether the household has con­

tents, house, or automobile policies respectively after the first lapse. Newcontents, 

newhouse and newmotor indicate whether the household has underwritten the first 

contents, house, or automobile policies, respectively, within the 12 months prior to 

the date of the first lapse. 

Corecust indicates whether the customer has a core customer status. A core 

customer is a customer that has a contents policy and at least two other types of 

policies (they could be automobile, house, or others like life insurance) with the 

insurer. In the insurance company that has been analyzed here, core customers 

have lower premiums, bonuses, and special advantages. Prom a marketing perspec­

tive core customers having multiple policies tend to be more profitable and, hence, 

deserve special consideration. 

Information on whether a change of address has occurred was included, as it 

can affect the probability of house and contents cancellations. Six categories were 

developed for this variable: no change of address, change of address less than 2 

months before the date of the first lapse, between 2 and 6 months before the date of 

the first lapse, between 6 and 12 months before the date of the first lapse, between 

12 and 24 months before the date of the first lapse, and more than 2 years before 

the date of the first lapse. 

Since premium increases might impact customer retention, information was in­

cluded on whether the time period included a substantial increase in premium of 20 

to 50%. Such premium increases are commonly termed pruning, since the insurer 

wants to persuade the customer to lapse, possibly due to a very bad claims history. 

Three categories were developed: no pruning, pruning within the past 12 months, 

and pruning more than one year before the date of the first lapse. 

The data included information about recency of claims, as they can also affect 

the probability of lapse. The six categories for claims developed were: no claim, 

claim less than 2 months prior to the first lapse, between 2 and 6 months prior to 
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the first lapse, between 6 and 12 months prior to the first lapse, between 12 and 24 

months prior to the first lapse, and more than 2 years prior to the first lapse. 

Finally, considering the competitive nature of the marketplace, and the market­

ing dynamics of alternative brands in a brand switching model, we have also included 

information on whether there was any external company involved in the cancellation 

notice. The customer has a choice of notifying the current insurer him/herself of 

cancellation or of having the new insurer notify the current insurer. It is clear that 

when the new insurer does the notification, that a brand switch has already occurred 

and, at least for that policy, the customer is entrenched with the new insurer for at 

least the next year. It is likely, also, that the new insurer will wait until the last mo­

ment to signal their competitor of the upcoming brand switch, lest the competitor 

take measures to try to retain their customer. Further, the new insurer will likely 

be discussing other insurance policy needs with their newly acquired customer, so 

subsequent policy cancellations are likely. 

We considered the four most important competitors, coded as A, B, C and D 

and developed six categories for this variable: no external company (notification by 

the customer himself), company A, company B, company C, company D, and finally 

another known external company. We considered a competitor to be involved if the 

notification was communicated by an insurance company on behalf of the customer. 

Table 4.2 presents a description of the policy portfolio state before versus the 

state after the first lapse, thus comparing the types of policies the household had be­

fore and after the occurrence of the first lapse. This information is represented with 

a string of three characters of O's and l's where 1 (0) indicates that the household 

had (had not) one particular type of policy. The sequence order is contents - house 

- automobile. For example, if the state before the first lapse is Oil and the state 

after the first lapse is 010, then the household had house and automobile policies 

before the first lapse, but no automobile policy after the lapse. 

As shown in Table 4.2 above, the number of households with only a contents 

policy, 34998, is slightly smaller than the number of households with the three types 

of policies, 37103. 
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Table 4.2. State before vs. after first lapse. Number of policies. 
State aftera 

State before0 000 100 010 001 110 101 011 111 Total 

000 0 0 0 0 0 0 0 0 0 
100 34998 0 0 0 0 0 0 0 34998 

010 10757 0 0 0 0 0 0 0 10757 

001 28198 0 0 0 0 0 0 0 28198 

110 2690 3060 4090 1 0 0 0 0 9841 

101 3397 13764 1 10613 0 0 0 0 27775 

Oil 166 1 1409 1042 0 0 0 0 2618 

111 4389 471 2488 4535 12488 5957 6775 0 37103 

Total 84595 17296 7988 16191 12488 5957 6775 0 151290 
aStates represented by a string of three characters of 0's and l's where 1 (0) indicates 
that the household had (had not) one particular type of policy. Sequence order: 
contents - house - motor. 

The most frequent state before the first lapse is 111, where the customer has 

contents, house, and automobile policies, while the most frequent state after the 

first lapse is 000, since many households have just one policy. 

Focusing now on households with more than one type of policy (Table 4.2), 

initially we observe that for those with just contents and house policies (110), the 

most frequent state after the first lapse is 010, so the one being canceled is the 

contents policy. However, if the household initially has contents and automobile 

policies (101), or house, and automobile policies (011), or all three of contents, 

house, and automobile policies (111), then the automobile policy is the most likely 

to be cancelled. 

Some useful additional observations can be made by examining the results for 

simple descriptive statistics. Amongst the 151290 households who notified their first 

cancellation during the analyzed period, 20740 had not cancelled all their remaining 

policies by June 1, 2001 (the end of the period), so the frequency of censored obser­

vations is 13.71%. The average age of the customers is 45.92 years (with standard 

deviation 17.22), and the average tenure is 9.03 years with the company (standard 

deviation of 10.19). 
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The whole data set consisted of those households who notified their first cancel­

lation during the period between January 1, 1997 and June 1, 2001. This research 

focuses on that part of the dataset with more than one policy before the first lapse 

occurs, which totals 77337 households. As mentioned previously, some of these cus­

tomers cancel all their policies at the same time, so the insurer does not have time to 

react once the first lapse (and total cancellation) has occurred, but some customers 

cancel sequentially, leaving the insurer time to avoid completely losing them. Our 

analysis focuses on the subset of multiple policy holders who cancel sequentially. 

Table 4.3 shows the expectation of the residual life in days depending on the 

state before and after the first lapse, for those households with more than one policy 

at the beginning of the period that do not cancel all the policies simultaneously, i.e. 

the state after the first lapse is not 000. 

Estimated residual lifetimes have been obtained using the Nelson-Aalen esti­

mator, devised by Nelson (1969, 1972) and Aalen (1978). Transitions have been 

classified into three subsets: from two initial policies to one policy, from three initial 

policies to one policy and from three initial policies to two policies. 

Table 4.3. Average residual life 
Average 

Transition State before" State after" n (days) 

110 100 3060 644.809 
110 010 4090 306.711 

Prom 2 to 1 policy 101 100 13764 600.681 
101 001 10613 357.765 
011 010 1409 513.986 
011 001 1042 516.909 
111 100 471 74.006 

From 3 to 1 policy 111 010 2488 120.675 
111 001 4535 157.319 
111 110 12488 589.648 

Prom 3 to 2 policies 111 101 5957 702.472 
111 011 6775 379.851 



4.3. THE HOUSEHOLD DATA SET 69 

Those households having three policies at the beginning of the period who retain 

two policies after the first lapse has the largest overall average residual life, about 

558 days. Further, those customers that started with three policies who end up 

with one policy after the first lapse have a smaller overall average residual life (140 

days) than those who had two policies that end up with one policy (481 days). 

The estimated lifetime difference (341 days) is substantial and may be indicative of 

customer dissatisfaction motivating policy change. The number of days the insurer 

has to respond is important in itself. 

Table 4.4 presents the estimated expected residual life for different types of 

households, depending on whether they have had any claim, change of address, 

or a substantial rise in the premium. Expectations have been obtained using the 

Nelson-Aalen estimator. 

Table 4.4. Average residual life. 
Average 

Factor Status n (days) 
Claims None 

At least one 
32500 
34195 

522.541 
412.753 

Change of address None 
At least one 

45284 
21411 

463.476 
482.802 

Pruning None 
At least one 

64761 
1934 

477.242 
259.967 

Those households that had at least one claim have a smaller average residual 

life (413 days) than those who did not have any claim (523 days). Schlesinger 

& Schulenburg (1993) found that in the German automobile market 14.3% of the 

switchers who filed a claim with their previous insurer had received an indemnity of 

less than 75% of the total insured damages, whereas only 5.4% of non-switchers who 

filed a claim with their current insurer received less than 75% of damages. They 

also found that for switchers, 52.5% of claims filed with previous insurers took three 

weeks or longer to get paid, while only 29.6% of those customers who filed a claim 

with current insurer had to wait that long. This may be in part why claims has the 
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impact it does on the expected time the client remains with the insurer (satisfaction 

level with the claims payments of the insurer). 

According to the results in Table 4.4, households that suffered a substantial rise 

in their premium have an average residual life (260 days), smaller than those corre­

sponding with no price increase (477 days). This result was expected, as households 

who experienced the premium increase probably tried to find a cheaper product in 

another company. A lower premium has been shown to be the most important rea­

son for choosing a particular insurer for the German automobile insurance market 

(Schlesinger k. Schulenburg, 1993). 

The expected time until final cancellation for those who have had a change of 

address (483 days) is slightly longer than the corresponding lifetime for those who 

did not move (463 days). This result suggests that although a contents or a house 

policy cancellation is more likely to happen when a family moves, this does not seem 

to affect household behaviour regarding remaining policies. 

4.4 The hypothesis and the methods 

Our modelling process includes two stages (see Figure 4.4). Firstly, we consider 

those households with more than one policy in the insurance company. Some of 

them would cancell all their policies simultaneously and some of them would make 

a partial cancellation (they cancel some of their policies but not all of them). For 

those households making a total cancellation the insurer has no time to react after 

these first cancellation, the remaining lifetime is zero. For those households who 

make a partial cancellation the insurer can estimate the remaining lifetime, i. e. the 

time between the first cancellation and the moment when all the remaining policies 

would be cancelled. 

Therefore, the modelling process includes a first step where the probability of a 

total cancellation is estimated for those households with more than one policy in 

the insurance company. A logistic regression model will be used to estimate this 

probability as a function of some explanatory covariates. 
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Customers 
with more than one policy 

Logit model 
\ 

Cancel all of them 
simultaneously 

Do a partial cancellation 

Survival analysis 
techiques: Cox Model 

No time to react How much time will they stay in 
the company after the first 

cancellation? 

Figure 4.4. Modelling strategy. 

In the second stage we focus on those households who made a partial cancellation. 

The risk that all the remaining policies would be cancelled (therefore, the insurer 

loose the customer) and the customer lifetime is estimated as a function of some 

covariates by using survival analysis techniques. The methodological contribution 

takes place in this second stage. The naive local constant estimator formulation is 

adapted in order to be used for the estimation of the non parametric part of the 

proportional hazards regression model. 

Therefore, with this methodology the insurer is able to identify those households 

with a high risk of a total cancellation. At the same time, the logistic regression 

model let us know the effect of each covariate on that risk. Additionally, in the 

second stage an estimation of the risk of cancelling all the remaining policies for 

those with a partial cancellation is provided together with the effect of each covariate 

on that risk. Estimations of the remaining customer lifetime duration can be easily 

obtained by using this method. 

Nevertheless, the scope of this research is the customer lifecycle being studied. 

The first stage of our research is focused on those customers who make a first 

cancellation, and the second stage is focused on those households who do not cancel 

all their policies simultaneously in their first cancellation. Therefore, conclusion 

about only these two groups of customers can be drawn. 
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Chapter 5 

The risk of non-renewal 

In this chapter the prediction of the risk of non-renewal is carried out by applying 

a logistic regression model. This method is briefly introduced in the first section. 

Secondly, the estimation results obtained for our household dataset are presented 

and the effect of each covariate in the risk of a total cancellation is discussed. Fi­

nally, we identify different groups of customers with different probabilities of a total 

cancellation and we estimate them. 

5.1 Logistic regression for choice prediction 

As mentioned before, in the first stage of this research we use logistic regression 

to determine the probability, based upon known covariates of the insured, that a 

household originally having more than one policy will cancel all the policies si­

multaneously. The same methodology was used by Guillen, Parner, Densgsoe & 

Perez-Marin (2003) in order to predict the probability of a policy cancellation in a 

three-month period. 

For household i, i = 1,..., n we assume that 

Pr^=^=irSêù ( 5 · 1 ) 

where Ri = 0 for a partial cancellation and Ri = 1 for a total cancellation, Xi 

is a vector of the observed explanatory variables, ß is a vector of unknown para­

meters. Consistent and asymptotically efficient estimates of the parameters in the 

73 
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logistic regression model (5.1) are obtainable using the conditional maximum likeli­

hood method (Snell & Cox, 1989 and Agresti, 1990) implemented in many common 

statistical packages. In this manner we are able to look at the effect of household 

characteristics (covariates) on the likelihood of total simultaneous cancellation. 

5.2 Estimation results 

Predicting this probability is assessed using a logistic regression model where the 

covariates described in Table 4.1 are used, except for contentsl, housel and motor 1 

which are, of course, all zero after a total cancellation has occurred. The data set 

used in the estimation of the model consists of 74969 households (a few observations 

were eliminated due to missing values on some covariates). Among those 74969 

observations, 10317 simultaneously effected a total cancellation of all policies with 

the insurer. 

The overall statistical test of no covariate effect provided a likelihood ratio statis­

tic of LR = 9178.68 with 28 degrees of freedom (p < .001). Household characteristics 

significantly affect the probability that a customer will totally simultaneously cancel 

all policies. Individual parameter estimates are shown in Table 5.1. 

All of the parameters in the model are significant, except for having added a 

new house policy in the last 12 months (newhouse) and having had a premium 

increase more than one year prior to the household first giving a cancellation notice 

(pruning more than one year past). Thus, the potential customer repelling effects 

of premium increases seems to wear out after 12 months. Nevertheless, the overall 

test of significant effect for the risk factor pruning let us refuse the null hypothesis 

(p- value 0.0251). 

The individual parameter tests indicate that the change of address within the 

first 6 months or more than two years prior to the first lapse, the occurrence of a 

claim and the existence of a premium increase (pruning within past 12 months) are 

three factors that influence the probability of a total cancellation. 
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Table 5.1. Logistic regression model estimates. 
Parameter Estimate Stand. Error OR p-value 

Constant -2.201 0.112 - <0.001 
Change of address, less 2 m. ago -0.596 0.060 0.551 <0.001 
Change of address, 2 - 6 m. ago -0.122 0.052 0.885 0.019 
Change of address, 6 - 12 m. ago -0.095 0.048 0.909 0.049 
Change of address, 12 - 24 m. ago 0.229 0.041 1.258 <0.001 
Change of address, more 24 m. ago 0.531 0.044 1.701 <0.001 
Tenure -0.011 0.001 0.989 <0.001 
Claims, less 2 months ago 0.230 0.040 1.259 <0.001 
Claims, 2 and 6 months ago 0.324 0.035 1.383 <0.001 
Claims, 6 and 12 months ago 0.440 0.035 1.553 <0.001 
Claims, 12 and 24 months ago 0.469 0.037 1.598 <0.001 
Claims, more 2 years ago 0.546 0.054 1.727 <0.001 

ContentsO 0.277 0.087 1.319 0.001 
Corecust 0.109 0.025 1.116 <0.001 
Age 0.004 0.001 1.004 <0.001 

External company A 2.548 0.041 12.779 <0.001 

External company B 2.165 0.046 8.718 <0.001 

External company C 1.893 0.048 6.637 <0.001 

External company D 2.270 0.047 8.834 <0.001 

Another known external company 1.686 0.035 9.680 <0.001 

Gender (male) 0.099 0.028 1.104 <0.001 

HouseO -0.657 0.030 0.518 <0.001 

MotorO -1.253 0.033 0.286 <0.001 

Newcontents -0.113 0.043 0.893 0.008 

Newhouse 0.073 0.060 1.076 0.225 

Newmotor -0.208 0.050 0.813 <0.001 

Notice -0.002 <0.001 0.998 <0.001 

Pruning within past 12 months -0.187 0.072 0.829 0.009 

Pruning more than one year ago 0.086 0.111 1.089 0.442 

By looking at the odds ratios, we see that external companies, claims, change of 

address more than one year ago, and contents policy are the most relevant factors 

influencing the probability that a total cancellation occurs. Far and away the most 

important determinant of the probability of a total cancellation is, however, the 

intervention of an external company (competitive effects). Among external com­

panies, the one coded as A is the one with the largest odds ratio, which identifies 
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company A as an aggressive competitor that frequently captures all household con­

tracts simultaneously. 

Both claims occurrence and change of address increase the probability of a total 

cancellation as the time since the corresponding event has occurred increases. 

A surprising result was that core customer status increases the probability of a 

total cancellation. A passible explanation is that core customers may be more likely 

to be solicited by competitors, and they may receive very persuasive offers from 

competitors. 

If this is so, the company should increase the efforts to retain them as these are 

the precise customers which the insurer would like to keep, and, unfortunately, for 

which the insurer has the least amount of notice (residual time) to recapture the 

defecting client. Their risk characteristics may make them desirable customers to 

all insurers and highly sought after. 

We will now address the description of the model's ability to discriminate between 

partial and total first cancellations. In Figure 5.1 the absolute frequencies of the 

predicted probabilities for the observed total and partial cancellations are shown. 

It is possible to compare what the model discriminates with the real observed 

results, i.e, whether or not customers actually do a total cancellation. 

We will consider that customers with a predicted probability greater than a given 

threshold value p as customers for whom the model predicts that he/she will do a 

total cancellation. 

For any given threshold probability p one can calculate sensitivity, specificity, 

predictive positive value (PV^) and predictive negative value (PV^9). Sensitivity 

versus 1 - specificity is represented in the ROC curve, dotted line in Figure 5.2 (a). 

The figure also illustrates the identity (solid line), meaning that the model has no 

discrimination ability. 

The model data set consisting of 74969 customers is scored for selected threshold 

levels. The results are shown in Figure 5.2 (b) and Table 5.2. For a probability level 

of 16.5% sensitivity approximately equals specificity. 



5.2. ESTIMATION RESULTS 

(a) Total cancellations. 
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(b) Partial cancellations. 
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Figure 5.1. Predicted probabilities for observed total and partial cancellations. 
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(a) ROC curve 
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Figure 5.2. ROC curve and Sensitivity, specificity, PVpoS and PVn 
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Table 5.1. Classification results for different probability thresholds. 

Threshold Pred. Total Obs. Total 
prob cane. cane. Sensitivity Specificity PV 

1 vpos 
PV 
1 vneg 

12.0% 34565 8564 83.01% 59.78% 24.78% 95.66% 
13.5% 31690 8225 79.72% 63.78% 26.00% 95.17% 
15.0% 28836 7813 75.73% 67.48% 27.09% 94.57% 

16.5% 25926 7366 71.40% 71.29% 28.41% 93.98% 
18.0% 23211 6869 66.58% 74.72% 29.59% 93.34% 
19.5% 20622 6391 61.95% 77.99% 30.99% 92.78% 
21.0% 18276 5894 57.13% 80.85% 32.25% 92.20% 

This criteria is usually applied to choose the probability threshold. Nevertheless, 

if costs associated to each possible misclassification are known they could be used 

to get better results. In our case, if we assume a probability level of 16.5% we 

will detect approximately 71% of actual total cancellations (sensitivity) and 71% of 

actual partial lapses (specificity). Therefore, for this threshold probability we have 

a reasonably good discrimination ability of the model. 

5.3 Analysing different types of customers in sep­
arate 

For illustration purposes, let us consider a 35 year-old male customer, with 5 years 

of seniority, 90 days of notice before renewal and no new policies within last 12 

months. The estimated probability of a total cancellation if he has house and motor 

policies is 1.6% (by setting the remaining covariates equal to 0). This probability is 

4.1% if he has contents and motor policies and 7.1% if he has contents and house 

policies. In case that he has the three types of policies this probability equals 2.1%. 

It is important to remark that additional policies are always associated with a lower 

probability of a total cancellation except for the case of the contents policy, for which 

the effect is the oposite. 

If we now take as a standard customer the same 35 year-old male customer, 

with 5 years of seniority, 90 days of notice before renewal, no new policies within 
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last 12 months and with the three types of policy contracts, we can compare the 

correspoding probability of a total cancellation (2.1%) when additional risk factors 

are considered. For example, his probability increases to 2.7% if he had a change 

of address within 12 and 24 months ago. In the case of a claim within 6 and 12 

months ago the probability of the standard customer increases to 3.3%. Finally, this 

probability is equal to 2.4% if he has a core customer status. The opposite effect 

would have a substantial increase in the premium within last year, as it reduces the 

probability of a total cancellation for the standard customer to 1.8%. 

As mentioned before, the factor with the most dramatic impact on the risk of a 

total cancellation is external companies. If we consider the same standard customer 

but we assume that external company A is involved in the first cancellation, then 

the probability of a total cancellation increases to 22%. As a final example, if we 

consider the standard customer with a claim within 6 and 12 months ago, change of 

address within 12 and 24 months ago, core customer status and external company 

involved in the first cancellation, then the probability of a total cancellation increases 

to 38%. 

Therefore, with this type of analysis we can have an estimation of the probability 

of a total cancellation for each particular customer. Additionally, we have also iden­

tified factors having the largest effect on increasing the risk of a total cancellation. 

Firstly, according to the types of policies we can identify two types of customers, 

those with contents policy and those with only house and/or motor policies. The 

first group will always have a higher risk of a total cancellation than the second 

one. In any group, the probability will always be increased by the presence of risk 

factors such as claims, change of addres more than one year ago, core customer star 

tus and, most important, external companies. The rest of covariates in our analysis 

would also have their specific contribution when identifying more precisely the risk 

group each customer belongs to. This information can be the basis for segmentation 

procedures that could result in segment-specific marketing strategies. 



Chapter 6 

A comparison of alternative 
models for customer lifetime 
duration 

In this chapter1 we address alternatives procedures aimed at predicting the duration 

of a customer, once a notice for cancellation has been reported to the company. 

One possible statistic that can be used to compare these methods is the expected 

remaining lifetime, another one could be the probability that the insured stays in the 

company three more months. We wonder which of these measures is more useful to 

capture the information on the customer and to furher implement retention policies. 

Several methods provide useful tools to characterise the individuals and to predict 

their behaviour. 

In this chapter we firstly introduce the proportional hazards regression model 

and the Tobit model. These two models are frequently used in marketing for mod­

elling customer lifetime duration. Secondly, the comparison of these two methods is 

performed. Finally, the extension to the case where parameters in the proportional 

hazards regression model are time-dependent is presented. 

1Most parts of this chapter are also part of the paper: Brockett, P.L., Golden, L.L., Guillen, 
M., Nielsen, J.P., Parner, J. & Perez-Marin, A.M. (2005), "Household multiple policy retention 
effects of first policy cancellation: how much time do you have to stop total customer defection?," 
submitted for publication. 
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6.1 Proportional hazards regression model 

We use a proportional hazards model to concentrate on those households that do not 

cancel all their policies simultaneously. For these households, we estimate the length 

of time from the initial consumer cancellation of the first policy, until cancellation 

of the last policy held by the household with the insurer. This proportional hazards 

analysis originates in the biostatistical literature and a brief explanation appears 

below (Cox, 1972). 

In the case of sequential withdrawal of the customer, we model the time between 

first cancellation notification and the final complete withdrawal by assuming that 

there is a baseline (stochastic) distribution for the time a customer will take for 

defection, and that the relative risk of an individual customer defecting completely 

changes from this baseline according to their particular set of individual household 

covariates. 

The instantaneous probability of total defection at time t given survival (partial 

defection) up to time t is called the hazard function at time t. The actual time which 

the household stays with the company, T, is a random variable, and the proportional 

hazards regression model (Cox, 1972) specifies that the hazard function for a random 

survival time T is given by 

nu\ i;m Pr(t<T<t + dt\T>t) 
a{t) = lim — , 

v ' dt->o at 

which is the product of a baseline hazard ao(t) and a specific covariate dependent 

factor, 

a(t\zi) = a0(t) exp(ß'zi) 

where z¿ is the p dimensional observed covariate column vector for individual i and 

ß is the unknown regression coefficient column vector. 

This model is called the proportional hazards model since if we look at two 

individuals with covariate values ZQ and z\, the ratio of their hazard functions is 

constant (exp\ß'(zo — Zi)]) over time. The hazard function a(t)ean be used for 

determining the survival function S(t) — 1 — F(t), where F(t) is the distribution 
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function, on the basis of the relationship S(t) = exp ( — /0 a(s)ds j . Expectation of 

the time to total withdrawal can be obtained by integrating the survival function. 

The parameters ß can be estimated even without pre-specifying the baseline 

survival curve or hazard function. Efron (1977) has shown that the partial likelihood 

f=\ YltU «PCS'**) - ^ E f c e A j exp(/3'zfe) ' 

can be maximized independently of the unknown baseline hazard function, a0(t) to 

yield estimations of ß. Here t\ < £2 < ••• < ijo denotes the D distinct ordered event 

times, dj denotes the number of total cancellations that occur at tj, A¿ denotes 

the set of all households who cancel all the policies at time tj, and Rj is the set 

of all households at risk of canceling their policy just prior to tj. This regression 

model is semiparametric as the baseline hazard function has to be obtained using 

non parametric methods. 

Most of the covariates in our application are binary and can be understood as 

indicators of the presence of a risk factor (for example, a change of address or a 

claim). The sign of the parameter estimate can be interpreted as the effect of the 

corresponding covariate on the expected time to final withdrawal from the company. 

When the parameter estimate is positive, we conclude that the hazard for the 

household with the associated covariate is larger than in the absence of the indicator 

of this covariate. On the basis of proportionality, the corresponding resulting sur­

vival function is also steeper. Thus, a positive parameter estimate is associated to a 

shorter time to total withdrawal for those households that have the risk factor sig­

naled by the covariate, compared to those without the risk factor. Parameters with 

positive and significant coefficients thus signal to the insurer that they have a shorter 

time to react to the initial lapse in order to forestall total household withdrawal than 

would be the situation otherwise. 

For estimating the baseline hazard aQ(t) we use a modification of the standard 

Nelson-Aalen estimator (Aalen, 1978; Nelson, 1969 and Nelson, 1972), the naive 

local constant estimator, introduced in Chapter 3. By adapting the formulation 
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of this new estimator to the estimation of the baseline cumulative hazard in the 

proportional hazards regression model, we obtain the following estimator 

max(t-6,0) , t+b , 

ANLC(t) = J2 ^ L~mr^+ Y) ^ —T^r- r , (6.1) 

where b is the bandwith and j t b is a normming constant defined in (3.2). 

6.2 The Tobit model 

Another method that can be applied in that context is the standard Tobit model 

(Tobin, 1958). Applying that model to the customer lifetime analysis results in the 

following specification 

y* = ß'zi + Ei 

' 0 i f î / ? < 0 
Vi = \ Ci if y* > Ci 

y* otherwise 

for i = l,...,n, where y¡ is the so-called index variable, y¿ is the lenght of the 

customer ¿'s lifetime, c¿ is the censoring point for customer i (the customer's max­

imum observable lifetime), Zi is the vector of covariates affecting the lenght of the 

customer's lifetime, and e¿ ~ N(0, a^). Parameter estimates are obtained by max­

imizing the likelihood function. With an estimation of ß and a^. one can estimate 

the probabilities concerning the customer residual lifetime. 

In this model framework, it can be proved that the expectation of y for a par­

ticular customer with covariate vector Zi is given by 

4M . J,.,(^Éî\)J,(±z£i).,lzlî)),„ 

m<ä'(ä-
ota 

aa 

where 0(-) and $(•) are the standard normal density and distribution function, 

respectively, and etj = (j — ß'zi)/ae for j = 0, c¿. 
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In the case of the Tobit model when the parameter estimate is significant and 

negative the customer residual lifetime duration is shorter than in the absence of the 

indicator of the corresponding covariate. Parameters with positive and significant 

coefficients let us identify factors associated to a longer residual lifetime duration. 

6.3 Comparison of the methods 

For those households with more than one policy that do not cancel all their policies 

at the same time, we analyze expected amount of time between the first cancellation 

and the final termination of all policies with the company (called the residual lifetime 

of the household with the insurer) by using the proportional hazards regression 

model and a Tobit model described earlier. 

Table 6.1 displays parameter estimates for the proportional hazards regression 

model. The likelihood ratio test for the overall significance of the Cox regression 

model is high. The corresponding LR tests statistics for the Cox model is 32623.9, 

which are chi-squared distributed with 31 degrees of freedom (p — value < .001). 

Therefore, this result indicates that the covariates have a significant effect. 

Parameter estimates for the Tobit model are displayed in Table 6.2. The intercept 

estimate is equal to 666.13 and its standard error is 14.582. The scale parameter is 

396.06 and its standard error is 1.37. The log likelihood equals —340533.761. 

According to parameters in Tables 6.1 and 6.2 covariates with significant effects 

in both models have the same influence on the risk (or the residual lifetime). There­

fore, generally speaking, the same conclusions about the direction of the effect of 

significant risk factors are obtained for both models. 

For the proportional hazards regression model, having made a change of address 

between six and twelve months prior to the first lapse is not significantly related to 

the expected time between the first lapse and the final termination of all policies, 

however all other parameters associated in the model are significant at the 5% level, 

except the indicator for having experienced a premium increase more than one year 

2The intercept is significant (chi-squared statistic equal to 2087.91, p — value < .0001). 
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Table 6.1. 

Cox regression model results. 

Standard Hazard 
Parameter Estimate Error Rate p-value 

Change of address less 2 m. ago -0.245 0.019 0.783 <0.001 
Change of address 2 - 6 m. ago -0.083 0.020 0.920 <0.001 
Change of address 6 - 12 m. ago -0.023 0.020 0.978 0.252 
Change of address 12 - 24 m. ago 0.044 0.019 1.045 0.021 
Change of address more 24 m. ago 0.157 0.025 1.170 <0.001 
Tenure -0.003 0.001 0.997 <0.001 
Claims, less 2 m. ago 0.096 0.016 1.100 <0.001 
Claims, 2 - 6 m. ago 0.161 0.015 1.175 <0.001 
Claims, 6 - 12 m. ago 0.185 0.015 1.203 <0.001 
Claims, 12 - 24 m. ago 0.228 0.017 1.256 <0.001 
Claims, more 24 m. ago 0.257 0.027 1.294 <0.001 
ContentsO 0.681 0.029 1.975 <0.001 
Contentsl -0.869 0.016 0.419 <0.001 
Corecust -0.042 0.011 0.959 <0.001 
Age -0.003 <0.001 0.998 <0.001 
External company A 1.727 0.018 5.625 <0.001 
External company B 1.528 0.020 4.611 <0.001 
External company C 1.652 0.019 5.217 <0.001 
External company D 1.778 0.020 5.919 <0.001 
Another known external company 1.643 0.012 5.170 <0.001 
Gender (male) 0.103 0.012 1.109 <0.001 
HouseO 0.222 0.017 1.249 <0.001 
House 1 -0.559 0.017 0.571 <0.001 
MotorO 0.415 0.021 1.515 <0.001 
Motorl -0.529 0.018 0.589 <0.001 
Newcontents -0.059 0.016 0.942 <0.001 
Newhouse -0.109 0.024 0.897 <0.001 
Newmotor -0.076 0.017 0.927 <0.001 
Notice" >-0.001 <0.001 1.000 <0.001 
Pruning within past 12 months 0.188 0.029 1.207 <0.001 
Pruning more than 1 year ago 0.095 0.053 1.100 0.075 

"Negative parameter estimate. 
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Table 6.2. 

Tobit regression model results. 

Standard Chi-
Parameter Estimate Error Square p-value 

Change of address less 2 m. ago 70.198 6.803 106.49 <0.001 
Change of address 2 - 6 m. ago 6.754 7.168 0.89 0.346 
Change of address 6 - 12 m. ago -4.130 7.119 0.34 0.562 
Change of address 12 - 24 m. ago -29.116 6.926 17.67 <0.001 
Change of address more 24 m. ago -82.058 8.909 84.84 <0.001 
Tenure 1.942 0.210 85.14 <0.001 
Claims, less 2 m. ago -61.178 5.838 109.81 <0.001 
Claims, 2 - 6 m. ago -77.610 5.397 206.75 <0.001 
Claims, 6 - 12 m. ago -90.527 5.505 270.43 <0.001 
Claims, 12 - 24 m. ago -109.482 6.138 318.18 <0.001 
Claims, more 24 m. ago -151.214 9.798 238.18 <0.001 
ContentsO -174.219 10.693 265.45 <0.001 
Contentsl 266.768 6.133 1892.11 <0.001 
Corecust 32.199 3.903 68.05 <0.001 
Age 1.904 0.132 206.82 <0.001 
External company A -562.644 6.948 6558.26 <0.001 
External company B -528.710 7.583 4861.87 <0.001 
External company C -580.379 7.302 6316.73 <0.001 
External company D -597.857 7.605 6180.00 <0.001 
Another known external company -565.852 4.231 17888.20 <0.001 
Gender (male) -39.388 4.117 91.55 <0.001 
HouseO -12.742 6.523 3.82 0.051 
Housel 133.892 6.433 433.21 <0.001 
MotorO -112.112 7.849 204.02 <0.001 
Motorl 133.336 6.973 365.60 <0.001 
Newcontents -6.088 5.779 1.11 0.292 
Newhouse 62.253 8.552 52.99 <0.001 
Newmotor 11.626 6.215 3.50 0.061 
Notice 0.056 0.015 13.18 <0.001 
Pruning within past 12 months -40.515 11.214 13.05 <0.001 
Pruning more than 1 year ago -34.307 19.686 3.04 0.081 
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before the first lapse (pruning more than one year ago) which is marginally significant 

(not significant at the 5% level of significance, but significant at the 10% level). 

Change of address, claims, external company, and pruning are the strongest 

factors contributing to reducing the expected residual Ufe. For the Tobit regression 

model, change of address between 2 and 6 months ago and between 6 and 12 months 

ago do not have a significant effect on the residual lifetime. The same occurs for 

newcontents. The effect of houseO, newmotor and pruning within more than one 

year ago are not significant at the 5% level, but are significant at the 10% level. 

For covariates having a significant effect on the risk (or residual lifetime), the 

following comments can be made on the basis of any of the two models (see Table 

6.1 and 6.2). When looking at all the parameters related to the change of address 

one can see that the effect is different depending on the moment when this event 

took place. A recent change of address slightly increases the expected time between 

the first policy lapse and the final termination of the last household policy. But, as 

the time elapsed since the household has moved increases, the contribution of this 

factor on the expected time until final termination (residual life) has the opposite 

effect: it reduces residual life. 

The parameter associated with tenure is significant and negative (in the case 

of the Cox model, positive for the Tobit model) suggesting the length of time that 

members of a household have been with the insurer the less likely they are to switch 

brands—the longer it will take them to switch. This finding underscores the im­

portance of customer loyalty. Female customers have also a slightly longer expected 

residual fife than do male customers. Beyond the actuarial difference, others stud­

ies have also found meaningful purchasing behavioural differences between men and 

women 3. 

The presence of claims reduces residual life, and the effect becomes more re­

markable as the time since the claim has occurred increases. This later effect can 

be due to some delay in the compensation of claims, so the assessment of the claims 

3For example, Gandolfi & Miners (1996) found gender differences in life insurance ownership. 
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handling process by the household is delayed. 

An expected result is that the core customer status increases residual life. As we 

mentioned before, these households have some advantages, and these special features 

seem to be effective for customer retention, or at least to dissuade customers from 

completely leaving the company, although it does also increase their attractiveness 

for competitors. The parameter estimate corresponding to the covariate age is sig­

nificant and negative sign in the Cox model (positive in the Tobit model) indicating 

that as the age of the policyholder increases there is a slight increase in the expected 

residual life. 

As with the probability of total cancellation discussed earlier, the competitive 

effects of the market are very important. Furthermore, this is the factor most 

significantly related to a reduction in residual life of the client household with the 

insurer. This is particularly true for the external companies coded as A and D. 

When an external company is involved in a particular cancellation, it seems 

to attract the new customer toward other lines of business. It is also easier for 

the customer to get information about the premium costs and the characteristics of 

other products in the new insurance company. Competitors may provide information 

that the current company does not to existing customers, making switching more 

attractive, possibly because of customer ignorance of product opportunities with 

their current insurer. 

Tables 6.1 and 6.2 also shows that variables measuring new business of the house­

hold with the insurer within past 12 months (newcontents, newhouse, newmotor) 

have a significant and negative impact. This suggests that recent business is con­

tributing to an increase residual life. Again, this may be related to customer contact 

and education. The new business, makes the biggest contribution is buying a new 

contents policy. 

The parameter associated with notice is also significant and negative, and as 

the time since notification until renewal increases, the expectation of residual life 

increases slightly, also. And a substantial rise in premiums is associated with a 

reduced residual life, but the effect is different depending on the moment when this 
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event took place. A substantial rise in the premium during last year is associated 

with a shorter residual lifetime duration compared to a premium rise that took place 

more than one year ago. 

For variables relating to the insurance portfolio of the household before the first 

lapse, one causing less reduction in residual life is houseO, followed by, motorO and 

finally contentsO. The fact that the initial state of the insurance portfolio has a 

significant effect on residual life can be tested, for example in the case of the Cox 

model, using Wald's statistic (value 306.606, chi-squared with 2 degrees of freedom, 

p — value < .001). 

Concerning the insurance portfolio of the household after the first lapse, the 

one associated with the largest increase in the expected residual Ufe is contents 1, 

followed by motor 1 and finally housel. Again, a Wald statistic test confirms that the 

state of the household's insurance portfolio following the first lapse also significantly 

impacts the residual time until final total policy cancellation (test statistic equal to 

941.135, chi-squared distributed with 2 degrees of freedom, p — value < .001). 

Examples of customer survival functions and expectations 

This section develops an illustration of the application of the proportional haz­

ards regression model and the Tobit model for understanding customer retention. 

The estimated parameters can be used to obtain the survival function to model 

retention for any given customer, which is potentially useful strategic demand side 

information. To do this, in the case of the proportional hazards regression model, we 

first need to estimate the baseline hazard rate using non parametric techniques. In 

our case, we use the naive local constant estimator (6.1) and we proceed in the same 

way as explained in section 3.5. By integrating the resulting baseline cumulative 

hazard4 we obtain the baseline survival curve plotted in Figure 6.1. Regarding the 

Tobit model, the details about the calculations are shown in Appendix C. 

4A suitable probability function Kb(-) is the biweight kernel !£&(•) = |§{1 — (-/b)2}2 where 
6 = 400. The same biweight kernel with the same b has been used to smooth a'(t)2 one more time. 
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Figure 6.1. Baseline survival function. 

Figures 6.2 and 6.6 show the survival function for a 55 year-old male customer, 

with ten years of tenure with the insurer, no change of address within the last 

two years, a claim between two and six months ago, and no external company 

involvement in the notification, giving 150 days of notice before renewal, no new 

business with the insurer within the past twelve months, no core customer status, 

and no pruning. Assume also that the customer has contents, house, and automobile 

policies before the first lapse. Survival curves and expectations are shown for both 

models depending on the first policy being cancelled. 

It can be observed that the survival curve with the steepest slope is the one 

corresponding to those households who first cancel the contents policy for whom we 

observe a shorter residual life (of about 779 days in the case of the Cox model and 

658 in the case of the Tobit model) before final expected exit from the company. 

The largest expected residual life corresponds to the case in which the automobile 

policy is the first to be notified for cancellation. 

Figures 6.3 and 6.7 consider the same customer as in the previous example, but 

with contents and automobile policies before the first lapse and only an automobile 

policy after the first lapse. In this case, we compare the survival function and the 

residual life depending on whether or not any external company was involved in the 

cancellation. 
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Figure 6.2. Survival function depending on the first policy being cancelled. 
Cox model. 
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Figure 6.4. Survival function depending on change of address, claims and pruning. 
Cox model. 
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Figure 6.5. Survival function for a households with only the contents policy after the 
first lapse depending on the types of policies they had before the first lapse. 
Cox model. 
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The external competitor coded as company D is the one causing the most reduced 

residual life (of 45 days for the Cox regression model and 126 days for the Tobit 

model) while, on the other hand, the residual life is substantially larger when no 

external company is involved in the first cancellation (600 days for the Cox model 

and 545 days for the Tobit model). 

Figures 6.4 and 6.8 show the survival function and the estimated expected resid­

ual Ufe for a thirty year-old female customer with five years of tenure with the 

insurer, with both contents and automobile policies before the first lapse, but only a 

contents policy after the first lapse, with no external company involved in the noti­

fication, ninety days of notice of cancellation given to the insurer before renewal, no 

new business with the insurer within the past twelve months, and no core customer 

status. Results are compared depending on whether or not the customer has had 

a change of address, claims, and if there has been pruning or not. As would be 

expected, when none of these events have occurred, residual life (864 days for the 

Cox model and 723 for the Tobit model) is larger than when the three of them have 

occurred (645 days for the Cox model and 572 days for the Tobit model). 

We should now illustrate the importance of the particular insurance policies 

owned by the household before the first lapse. We consider the same customer as in 

Figure 6.2, but with only the contents policy remaining after the first lapse. Figures 

6.5 and 6.9 compare the survival functions for the portfolio before the first lapse. 

The survival function with the steepest slope, as well as the shortest residual fife, 

corresponds to the household that has all three types of policies before the first lapse 

(662 days for the Cox model and 657 for the Tobit model). 

The examples above illustrate how dramatic the impact of the covariates can 

be on the time the insurer has to respond to the first cancellation, before subse­

quent cancellations. These covariates are measurable characteristics of customers 

in the marketplace and can be employed to help signal customer defection to the 

competition. 
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Figure 6.9. Survival function for a households with only the contents policy after 
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Tobit model. 
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The risk to loose a customer within a given period of time 

Now we compare both model's ability to detect customers with a high risk to 

compleately leave the company within different periods of time, namely 3 months, 

6 months and 12 months. In order to do that, we estimate the probabilities of 

cancelling all the remaining policies in the given period of time and we combine this 

information with the actually observed lifetime. 

Results for the 3-month period case are summarized in Tables 6.3 and 6.4 for 

the Cox and Tobit model, respectively. On the one hand, among those who actually 

experience a total cancellation within a 3-month period, 28548 customers, 3642 have 

an estimated probability by using the Tobit model higher or equal to 0.75 and 1346 

between 0.5 and 0.75. Therefore only 17.47% of those customers have an estimated 

probability higher or equal to 0.5. This frequency increases to 74.7% in the case of 

the Cox model. On the other hand, in the case of the Tobit model, among those who 

actually survive beyond a 3-months period, 32377 customers, 95.34% of them have 

an estimated probability of a total cancellation within the reference period lower 

than 0.5, while this probability is 74.4% in the case of the Cox model. 

Table 6.3. Expected probabilities for the Cox Model for a 3-month time period. 

p =P(residual life<3 month) 
Observed residual lifetime 
Residual life>3 month Residual life<3 month 

p < 0.25 
0.25 < p < 0.5 
0.5 < p < 0.75 
p > 0.75 

19929 4559 
4162 2662 
6433 13099 
1853 8228 

24488 
6824 
19532 
10081 

32377 28548 60925 

Table 6.4. Expected probabilities for the Tobit Model for a 3-month time period 

p =P(residual life<3 month) 
Observed residual lifetime 
Residual life>3 month Residual life<3 month 

p < 0.25 
0.25 < p < 0.5 
0.5 < p < 0.75 
p > 0.75 

28147 19967 
2720 3593 
947 1346 
563 3642 

48114 
6313 
2293 
4205 

32377 28548 60925 
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Table 6.5. Expected probabilities for the Cox Model for a 6-month time period 

p =P (residual life<6 month) 
Observed residual lifetime 
Residual life>6 month Residual life< 6 month 

p < 0.25 
0.25 < p < 0.5 
0.5 < p < 0.75 
p > 0.75 

11664 3606 
8328 6197 
2946 7720 
3129 17335 

15270 
14525 
10666 
20464 

26067 34858 60925 

Table 6.6. Expected probabilities for the Tobit Model for a 6-month time period 

p =P(residual life<6 month) 
Observed residual lifetime 
Residual life>6 month Residual life< 6 month 

p < 0.25 
0.25 < p < 0.5 
0.5 < p < 0.75 
p > 0.75 

17809 8180 
5950 15507 
1389 2552 
919 8619 

25989 
21457 
3941 
9538 

26067 34858 60925 

The same probabilities can be estimated for a 6-month period. Results are 

shown in Tables 6.5 and 6.6 for the Cox and Tobit model respectively. Among those 

who actually cancel all their remaining policies within a 6-month period, 34858 

customers, 8619 have an estimated probability by using the Tobit model higher 

or equal to 0.75 and 2552 between 0.5 and 0.75. Thus, 32.05% of them have an 

estimated probability higher or equal to 0.5. In the case of the Cox model, this 

frequency is much higher, 71.88% . For those who actually survive beyond a 6-

months period, 26067 customers, 91.15% of them have an estimated probability of a 

total cancellation within the reference period lower than 0.5 if we consider the Tobit 

model. For the Cox model, this probability is 76.7%. 

We finally present the probability of a total cancellation within a 12-month 

period, see Tables 6.7 and 6.8. In that case, among those who actually experience 

a total cancellation within a 12-month period, 42922 customers, 78.66% % of them 

have an estimated probability higher or equal to 0.5 (if we consider the Tobit model). 

This frequency is 69.44% in the case of the Cox model. For the Tobit model, among 
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Table 6.7. Expected probabilities for the Cox Model for a 12-month time ] jeriod 

Observed residual lifetime 
p =P(residual life<12 month) Residual life>12 m. Residual life< 12 m. 
p < 0.25 2541 966 3507 

0.25 < p < 0.5 11695 12151 23846 
0.5 < p < 0.75 953 2718 3671 
p > 0.75 2814 27087 29901 

18003 42922 60925 

Table 6.8. Expected probabilities for the Tobit Model for a 12-month time period 

Observed residual lifetime 
p =P(residual life<12 month) Residual life>12 m. Residual life< 12 m. 
p < 0.25 8203 2827 11030 
0.25 < p < 0.5 5446 6336 11783 
0.5 < p < 0.75 3386 15892 19278 
p > 0.75 968 17867 18835 

18003 42922 60925 

those who actually survive beyond a 12-months period, 18003 customers, 75.81% 

of them have an estimated probability of a total cancellation within the reference 

period lower than 0.5, while this probability is 79.04% in the case of the Cox model. 

Therefore, when the detection of customers with a high risk of a total cancellation 

within a short time period is the issue, the Cox regression model let us better identify 

them than the Tobit model. When dealing with the detection of customers who are 

going to survive beyond short time periods the Tobit regression model seems to have 

a better performance than the Cox regression model. Nevertheless, in both cases 

the Cox regression model always provides reasonably good estimations, while the 

Tobit model clearly fails to detect total cancellations in short time periods. 

Additionally, in order to choose the optimal method for detecting these cus­

tomers, the cost of the potential under-estimation should be considered. In that 

case, the cost of not detecting a customer that is going to make a total cancellation 

within a 3 or 6 month-period is supposed is be higher than the cost of not detecting 

those who are going to survive beyond this time period. For all these reasons, the 

Cox regression model is preferable. 
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When considering longer periods of time, namely one year, the performance 

of both models seem to be opposite. The Cox model provides better estimated 

probabilities than the Tobit model for those who survive beyond the one year time 

period, while the Tobit model seems to be preferable when estimating probabilities 

for those who do a total cancellation within a one year time period. Nevertheless, the 

performances of the two models are not so different like in the short-time period, 

therefore as an overall conclusion we advocate for the use of the Cox regression 

model. 

6.4 Time-varying covariate effect in the survival 
model 

We now investigate whether or not the effects of covariates in the Cox regression 

model change over time. Methods described in section 2.4 have been widely used 

in survival studies in medicine or biology, where sample sizes are normally not 

very large and the number of covariates or risk factors is small. On the other 

hand, insurance companies have large portfolios, therefore in actuarial studies we 

frequently have to face the problem to deal with massive data sets. In this section, 

we present two applications of methodology described in section 2.4 to our data set. 

Application 1. 

In this first example, we randomly selected 2069 customers among those who 

do a first partial cancellation (approximately 3.4% of the total). The number of 

covariates has also been limited to the following 10 selected risk factors: address 

(1 if a change of address has been registered, 0 otherwise), claim (1 if a claim has 

been registered, 0 otherwise), contentsO, contents 1, corecust, extc (1 if any external 

company has been involved in the first cancellation, 0 otherwise), houseO, housel, 

motorO and motor 1. Parameter estimates of the Cox model for this subsample are 

shown in Table 6.9. 
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Figure 6.10. Cumulative regression functions (time measured in years). 
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Table 6.9. Cox regression model fitting information. 

Standard Hazard 
Parameter Estimate Error Rate p-value 

address -0.088 0.059 0.916 0.136 
claim 0.237 0.053 1.267 <.001 
contentsO 0.581 0.169 1.787 <.001 
contentsl -0.895 0.089 0.409 <.001 
corecust 0.134 0.058 1.143 0.021 
extc 1.740 0.059 5.697 <.001 
houseO 0.074 0.091 1.077 0.416 
housel -0.586 0.093 0.557 <.001 
motorO 0.206 0.111 1.229 0.064 
motorl -0.423 0.100 0.655 <.001 

Table 6.10. Test for time-dependent effects. 

Parameter Test statistic p-value 

(intercept) 2.863 0.148 
address 0.523 0.686 
claim 1.616 0.008 
contentsO 3.360 0.026 
contentsl 4.079 0.000 
corecust 0.622 0.526 
extc 1.977 0.130 
houseO 3.434 0.002 
housel 3.483 0.014 
motorO 3.634 0.010 
motorl 2.966 0.028 

All parameters in the model are significant except for address and motorO. The 

likelihood ratio test for the overall significance of the Cox regression model is high at 

LR test statistic equal to 1122.866, which is chi-squared distributed with 10 degrees 

of freedom (p < .0001), indicating that the covariates have a significant effect on 

the hazard. 
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We now investigate for potential time-dependent covariates effects in that model. 

In order to do that, we assume model (2.2) and apply the timereg R-package 

(available in http://www.biostat.ku.dk/~ts/timereg.html, see Appendix D) and the 

methodology devised by Scheike & Martinussen (2004). In Figure 6.10 the cumula­

tive regression functions together with the corresponding 95% pointwise confidence 

bands are shown (see Scheike & Martinussen, 2004, for details about the calcula­

tions). 

It is important to remark that in the case of constant effects a straight line (result­

ing from integrating a constant parameter) should be observed. A departure from 

this pattern is an indicator of a time-varying effect for the corresponding covariate. 

Additionally, several tests of time-varying effects can be used, like the one based on 

the Kolmogorov-Smirnov type statistic (described in Scheike & Martinussen, 2004). 

Results for time-varying effects testing provided by this package are summarized in 

Table 6.10. 

According to these results, the null hypothesis of time-constant effects is re­

jected at the 5% level of significance for claim, contentsO, contents 1, houseO, housel, 

motorO and motorl. Therefore, influence of all these covariates varies with time. 

Generally speaking, for all of them the main change in the effect of the covariate 

occurs approximately at t — 2.5 years. 

The overall effect of claim on the increase of the risk of a total cancellation is 

much more remarkable after this time point. Regarding contentsO, there seems to be 

a change in the direction of the effect after t = 2.5. The overall effect before this time 

point seems to be positive (producing an increase of the risk of a total cancellation) 

while after t = 2.5 years is negative (reducing the risk of a total cancellation). 

On the other hand, contents 1 is contributing to a lower risk of a total cancellation 

before t = 2.5, but afterwards its effect is the opposite. For houseO and motorO a 

remarkable change in the effect of the covariate occurs after this time point, where a 

clear contribution to reducing the risk of a total cancellation is observed. The same 

occurs for housel and motorl after this time point, but in the opposite direction. 

http://www.biostat.ku.dk/~ts/timereg.html
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Figure 6.11. Survival curves. 
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Therefore, a direct implication of this results is that the proportionality assump­

tion in the Cox model does not hold in that case. 

In order to illustrate this idea, let us consider two customers. The first one 

{customerl) has the three types of policies and cancels both the house and the motor 

policies, has a change of address, a claim, does not have a core customer status in 

the company and there is an external company involved in the cancellation. 

The second one (customeri) has exactly the same characteristics except for the 

fact that he only cancels the motor policy. The corresponding survival curves for 

both customers obtained by using both the standard Cox model and the generalized 

Cox model with time dependent parameters are shown in Figure 6.11. 

Both models let us conclude that customer2 would have a longer expected resid­

ual lifetime after first cancellation than customerl, but important differences in the 

shape of the survival function due to the changing effects of covariates over time are 

only captured by the model including time-dependent effects in the parameters. 

Additionally, differences in the survival curves of both individuals seem to be 

very remarkable according to the standard Cox regression model, while the ex­

tended model with time-varying coefficients shows us that the difference between 

both customers is not so extensive as reported by the Cox model, specially before 

t = 2 years. 

Therefore, expectations for the residual life calculated on the basis of curves 

obtained by using the standard Cox model would provide a too much short residual 

lifetime for customerl and a too much long residual lifetime for customer2. 

The completely different pattern of survival curves captured by the extended Cox 

model with time-dependent parameters is an evidence of the non proportionality of 

the hazards of both customers. This can be better illustrated in Figure 6.12, where 

the hazard rate of customer2 with respect to customerl is represented. The hori­

zontal line represents the hazard rate in the case where proportionality is assumed, 

i. e. the standard Cox model. 
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Application 2. 

In this second application we focus on a very important subset of customers, 

those who have the three types of policies before the first cancellation and simulta­

neously cancel two of them. For these customers, quick marketing actions should 

be addressed in order to retain them, because their expected remaining lifetime is 

considerably short. 

We randomly select 600 customers among 7381 who simultaneously cancel two 

policies (8.13%). 

We investigate potential time-varying effects of three selected covariates consid­

ered in this analysis, contentsl, housel and extc (1 if any external company has 

been involved in the first cancellation, 0 otherwise). 

By applying the same methodology as in the previous application (see Scheike 

&; Martinussen, 2004) the cumulative regression functions and 95% pointwise con­

fidence bands can be obtained (see Figure 6.13). Results for time-varying effects 

testing provided by timereg are summarized in Table 6.11. 

Evidences of time-varying effects are found in the case of housel. For contentsl 

the null hypothesis of constant effects is rejected at the 6% level of significance, but 

not at the 5% level. 

Results are very clear in the case of extc, this covariate has a constant effect on 

the risk of cancelling all the remaining policies. 

Table 6.11. Test for time-dependent effects. 
Parameter Test statistic p-value 

(intercept) 384.276 0.000 
contentsl 693.626 0.058 
housel 631.527 0.014 
extc 96.000 0.936 
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Figure 6.14. Survival curves. 

As we can see in Figure 6.13, housel has a positive effect (increase in the risk) 

during the first year approximately. This means that the risk of cancelling all the 

remaining policies during the first year is higher for those customers with just the 

house policy after the first cancellation than for those with just the motor policy 

(baseline group). 

After the first year, the effect of this covariate is the opposite, it contributes 

to reduce the risk (except during a short period of time around t = 900 days 

approximately). 

This can be shown in Figure 6.14, where customerl, customer2 and baseline 

represents a customer with just the contents, the house and the motor policy re­

spectively after the first cancellation. 

The fact that the survival curves for the baseline case and customer2 cross each 

other is an evidence of the non proportionality of hazards. 
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Figure 6.15. Hazard rates. 
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This is illustrated in Figure 6.15, where the hazard rates of customerl and cus­

tomed with respect to the baseline case are represented (in that case, two plots 

are used in order to avoid the representation of the hazard rates corresponding to 

t — 613 because of the dramatic increase of the hazard function at this point in time 

for customerl). 



Chapter 7 

Conclusions 

In this last chapter, final remarks and conclusions are presented in a systematic way. 

In order to organize the argumentation, we firstly discuss the methodological contri­

bution of this thesis and secondly, the results obtained in the empirical applications. 

Finally some extensions of this research are outlined. 

7.1 About the methodology 

The methodological contribution of this research is directly related to the first and 

fifth specific objectives presented in section 1.5. Conclusions are therefore presented 

according to the following two general topics: 

Definition of a new methodology for the estimation of customer lifetime duration. 

The definition of a new non parametric estimator in the field of survival analysis 

is the main methodological contribution of this thesis. Namely, we have introduced a 

new estimator of the cumulative hazard function, the naive local constant estimator, 

with improved bias versus variance properties compared to the traditional Nelson-

Aalen estimator. 

While arguing for the superiority of the proposed naive local constant estimator, 

we have also introduced a set-up for evaluating an estimator of the cumulative hazard 

function. In particular such a set-up must be able to cope with the behaviour of 

111 
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the boundary region, namely the "edge effect" mentioned in Bowman, Hall & Prvan 

(1998). This is extensively discussed in section 3.2, where the final expressions of 

the optimal bandwidth and efficiency gain are functions of t. These results provide 

valuable properties of bandwidth selection in the context of survival analysis where 

the largest times are censored. 

We also quantify the efficiency gain for a number of well-known distribution 

functions of a random variable measuring the time-to-event. In most of the cases 

considered here, the best gain is obtained at the lower and higher distribution quan-

tiles, except for the Lognormal distribution, for which the shape of the curve is 

different from the rest of them. Most of the efficiency gains obtained are well above 

20%, except for the Log-logistic, Exponential-Power and Gompertz distributions in 

higher quantiles. The highest efficiency gains are approximately between 50% and 

70% and they correspond to the case of the Lognormal distribution. 

The theoretical efficiency gain curves are obtained for a given distribution func­

tion, which is usually unknown in practice. In real applications the efficiency gain 

depends on the estimation of the optimal bandwidth parameter. Therefore, we car­

ried out a little simulation study in order to adjust for the effect of plugging-in an 

estimation of the bandwidth in the efficiency calculations. Our results are shown in 

section 3.4. 

Generally speaking, differences between theoretical efficiencies and those ob­

tained by using the plug-in procedure are not dramatic, specially for the central 

quantiles. In any case, even after estimating the optimal bandwidth parameter, 

the estimated efficiency gain curve is capturing reasonably well the efficiency gain 

performance of the new estimator. 

We give practical notes about the implementation of the new estimator in section 

3.5. We suggest to use the local linear estimator (Nielsen & Tanggaard, 2001) in 

order to have an approximation of the optimal bandwidth that could be used in the 

application of the new estimator to real data. 

If the estimated squared first derivative of the hazard function is very close to 

zero, the optimal bandwidth will be so much large that the new estimator will not 



7.1. ABOUT THE METHODOLOGY 113 

perform better than the Nelson-Aalen estimator. In this case, our suggestion is to 

use a more robustified estimator of the squared first derivative of the hazard function 

by smoothing it one more time. 

The practical insights provided in section 3.5 are used in the application of the 

new proposed estimator to the analysis of survival with malignant melanoma (data 

set in Example 1.3.1, Andersen, Borgan, Gill & Keiding, 1993). The results let us 

compare estimations of the cumulative hazard obtained by using the Nelson-Aalen 

estimator and the naive local constant estimator. We confirm the improved efficiency 

performance of the new estimator with respect to the Nelson-Aalen estimator. The 

efficiency gains are specially remarkable for low quantiles. 

Application of the new methodology to the analysis of the remaining customer life­

time duration after the first cancellation. 

In the empirical application, the general formulation of the new estimator is 

adapted to the estimation of the non parametric component of the proportional 

hazards regression model. 

Therefore, this empirical study is at the same time illustrating one of the many 

possible applications of the naive local constant estimator when addressing new 

challenges in actuarial science. Apart from this, the new estimator can be directly 

applied to classical survival studies in life insurance statistics and survival analysis. 

The methodology applied in our empirical application consist of two stages that 

conveniently fits the problem of analysing customer lifetime duration after the first 

policy cancellation. Even though it only analyses the time elapsed between two 

particular moments in the customer lifecycle, they have been chosen in order to 

provide a reasonable/right understanding of the relevant factors influencing customer 

residual lifetime duration after the first cancellation. 

The first policy cancellation is clearly indicating a change in the insurance rela­

tionship from the customer point of view. Because of this fact, we chose this moment 

as the starting point of the customer lifecycle period we wanted to analyse. 
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Subsequent cancellations are of course important moments of the remaining cus­

tomer lifecycle. Nevertheless, our empirical study has proved that, in many cases, 

the remaining policies are cancelled after a very short period of time. 

For these customers it is probably more practical to have an estimation of the 

total remaining lifetime duration (time until all the remaining policies are cancelled) 

than only until the following cancellation. This was one of the reason for choosing 

the moment when all the remaining policies are cancelled as the terminal point of 

the customer lifecycle period we wanted to analyse. Other reasons are derived from 

the lack of availability of historical datasets about policy cancellation in a multiline 

context. 

It is clear that incorporating information about subsequent cancellations would 

improve our understanding of the insurance customer behaviour, specially in the 

case of insureds with a long remaining lifetime duration. 

Nevertheless, the estimation of the total remaining lifetime duration can be used 

in order to design an initial retention strategy (for a particular group of customers 

who have just made their first cancellation) and the information provided by prospec­

tive events in the customer lifecycle can always be incorporated in order to conve­

niently reconduct the initial retention strategy. 

The proposed methodology lets us analyse the two most important elements of 

period going from the first cancellation to the total cancellation of all policies: a) the 

risk of cancelling all policies simultaneously (logistic regression model) and b) the 

remaining lifetime duration in case of a partial cancellation (proportional hazards 

regression model). 

Our empirical results let us conclude that the propose methodology provides a 

reasonably good understanding the insurance customer lifecycle. We conclude that 

there is a significant methodological contribution in this thesis, because the customer 

behaviour in the insurance market has not been studied from this perspective before. 
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7.2 About the empirical application 

Insurance purchasing is a complex process surrounding an intangible product1 about 

which consumers are likely to be ignorant (Gravelle, 1994; Showers & Shotick, 1994 

and Schlesinger & Schulenburg, 1993). Due to all the intangibility of the product, 

service, and purchasing process uncertainties, customers are likely to be particu­

larly vulnerable to competitive influences that provide some certainty, for example, 

knowledge that the competitor offers a lower premium. Information provided by 

insurers to existing and potential customers may be particularly important to the 

brand switching potential of customers. And, the relationships formed by the insurer 

and its agents or representatives, will also be particularly important for customer 

retention (Crosby & Stephens, 1987). 

The empirical study focuses on demand-side dynamics by analyzing household 

customer behaviour for a bundle of insurance products purchased from a single 

insurer. Many times a household will concentrate its policy portfolio with a single 

company making a policy lapse all the more important. Specifically, we focus on 

households for whom at least one policy has lapsed and investigate the effects for the 

lapse rates of other policies owned by the same household. Multiple risks, such as 

are reflected in multiple policies, and household decision-making have been shown 

to be important for understanding customer behaviours (cf., Bonato & Zweifel, 2002 

and Dionne, Gourieroux & Vanasse, 1997). 

In this manner, we are able to provide useful managerial information on the 

response time that the firm has from the first lapse signal to total customer defection 

(lapse of all policies purchased from the firm). This time frame is a window of 

opportunity for the firm to be able to stop the customer defection through customer 

relationship management techniques. From a pure financial perspective, it will be 

1 While it is common to speak about insurance as a product, conceptually from a marketing 
perspective, it is also a service. All products have facilitating services and all services have facil­
itating products, sometimes blurring the distinction between the product and the service for the 
customer. The agent may often be viewed as the service provider (to the customer), with the 
insurer being perceived as the producer of the product. This distinction may be very important 
to customer relationship management. 
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less costly for the firm to retain an existing customer, when possible, than it is to 

attract a new customer or win-back a customer who completed a total defection 

(lapse of all policies owned from a single customer or household). 

This research also provides information on the customer variables and experi­

ences that relate to cancellation behaviour. Specifically, we investigate customer 

demographics, customer history and firm experiences, the manner in which the can­

cellation is made, and household portfolio dynamics. This information allows the 

firm to be able to segment the customer market on the basis of demographics (and 

other variables), so as to better predict the likely time until defection from the first 

cancellation by customer characteristics2. 

We summarize the main conclusion in the same order as the objectives presented 

in the first chapter. We have reorganized the items in five general topics: 

Estimation of the probability of a total cancellation. Determination of the factors 

associated to a higher risk of a total cancellation. 

We have analyzed the behaviour of households having more than one policy in the 

same company (but not necessarily of the same type) that make a first cancellation. 

It can be either a total or a partial cancellation. 

A logistic regression model has been used to estimate the probability of a total 

cancellation for a sample of customer from a Danish insurance company. Our results 

support the overall significance of the model. Additionally, its discrimination ability 

is reasonably good (it identifies around 71% of total policy cancellations). 

The main advantage of this method is that it can be easily implemented in order 

to identify groups of households with a higher risk of simultaneous total cancella­

tion of all their policies. This information can be used to design specific customer 

retention strategies (for another application in the Spanish market see Pujol, 2004) 

The logistic regression results indicated that having an external company notify 

2 Jill Griffin discusses the general concepts of customer loyalty, retention and win-back and their 
relative financial costs in her two books, Customer Loyalty (Second Edition, Jossey-Bass, New 
York, 2004) and Customer Win-back (Josey-Bass, New York, 2003) 
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the customer cancellation is probably the most relevant factor associated to a higher 

risk of simultaneous total cancellation of all household policies. 

Additionally, the occurrence of a claim is always associated to a higher risk of a 

total cancellation. Actually, both claims occurrence and change of address increase 

the probability of total cancellation, at this probability even increases further as 

time goes by. 

We also found that customer retention begets customer retention: the longer the 

customer was with the firm, the less likely they were to cancel a policy. And, if one 

policy is cancelled, the longer the customer can be expected to remain with the firm 

after first cancellation. Thus, the already loyal customers seems to want to remain 

loyal, and be relatively reluctant to switch. These customers are critical and should 

not be ignored, i.e. a relationship with them needs to be a strategic focus. Loyal 

customers are often ignored in the question of market share expansion. 

A warning note from this research is that core customers, those with multiple 

policies that receive a special treatment, are among the most likely to switch all 

policies simultaneously to an external company. These are the most valuable cus­

tomers from a risk perspective, and those are the most likely to be recruited away, 

as other firms are likely to see them as valuable, also. 

The occurrence of a premium increase within past 12 months is associated to a 

lower risk of a total cancellation. When the customer is paying a high price for an 

insurance contract is less likely to announce a total policy cancellation (at least in 

the short term) because probably he/she is waiting to take some profit from these 

high premium. In the long term the effect of this covariate is the opposite (this will 

be discussed in the following item). 

The more in advance the customer is announcing the cancellation the lower is 

the risk of a total cancellation. Definitely, the marketing manager should take the 

advantage of the time elapsed between the notification and the moment when the 

risk is not covered any more in order to retain the customer. 

In the Danish company dataset, those customers who have a contents policy 

have a higher risk to make a total cancellation than those who only have house 
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or motor policies. Therefore, special attention should be paid to customers with a 

contents policy in the company because in case that they decide to move some of 

their policies (not necessarily the contents policy) to another insurer, then the rest 

of policies are very likely to be moved as well. 

Analysis of survival beyond the first cancellation. Determination of the factors as­

sociated to a higher risk of cancelling all the remaining policies (shorter residual 

lifetime). 

When a partial cancellation occurs, this is the first evidence of a reconsideration 

of the insurance relationship from the customer point of view, and the insurer may 

have time to take action to retain the customer for other policies held by the house­

hold (multiple types of coverage). For the analysed data set, if policies of more than 

one type are cancelled, the expected remaining lifetime of the customer with the 

firm (before all policies are cancelled) is substantially smaller than when only one 

Une of business is cancelled. 

The analysis of customer residual lifetime duration after the first cancellation has 

been carried out by using two models: the proportional hazards regression model and 

the Tobit model. Generally speaking, the effect of each covariate on the customer 

remaining lifetime duration is the same for both models. 

Our main conclusion, for the analysed data, is that the amount of time that 

the insurer has to retain the customer is dependent upon the type of customer. 

Our results let us conclude that the policy type first cancelled is one of the key 

factors in explaining the expected residual fife, or the estimated time left until the 

customer-insurer relationship is terminated. 

The knowledge of the specific estimated residual life corresponding to a particular 

customer will allow the insurer to more effectively tailor their marketing strategy 

to increase customer retention. For example, an informational campaign strategy, 

which may be effective if the expected residual life is long, may be ineffective if the 

expected customer lifetime duration with the firm is short. The procedures presented 

in this paper will allow the insurer to make such customer market segmentation 
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decisions, so as to more effectively manage the customer relationship. 

In the real dataset that is studied in this thesis, we have seen that: External 

companies, change of address, claims and pruning are the strongest factors con­

tributing to reducing the expected residual life. Nevertheless, a recent change of 

address slightly increases the expected time between the first policy lapse and the 

final termination of the last household policy. 

The effect of claims in the reduction of the residual life is more remarkable as 

the time since the claim has occurred increases. A substantial rise in premiums is 

associated with a reduced residual life, but this effect is less remarkable the more 

time has passed since the premium increase. 

The longer the customer was with the firm, the longer residual customer lifetime 

duration he/she has. Core customer status is also increasing the residual lifetime 

duration, even though it is associated to a higher probability of a total cancellation. 

Therefore, for those core customers who do not cancel all their policies simultane­

ously, the residual lifetime duration is longer than for non core customers. 

Finally, the composition of the insurance portfolio before and after the first can­

cellation (the type of first cancellation) is a relevant factor explaining the remaining 

customer lifetime duration. Concerning the insurance portfolio of the household 

before the first lapse, the contribution of the house type of policy in the reduction 

of the residual lifetime duration is more remarkable than the one corresponding to 

the contents and motor types of policies. Regarding the insurance portfolio after 

the first lapse, the contribution of the contents type of policy in the increase of the 

residual lifetime duration is higher than the one corresponding to the motor and 

house types of policies. 

Comparison between the proposed methodology and the Tobit model. 

The proportional hazards regression model and the Tobit model have been used 

to obtain an estimation of customer residual lifetime durations and survival proba­

bilities of different types of insureds. 
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Estimations about lifetime durations are a very useful information for the insurer 

in order to design retention strategies. One way to compare both methodologies is 

in terms of survival probabilities. In the case of the proportional hazards regression 

model, lifetime durations are obtained in some indirect way by integrating the cor­

responding survival curve. In the case of the Tobit model, residual lifetime duration 

is directly the dependent variable. In any case, these estimations depend on the 

censoring times. For example, in the case of the proportional hazards regression 

model, the higher the risk of cancelling all the remaining policies is the better the 

approximation to the real residual lifetime duration. 

Therefore, we compared these two methods in terms of survival probabilities 

to given time thresholds. On the one hand, our results let us conclude that the 

proportional hazards regression model provides a better detection of customers with 

a high risk of a total cancellation within a short period of time than the Tobit model 

does. On the other hand, the Tobit model seems to better identify customers with a 

high probability of a total cancellation within longer periods of time. Nevertheless, 

in any case the overall performance of the proportional hazards regression model is 

preferable than the one corresponding to the Tobit model, specially if we take into 

account the cost of the potential under (over )-estimations of both models. 

Extensions to the case where effects of covariates are allowed to vary over time in 

regression models in survival analysis. 

Time-varying coefficients are included in the proportional hazards regression 

model in two empirical applications to our insurance data set. We have considered 

two randomly selected samples and specific covariates in each application. 

Our results in any case are indicating that there is a clear evidence for the 

time-dependency of the effect of some risk factors on the probability to cancel all 

the remaining policies. Generally speaking, the overall effect of claims and the 

composition of the customer portfolio is dramatically changing at around the time 

point t — 2.5 years. Factors with a constant effect over time are change of address, 

core customer status and external compames. 
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Insurance business risk management. 

The methodology applied to the empirical application provides an important 

tool for the design of marketing strategies and business risk management guidelines. 

The knowledge of the risk of a policy cancellation for each particular customer can 

be used in order to measure the overall business risk of the portfolio. 

Probably, the most important contribution of this research is derived from the 

formulation of the problem itself. Our results support our initial intuition about 

how to set the problem out and provide useful insights applicable to marketing and 

business risk management in insurance. 

The basic elements of the formulation of the problem are the conceptual frame­

work (the concept of policy cancellation and the household as the individual in our 

study) and the multiline approach (multiple policies analysed simultaneously). 

Marketing and business risk management in insurance should not consider the 

customer as the individual policy holder of a particular contract but a customer of 

the company as a whole. Our hypothesis is that any event in the customer lifecycle 

in one line of business is influencing the customer behaviour in the rest of them. 

For the three types of insurance contracts considered in the applied part of 

this research (contents, house, and automobile), it may be the case that all adult 

household members participate in the decision to cancel (or to purchase). In this 

research we analyse the behaviour of households having more than one policy in the 

same company, but not necessarily of the same type. The marketing and business 

risk manager should link policy holders who are members of the same household, i.e. 

the same decision-making unit. The household is an appropriate unit of analysis for 

marketing multiple (or individual) insurance products to a decision-making unit3. 

3Even though linked as a household decision-making unit, the insurer can still recognize the 
different decision influences of various individuals (e.g., husband-dominate, wife-dominate, joint-
equally, or delegated to one member exclusively). Future research can be conducted to determine 
the style of decision-making for various types of customers or policies held. 
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7.3 Extensions 

This research has a number of relevant extensions both in its methodological and 

applied component. In this section they are briefly summarized. 

About the methodology 

We view the new estimator introduced in Chapter 3 as the simplest possible 

extension of the traditional Nelson-Aalen estimator, since it to some extent assumes 

the hazard to be constant in a neighbourhood of the point of interest, using an 

unweighted local approach for estimation. Therefore, our estimator has similarities 

to both the histogram estimator and the naive kernel density estimator, which leads 

to the choice of the name of the method: the naive local constant estimator. More 

sophisticated versions of the naive local constant estimator can be investigated, 

where non-uniform weight functions could be considered in order to improve its 

efficiency. 

About the empirical application 

The analysis of the complete customer lifecycle is the main extension of this 

research. The scarce availability of historical insurance data in a multiline context 

was our main obstacle. Nevertheless, as we mention in the introduction of this thesis, 

in the recent years, information systems and more advanced statistical packages have 

partly contributed to make information transfer and analysis much more efficient. 

Therefore, our intuition is that in a short period of time extension of the current 

investigation will be needed, in order to analyse longitudinal and multi-product 

information. 

As we mention before, not all policy cancellations are the same. The incorpora­

tion to the analysis of information on premiums and claim compensations would let 

the insurer discriminate between policy cancellations made by bad customers and 

those made by good customers. This would also improve any estimation of the real 
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risk derived from the changing composition of the portfolio due to cancellations and 

new policy underwritings. 

A more complete analysis of the time-varying effects of covariates in the survival 

model should be addressed, specially to incorporate all the explanatory variables 

in the model. This would provide a better understanding of the impact of each 

risk factor in customer lifetime duration. In order to do that, we may work with 

randomly selected small samples in order to overcome the problem of working with 

big data sets. 

* The implementation and follow-up of marketing strategies and business risk man­

agement guidelines is the final extension of the current research. Nevertheless, this 

research has provided a right understanding of the most relevant elements of the 

problem in order to carry out more advanced investigations within this field. 
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Appendix A. Expansion of the 
naive local constant estimator 
when Y(s) > 0 for s E [0, t + &]. 
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Appendix B. SAS program for the 
estimation of the naive local 
constant estimator. 

proc iml; 

start k(x); 

b=; /* BANDWIDTH PARAMETER */ 

if (x>=-b) & (x<=b) then c=(15/16)*(l/b)*((l-(x/b)**2)**2); 

if (x<-b) then c=0; 

if (x>b) then c=0; 

return (c); 

finish k; 

r=; /* VECTOR OF INDIVIDUAL SURVIVAL TIMES */ 

d=; /* VECTOR OF INDIVIDUAL CENSORING - EVENT INDICATOR */ 

y=; /* VECTOR OF INDIVIDUAL EXPOSITIONS TO RISK */ 

mil=; /*MAXIMUM SURVIVAL TIME */ 

milu=mil+l; 

nou=mil-l; 

n=nrow(r); 

inl=j(milu,3,0); 

' inl[i,]=; /* SURVIVAL TIMES */ 

/* LOCAL LINEAR ESTIMATOR */ 

do i=l to n; 

ni=r[i]+l; 

137 



if ((niilu-ni)>0) then vecl=j(ni,l,l)//j((milu-ni),l,0); 

if ((rnilu-ni)=0) then vecl=j(ni,l,l); 

if ((milu-ni)<0) then vecl=j (mihi, 1,1); 

inl[,2]=inl[,2]+(vecl#y[i]); 

if ((milu-ni)>0) then inl[ni,3]=inl[ni,3]+(l-d[i]); 

if ((milu-ni)<=0) then inl[milu,3]=inl[milu,3]+(l-d[i]); 

end; 

sum2=0; 

sum3=0; 

sum4=0; 

sum5=0; 

sum6=0; 

sum7=0; 

aj2=(l:mil+l); 

aj3=(l:mil+l); 

aj4=(l:mil+l); 

aj5=(l:mil+l); 

aj6=(l:miH-l); 

aj7=(l:mil+l); 

do t l = l to (mil+1); 

do t2=2 to (mil+2); 

dife=((tl-l)-(t2-2))/10; 

sum2=sum2+k(dife) *l*inl [t2-l,2] *0.1 ; 

sum3=sinn3+(k(dife))*(dife)*inl[t2-l,2]*0.1; 

sum4=sum4+(k(dife))*((dife)**2)*inl[t2-l,2]*0.1; 

sum5=sum5+(k(dife))*l*inl[t2-l,3]; 

sum6=sum6+(k(dife))*((dife)**l)*inl[t2-l,3]; 

end; 

aj2[tl]=sum2; 

sum2=0; 
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aj3[tl]=sum3; 

sum3=0; 

aj4[tl]=sum4; 

sum4=0; 

aj5[tl]=sum5; 

sum5=0; 

aj6[tl]=sum6; 

sum6=0; 

end; 

do t l = l to (mil+1); 

do t2=2 to (mil+2); 

dife=((tl-l)-(t2-2))/10; 

if ((((aj2[tl]*aj4[tl])-((aj3[tl])**2)))^=0) then kbar=(aj4[tl]*k(dife)-(aj3[tl]* 

k(dife)*(dife)))/((aj2[tl]*aj4[tl])-((aj3[tl])**2)); 

if ((((aj2[tl]*aj4[tl])-((aj3[tl])**2)))~=0) then sum7=sum7+kbar*inl[(t2-l),3]; 

end; 

aj'7[tl]=sum7; 

sum7=0; 

end; 

aj2=aj2'; 

aj3=aj3'; 

aj4=aj4'; 

aj5=aj5'; 

aj6=aj6'; 

alpa=aj7'; 

ac=(l:mil+l); 

ac[l]=aj7[l]*0.1; 

do ss=2 to (mil+1); 

ae[ss]=ae[ss-l]+aj7[ss]*0.1; 

end; 
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£LCT)—£IC j 

der=(l:mil+l); 

do ff=l to (mil+1); 

der[ff]=(aj6[ff]-aj7[fF]*aj3[ff])/aj4[ff]; 

end; 

dert=der'; 

acder=(l:(mil+l)); 

acder[l]=der[l]; 

do gg=2 to (mil+1); 

acder [gg] =aeder [gg-1] +der [gg] *0.1 ; 

end; 

acdert=acder'; 

der2=(l:mil+l); 

do ff=l to (mil+1); 

if (aj3[ff]~=0) then der2[ff]=(aj5[ff]-aj7[fF]*aj2[ff])/aj3[ff]; 

end; 

dert2=der2'; 

acder2=(l:mil+l); 

acder2[l]=der2[l]; 

do gg=2 to (mil+1); 

acder2 [gg] =acder2 [gg-1] +der2 [gg] *0.1 ; 

end; 

acdert2=acder2' ; 

time=(0:mil); 

base=time'| |inl[,2] | |inl[,3] | |aj2| |aj3| |aj4| |aj5| |aj6| |alpa| |act| |dert| |acdert| |dert2| |aedert2; 

dera=j (milu, 1,0) ; 

do kk=l to milu; 

dera[kk]=base[kk,ll]**2; 

end; 

suml=0; 
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sum2=0; 

pp=nrow(dera)-1 ; 

vecl=(l :pp+l); 

vec2=(l:pp+l); 

do t l = l to (pp+1); 

do t2=2 to (pp+2); 

suml=suml+k2((tl-l)-(t2-2))*dera[t2-l]; 

sum2=sum2+k2((tl-l)-(t2-2)); 

end; 

vecl[tl]=suml; 

vec2[tl]=sum2; 

suml=0; 

sum2=0; 

end; 

vec3=vecl /vec2; 

basef=base| |vec3'; 

bb=j(milu,l,0); 

do i = l to mihi; 

if ((basef[i,9]/(2*basef[i,2]*(basef[i,15])))>0 & (2*basef[i,2]*(basef[i,15]))>0) then 

bbp]=(((basef[i,9]/(2*baaef[i,2]*(baset[i,15])))**(l/3))); 

end; 

bopt=j (milu, 1,0) ; 

efi=j(milu,l,0); 

do i= l to milu; 

bopt[i]=(basef[i!9]>0)*(bb[i]<(basef[i!l]))*bb[i]+ 

(basef[i,9] >0)*(bb[i] > (basef[i,l]))*basef[i,l]+ 

(basef[i,9]<=0)*0; 

if (basef[i,10] ~=0 & basef[i,9]>0 & basef[i,10]>0) then efi[i]=(bopt[i]<=basef[i,l])* 

(3/8)*bopt[i]*basef[i,9]/basef[i,10]+ 

(bopt[i]>basef[i,l])*(basef[i,l]/2)*(basef[i,9]-(basef[i,ll]**2)*basef[i,2]* 
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(basef [i, 1] **3) /2) /basef [i, 10] ; ; 

end; 

basefin=basef 11 bopt 11 efi ; 

create lc from base; /* RESULTS LOCAL LINEAR ESTIMATOR */ 

append from base; 

close lc; 

create b_opt from basef; /* OPTIMAL BANDWIDTH PARAMETER AND 

EFFICIENCY ESTIMATION */ 

append from basef; 

close b_opt; 

run; 

/* LOCLIN CONTAINS THE 14 VARIABLES OF LC, THE ESTIMATION 

OF THE SQUARED HAZARD DERIVATIVE AND THE ESTIMATION 

OF THE OPTIMAL B */ 

proc iml; 

use res.loclin; 

read all into loclin; 

inte=l; 

pp=nrow(loclin)-1 ; 

naiv=(l:pp+l); 

ind=(l:pp+l); 

do i=l to 1; 

t=loclin[i,l]; 

b=int (loclin[i, 16] ) ; 

mml=max((t-b),0); 

e=0; 

do j= l to mml+1; 

c=c+loclin[j,3]/loclin[j,2] ; 

end; 

r=0; 



mm2=min(t+b,loclin[nrow(loclin), 1] ); 

do s= l to mm2+l; 

r=r+loclin[s,3]/loclm[s,2]; 

end; 

naiv[i]=c*0.5+0.5*r; 

end; 

do i=2 to (pp+1) ; 

t=loclin[i,l]; 

b=int(loclin[i, 16]) ; 

mml =max( (t-b), 0) ; 

c=0; 

do j = l to mml+1; 

c=c+loclin[j ,3] /loclin(j ,2] ; 

end; 

r=0; 

mm2=min(t+b,loclin[nrow(loclin),l]); 

do s= l to mm2+l; 

r=r+loclin[s,3] /loclin[s,2] ; 

end; 

naiv[i]=c*0.5+0.5*r; 

ind[i]=((c*0.5+0.5*r)>=naiv[i-l]); 

end; 

time=(0:pp); 

base2=time' 11 naiv' 11 ind' ; 

create res.nlc from base2; 

append from base2; 

close res.nlc; 
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Appendix C. SAS program for the 
calculation of expectations for the 
Tobit model. 

proc iml; 

use res.outest; /* RES.OUTEST CONTAINS PARAMETER ESTIMATES 

OF THE TOBIT MODEL */ 

read all var {_scale_} into sigma; 

lise res.outest; 

read all var { 

/* INTERCEPT AND EXPLANATORY COVARIATES */ 

} into b; 

n=; /* NUMBER OF DIFFERENT TYPES OF CUSTOMERS FOR WHOM 

WE WANT TO GET THE ESTIMATION */ 

xt={ 

}; /* VECTOR OF COVARIATES FOR THESE CUSTOMERS */ 

print xt; 

print b; 

x=xt'; 

baseini=j(n,3,0); 

do kk=l to n; 

baseini [kk, 1] =kk; 

end; 

baseini[,2]=(b*x)'; 
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baseini[,3]=;7* CENSORING TIMES */ 

integ=j(n,2,0); 

do i= l to n; 

alpha_a= (0-baseini[i,2])/sigma; 

alpha_b= (baseini[i,3]-baseini[i,2])/sigma; 

a = 0; 

b = baseini[i,3]; 

incl=(alpha_b-alpha_a)/2000; 

inc2=(b-a)/2000; 

suml = 0; 

do j = l to 2000; 

suml = suml + (alpha_a+j*incl)*pdf('NORMAL',(alpha_a+j*incl))*incl; 

end; 

integ[i,2]=suml; 

integ[i,l]=baseini[i,l] ; 

end; 

inte=integ| |baseini[,2] | |baseini[,3] ; 

create res.merg from inte; 

append from inte; 

close res.merg; 

run; 

data res.merg; 

set res.merg; 

rename coll=numperf col2=integl col3=Xbeta col4=dif; 

run; 

data res.outl; 

drop _scale_; 

set res.merg; 

a=0; 

b=dif; 
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if _n_ eq 1 then set res.outest; 

Predicl=a*cdf('NORMAL',(arXbeta)/_scale_)+b*(l-cdf('NORMAL', 

(b-Xbeta)/_scale_))+(cdf('NORMAL',(b-Xbeta)/_scale_)-cdf('NORMAL', 

(a-Xbeta)/_scale_))*Xbeta + _scale_*integl; 

label Xbeta='MEAN OF UNCENSORED VARIABLE' 

Predicl = 'MEAN OF CENSORED VARIABLE'; 

run; 
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Appendix D. Cox model with 
time-varying coefficients. R 
program wiïh timereg library. 

library (timereg,survival) 

library(survival) 

mostra<-_data set_ 

out<-timecox(Surv(reslife,status)~_list of covariates_,mostra, 

max.time=,n.sim=,band.width=) 

summary(out) 

par (mfrow=c(3,4) ) 

plot (out) 
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